PostgreSQL 7.3.2 Administrator’s
Guide

The PostgreSQL Global Development Group

PostgreSQL 7.3.2 Administrator's Guide
by The PostgreSQL Global Development Group
Copyright © 1996-2002 by The PostgreSQL Global Development Group

Legal Notice

PostgreSQL is Copyright © 1996-2002 by the PostgreSQL Global Development Group and is distributed under the terms of the license of the
University of California below.

Postgres95 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written
agreement is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in all
copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE

AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PRO-
VIDED HEREUNDER IS ON AN “AS-IS” BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents

PREIACE ..ot n s i
1. What iS POSIOrES QL 2....ceiieeeecectesesteseeeeee st ne e s aesaestesee e enennennenes i
2. A Short History of POStOreSQL.......ccviriiiirierie s i

2.1. The Berkeley POSTGRES PrOjJECL........covoiieirieireeerieteseeeseeseeesee e ii
2.2, POSIGIESO5.....e ettt r e n e ii
2.3, POSIGIES QL. ettt e iii
3. What's IN ThiS BOOK......c.cciiiiirieieieeee sttt sttt e s sne e e neeneenenneees iii
4. Overview of Documentation RESOUICES..........cccvuiririiirieiireesieese e iv
5. Terminology and NOTALION..........ccoiiriirieeree et e sb et v
6. BUg RePOrtiNg GUIEIINES......c.ccuiiieiirieiriei ettt v
6.1. 1deNtifYiNG BUGS......c.crueuirieiiieiiieeiiieesi et Vi
6.2. WRAL L0 FEPOLL. ...ttt Vi
6.3. WhHETe 1O rePOIT DUGS......ecveeeriiitiisteiieeree ettt Viii

1. INStallation INSIFUCHIONS ..ottt et sttt b e b s e e s e b be s 1
R o] A= =7 o] o ST PO TRURPRRI 1
O B (T [1 =10 0 T=] o 5= SRR 1
1.3, GettiNG TNE SOUICE....c.eiiiiit ettt st sb e e bt be b b e 3
A o T AN =T U oo = Vo [T 3
1.5. InStallation PrOCEAUIE...........ccvuieriiric e 5
1.6. POSt-INStallation SEIUP.......ccveieiiciece e sneens 10

1.6.1. Shared LIDrariEsS. ... e 10
1.6.2. Environment Variables..........cccooiriiineiiceeer e 11
RS TU o] oTo] g (=To l = F= Y a 0] 1 /0= 11

2. INStallation ON WINOOWS.........corririiiireresere s 17

3. Server RUN-tIME ENVIFONMENT........ccvirireiirre s 18
3.1. The POStgreSQL USEr ACCOUNL........cceiriiirieerieiereeie sttt seereseebesessenessenens 18
3.2. Creating a Database CIUSLEL..........ccoiiiriireeree e 18
3.3. Starting the Database SEIVEL........cccoeriirieiree e 19

3.3.1. Server Start-Up FaIlUMES.........coviirerereree et 20
3.3.2. Client Connection Problems..........coeeieiriiniinnirie e 21
3.4. RUN-tIME CONfIQUIALION.c..cviiiiiiitiiere ettt e 22
L I o Yo TS 1= 11T L SO OO ST PSR PRRPRRRPRIN 23
3.4.2. Planner and Optimizer TUNINQG.......coetreereereeseseesiee st 23
3.4.3. Logging and DEDUGQINGc.coueerueirieirieiereetesestesesiee e seere b seeresesneneas 25
3.4.4. GeNEral OPEratiQ........ccooiueerieirieirieie sttt sttt s eb e s ebe e b e sneneas 28
BuA5. WAL ettt bbb bbb bbb b 34
3.4.6. SNOIM OPLONS ..ottt e e e bt e e ene b e e 35
3.5. Managing Kernel RESOUICES ..ottt s se 36
3.5.1. Shared Memory and SemaphOLes.cccociriiire e e 36
3.5.2. RESOUICE LIMILS.....iiiiiiitiiieieeeeeei ettt st e 40
3.6. ShUutting DOWN the SEIVEL.......c.ciiiiiiiiee ettt e 41
3.7. Secure TCP/IP ConNections With SSL........cccoveiiriiriirneneesee e 42
3.8. Secure TCP/IP Connections with SSH TUNNELS..........cccoivriiiriiereeeeeeeeeens 43

4. Database USEers and PriVIIEES. ...ttt s sb e 44

4.1, DAtabaSE USELS.......ccceiiiitieiecteeie ettt ettt st sttt eae et e saeeeesreeneesteereenbenreenns 44
4.2, USEI ARIIDULESot e s re et e re e b e reeaes 44
G T €1 o 11 = ST PSS SURP PSSR 45
A4, PrIVIIEOES ..ottt ettt b bbbt bbb a e bt e b e b b e r e 45
4.5. FUNCLIONS AN THOQEES . viieieeerieritetestenie et ste e seeee e sse e st sesee e e e ssesbeseeseeneeneenesaesneas 46
5. Managing Dat@bhases..........coeiuiiiiiieiee ettt bbb e e sae e a7
5.1 OVEBIVIBW. ...ttt e b b et h b e bt e e d e e et et eaeebesbeseese et eneenesaesnens a7
5.2. Creating @ Database.ccoiiiiiii e a7
5.3. Template DatabasEs.........cccoieeeiiiieeseee et 48
5.4. Database ConfigUratiOn...........ccceceeieieeieie et nesaeeneas 49
5.5. AItErNALIVE LOCALIONS......oeiuiiiirieieieeieee sttt 49
5.6. Destroying @ Database.........ccoiiiriiieieene et 50
SR 1=) X011 g T=T 01 (ToT= Vi o] o FO TSRS 52
6.1. Thepg_hba.Conf fill. .o it sae e 52
6.2. Authentication MEthOAS..........cociiiiii e 56
6.2.1. Trust aUthentiCatION........ccccvriiiere e 56
6.2.2. Password authentiCation...........coecveireeneeneesse e 56
6.2.3. Kerberos authentiCation...........cccuvvvirirereieeiesese e e 57
6.2.4. Ident-based authentiCation............cvovvirerereerecese e 58
6.2.4.1. Ident Authentication over TCP/IR........cccoo e 58

6.2.4.2. Ident Authentication over Local SOCKEtS.........cccceevevriervrenecinennnnne 58

6.2.4.3. 1dENE MAPS.....i ittt st et e 58

6.2.5. PAM AUthENtICALION........ccoviiieie ettt st 59

6.3. AUthentication ProDIEMS. ... e 59
A o Yo7 11 2= 11 o] o [OOSR 61
7.1, LOCAIE SUPPOIL. ...ttt sttt sttt ettt sttt b e sttt b et bt bt e 61
8 N R O 1YY oY= R 61

0 A = T= T = 11 £ S 62
0 O T o 0] o] 1= o L= 63

7.2. MUIIDYLE SUPPOIL ... ettt et bbb e s eae e e 63
7.2.1. Supported character set NCOAINGS.......corverirerere e e 64
7.2.2. Setting the ENCOAING........ciiiiiriririieeie et e 65
7.2.3. Automatic encoding conversion between server and client............cccc.c....... 66
7.2.4. What happens if the translation is not possibleZ?..........cccceveveevcevievieceenee 68
7.2.5. REIEIBINCES ... bbb e e 68
2 ST 1] (] Y 68
7.2.7. WIN1250 on WINdOWS/ODBC........cccoireiiririerieienesie sttt 69

7.3. Single-byte character Set reCOMING......ccccvvireiereieceeere e 70
8. Routine Database MaintenNancCe TASKS........ccvvirriirrenner e 72
8.1. GENEral DISCUSSIQN......civeireetirirteristeesteesie sttt st st ettt b e b seebeseebesesbe e sbenens 72
8.2. ROULING VACUUMINGectiierieeeeieeesestiseeesesestestesteseeeesessessessessessesessessessessessensesessessessnns 72
8.2.1. Recovering diSK SPACE........cccvvirririeeree ettt st 72
8.2.2. Updating planner StatiStiCS........cocecvririeriirrennieesieeseee e 73
8.2.3. Preventing transaction ID wraparound failures..........ccoeoveineiennennencneens 74

8.3. ROULINE REINAEXING.evitiiiteriiteisiestee sttt sttt st st eb e renea 75
8.4. LOg File MAINIENANCE........cieitieitiieieerieer ettt s b e s b e e b e renen 75

9. BACKUP @NA RESIOTE.....c..cuiicieiectereeteestee ettt bbb et 77

9.1, SOQL DUMID. ittt b b et n et et r e rena e e eseenennennea 77
9.1.1. ResStoring the dUMIP........ccoiiiiieee et 77

9.1.2. USINGIG_dUMPAIL oottt e st 78

9.1.3. Large DatabasEes.......cociririeriiieirieirieereet ettt 78

.04, CAVEALS.....cei ettt ettt a ettt et s a e e bbbt eae et sae e nbenh et nbe s 79

9.2. File System leVel DACKUP..........ciirieereee et s 79

9.3. Migration betWeen rel@aSES........coi e 80

10. Monitoring Database ACHVILYcoooirieienee e e 82
10.1. Standard UNiX TOOIS.......ccccoiriiereieneeesie sttt e st be s 82

10.2. StatiStICS CORCIOL. ...t e bbb et 83
10.2.1. Statistics Collection Configuration...........ccccecveeevinceeie e 83

10.2.2. Viewing Collected StatiStiCS.......ccvivieeieiiriereseesc e 83

O V1=,V T T o Yo &SRS 87

11. MONItOriNG DISK USAQE......ccucirieiiieiiirieries et sttt 90
11.1. Determining DiSK USAQE.......cccoviieierieerire s steseie ettt s sa e sre e s 90
12.2. DiSK FUI FIIUI....cecviieiiieieiese e st 91

24 (R AN o 1= Y= To J o To [T aTo TN AT/ S 92
12.1. General DESCHPLON......uiiiirteirieireeerie ettt ettt 92
12.1.1. Immediate Benefits Of WAL.......cccovii i 92

2 U (0] {0 == = 1P 92

12.2. IMPIEMENTALION.ceitiriitieit ettt 93
12.2.1. Database Recovery With WAL ... 93

12.3. WAL CONFIQUIALIOM ...ttt bbb 94

13, REGIESSION TESES...c.uiiuiitiiierierieieterte sttt ettt e et e st s st b s besbe b et e e esesbesbeseessenseneeneeaesaeneas 96
R 20 R 1911 o o (1 {1 SR 96
13.2. RUNNING the TESES .. .iitiieieiite ettt et s ae bt e e ae b e e 96
13.3. TESE EVAIUALION.ottt e bbbt e 97
13.3.1. Error message diffEerenCeS.......cccoiiiiiriieineseses e 97

13.3.2. Locale diffEr@NCES.......coiiieeeeeeere e e e 97

13.3.3. Date and time differEeNCaS........ccoeririiiicre e s 98

13.3.4. Floating-point differenNCeS........ccccevv e 98

13.3.5. Polygon diffEerE€NCeS........cceececieceee et 99

13.3.6. Row ordering differ@nNCeS......ccvcveve i 99

13.3.7. The “randOm” TESL.....ccuiireeeeeeieete et 99

13.4. Platform-specific comparison file@S........cccvveeiiie e 99

AL REICASE NOLES......cuiietiieteieteste ettt sttt ettt e et et st e s et ebesaebeneebeneebe e 101
AL REICASE 7.3. 2.ttt bbbt e re e 101
A.L.1. Migration t0 VEISION 7.3.2.....cuueieeirieriereeeesestesteseesseeeeesessssre e sseseeneesessessesns 101

ALL.2. ChABNGES ...ttt ettt sttt b et et se et 101

N o L =T T 70t P 101
A.2.1. Migration t0 VErsion 7.3.Lu. ..ottt s b 102

AL 2.2, ChABNGES ...ttt ettt se bbb 102

A3 REIBASE 7.3ttt et et aenaesae s ee e e e e e nrens 102
NG T I @ Y= V= S 102

A.3.2. Migration t0 VEISION 7.3.......ciiiierieeriee ettt s beseere e 103

AL3.3. ChANGES ...ttt bbb b e b 104

A.3.3.1. Server OPEratiQn.........ccocereererienerieereeerieese e 104

A.3.3.2. PerfOrMaNCE. ..ottt e 104

A.3.3.3. PrIVIIEGES.....oeieceete s 105

A.3.3.4. Server ConfiguratiQn............cooeereenninnieireeneese s 105

NG TG TR T @ U= 41 USRS 106
A.3.3.6. Object Manipulation.............ccoeirrirririereere s 106
A.3.3.7. Utility COMMEANAS.......ccoriuireeiiieiintee s 107
A.3.3.8. Data Types and FUNCHONS.........cccoiriirieireenie s 108
A.3.3.9. InternatioNaliZation.............c.cooererereienese s 109
A.3.3.10. Server-side LangUAGES........ccocerereerereriereeneeesese s sees e seeseenessesees 109
ALB.3.LL PSSOl s 110

F NG J0C 2 I o o Lo TSR 110

F NG TR 0 T 1 = TSR 110
A.3.3.14. Miscellaneous INterfaces.ccoevrvrenene e 110
A.3.3.15. SOUICE COUR....c.uiiiiiieiere sttt et 111

F NG TR 0 T 0o o1 1 ¢ o TSR 112

AL REICASE 7.2.4 ..ottt bttt e b ene 113
A.4. L. Migration t0 VEIrSION 7.2.4.....oceeeee e seete et 113
N O 4 = 1 o == PP 113
ALD. REIEASE 7.2.3. et bbb e e ere 113
A.5.1. Migration t0 VEISION 7.2.3.....c.ociiiiieeseseeeetee et stee e sre st saesa e nne s 113
N T2 @ = g o =S 113
ALB. REICASE 7.2.2....ceieeeeeee ettt bbbttt e be e 114
A.6.1. Migration t0 VEISION 7.2.2.....c.cccuveeiierieseeeeseseseseestesessesessesre e saeseesaessssessesns 114
T2 @ = g o = 114
AT REICASE 7. 2. L.t ettt et et e 114
A.7.1. Migration t0 VErSiON 7.2.Lu.....cooeiineerieereee et beseebe e 114
ALT.2. ChANGES ...ttt et et ettt sttt sa et et e 115
R TR (T =T T R 115
R T R @ =T V= S 115
A.8.2. Migration t0 VEISION 7.2.......ccoiiiiriierieerieieneeie ettt ebe s 116
ALB.3. ChABNGES ...ttt ettt b e e be e 116
A.8.3.1. Server OPEratiQn.........cocereerirerereeerieeseees e seenes 116
A.8.3.2. PerfOrMEaNCE.coiieeeeeeeee e et 117
A.8.3.3. PrIVIIEGES. ...t 117
A.8.3.4. Client AUtRENtICALION.........ccoivireeee e 117
A.8.3.5. Server ConfiguratiQn...........cooceeerireinieeneene s 118
A.B.3.6. QUETIES....ueeiecteete ettt et sttt et e sre e sbeeae e teereenes 118
A.8.3.7. Schema ManipulatiQn...........cccooereirienenere e 118
A.8.3.8. Utility COMMEANGS......coeriririirieieee et 118
A.8.3.9. Data Types and FUNCHONS.ccooiirieninere e 119
A.8.3.10. InternatioNaliZation.............ccoeeerenrienenene e 120

F R TR I N o 1« T 5 | O 120

F R TR 2 o I == ¢ SRR 120
RS TR 0 e T = I o TR 120
A.8.3.14. PL/IPYNON......cuiiiiiiieisiet ettt 120
ALB.3.15. PSOL ettt 120
A.B.3.16. LIDPG . e 121
ALB.3.17. IDBC...oiiieiiiie ettt 121
A.B.3.18. ODBC....c.c ittt sttt 121
AB.3.19. ECPG ...ttt 122
A.8.3.20. MISC. INtErfACES.....cccireeireeeee s 122
A.8.3.21. Build and INStall..........occourrirrinrirerereee s 122
A.8.3.22. SOUICE COUL.....couiuireeiirietireeteete sttt 122
A.8.3.23. CONMIIR..cceii e 123

Vi

AL REIBASE 7.1.3.c ittt e et e st e e e bt e st e e s b e e e e abe s e saeeesbeeeateesarreesararean 123

A.9.1. Migration t0 VErSiON 7.1.3. ...ttt 123
AL9.2. ChABNGES ...ttt b e e bbbt bbbt 123
ALLO. REIEASE 7.1 2.ttt ettt se e ne s sae e e sae e e e eneenen 124
A.10.1. Migration t0 VEISION 7.1.2......cociiiieerieereeie ettt seeneseere e 124
ALL0.2. CRANGES.c.eiieiiiieierieie ettt sttt b e b e b e b e bt b st e esesaebeseere e 124
ALLL REIECASE 7.1 L.ttt ettt bt se et et a e e st e e e e e e ene 124
A.11.1. Migration t0 VErSion 7. 1. L.t e e 124

N O O ¢ F= T [0 = SOOI 124
ALL2. REICASE 7.0ttt ettt b bt eeae bbb e e e ene 125
A.12.1. Migration t0 VEISION 7. L.cooiiiiiieie ettt s e 126
A.L12.2. CRANGES.....eiiieiiiieiiiieii st see e sttt te s te et sae s seebeseetesesbe st sbenesbasessesesaesesentesens 126
AL3. REIEASE 7.0.3 ..o 129
A.13.1. Migration to VErsion 7.0.3.......cci e 129

N 0 @ 4 = 1 o = LU 129

A LA, REIEASE 7.0.2....coieeeeeeeeree ettt 130
A.14.1. Migration t0 VErsion 7.0.2.......ccviieieieiee e seee e eee s 130
I B @ 4 =g o SO 130
ALD. REICASE 7.0 L.ttt 131
A.15.1. Migration to VErsion 7.0.L.........ccccvieienereeesise e seieee et s 131

NN T @ 4 = g o 1T 131
ALB. REICASE 7.0t 131
A.16.1. Migration t0 VErSioN 7.0......ccccvveeirierereeeeesese e s eeeeee e et neeneese s ens 132
ALL6.2. CRANGES. ...ttt sttt st et st b et st e et se e b e seebeseebe e 133
N (= o 1T TR T R 138
A.17.1. Migration t0 VEISION 6.5.3 ..ot 138
ALLT7.2. CRANGES. ...ttt st s b e e b e bbb bt e b e ebeseebe e 139
ALL8. REIECASE B.5. 2.ttt ettt e ene s 139
A.18.1. Migration t0 VEISION 6.5.2......ccccviiriiirieerieierieienesiesesieesie s seebe s 139
ALL8B.2. CRANGES.c.eiiiirieiereete ettt et se bbbt sb s e b e b e ebe e 139
AL, REIEASE B.5. L.ttt ettt a e st e e e ene 140
A.19.1. Migration t0 VErSioN B6.5.0L........ccoiiiiiirieireie ettt seere e 140
ALL19.2. CRANGES. ...ttt sttt b e bt b e e bt b et b et sb st se b seebeneebe e 140
AL20. REIEASE B.5.....ceeee ettt ettt b e s e e e e ene 140
A.20.1. Migration t0 VEIrSION 6.5........ccciiiiiiiiereeecee et 142
A.20.1.1. Multiversion Concurrency Contral..........coccoeorinieninenenereeeeen, 142

AL20.2. CRABNQJES... .ottt bbbt b e et st e et et eae b e s beseese e e e e enesaeeee 142
A21 REICASE B.4.2.....eieit ettt bt a bbb e e ene 145
A.21.1. Migration t0 VEIrSION 6.4.2..........coiiiriereieieerie ettt s 145
A.21.2. CRANGES.....eiiieiiiieiirieiereeie st st e sttt s te st seebeseebeseebeseste e sbesestasesaesesaetesentesens 145
A22. REIEASE B.4. L.ttt 146
A.22.1. Migration to VErsion 6.4.L.......cccccveveieiiese et 146
N O ¢ = 1 o = L R 146
A.23. REIEASE B.4......oeeereeiee et re e 147
A.23.1. Migration t0 VEIrSION 6.4........ceccveeeieeseseeseseeie et 147
N T @ 4 = Vg o =SS 147
A.24. REICASE B.3.2.. ..ot 151
N N R 4 = Vg o TS 151
A.25. REIEASE B.3. ... 152
TNt I @ 4 = Vg o T 152
A.26. REIBASE B.3......oeeeeere et 153
A.26.1. Migration t0 VEISION B.3.......ccoereriririeerieiereeie st seeresesrenens 154

Vii

AL26.2. CRANGES.c.iiieiiieiirieie ettt st st b et b et st sb b e seebeseebe e 154

A27. REIEASE B.2. L.ttt sttt et re st s tese e e nesae e seentenee e e e enens 157
A.27.1. Migration from version 6.2 t0 version 6.2 L........ccccoeverneineieneiennieneenens 157
AL27.2. CRANGES. ...ttt ettt b e b e b e bt b ettt see b seebeseebe e 158

A28, REIEASE B.2.... ettt sttt b ettt ne et b et et e e ene 158
A.28.1. Migration from version 6.1 t0 VErsion 6.2.........c.ccceveerreneneieneeneeseeenens 158
A.28.2. Migration from version X. t0 Version 6.2..........cccooeeereneineneneseseecesenee 158
AL28.3. CRABNQGES... .ottt bttt ettt sb e b e e e e et neeae e 159

AL29. REIEASE B.1. L.ttt se et b e e b e ene 161
A.29.1. Migration from version 6.1 to version 6.L.1.......ccccceveininienienenereerene 161
AL29.2. CRABNQGES... ittt bbbt b e et b et ae bbb e e et eaenae e 161

A.30. REIEASE B.1......ooeieeeeeeee e 161
A.30.1. Migration to VErSioN 6. 1........cccciiiieie et s 162
N 10 @ 4 = 1 o = LSRR 162

A.3L. REIEASE B.0.....cceieieeice e 164
A.31.1. Migration from version 1.09 to version 6.Q...........cccccevveveveeceneeeese e, 164
A.31.2. Migration from pre-1.09 to version 6.0.........cccceeveeeverceese e 164
R 1 R T @ 1 =g o ST 164

A.32. REIECASE 1.09......cociiieiereiererie et 166

A.33. REICASE L.02......oomiieieierereree et 166
A.33.1. Migration from version 1.02 to version 1.02.1.......ccccccccevvrivrivvinvereecennnnens 166
A.33.2. DUMP/ReEIOAA PrOCEAULE.eoeceieieereceeeete ettt 167
NG 1 T T @ ¢ =g o 1o 167

R 7 B 1= T T - 001 RSP 168
A.34.1. Migration from version 1.0 to version 1.01.........cccoverninnnineienneneenens 168
AL34.2. CRANGES. .. .ottt b e et st b ettt st be e b saebeseebe e 170

A.35. REIECASE 1.0ttt sttt ne et ene s e e e e e e e e e nnens 170
AL35.1. CRANGES. ...ttt b e e b e et b et b et se et sa b neebe e 171

A.36. Postgres95 Release 0.03.........co it 171
AL36.1. CRANGES.ciiiiiiieieriete ettt ettt bbb st e b e ebeneebe e 172

A.37. PoStgres95 Release 0.02.........ccooiiriiriiirieereeereete et seere e 174
AL37.1. CRANGES. ...ttt b e e b et b e bt b et st se e b se b neebe e 174

A.38. PoStgres95 Release 0.0L........cccoviiiiiniierieerieereete et reseere e 174

(21101 TeTo |- o] o)V 2R OSSR 176
100 1= SRR 178

viii

List of Tables

I I oo Y=Y 1] o FST @] 0T g o R 23
B S o] o] o] 1 0] g TN) R 35
3-3. SYSIEM V IPC PAramMELEES.cceeieeieeeiesieeeseseeseeseeesee e te e eseeseesseenaesseesaestesseensesseeneessnsneen 37
7-1. Character Set ENCOUINGS......ccooiiirieeriee ettt st sttt st e 64
7-2. Client/Server Character Set ENCOUINGS.........couviirrenriireree et 66
10-1. Standard StatiStICS VIBWUS......cuieiirireiereeeeees e sieseeseeeesesse e seestesseseeseesessesssssesssssssessessessenses 83
10-2. StatistiCS ACCESS FUNCLIOMNS........ccccviireereeeees e ettt s sa e seenesrenees 85
10-3. LOCK StatUS SYSLEM VIBWL.....c.eiuiuiiiiiiiiirienie ettt s 87

List of Examples

6-1. An exampl@g_hba.conf fil€......cccoeeieiicee s 55
6-2. An examplegpg_ident.conf L= PSP 59

Preface

1. What is PostgreSQL?

PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES,
Version 4.2, developed at the University of California at Berkeley Computer Science Department.
The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Ad-
vanced Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science
Foundation (NSF), and ESL, Inc.

PostgreSQL is an open-source descendant of this original Berkeley code. It provides SQL92/SQL99
language support and other modern features.

POSTGRES pioneered many of the object-relational concepts now becoming available in some com-
mercial databases. Traditional relational database management systems (RDBMS) support a data
model consisting of a collection of named relations, containing attributes of a specific type. In current
commercial systems, possible types include floating point numbers, integers, character strings, money,
and dates. It is commonly recognized that this model is inadequate for future data-processing appli-
cations. The relational model successfully replaced previous models in part because of its “Spartan
simplicity”. However, this simplicity makes the implementation of certain applications very difficult.
PostgreSQL offers substantial additional power by incorporating the following additional concepts in
such a way that users can easily extend the system:

« inheritance
- data types
. functions

Other features provide additional power and flexibility:

« constraints

. triggers

- rules

- transactional integrity

These features put PostgreSQL into the category of databases referreabjecigelational Note

that this is distinct from those referred to @lsject-orientedwhich in general are not as well suited

to supporting traditional relational database languages. So, although PostgreSQL has some object-
oriented features, it is firmly in the relational database world. In fact, some commercial databases
have recently incorporated features pioneered by PostgreSQL.

2. A Short History of PostgreSQL

The object-relational database management system now known as PostgreSQL (and briefly called
Postgres95) is derived from the POSTGRES package written at the University of California at Berke-
ley. With over a decade of development behind it, PostgreSQL is the most advanced open-source
database available anywhere, offering multiversion concurrency control, supporting almost all SQL

1. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/postgres.html

Preface

constructs (including subselects, transactions, and user-defined types and functions), and having a
wide range of language bindings available (including C, C++, Java, Perl, Tcl, and Python).

2.1. The Berkeley POSTGRES Project

Implementation of the POSTGRES DBMS began in 1986. The initial concepts for the system were
presented irrhe design of POSTGRE®d the definition of the initial data model appearedire
POSTGRES data moddlhe design of the rule system at that time was describ&téndesign of the
POSTGRES rules systeirhe rationale and architecture of the storage manager were detailed in
design of the POSTGRES storage system

Postgres has undergone several major releases since then. The first “demoware” system became op-
erational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in
The implementation of POSTGRES released to a few external users in June 1989. In response

to a critique of the first rule systend (commentary on the POSTGRES rules sykttra rule system

was redesigneddn Rules, Procedures, Caching and Views in Database Systems/ersion 2 was
released in June 1990 with the new rule system. Version 3 appeared in 1991 and added support for
multiple storage managers, an improved query executor, and a rewritten rewrite rule system. For the
most part, subsequent releases until Postgres95 (see below) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These
include: a financial data analysis system, a jet engine performance monitoring package, an aster-
oid tracking database, a medical information database, and several geographic information systems.
POSTGRES has also been used as an educational tool at several universities. Finally, lllustra Infor-
mation Technologies (later merged into Inforfiwhich is now owned by IBM) picked up the code

and commercialized it. POSTGRES became the primary data manager for the Sequbsz20dific
computing project in late 1992.

The size of the external user community nearly doubled during 1993. It became increasingly obvious
that maintenance of the prototype code and support was taking up large amounts of time that should
have been devoted to database research. In an effort to reduce this support burden, the Berkeley
POSTGRES project officially ended with Version 4.2.

2.2. Postgres95

In 1994, Andrew Yu and Jolly Chen added a SQL language interpreter to POSTGRES. Postgres95
was subsequently released to the Web to find its own way in the world as an open-source descendant
of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes im-
proved performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the
Wisconsin Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following
were the major enhancements:

« The query language PostQUEL was replaced with SQL (implemented in the server). Subqueries
were not supported until PostgreSQL (see below), but they could be imitated in Postgres95 with
user-defined SQL functions. Aggregates were re-implemented. Support for the GROUP BY query
clause was also added. Thtgpq interface remained available for C programs.

- In addition to the monitor program, a new program (psql) was provided for interactive SQL queries
using GNU Readline.

2. http://www.informix.com/
3. http://www.ibm.com/
4. http://meteora.ucsd.edu/s2k/s2k_home.html

Preface

« A new front-end libraryjibpgtcl , supported Tcl-based clients. A sample shadtclsh , pro-
vided new Tcl commands to interface Tcl programs with the Postgres95 backend.

« The large-object interface was overhauled. The Inversion large objects were the only mechanism
for storing large objects. (The Inversion file system was removed.)

- The instance-level rule system was removed. Rules were still available as rewrite rules.

« A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed
with the source code

+ GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled
with an unpatched GCC (data alignment of doubles was fixed).

2.3. PostgreSQL

By 1996, it became clear that the name “Postgres95” would not stand the test of time. We chose a new
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent
versions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting
the numbers back into the sequence originally begun by the Berkeley POSTGRES project.

The emphasis during development of Postgres95 was on identifying and understanding existing prob-
lems in the backend code. With PostgreSQL, the emphasis has shifted to augmenting features and
capabilities, although work continues in all areas.

Major enhancements in PostgreSQL include:

- Table-level locking has been replaced by multiversion concurrency control, which allows readers
to continue reading consistent data during writer activity and enables hot backups from pg_dump
while the database stays available for queries.

- Important backend features, including subselects, defaults, constraints, and triggers, have been im-
plemented.

« Additional SQL92-compliant language features have been added, including primary keys, quoted
identifiers, literal string type coercion, type casting, and binary and hexadecimal integer input.

- Built-in types have been improved, including new wide-range date/time types and additional geo-
metric type support.

« Overall backend code speed has been increased by approximately 20-40%, and backend start-up
time has decreased by 80% since version 6.0 was released.

3. What's In This Book

This book covers topics that are of interest to a PostgreSQL database administrator. This includes
installation of the software, set up and configuration of the server, management of users and databases,
and maintenance tasks. Anyone who runs a PostgreSQL server, either for personal use, but especially
in production, should be familiar with the topics covered in this book.

The information in this book is arranged approximately in the order in which a new user should read
it. But the chapters are self-contained and can be read individually as desired. The information in this
book is presented in a narrative fashion in topical units. Readers looking for a complete description
of a particular command should look into tRestgreSQL Reference Manual

Preface

The first few chapters are written so that they can be understood without prerequisite knowledge, so
that new users who need to set up their own server can begin their exploration with this book. The rest
of this book which is about tuning and management presupposes that the reader is familiar with the
general use of the PostgreSQL database system. Readers are encouraged to loBasaddsQL
Tutorial and thePostgreSQL User’s Guider additional information.

This book covers PostgreSQL 7.3.2 only. For information on other versions, please read the docu-
mentation that accompanies that release.

4. Overview of Documentation Resources

The PostgreSQL documentation is organized into several books:

PostgreSQL Tutorial
An informal introduction for new users.
PostgreSQL User’s Guide

Documents the SQL query language environment, including data types and functions, as well as
user-level performance tuning. Every PostgreSQL user should read this.

PostgreSQL Administrator's Guide

Installation and server management information. Everyone who runs a PostgreSQL server, either
for personal use or for other users, needs to read this.

PostgreSQL Programmer’s Guide

Advanced information for application programmers. Topics include type and function extensi-
bility, library interfaces, and application design issues.

PostgreSQL Reference Manual

Reference pages for SQL command syntax, and client and server programs. This book is auxil-
iary to the User’s, Administrator’'s, and Programmer’s Guides.

PostgreSQL Developer’'s Guide

Information for PostgreSQL developers. This is intended for those who are contributing to the
PostgreSQL project; application development information appears iRrdtggammer’s Guide

In addition to this manual set, there are other resources to help you with PostgreSQL installation and
use:
man pages

The Reference Manual pages in the traditional Unix man format. There is no difference in
content.

FAQs

Frequently Asked Questions (FAQ) lists document both general issues and some
platform-specific issues.

READMEs

README files are available for some contributed packages.

Preface

Web Site

The PostgreSQL web sitearries details on the latest release, upcoming features, and other
information to make your work or play with PostgreSQL more productive.

Mailing Lists

The mailing lists are a good place to have your questions answered, to share experiences with
other users, and to contact the developers. Consult the User’s L'aewi®n of the PostgreSQL
web site for details.

Yourself!

PostgreSQL is an open-source effort. As such, it depends on the user community for ongoing
support. As you begin to use PostgreSQL, you will rely on others for help, either through the
documentation or through the mailing lists. Consider contributing your knowledge back. If you
learn something which is not in the documentation, write it up and contribute it. If you add
features to the code, contribute them.

Even those without a lot of experience can provide corrections and minor changes in the docu-
mentation, and that is a good way to start. Tipgsgl-docs@postgresgl.org > mailing list
is the place to get going.

5. Terminology and Notation

An administratoris generally a person who is in charge of installing and running the serueseA

could be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms should
not be interpreted too narrowly; this documentation set does not have fixed presumptions about system
administration procedures.

We use /usr/local/pgsql/ as the root directory of the installation and
{usr/local/pgsgl/data as the directory with the database files. These directories may vary on
your site, details can be derived in tAdministrator's Guide

In a command synopsis, brackdtsand]) indicate an optional phrase or keyword. Anything in braces
({ and}) and containing vertical bars) indicates that you must choose one alternative.

Examples will show commands executed from various accounts and programs. Commands executed
from a Unix shell may be preceded with a dollar sigs”f* Commands executed from particular

user accounts such as root or postgres are specially flagged and explained. SQL commands may be
preceded with £>" or will have no leading prompt, depending on the context.

Note: The notation for flagging commands is not universally consistent throughout
the documentation set. Please report problems to the documentation mailing list
<pgsql-docs@postgresql.org >,

5. http://www.postgresql.org
6. http://lwww.postgresql.org/users-lounge/

Preface

6. Bug Reporting Guidelines

When you find a bug in PostgreSQL we want to hear about it. Your bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part
of PostgreSQL will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No one is required to follow them but it tends to be to everyone’s advantage.

We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a lot of users,
chances are good that someone will look into it. It could also happen that we tell you to update to a
newer version to see if the bug happens there. Or we might decide that the bug cannot be fixed before
some major rewrite we might be planning is done. Or perhaps it is simply too hard and there are
more important things on the agenda. If you need help immediately, consider obtaining a commercial
support contract.

6.1. Identifying Bugs

Before you report a bug, please read and re-read the documentation to verify that you can really do
whatever it is you are trying. If it is not clear from the documentation whether you can do something
or not, please report that too; it is a bug in the documentation. If it turns out that the program does
something different from what the documentation says, that is a bug. That might include, but is not
limited to, the following circumstances:

- A program terminates with a fatal signal or an operating system error message that would point to
a problem in the program. (A counterexample might be a “disk full” message, since you have to fix
that yourself.)

- A program produces the wrong output for any given input.
- A program refuses to accept valid input (as defined in the documentation).

- A program accepts invalid input without a notice or error message. But keep in mind that your idea
of invalid input might be our idea of an extension or compatibility with traditional practice.

« PostgreSQL fails to compile, build, or install according to the instructions on supported platforms.
Here “program” refers to any executable, not only the backend server.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of
the mailing lists for help in tuning your applications. Failing to comply to the SQL standard is not
necessarily a bug either, unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to see if your bug is already known.
If you cannot decode the information on the TODO list, report your problem. The least we can do is
make the TODO list clearer.

6.2. What to report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do
not speculate what you think went wrong, what “it seemed to do”, or which part of the program has a
fault. If you are not familiar with the implementation you would probably guess wrong and not help
us a bit. And even if you are, educated explanations are a great supplement to but no substitute for
facts. If we are going to fix the bug we still have to see it happen for ourselves first. Reporting the bare
facts is relatively straightforward (you can probably copy and paste them from the screen) but all too

Vi

Preface

often important details are left out because someone thought it does not matter or the report would be
understood anyway.

The following items should be contained in every bug report:

« The exact sequence of stdfpam program start-umecessary to reproduce the problem. This should
be self-contained; it is not enough to send in a bare select statement without the preceding create
table and insert statements, if the output should depend on the data in the tables. We do not have the
time to reverse-engineer your database schema, and if we are supposed to make up our own data
we would probably miss the problem. The best format for a test case for query-language related
problems is a file that can be run through the psql frontend that shows the problem. (Be sure to
not have anything in yout/.psglrc start-up file.) An easy start at this file is to use pg_dump to
dump out the table declarations and data needed to set the scene, then add the problem query. You
are encouraged to minimize the size of your example, but this is not absolutely necessary. If the
bug is reproducible, we will find it either way.

If your application uses some other client interface, such as PHP, then please try to isolate the
offending queries. We will probably not set up a web server to reproduce your problem. In any case
remember to provide the exact input files, do not guess that the problem happens for “large files”
or “mid-size databases”, etc. since this information is too inexact to be of use.

« The output you got. Please do not say that it “didn’t work” or “crashed”. If there is an error message,
show it, even if you do not understand it. If the program terminates with an operating system error,
say which. If nothing at all happens, say so. Even if the result of your test case is a program crash
or otherwise obvious it might not happen on our platform. The easiest thing is to copy the output
from the terminal, if possible.

Note: In case of fatal errors, the error message reported by the client might not contain all the
information available. Please also look at the log output of the database server. If you do not
keep your server’s log output, this would be a good time to start doing so.

- The output you expected is very important to state. If you just write “This command gives me that
output.” or “This is not what | expected.”, we might run it ourselves, scan the output, and think it
looks OK and is exactly what we expected. We should not have to spend the time to decode the
exact semantics behind your commands. Especially refrain from merely saying that “This is not
what SQL says/Oracle does.” Digging out the correct behavior from SQL is not a fun undertaking,
nor do we all know how all the other relational databases out there behave. (If your problem is a
program crash, you can obviously omit this item.)

- Any command line options and other start-up options, including concerned environment variables
or configuration files that you changed from the default. Again, be exact. If you are using a prepack-
aged distribution that starts the database server at boot time, you should try to find out how that is
done.

- Anything you did at all differently from the installation instructions.

« The PostgreSQL version. You can run the comm8&BHECT version(); to find out the version
of the server you are connected to. Most executable programs also suppertian option; at
leastpostmaster --version andpsgl --version should work. If the function or the options
do not exist then your version is more than old enough to warrant an upgrade. You can also look
into theREADMHile in the source directory or at the name of your distribution file or package name.

Vii

Preface

If you run a prepackaged version, such as RPMs, say so, including any subversion the package may
have. If you are talking about a CVS snapshot, mention that, including its date and time.

If your version is older than 7.3.2 we will almost certainly tell you to upgrade. There are tons of
bug fixes in each new release, that is why we make new releases.

- Platform information. This includes the kernel name and version, C library, processor, memory
information. In most cases it is sufficient to report the vendor and version, but do not assume
everyone knows what exactly “Debian” contains or that everyone runs on Pentiums. If you have
installation problems then information about compilers, make, etc. is also necessary.

Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your
input files are huge, it is fair to ask first whether somebody is interested in looking into it.

Do not spend all your time to figure out which changes in the input make the problem go away. This
will probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still
have time to find and share your work-around. Also, once again, do not waste your time guessing why
the bug exists. We will find that out soon enough.

When writing a bug report, please choose non-confusing terminology. The software package in to-
tal is called “PostgreSQL”, sometimes “Postgres” for short. If you are specifically talking about the
backend server, mention that, do not just say “PostgreSQL crashes”. A crash of a single backend
server process is quite different from crash of the parent “postmaster” process; please don't say “the
postmaster crashed” when you mean a single backend went down, nor vice versa. Also, client pro-
grams such as the interactive frontend “psql” are completely separate from the backend. Please try to
be specific about whether the problem is on the client or server side.

6.3. Where to report bugs

In general, send bug reports to the bug report mailing lispgt&l-bugs@postgresgl.org >. You
are requested to use a descriptive subject for your email message, perhaps parts of the error message.

Another method is to fill in the bug report web-form available at the project's web site
http://www.postgresql.org/. Entering a bug report this way causes it to be mailed to the
<pgsql-bugs@postgresgl.org > mailing list.

Do not send bug reports to any of the user mailing lists, suchpasqksql@postgresgl.org >

or <pgsql-general@postgresgl.org >. These mailing lists are for answering user questions and
their subscribers normally do not wish to receive bug reports. More importantly, they are unlikely to
fix them.

Also, please do not send reports to the developers’ mailing list pgsqgl-
hackers@postgresqgl.org >. This list is for discussing the development of PostgreSQL and it
would be nice if we could keep the bug reports separate. We might choose to take up a discussion
about your bug report opgsgl-hackers , if the problem needs more review.

If you have a problem with the documentation, the best place to report it is the documentation mailing
list <pgsgl-docs@postgresql.org >, Please be specific about what part of the documentation you
are unhappy with.

If your bug is a portability problem on a non-supported platform, send mail to
<pgsql-ports@postgresql.org >, so we (and you) can work on porting PostgreSQL to your
platform.

viii

Preface

Note: Due to the unfortunate amount of spam going around, all of the above email addresses
are closed mailing lists. That is, you need to be subscribed to a list to be allowed to post on it.
(You need not be subscribed to use the bug report web-form, however.) If you would like to send
mail but do not want to receive list traffic, you can subscribe and set your subscription option to
nomail . For more information send mail to <majordomo@postgresgl.org > with the single word
help in the body of the message.

Chapter 1. Installation Instructions

This chapter describes the installation of PostgreSQL from the source code distribution.

1.1. Short Version

Jconfigure

gmake

su

gmake install

adduser postgres

mkdir /usr/local/pgsql/data

chown postgres /usr/local/pgsql/data

su - postgres

Jusr/local/pgsql/bin/initdb -D /usr/local/pgsql/data
lusr/local/pgsql/bin/postmaster -D /usr/local/pgsql/data >logfile 2 >&1 &
/usr/local/pgsqgl/bin/createdb test
/usr/local/pgsql/bin/psqgl test

The long version is the rest of this chapter.

1.2. Requirements

In general, a modern Unix-compatible platform should be able to run PostgreSQL. The platforms
that had received specific testing at the time of release are list8ddtion 1.7below. In thedoc
subdirectory of the distribution there are several platform-specific FAQ documents you might wish to
consult if you are having trouble.

The following software packages are required for building PostgreSQL.:

- GNU make is required; other make programs wibt work. GNU make is often installed under
the namaymake; this document will always refer to it by that name. (On some systems GNU make
is the default tool with the nameake.) To test for GNU make enter

gmake --version
It is recommended to use version 3.76.1 or later.

+ You need an ISO/ANSI C compiler. Recent versions of GCC are recommendable, but PostgreSQL
is known to build with a wide variety of compilers from different vendors.

« gzip is needed to unpack the distribution in the first place. If you are reading this, you probably
already got past that hurdle.

- The GNU Readline library (for comfortable line editing and command history retrieval) will be
used by default. If you don’'t want to use it then you must specify-tivhout-readline
option for configure . (On NetBSD, thdibedit library is readline-compatible and is used if
libreadline is not found.)

« To build on Windows NT or Windows 2000 you need the Cygwin and cygipc packages. See the
file doc/FAQ_MSWIN for details.

Chapter 1. Installation Instructions

The following packages are optional. They are not required in the default configuration, but they are
needed when certain build options are enabled, as explained below.

- To build the server programming language PL/Perl you need a full Perl installation, including the
libperl library and the header files. Since PL/Perl will be a shared librarylitlperl library
must be a shared library also on most platforms. This appears to be the default in recent Perl
versions, but it was not in earlier versions, and in general it is the choice of whomever installed Perl
at your site.

If you don’t have the shared library but you need one, a message like this will appear during the
build to point out this fact:

*** Cannot build PL/Perl because libperl is not a shared library.
*** You might have to rebuild your Perl installation. Refer to
*** the documentation for details.

(If you don’t follow the on-screen output you will merely notice that the PL/Perl library object,
plperl.so or similar, will not be installed.) If you see this, you will have to rebuild and install
Perl manually to be able to build PL/Perl. During the configuration process for Perl, request a
shared library.

« To build the Python interface module or the PL/Python server programming language, you need
a Python installation, including the header files. Since PL/Python will be a shared library, the
libpython library must be a shared library also on most platforms. This is not the case in a
default Python installation.

If after building and installing you have a file callptbython.so (possibly a different extension),
then everything went well. Otherwise you should have seen a notice like this flying by:

*** Cannot build PL/Python because libpython is not a shared library.
*** You might have to rebuild your Python installation. Refer to
*** the documentation for details.

That means you have to rebuild (part of) your Python installation to supply this shared library.

The catch is that the Python distribution or the Python maintainers do not provide any direct way
to do this. The closest thing we can offer you is the information in Python FAQ.3(0some
operating systems you don't really have to build a shared library, but then you will have to convince
the PostgreSQL build system of this. Consult khekefile in the src/pl/plpython directory

for details.

- If you want to build Tcl or Tk components (clients and the PL/Tcl language) you of course need a
Tcl installation.

« To build the JDBC driver, you need Ant 1.5 or higher and a JDK. Ant is a special tool for building
Java-based packages. It can be downloaded from the Ant wéb site

If you have several Java compilers installed, it depends on the Ant configuration which one gets
used. Precompiled Ant distributions are typically set up to read afitec in the current user’s
home directory for configuration. For example, to use a different JDK than the default, this may
work:

JAVA_HOME=/ustr/local/sun-jdk1.3
JAVACMD=3$JAVA_HOME/bin/java

1. http://www.python.org/doc/FAQ.html#3.30
2. http://jakarta.apache.org/ant/index.html

Chapter 1. Installation Instructions

Note: Do not try to build the driver by calling ant or even javac directly. This will not work. Run
gmake normally as described below.

- To enable Native Language Support (NLS), that is, the ability to display a program’s messages in
a language other than English, you need an implementation of the Gettext APIl. Some operating
systems have this built-in (e.g., Linux, NetBSD, Solaris), for other systems you can download
an add-on package from here: http://www.postgresql.org/~petere/gettext.html. If you are using the
gettext implementation in the GNU C library then you will additionally need the GNU Gettext
package for some utility programs. For any of the other implementations you will not need it.

- Kerberos, OpenSSL, or PAM, if you want to support authentication using these services.

If you are build from a CVS tree instead of using a released source package, or if you want to do
development, you also need the following packages:

- Flex and Bison are needed to build a CVS checkout or if you changed the actual scanner and parser
definition files. If you need them, be sure to get Flex 2.5.4 or later and Bison 1.50 or later. Other
yacc programs can sometimes be used, but doing so requires extra effort and is not recommended.
Other lex programs will definitely not work.

If you need to get a GNU package, you can find it at your local GNU mirror site (see
http://www.gnu.org/order/ftp.html for a list) or at ftp://ftp.gnu.org/gnu/.

Also check that you have sufficient disk space. You will need about 65 MB for the source tree during
compilation and about 15 MB for the installation directory. An empty database cluster takes about 25
MB, databases take about five times the amount of space that a flat text file with the same data would
take. If you are going to run the regression tests you will temporarily need up to an extra 90 MB. Use
thedf command to check for disk space.

1.3. Getting The Source

The PostgreSQL 7.3.2 sources can be obtained by anonymous FTP from
ftp://ftp.postgresql.org/pub/postgresql-7.3.2.tar.gz. Use a mirror if possible. After you have obtained
the file, unpack it:

gunzip postgresql-7.3.2.tar.gz
tar xf postgresql-7.3.2.tar

This will create a directoryostgresgl-7.3.2 under the current directory with the PostgreSQL
sources. Change into that directory for the rest of the installation procedure.

1.4. If You Are Upgrading

The internal data storage format changes with new releases of PostgreSQL. Therefore, if you are
upgrading an existing installation that does not have a version number “7.3.x”, you must back up and

Chapter 1. Installation Instructions

restore your data as shown here. These instructions assume that your existing installation is under the
Jusr/local/pgsql directory, and that the data area is/isr/local/pgsgl/data . Substitute
your paths appropriately.

1. Make sure that your database is not updated during or after the backup. This does not affect
the integrity of the backup, but the changed data would of course not be included. If necessary,
edit the permissions in the filesr/local/pgsgl/data/pg_hba.conf (or equivalent) to
disallow access from everyone except you.

2. To back up your database installation, type:
pg_dumpall > outputfile

If you need to preserve OIDs (such as when using them as foreign keys), then useofhteon
when runningpg_dumpall

pg_dumpall does not save large objects. Ch&gction 9.1.4f you need to do this.

To make the backup, you can use tlyedumpall command from the version you are currently
running. For best results, however, try to useghgedumpall command from PostgreSQL 7.3.2,
since this version contains bug fixes and improvements over older versions. While this advice
might seem idiosyncratic since you haven't installed the new version yet, it is advisable to follow
it if you plan to install the new version in parallel with the old version. In that case you can com-
plete the installation normally and transfer the data later. This will also decrease the downtime.

3. Ifyou are installing the new version at the same location as the old one then shut down the old
server, at the latest before you install the new files:

kill -INT ‘cat /usr/local/pgsql/data/postmaster.pid*

Versions prior to 7.0 do not have thi@stmaster.pid file. If you are using such a version
you must find out the process id of the server yourself, for example by tyysngx | grep
postmaster , and supply it to th&ill command.

On systems that have PostgreSQL started at boot time, there is probably a start-up file that will
accomplish the same thing. For example, on a Red Hat Linux system one might find that

[etc/rc.d/init.d/postgresql stop
works. Another possibility ipg_ctl stop

4. If you are installing in the same place as the old version then it is also a good idea to move the
old installation out of the way, in case you have trouble and need to revert to it. Use a command
like this:

mv /usr/local/pgsql /usr/local/pgsgl.old

After you have installed PostgreSQL 7.3.2, create a new database directory and start the new server.
Remember that you must execute these commands while logged in to the special database user account
(which you already have if you are upgrading).

/usr/local/pgsql/bin/initdb -D /usr/local/pgsql/data
lusr/local/pgsql/bin/postmaster -D /usr/local/pgsql/data

Finally, restore your data with
/usr/local/pgsql/bin/psgl -d templatel -f outputfile

using thenewpsq|l.

Chapter 1. Installation Instructions

These topics are discussed at lengtBéttion 9.3which you are encouraged to read in any case.

1.5. Installation Procedure

1. Configuration

The first step of the installation procedure is to configure the source tree for your system and
choose the options you would like. This is done by runningctirdigure script. For a default
installation simply enter

Jconfigure
This script will run a number of tests to guess values for various system dependent variables and
detect some quirks of your operating system, and finally will create several files in the build tree

to record what it found. (You can also rennfigure in a directory outside the source tree if
you want to keep the build directory separate.)

The default configuration will build the server and utilities, as well as all client applications and
interfaces that require only a C compiler. All files will be installed uner/local/pgsql
by default.

You can customize the build and installation process by supplying one or more of the following
command line options teonfigure
--prefix= PREFIX

Install all files under the directorPREFIX instead offust/local/pgsql . The actual
files will be installed into various subdirectories; no files will ever be installed directly into
the PREFIX directory.

If you have special needs, you can also customize the individual subdirectories with the
following options.

--exec-prefix= EXEC-PREFIX

You can install architecture-dependent files under a different piteKEC-PREFIX, than
whatPREFIX was set to. This can be useful to share architecture-independent files between
hosts. If you omit this, theBEXEC-PREFIX is set equal t?REFIX and both architecture-
dependent and independent files will be installed under the same tree, which is probably
what you want.

--bindir=" DIRECTORY

Specifies the directory for executable programs. The defagkiC-PREFIX/bin , which
normally meangusr/local/pgsgl/bin

--datadir= DIRECTORY

Sets the directory for read-only data files used by the installed programs. The default is
PREFIX/share . Note that this has nothing to do with where your database files will be
placed.

--sysconfdir= DIRECTORY
The directory for various configuration fileBREFIX/etc by default.
--libdir= DIRECTORY

The location to install libraries and dynamically loadable modules. The defaBKEE-
PREFIX/lib

Chapter 1. Installation Instructions

--includedir= DIRECTORY
The directory for installing C and C++ header files. The defauMREFIX/include
--docdir=" DIRECTORY

Documentation files, except “man” pages, will be installed into this directory. The default is
PREFIX/doc .

--mandir= DIRECTORY

The man pages that come with PostgreSQL will be installed under this directory, in their
respectivanarx subdirectories. The default FREFIX/man.

Note: Care has been taken to make it possible to install PostgreSQL into shared installa-
tion locations (such as /usr/local/include) without interfering with the namespace of the
rest of the system. First, the string “/postgresgl " is automatically appended to datadir ,
sysconfdir , and docdir , unless the fully expanded directory name already contains the
string “postgres " or “pgsql ". For example, if you choose /ust/local as prefix, the documen-
tation will be installed in /usr/local/doc/postgresql , but if the prefix is /opt/postgres ,
then it will be in /opt/postgres/doc . The public C header files of the client interfaces are
installed into includedir ~ and are namespace-clean. The internal header files and the server
header files are installed into private directories under includedir . See the Programmer’s
Guide for information about how to get at the header files for each interface. Finally, a pri-
vate subdirectory will also be created, if appropriate, under libdir ~ for dynamically loadable
modules.

--with-includes= DIRECTORIES

DIRECTORIES is a colon-separated list of directories that will be added to the list the
compiler searches for header files. If you have optional packages (such as GNU Readline)
installed in a non-standard location, you have to use this option and probably also the corre-
sponding--with-libraries option.

Example:--with-includes=/opt/gnu/include:/usr/sup/include
--with-libraries= DIRECTORIES

DIRECTORIES:is a colon-separated list of directories to search for libraries. You will prob-
ably have to use this option (and the corresponédiwgh-includes option) if you have
packages installed in non-standard locations.

Example:--with-libraries=/opt/gnu/lib:/usr/sup/lib
--enable-recode

Enables single-byte character set recode supportS8etton 7.3about this feature. Note
that a more general form of character set conversion is supported in the default configuration;
this feature is obsolete.

--enable-nls[= LANGUAGES

Enables Native Language Support (NLS), that is, the ability to display a program’s mes-
sages in a language other than EnglisANGUAGES$ a space separated list of codes of
the languages that you want supported, for examleable-nis='de fr’ . (The in-
tersection between your list and the set of actually provided translations will be computed
automatically.) If you do not specify a list, then all available translations are installed.

Chapter 1. Installation Instructions

To use this option, you will need an implementation of the gettext API; see above.
--with-pgport= NUMBER

SetNUMBERSs the default port number for server and clients. The default is 5432. The port
can always be changed later on, but if you specify it here then both server and clients will
have the same default compiled in, which can be very convenient. Usually the only good
reason to select a non-default value is if you intend to run multiple PostgreSQL servers on
the same machine.

--with-perl
Build the PL/Perl server-side language.

--with-python

Build the Python interface module and the PL/Python server-side language. You
need to have root access to be able to install the Python module at its default place
(usr/lib/python X.y).

--with-tcl

Build components that require Tcl/Tk, which are libpgtcl, pgtclsh, pgtksh, and PL/Tcl. But
see below aboutwithout-tk

--without-tk
If you specify--with-tcl and this option, then the program that requires Tk (pgtksh) will
be excluded.

--with-tclconfig= DIRECTORY

--with-tkconfig= DIRECTORY

Tcl/Tk installs the filesiclConfig.sh andtkConfig.sh , which contain configuration
information needed to build modules interfacing to Tcl or Tk. These files are normally found
automatically at their well-known locations, but if you want to use a different version of Tcl
or Tk you can specify the directory in which to find them.

--with-java
Build the JDBC driver and associated Java packages.

--with-krb4[= ~ DIRECTORY
--with-krb5[= DIRECTORY

Build with support for Kerberos authentication. You can use either Kerberos version 4 or
5, but not both. TheDIRECTORYargument specifies the root directory of the Kerberos
installation;/usr/athena is assumed as default. If the relevant header files and libraries
are not under a common parent directory, then you must usevthie-includes and
--with-libraries options in addition to this option. If, on the other hand, the required
files are in a location that is searched by default (éugr/lib), then you can leave off

the argument.

configure will check for the required header files and libraries to make sure that your
Kerberos installation is sufficient before proceeding.

--with-krb-srvnam= NAME

The name of the Kerberos service principaistgres is the default. There’s probably no
reason to change this.

Chapter 1. Installation Instructions

--with-openssl[= DIRECTORY

Build with support for SSL (encrypted) connections. This requires the OpenSSL package
to be installed. ThdIRECTORYargument specifies the root directory of the OpenSSL
installation; the default i&isr/local/ssl

configure will check for the required header files and libraries to make sure that your
OpenSSL installation is sufficient before proceeding.

--with-pam
Build with PAM (Pluggable Authentication Modules) support.
--without-readline

Prevents the use of the Readline library. This disables command-line editing and history in
psql, so it is not recommended.

--without-zlib

Prevents the use of the Zlib library. This disables compression support in pg_dump. This
option is only intended for those rare systems where this library is not available.

--enable-debug

Compiles all programs and libraries with debugging symbols. This means that you can run
the programs through a debugger to analyze problems. This enlarges the size of the installed
executables considerably, and on non-GCC compilers it usually also disables compiler opti-
mization, causing slowdowns. However, having the symbols available is extremely helpful
for dealing with any problems that may arise. Currently, this option is recommended for
production installations only if you use GCC. But you should always have it on if you are
doing development work or running a beta version.

--enable-cassert

Enablesassertionchecks in the server, which test for many “can’t happen” conditions. This

is invaluable for code development purposes, but the tests slow things down a little. Also,
having the tests turned on won't necessarily enhance the stability of your server! The asser-
tion checks are not categorized for severity, and so what might be a relatively harmless bug
will still lead to server restarts if it triggers an assertion failure. Currently, this option is not
recommended for production use, but you should have it on for development work or when
running a beta version.

--enable-depend

Enables automatic dependency tracking. With this option, the makefiles are set up so that
all affected object files will be rebuilt when any header file is changed. This is useful if you
are doing development work, but is just wasted overhead if you intend only to compile once
and install. At present, this option will work only if you use GCC.

If you prefer a C compiler different from the omenfigure picks then you can set the envi-
ronment variable€Cto the program of your choice. By defaultnfigure will pick gcc unless

this is inappropriate for the platform. Similarly, you can override the default compiler flags with
the CFLAGSvariable.

You can specify environment variables on thafigure command line, for example:
Jconfigure CC=/opt/bin/gcc CFLAGS="-O2 -pipe’

Chapter 1. Installation Instructions

Build
To start the build, type
gmake

(Remember to use GNU make.) The build may take anywhere from 5 minutes to half an hour
depending on your hardware. The last line displayed should be

All of PostgreSQL is successfully made. Ready to install.

Regression Tests

If you want to test the newly built server before you install it, you can run the regression tests at
this point. The regression tests are a test suite to verify that PostgreSQL runs on your machine in
the way the developers expected it to. Type

gmake check

(This won't work as root; do it as an unprivileged user.) It is possible that some tests fail, due
to differences in error message wording or floating point resGkapter 13contains detailed
information about interpreting the test results. You can repeat this test at any later time by issuing
the same command.

Installing The Files

Note: If you are upgrading an existing system and are going to install the new files over the
old ones, then you should have backed up your data and shut down the old server by now,
as explained in Section 1.4 above.

To install PostgreSQL enter

gmake install

This will install files into the directories that were specifiedstep 1 Make sure that you have
appropriate permissions to write into that area. Normally you need to do this step as root. Alterna-
tively, you could create the target directories in advance and arrange for appropriate permissions
to be granted.

You can usegmake install-strip instead ofgmake install to strip the executable files

and libraries as they are installed. This will save some space. If you built with debugging support,
stripping will effectively remove the debugging support, so it should only be done if debugging
is no longer neededhstall-strip tries to do a reasonable job saving space, but it does not
have perfect knowledge of how to strip every unneeded byte from an executable file, so if you
want to save all the disk space you possibly can, you will have to do manual work.

If you built the Python interfaces and you were not the root user when you executed the above
command then that part of the installation probably failed. In that case you should become the
root user and then do

gmake -C src/interfaces/python install
If you do not have superuser access you are on your own: you can still take the required files

and place them in other directories where Python can find them, but how to do that is left as an
exercise.

The standard installation provides only the header files needed for client application development.
If you plan to do any server-side program development (such as custom functions or data types

Chapter 1. Installation Instructions

written in C), then you may want to install the entire PostgreSQL include tree into your target
include directory. To do that, enter

gmake install-all-headers

This adds a megabyte or two to the installation footprint, and is only useful if you don't plan to
keep the whole source tree around for reference. (If you do, you can just use the source’s include
directory when building server-side software.)

Client-only installation: If you want to install only the client applications and interface libraries,
then you can use these commands:

gmake -C src/bin install
gmake -C src/include install
gmake -C srcfinterfaces install
gmake -C doc install

Uninstallation: To undo the installation use the commamdake uninstall . However, this will
not remove any created directories.

Cleaning: After the installation you can make room by removing the built files from the source tree
with the commang@make clean . This will preserve the files made by the configure program, so that
you can rebuild everything withmake later on. To reset the source tree to the state in which it was
distributed, use@make distclean . If you are going to build for several platforms from the same
source tree you must do this and re-configure for each build.

If you perform a build and then discover that your configure options were wrong, or if you change
anything that configure investigates (for example, software upgrades), then it's a good idea to do
gmake distclean before reconfiguring and rebuilding. Without this, your changes in configuration
choices may not propagate everywhere they need to.

1.6. Post-Installation Setup

1.6.1. Shared Libraries

On some systems that have shared libraries (which most systems do) you need to tell your system
how to find the newly installed shared libraries. The systems on which thistisecessary in-

clude BSD/OS, FreeBSD, HP-UX, IRIX, Linux, NetBSD, OpenBSD, Tru64 UNIX (formerly Digital
UNIX), and Solaris.

The method to set the shared library search path varies between platforms, but the most widely usable
method is to set the environment variabhle LIBRARY_PATHIike so: In Bourne shellssf, ksh,
bash, zsh)

LD_LIBRARY_PATH=/usr/local/pgsql/lib
export LD_LIBRARY_PATH

or incsh ortcsh
setenv LD_LIBRARY_PATH /usr/local/pgsql/lib

Replace/usr/local/pgsql/lib with whatever you set-libdir to in step 1 You should

put these commands into a shell start-up file sucheasprofile or ~/.bash_profile

Some good information about the caveats associated with this method can be found at
http://www.visi.com/~barr/Idpath.html.

10

Chapter 1. Installation Instructions

On some systems it might be preferable to set the environment variabfUN_PATHeforebuild-
ing.
On Cygwin, put the library directory in theRATHor move thedll files into thebin/ directory.

If in doubt, refer to the manual pages of your system (perltaps orrld). If you later on get a
message like

psql: error in loading shared libraries
libpg.s0.2.1: cannot open shared object file: No such file or directory

then this step was necessary. Simply take care of it then.

If you are on BSD/OS, Linux, or SunOS 4 and you have root access you can run
/sbin/ldconfig /usr/local/pgsql/lib

(or equivalent directory) after installation to enable the run-time linker to find the shared libraries
faster. Refer to the manual pageldfonfig for more information. On FreeBSD, NetBSD, and
OpenBSD the command is

/sbin/ldconfig -m /usr/local/pgsql/lib

instead. Other systems are not known to have an equivalent command.

1.6.2. Environment Variables

If you installed into/usr/local/pgsql or some other location that is not searched for programs by
default, you should adalisr/local/pgsqgl/bin (or whatever you setbindir to in step J into
yourPATH Strictly speaking, this is not necessary, but it will make the use of PostgreSQL much more
convenient.

To do this, add the following to your shell start-up file, such -dsash_profile (or
letc/profile , iIf you want it to affect every user):

PATH=/usr/local/pgsql/bin:$PATH
export PATH

If you are usingesh ortesh |, then use this command:

set path = (/usr/local/pgsql/bin $path)

To enable your system to find the man documentation, you need to add a line like the following to a
shell start-up file unless you installed into a location that is searched by default.

MANPATH=/usr/local/pgsqgl/man:$MANPATH
export MANPATH

The environment variableBGHOSTand PGPORTspecify to client applications the host and port of

the database server, overriding the compiled-in defaults. If you are going to run client applications
remotely then it is convenient if every user that plans to use the databaseaeDsST This is not
required, however: the settings can be communicated via command line options to most client pro-
grams.

11

Chapter 1. Installation Instructions

1.7. Supported Platforms

PostgreSQL has been verified by the developer community to work on the platforms listed below. A
supported platform generally means that PostgreSQL builds and installs according to these instruc-
tions and that the regression tests pass.

Note: If you are having problems with the installation on a supported platform, please write to

<pgsql-bugs@postgresgl.org > or <pgsgl-ports@postgresgl.org >, not to the people listed
here.
0S Processor \Version Reported Remarks
AIX RS6000 7.3 2002-11-12, see also
/Andreas doc/FAQ_AIX
Zeugswetter

(<ZeugswetterA@spardat.at >)

BSD/OS x86 7.3 2002-10-25, Bruce4.2
Momijian
(<pgman@candle.pha.pa.us >)

FreeBSD Alpha 7.3 2002-11-13, Chris
Kings-Lynne
(<chriskl@familyhealth.com.au >

FreeBSD X86 7.3 2002-10-29, 3.3,
Nigel J. Andrews
(<nandrews@investsystems.co.uk >),
4.7, Larry

Rosenman
(<ler@lerctr.org >),
5.0, Sean

Chittenden
(<sean@chittendenjorg >)

HP-UX PA-RISC 7.3 2002-10-28, 10.20gcc and cc; see
Tom Lane also

(<tgl@sss.pgh.pa.ugdoc/FAQ_HPUX
11.00, 11.11, 32 &
64 bit, Giles Lean
(<giles@nemeton.com.au >)

IRIX MIPS 7.3 2002-10-27, lan [Irix64 Komma 6.5
Barwick
(<barwick@gmx.net >)

Linux Alpha 7.3 2002-10-28, 2.4.19-pre6
Magnus Naeslund
(<mag@fbab.net >

12

Chapter 1. Installation Instructions

0S Processor \Version Reported Remarks

Linux PlayStation 2 7.3 2002-11-19, #undef
Permaine CheungHAS_TEST_AND |
<pcheung@redhat.qeemox$ slock t

typedef

Linux PPC74xx 7.3 2002-10-26, Tom bye 2.2.18; Apple
Lane G3
(<tgl@sss.pgh.pa.us >)

Linux S/390 7.3 2002-11-22, both s390 and
Permaine Cheung|s390x (32 and 64
<pcheung@redhat.cbit) >)

Linux Sparc 7.3 2002-10-26, Doug|3.0
McNaught
(<doug@mcnaught.prg >)

Linux x86 7.3 2002-10-26, 2.4
Alvaro Herrera
(<alvherre@dcc.uchjile.cl >)

MacOS X PPC 7.3 2002-10-28, 10.1,

Tom Lane
(<tgl@sss.pgh.pa.us >),
10.2.1, Adam

Witney
(<awitney@sghms.ac.uk >)

NetBSD arm32 7.3 2002-11-19, 1.6
Patrick Welche
(<prlwl@newn.camiac.uk >)

NetBSD X86 7.3 2002-11-14, 1.6
Patrick Welche
(<prlwl@newn.cam.ac.uk >)

OpenBSD Sparc 7.3 2002-11-17, 3.2
Christopher
Kings-Lynne
(<chriskl@familyhealth.com.au >

OpenBSD x86 7.3 2002-11-14, 3.1
Magnus Naeslund
(<mag@fbab.net >),

3.2 Christopher
Kings-Lynne
(<chriskl@familyhealth.com.au >

13

SET,

Chapter 1. Installation Instructions

0S Processor \Version Reported Remarks

SCO OpenServer %86 7.3.1 2002-12-11, 5.0.4, gcc; see alsp
Shibashish doc/FAQ_SCO
Satpathy

(<shib@postmark.net >)

Solaris Sparc 7.3 2002-10-28, Solaris 7 & 8; see
Andrew Sullivan [also
(<andrew@libertyrmddofBAQ_Salpris

Solaris x86 7.3 2002-11-20, 5.8; see also
Martin Renters |doc/FAQ_Solaris
(<martin@datafax.com >)

Tru64 UNIX Alpha 7.3 2002-11-05,
/Alessio Bragadini
(<alessio@albourne.com >)

UnixWare X86 7.3 2002-11-01, 7.1.3|see also
Larry Rosenman [doc/FAQ_SCO
(<ler@lerctr.org >),
7.1.1 and
7.1.2(8.0.0) Olivier
Prenant

(<ohp@pyrenet.fr | >)

Windows X86 7.3 2002-10-29, Davewith Cygwin; see
Page doc/FAQ_MSWIN
(<dpage@vale-

housing.co.uk >)
Jason Tishler
(<jason@tishler.net >)

Windows X86 7.3 2002-11-05, Dave| native is

Page client-side only;
(<dpage@vale- seeChapter 2
housing.co.uk >)

Unsupported Platforms: The following platforms are either known not to work, or they used to work

in a previous release and we did not receive explicit confirmation of a successful test with version 7.3
at the time this list was compiled. We include these here to let you know that these platfautds

be supported if given some attention.

OS Processor \Version Reported Remarks

BeOS X86 7.2 2001-11-29, Cyril needs updates to
\Velter semaphore code
(<cyril.velter@libertysurf.fr >

14

Chapter 1. Installation Instructions

0S

Processor

\Version

Reported

Remarks

DG/UX 5.4R4.11

m88k

6.3

1998-03-01, Brian
E Gallew
(<geek+@cmu.edu

no recent reports

?)

Linux

armv4l

7.2

2001-12-10, Mark
Knox

(<segfault@hardling.

2.2.X

org >)

Linux

MIPS

7.2

2001-11-15, Hisag
Shibuya
(<shibuya@alpha.or

2.0.x; Cobalt
Qube2
ip)

MkLinux DR1

PPC750

7.0

2001-04-03,
Tatsuo Ishii (¢
ishii@sra.co.jp

7.1 needs OS
update?

>)

NetBSD

Alpha

7.2

2001-11-20,
Thomas Thai
(<tom@minnesota.g

1.5W

om >)

NetBSD

m68k

7.0

2000-04-10, Henry
B. Hotz
(<hotz@jpl.nasa.go

Mac 8xx

>)

NetBSD

MIPS

7.2.1

2002-06-13,
'Warwick Hunter
(<whunter@agile.tv

153

>)

NetBSD

PPC

7.2

2001-11-28, Bill
Studenmund

1.5

(<wrstuden@netbsd.org >)

NetBSD

Sparc

7.2

2001-12-03,
Matthew Green
(<mrg@eterna.com.

32- and 64-bit
builds
au >)

NetBSD

IVAX

7.1

2001-03-30, Tom
I. Helbekkmo
(<tih@kpnQwest.no

1.5

>)

NeXTSTEP

X86

6.X

1998-03-01, Davidbit rot suspected

Wetzel

(<dave@turbocat.de >)

15

Chapter 1. Installation Instructions

0S Processor \Version Reported Remarks

QNX 4 RTOS X86 7.2 2001-12-10, Berncheeds updates to
Tegge semaphore code;
(<tegge@repas- [see also
aeg.de >) doc/FAQ_QNX4

QNX RTOSv6 [x86 7.2 2001-11-20, Igor |patches available
Kovalenko in archives, but togd
(<lgor.Kovalenko @ rfat@faa £dn >

SunOS 4 Sparc 7.2 2001-12-04,
Tatsuo Ishii (¢
ishii@sra.co.jp >)

System V R4 m88k 6.2.1 1998-03-01, Dougneeds new TAS
\Winterburn spinlock code
(<dlw@seavme.xroads.com >)

System V R4 MIPS 6.4 1998-10-28, Frankno recent reports
Ridderbusch
(<ridderbusch.pad@sni.de >)

Ultrix MIPS 7.1 2001-03-26 TAS spinlock code

not detected
Ultrix VAX 6.X 1998-03-01

16

Chapter 2. Installation on Windows

Although PostgreSQL is written for Unix-like operating systems, the C client library (libpg) and
the interactive terminal (psql) can be compiled natively under Windows. The makefiles included in
the source distribution are written for Microsoft Visual C++ and will probably not work with other
systems. It should be possible to compile the libraries manually in other cases.

Tip: If you are using Windows 98 or newer you can build and use all of PostgreSQL “the Unix
way” if you install the Cygwin toolkit first. In that case see Chapter 1.

To build everything that you can on Windows, change intostlee directory and type the command

nmake /f win32.mak

This assumes that you have Visual C++ in your path.

The following files will be built:

interfaces\libpg\Release\libpg.dll

The dynamically linkable frontend library
interfaces\libpg\Release\libpgdil.lib

Import library to link your program tdibpg.dll
interfaces\libpg\Release\libpg.lib

Static library version of the frontend library
bin\psql\Release\psql.exe

The PostgreSQL interactive terminal

The only file that really needs to be installed is tigq.dll library. This file should in most
cases be placed in thieINNT\SYSTEM32directory (or inWINDOWS\SYSTE®h a Windows 95/98/ME
system). If this file is installed using a setup program, it should be installed with version checking
using theVERSIONINFOresource included in the file, to ensure that a newer version of the library is
not overwritten.

If you plan to do development using libpg on this machine, you will have to addrthieclude

andsrcinterfaces\libpg subdirectories of the source tree to the include path in your compilers
settings.
To use the libraries, you must add tigqdil.lib file to your project. (In Visual C++, just right-

click on the project and choose to add it.)

17

Chapter 3. Server Run-time Environment

This chapter discusses how to set up and run the database server and the interactions with the operating
system.

3.1. The PostgreSQL User Account

As with any other server daemon that is connected to outside world, it is advisable to run PostgreSQL
under a separate user account. This user account should only own the data that is managed by the
server, and should not be shared with other daemons. (For example, using the user “nobody” is a bad
idea.) Itis not advisable to install executables owned by this user because compromised systems could
then modify their own binaries.

To add a Unix user account to your system, look for a commaseeadd or adduser . The user
name postgres is often used but is by no means required.

3.2. Creating a Database Cluster

Before you can do anything, you must initialize a database storage area on disk. We calhthisese

cluster. (SQL uses the term catalog cluster instead.) A database cluster is a collection of databases
is accessible by a single instance of a running database server. After initialization, a database cluster
will contain a database namesinplatel . As the name suggests, this will be used as a template for
subsequently created databases; it should not be used for actual worEh@&ger Sor information

about creating databases.)

In file system terms, a database cluster will be a single directory under which all data will be stored.
We call this thedata directoryor data area It is completely up to you where you choose to
store your data. There is no default, although locations suclusaocal/pgsgl/data or
Ivarl/lib/pgsgl/data are popular. To initialize a database cluster, use the comrimitdd

which is installed with PostgreSQL. The desired file system location of your database system is
indicated by theD option, for example

$ initdb -D /usr/local/pgsql/data

Note that you must execute this command while logged into the PostgreSQL user account, which is
described in the previous section.

Tip: As an alternative to the -D option, you can set the environment variable PGDATA

initdb will attempt to create the directory you specify if it does not already exist. It is likely that

it will not have the permission to do so (if you followed our advice and created an unprivileged
account). In that case you should create the directory yourself (as root) and change the owner to be
the PostgreSQL user. Here is how this might be done:

root# mkdir /usr/local/pgsql/data

root# chown postgres /usr/local/pgsql/data
root# su postgres

postgres$ initdb -D /usr/local/pgsql/data

18

Chapter 3. Server Run-time Environment

initdb will refuse to run if the data directory looks like it it has already been initialized.

Because the data directory contains all the data stored in the database, it is essential that it be se-
cured from unauthorized accesstdb therefore revokes access permissions from everyone but the
PostgreSQL user.

However, while the directory contents are secure, the default client authentication setup allows any
local user to connect to the database and even become the database superuser. If you don't trust other
local users, we recommend you usiedb 's -W or --pwprompt option to assign a password to the
database superuser. Afteitdb , modify thepg_hba.conf file to usemd5 or password instead

of trust authenticatiorbeforeyou start the server for the first time. (Other, approaches include
usingident authentication or file system permissions to restrict connection<CBagter &or more
information.)

initdb also initializes the default locale for the database cluster. Normally, it will just take the locale
settings in the environment and apply them to the initialized database. It is possible to specify a
different locale for the database; more information about that can be fo@®ttion 7.10ne surprise

you might encounter while runnirigitdb is a notice similar to this:

The database cluster will be initialized with locale de_DE.

This locale setting will prevent the use of indexes for pattern matching
operations. If that is a concern, rerun initdb with the collation order
set to "C". For more information see the Administrator's Guide.

This is intended to warn you that the currently selected locale will cause indexes to be sorted in an
order that prevents them from being usedlft¢E and regular-expression searches. If you need good
performance in such searches, you should set your current localand re-runinitdo , e.g., by
runninginitdb --Ic-collate=C . The sort order used within a particular database cluster is set by
initdb and cannot be changed later, short of dumping all data, reruiwiitig , and reloading the

data. So it's important to make this choice correctly the first time.

3.3. Starting the Database Server

Before anyone can access the database, you must start the database server. The database server is
called postmaster The postmaster must know where to find the data it is supposed to use. This is
done with theD option. Thus, the simplest way to start the server is:

$ postmaster -D /usr/local/pgsql/data

which will leave the server running in the foreground. This must be done while logged into the Post-
greSQL user account. WithouD, the server will try to use the data directory in the environment
variablePGDATAIf neither of these succeed, it will fail.

To start the postmaster in the background, use the usual shell syntax:

$ postmaster -D /usr/local/pgsgl/data > lodfile 2 >&1 &

It is an important to store the server’s stdout and stderr output somewhere, as shown above. It will
help for auditing purposes and to diagnose problems. $&etion 8.40r a more thorough discussion
of log file handling.)

The postmaster also takes a number of other command line options. For more information, see the ref-
erence page arfslection 3.4elow. In particular, in order for the server to accept TCP/IP connections
(rather than just Unix domain socket ones), you must specifyi theption.

19

Chapter 3. Server Run-time Environment

This shell syntax can get tedious quickly. Therefore the shell script wrapper pg_ctl is provided to
simplify some tasks. For example:

pg_ctl start -I logfile

will start the server in the background and put the output into the named log fileDTbption has
the same meaning here as in the postmaster. pg_ctl is also capable of stopping the server.

Normally, you will want to start the database server when the computer boots. Autostart scripts are
operating system-specific. There are a few distributed with PostgreSQL inotiteb/start-
scripts directory. This may require root privileges.

Different systems have different conventions for starting up daemons at boot time. Many systems have
a file /etc/rc.local or /etc/rc.d/rc.local . Others usec.d directories. Whatever you do,

the server must be run by the PostgreSQL user acanohnhot by rootor any other user. Therefore

you probably should form your commands us#g-c '..." postgres . For example:

su -c 'pg_ctl start -D /usr/local/pgsql/data -I serverlog’ postgres

Here are a few more operating system specific suggestions. (Always replace these with the proper
installation directory and the user name.)

- For FreeBSD, look at the fileontrib/start-scripts/freebsd in the PostgreSQL source
distribution.

« On OpenBSD, add the following lines to the fikgc/rc.local

if [-x /usr/local/pgsql/bin/pg_ctl -a -x /usr/local/pgsqgl/bin/postmaster]; then
su - -c 'lusr/local/pgsql/bin/pg_ctl start -I /var/postgresql/log -
s’ postgres
echo -n

1

postgresql’
fi
+ On Linux systems either add
lusr/local/pgsql/bin/pg_ctl start -I logfile -D /ust/local/pgsgl/data

to /etc/rc.d/rc.local or look at the filecontrib/start-scripts/linux in the Post-
greSQL source distribution.

« On NetBSD, either use the FreeBSD or Linux start scripts, depending on preference.

- On Solaris, create a file callgdtc/init.d/postgresql which should contain the following
line;

su - postgres -c "/usr/local/pgsql/bin/pg_ctl start -l logfile -D /usr/local/pgsql/data”

Then, create a symbolic link to it iletc/rc3.d asS99postgresql

While the postmaster is running, its PID is in the fiestmaster.pid in the data directory. This
is used to prevent multiple postmasters running in the same data directory, and can also be used for
shutting down the postmaster.

20

Chapter 3. Server Run-time Environment

3.3.1. Server Start-up Failures

There are several common reasons the postmaster might fail to start. Check the postmaster’s log file,
or start it by hand (without redirecting standard output or standard error) and see what error messages
appear. Some of the error messages are self-explanatory, but some are not, as shown below:

FATAL: StreamServerPort: bind() failed: Address already in use
Is another postmaster already running on that port?

This usually means just what it suggests: you tried to start another postmaster on the same port where
one is already running. However, if the kernel error message isdutss already in use or

some variant of that, there may be a different problem. For example, trying to start a postmaster on a
reserved port number may draw something like:

$ postmaster -i -p 666
FATAL: StreamServerPort: bind() failed: Permission denied
Is another postmaster already running on that port?

A message like:

IpcMemoryCreate: shmget(key=5440001, size=83918612, 01600) failed: Invalid ar-
gument
FATAL 1: ShmemCreate: cannot create region

probably means your kernel’s limit on the size of shared memory is smaller than the buffer area
PostgreSQL is trying to create (83918612 bytes in this example). Or it could mean that you don’t
have System-V-style shared memory support configured into your kernel at all. As a temporary
workaround, you can try starting the postmaster with a smaller-than-normal number of bufers (
switch). You will eventually want to reconfigure your kernel to increase the allowed shared memory
size. You may see this message when trying to start multiple postmasters on the same machine if their
total space requested exceeds the kernel limit.

An error like:

IpcSemaphoreCreate: semget(key=5440026, num=16, 01600) failed: No space left on de-
vice

doesnot mean you've run out of disk space. It means your kernel's limit on the number of System

V semaphores is smaller than the number PostgreSQL wants to create. As above, you may be able to
work around the problem by starting the postmaster with a reduced number of allowed connections
(-N switch), but you'll eventually want to increase the kernel limit.

If you get an “illegal system call” error, it is likely that shared memory or semaphores are not sup-
ported in your kernel at all. In that case your only option is to reconfigure the kernel to enable these
features.

Details about configuring System V IPC facilities are giveisection 3.5.1

3.3.2. Client Connection Problems

Although the error conditions possible on the client side are quite varied and application-dependent,
a few of them might be directly related to how the server was started up. Conditions other than those
shown below should be documented with the respective client application.

21

Chapter 3. Server Run-time Environment

psql: could not connect to server: Connection refused
Is the server running on host server.joe.com and accepting
TCP/IP connections on port 54327

This is the generic “I couldn't find a server to talk to” failure. It looks like the above when TCP/IP
communication is attempted. A common mistake is to forgetitheption to allow the postmaster to
accept TCP/IP connections.

Alternatively, you'll get this when attempting Unix-socket communication to a local postmaster:

psql: could not connect to server. Connection refused
Is the server running locally and accepting
connections on Unix domain socket "/tmp/.s.PGSQL.5432"?

The last line is useful in verifying that the client is trying to connect to the right place. If there is in fact
no postmaster running there, the kernel error message will typically be €itheection refused

orNo such file or directory , as illustrated. (It is important to realize thadnnection re-

fused in this context doesot mean that the postmaster got your connection request and rejected it
-- that case will produce a different message, as shov@eastion 6.3 Other error messages such as
Connection timed out may indicate more fundamental problems, like lack of network connec-
tivity.

3.4. Run-time Configuration

There are a lot of configuration parameters that affect the behavior of the database system. Here we
describe how to set them and the following subsections will discuss each in detail.

All parameter names are case-insensitive. Every parameter takes a value of one of the four types:
Boolean, integer, floating point, and string. Boolean valueO&f©FF, TRUE FALSE, YES NQ 1, 0
(case-insensitive) or any non-ambiguous prefix of these.

One way to set these options is to edit the fitatgresgl.conf in the data directory. (A default
file is installed there.) An example of what this file might look like is:

This is a comment
log_connections = yes
syslog = 2

search_path = ’$user, public’

As you see, options are one per line. The equal sign between name and value is optional. Whitespace is
insignificant and blank lines are ignored. Hash marks (“#") introduce comments anywhere. Parameter
values that are not simple identifiers or numbers should be single-quoted.

The configuration file is reread whenever the postmaster receives a SIGHUP signal (which is most
easily sent by means pfj_ctl reload). The postmaster also propagates this signal to all currently
running backend processes so that existing sessions also get the new value. Alternatively, you can
send the signal to a single backend process directly.

A second way to set these configuration parameters is to give them as a command line option to the
postmaster, such as:

postmaster -c log_connections=yes -c syslog=2

22

Chapter 3. Server Run-time Environment

which would have the same effect as the previous example. Command-line options override any con-
flicting settings inpostgresgl.conf

Occasionally it is also useful to give a command line option to one particular backend session only.
The environment variableGOPTIONS:an be used for this purpose on the client side:

env PGOPTIONS="-c geqo=off’ psql

(This works for any libpg-based client application, not just psql.) Note that this won't work for options
that are fixed when the server is started, such as the port number.

Some options can be changed in individual SQL sessions withEfieommand, for example:

=> SET ENABLE_SEQSCAN TO OFF;

See the SQL command language reference for details on the syntax.

Furthermore, it is possible to assign a set of option settings to a user or a database. Whenever a
session is started, the default settings for the user and database involved are loaded. The commands
ALTER DATABASEANd ALTER USERTrespectively, are used to configure these settings. Such per-
database settings override anything received from the postmaster or the configuration file, and in turn
are overridden by per-user settings.

3.4.1. pg_settings

The pg_settings virtual table allows display and update of current session run-time parameters.
There is one entry for each of the available parameters provide#ioyw ALLBut itis in a form that
allows it to be joined with other relations and have a selection criteria applied.

An UPDATEperformed orpg_settings is equivalent to executing tf&ET command on that named
parameter. The change only affects the value used by the current sessiasPfands issued within

a transaction that is later aborted, the effects oltARBATECOmmand disappear when the transaction

is rolled back. Once the surrounding transaction is committed, the effects will persist until the end of
the session, unless overridden by anothebATEor SET.

Table 3-1. pg_settings Columns

Name Type Description

name text The name of a current session
run-time parameter

setting text The value of a current session
run-time parameter

3.4.2. Planner and Optimizer Tuning

CPU_INDEX_TUPLE_COSfTfloating point)

Sets the query optimizer’s estimate of the cost of processing each index tuple during an index
scan. This is measured as a fraction of the cost of a sequential page fetch.

CPU_OPERATOR_COS$foating point)

Sets the optimizer’'s estimate of the cost of processing each operatovHERElause. This is
measured as a fraction of the cost of a sequential page fetch.

23

Chapter 3. Server Run-time Environment

CPU_TUPLE_COSffloating point)

Sets the query optimizer's estimate of the cost of processing each tuple during a query. This is
measured as a fraction of the cost of a sequential page fetch.

DEFAULT_STATISTICS_TARGET(integer)

Sets the default statistics target for table columns that have not had a column-specific target set
via ALTER TABLE SET STATISTICS Larger values increase the time needed t&NaLYZE
but may improve the quality of the planner’s estimates.

EFFECTIVE_CACHE_SIZE(floating point)

Sets the optimizer's assumption about the effective size of the disk cache (that is, the portion
of the kernel’s disk cache that will be used for PostgreSQL data files). This is measured in disk
pages, which are normally 8 kB each.

ENABLE_HASHJOINboolean)

Enables or disables the query planner’s use of hash-join plan types. The default is on. This is
used for debugging the query planner.

ENABLE_INDEXSCANboolean)

Enables or disables the query planner’s use of index-scan plan types. The default is on. This is
used to debugging the query planner.

ENABLE_MERGEJOIKboolean)

Enables or disables the query planner’s use of merge-join plan types. The default is on. This is
used for debugging the query planner.

ENABLE_NESTLOO#hoolean)

Enables or disables the query planner’s use of nested-loop join plans. It's not possible to suppress
nested-loop joins entirely, but turning this variable off discourages the planner from using one if
there are other methods available. The defaultis on. This is used for debugging the query planner.

ENABLE_SEQSCALboolean)

Enables or disables the query planner’s use of sequential scan plan types. It's not possible to
suppress sequential scans entirely, but turning this variable off discourages the planner from
using one if there are other methods available. The default is on. This is used for debugging the
guery planner.

ENABLE_SORTboolean)

Enables or disables the query planner’s use of explicit sort steps. It's not possible to suppress
explicit sorts entirely, but turning this variable off discourages the planner from using one if there
are other methods available. The default is on. This is used for debugging the query planner.

ENABLE_TIDSCANboolean)

Enables or disables the query planner’'s use of TID scan plan types. The default is on. This is
used for debugging the query planner.

GEQ{boolean)

Enables or disables genetic query optimization, which is an algorithm that attempts to do query
planning without exhaustive searching. This is on by default. See also the variousather
settings.

24

Chapter 3. Server Run-time Environment

GEQO_EFFOR{integer)
GEQO_GENERATION®teger)
GEQO_POOL_SIzZinteger)
GEQO_RANDOM_SEgimeger)
GEQO_SELECTION_BIASfloating point)

Various tuning parameters for the genetic query optimization algorithm: The pool size is the
number of individuals in one population. Valid values are between 128 and 1024. If it is set to
0 (the default) a pool size of 2(QS+1), where QS is the number of FROM items in the query,
is taken. The effort is used to calculate a default for generations. Valid values are between 1 and
80, 40 being the default. Generations specifies the number of iterations in the algorithm. The
number must be a positive integer. If 0 is specified th#ort * Log2(PoolSize) is used.

The run time of the algorithm is roughly proportional to the sum of pool size and generations.
The selection bias is the selective pressure within the population. Values can be from 1.50 to
2.00; the latter is the default. The random seed can be set to get reproducible results from the
algorithm. If it is set to -1 then the algorithm behaves non-deterministically.

GEQO_THRESHOL(Dteger)

Use genetic query optimization to plan queries with at least this rrBROMtems involved. (Note

that aJOIN construct counts as only o®OMtem.) The default is 11. For simpler queries it is
usually best to use the deterministic, exhaustive planner. This parameter also controls how hard
the optimizer will try to merge subqueBROMlauses into the upper query.

RANDOM_PAGE_COS§bating point)

Sets the query optimizer's estimate of the cost of a nonsequentially fetched disk page. This is
measured as a multiple of the cost of a sequential page fetch.

Note: Unfortunately, there is no well-defined method for determining ideal values for the family
of “COST” variables that were just described. You are encouraged to experiment and share your
findings.

3.4.3. Logging and Debugging

SERVER_MIN_MESSAGHString)

This controls how much message detail is written to the server logs. Valid value&EB#G5
DEBUG4DEBUG3DEBUG2DEBUG]INFO, NOTICE, WARNINGERRORLOG FATAL, andPANIC.
Later values send less detail to the logs. The defatQFICE Note thatLOGhas a different
precedence here than@LIENT_MIN_MESSAGES

Here is a summary of the various message types:
DEBUGI1-5]
Provides information for use by developers.

INFO
Provides information implicitly requested by the user, e.g., dWitQUUM VERBOSE

25

Chapter 3. Server Run-time Environment

NOTICE

Provides information that may be helpful to users, e.g., truncation of long identifiers and
index creation as part of primary keys.

WARNING

Provides warnings to the user, e @QQMMIToutside a transaction.
ERROR

Reports the error that caused a transaction to abort.
LOG

Reports information of interest to administrators, e.g., checkpoint activity.
FATAL

Reports why a backend session terminated.
PANIC

Reports why all backend sessions restarted.

CLIENT_MIN_MESSAGESstring)

This controls how much message detail is written to the client. Valid valueBEB&IGS5 DE-
BUG4 DEBUG3DEBUG2DEBUG1LOG NOTICE, WARNINGandERRORLater values send less
information to the client. The default MOTICE Note thatLOGhas a different precedence here
than inSERVER_MIN_MESSAGESIso see that section for an explanation of the various values.

DEBUG_ASSERTIONoolean)

Turns on various assertion checks. This is a debugging aid. If you are experiencing strange
problems or crashes you might want to turn this on, as it might expose programming mistakes. To
use this option, the mactdSE_ASSERT_CHECKIN@wust be defined when PostgreSQL is built
(accomplished by theonfigure option--enable-cassert). Note thaDEBUG_ASSERTIONS
defaults to on if PostgreSQL has been built with assertions enabled.

DEBUG_PRINT_PARSKboolean)
DEBUG_PRINT_REWRITTE(boolean)
DEBUG_PRINT_PLANboolean)
DEBUG_PRETTY_PRINtboolean)

These flags enable various debugging output to be sent to the server log. For each executed query,
print either the query text, the resulting parse tree, the query rewriter output, or the execution
plan.DEBUG_PRETTY_PRINihdents these displays to produce a more readable but much longer
output format.

EXPLAIN_PRETTY_PRINT(boolean)

Determines whetheEXPLAIN VERBOSHISes the indented or non-indented format for display-
ing detailed query-tree dumps.

HOSTNAME_LOOKUBoolean)

By default, connection logs only show the IP address of the connecting host. If you want it to
show the host name you can turn this on, but depending on your host name resolution setup it
might impose a non-negligible performance penalty. This option can only be set at server start.

26

Chapter 3. Server Run-time Environment

LOG_CONNECTION&oolean)

This outputs a line to the server logs detailing each successful connection. This is off by de-
fault, although it is probably very useful. This option can only be set at server start or in the
postgresgl.conf configuration file.

LOG_DURATIONboolean)

Causes the duration of every completed statement to be logged. To use this option, enable
LOG_STATEMEN&ndLOG_PID so you can link the statement to the duration using the process
ID.

LOG_MIN_ERROR_STATEMEINSEring)

This controls for which message levels the SQL statement causing that message is to be recorded
in the server log. All statements causing a message of the level of the setting or higher are logged.
The default isPANIC (effectively turning this feature off). Valid values abEBUG5 DEBUG#
DEBUG3DEBUG2DEBUG1INFO, NOTICE, WARNINGERRORFATAL, andPANIC. For example,

if you set this toERRORhen all SQL statements causing errors, fatal errors, or panics will be
logged.

Itis recommended you enall®G_PIDas well so you can more easily match the error statement
with the error message.

LOG_PID (boolean)

Prefixes each server message in the log file with the process ID of the backend process. This is
useful to sort out which messages pertain to which connection. The default is off. This parameter
does not affect messages logged via syslog, which always contain the process ID.

LOG_STATEMEN(boolean)
Causes each SQL statement to be logged.
LOG_TIMESTAMRboolean)
Prefixes each server log message with a time stamp. The default is off.

SHOW_STATEMENT_STA{i®olean)
SHOW_PARSER_STATSoolean)
SHOW_PLANNER_STATSoolean)
SHOW_EXECUTOR_STA(i®olean)

For each query, write performance statistics of the respective module to the server log. This is a
crude profiling instrument.

SHOW_SOURCE_PO@bolean)

Shows the outgoing port number of the connecting host in the connection log messages. You
could trace back the port number to find out what user initiated the connection. Other than that,
it's pretty useless and therefore off by default. This option can only be set at server start.

STATS_COMMAND_STRINE&oolean)
STATS_BLOCK_LEVEl(boolean)
STATS_ROW_LEVE(boolean)

These flags determine what information backends send to the statistics collector process: current
commands, block-level activity statistics, or row-level activity statistics. All default to off. En-
abling statistics collection costs a small amount of time per query, but is invaluable for debugging
and performance tuning.

27

Chapter 3. Server Run-time Environment

STATS_RESET_ON_SERVER_STARJoolean)

If on, collected statistics are zeroed out whenever the server is restarted. If off, statistics are
accumulated across server restarts. The default is on. This option can only be set at server start.

STATS_START_COLLECTOfoolean)

Controls whether the server should start the statistics-collection subprocess. This is on by default,
but may be turned off if you know you have no interest in collecting statistics. This option can
only be set at server start.

SYSLOinteger)

PostgreSQL allows the use of syslog for logging. If this option is set to 1, messages go both to
syslog and the standard output. A setting of 2 sends output only to syslog. (Some messages will
still go to the standard output/error.) The default is 0, which means syslog is off. This option
must be set at server start.

SYSLOG_FACILITY (string)

This option determines the syslog “facility” to be used when syslog is enabled. You may choose
from LOCALQ LOCAL1], LOCAL2 LOCAL3 LOCAL4 LOCALS LOCALG LOCAL7 the default is
LOCALQ See also the documentation of your system’s syslog.

SYSLOG_IDENT(string)

If logging to syslog is enabled, this option determines the program name used to identify Post-
greSQL messages in syslog log messages. The defpoktiges

TRACE_NOTIFY(boolean)

Generates a great amount of debugging output foL IREEN andNOTIFY commands.

3.4.4. General Operation

AUTOCOMMItboolean)

If set to true, PostgreSQL will automatically dcC®MMITafter each successful command that

is not inside an explicit transaction block (that is, unle&E&IN with no matchingCOMMIThas

been given). If set to false, PostgreSQL will commit only upon receiving an exgi@wmIT
command. This mode can also be thought of as implicitly issBBGIN whenever a command

is received that is not already inside a transaction block. The default is true, for compatibility
with historical PostgreSQL behavior. However, for maximum compatibility with the SQL spec-
ification, set it to false.

Note: Even with autocommit set to false, SET, SHOWand RESETdo not start new transaction
blocks. They are run in their own transactions. Once another command is issued, a trans-
action block begins and any SET, SHOWor RESETcommands are considered to be part of
the transaction, i.e., they are committed or rolled back depending on the completion status
of the transaction. To execute a SET, SHOWor RESETcommand at the start of a transaction
block, use BEGIN first.

28

Chapter 3. Server Run-time Environment

Note: As of PostgreSQL 7.3, setting autocommit to false is not well-supported. This is a
new feature and is not yet handled by all client libraries and applications. Before making it
the default setting in your installation, test carefully.

AUSTRALIAN_TIMEZONES$boolean)

If set to true,CST, EST, andSAT are interpreted as Australian time zones rather than as North
American Central/Eastern time zones and Saturday. The default is false.

AUTHENTICATION_TIMEOUTinteger)

Maximum time to complete client authentication, in seconds. If a would-be client has not com-
pleted the authentication protocol in this much time, the server breaks the connection. This pre-
vents hung clients from occupying a connection indefinitely. This option can only be set at server
start or in thepostgresgl.conf file.

CLIENT_ENCODING(string)

Sets the client-side encoding for multibyte character sets. The default is to use the database
encoding.

DATESTYLE(string)

Sets the display format for dates, as well as the rules for interpreting ambiguous input dates. The
default isISO, US.

DB_USER_NAMESPAGEoolean)
This allows per-database user names. It is off by default.

If this is on, create users asisername@dbname. Whenusername is passed by a connecting

client, @and the database name is appended to the user name and that database-specific user name
is looked up by the server. Note that when you create users with names cont@imitign the

SQL environment, you will need to quote the user name.

With this option enabled, you can still create ordinary global users. Simply ap@aviten
specifying the user name in the client. T@evill be stripped off before the user name is looked
up by the server.

Note: This feature is intended as a temporary measure until a complete solution is found. At
that time, this option will be removed.

DEADLOCK_TIMEOU(integer)

This is the amount of time, in milliseconds, to wait on a lock before checking to see if there

is a deadlock condition. The check for deadlock is relatively slow, so the server doesn't run

it every time it waits for a lock. We (optimistically?) assume that deadlocks are not common in
production applications and just wait on the lock for a while before starting check for a deadlock.
Increasing this value reduces the amount of time wasted in needless deadlock checks, but slows
down reporting of real deadlock errors. The default is 1000 (i.e., one second), which is probably
about the smallest value you would want in practice. On a heavily loaded server you might want
to raise it. Ideally the setting should exceed your typical transaction time, so as to improve the
odds that the lock will be released before the waiter decides to check for deadlock. This option
can only be set at server start.

29

Chapter 3. Server Run-time Environment

DEFAULT_TRANSACTION_ISOLATIONstring)

Each SQL transaction has an isolation level, which can be either “read committed” or “serializ-
able”. This parameter controls the default isolation level of each new transaction. The default is
“read committed”.

Consult thePostgreSQL User's Guidend the comman8ET TRANSACTIONor more informa-
tion.

DYNAMIC_LIBRARY_PATHstring)

If a dynamically loadable module needs to be opened and the specified name does not have a
directory component (i.e. the name does not contain a slash), the system will search this path
for the specified file. (The name that is used is the name specified CREATE FUNCTIONT
LOADcommand.)

The value for dynamic_library_path has to be a colon-separated list of absolute directory names.
If a directory name starts with the special vafjliedir , the compiled-in PostgreSQL package
library directory is substituted. This where the modules provided by the PostgreSQL distribution
are installed. (Uspg_config --pkglibdir to print the name of this directory.) For example:

dynamic_library_path = ’/usr/local/lib/postgresgl:/home/my_project/lib:$libdir’

The default value for this parameter'ibdir . If the value is set to an empty string, the
automatic path search is turned off.

This parameter can be changed at run time by superusers, but a setting done that way will only
persist until the end of the client connection, so this method should be reserved for development
purposes. The recommended way to set this parameter is poshgesqgl.conf configura-

tion file.

KRB_SERVER_KEYFILKstring)
Sets the location of the Kerberos server key file. Seetion 6.2.3or details.
FSYNC(boolean)

If this option is on, the PostgreSQL backend will usefdyac() system call in several places

to make sure that updates are physically written to disk. This insures that a database installation
will recover to a consistent state after an operating system or hardware crash. (Crashes of the
database server itself anet related to this.)

However, this operation does slow down PostgreSQL because at transaction commit it has wait
for the operating system to flush the write-ahead log. Withsytc , the operating system is
allowed to do its best in buffering, sorting, and delaying writes, which can considerably increase
performance. However, if the system crashes, the results of the last few committed transactions
may be lost in part or whole. In the worst case, unrecoverable data corruption may occur.

For the above reasons, some administrators always leave it off, some turn it off only for bulk
loads, where there is a clear restart point if something goes wrong, and some leave it on just to
be on the safe side. Because it is always safe, the default is on. If you trust your operating system,
your hardware, and your utility company (or better your UPS), you might want to diisghte .

It should be noted that the performance penalty of déséggc s is considerably less in Post-
greSQL version 7.1 and later. If you previously suppressgd s for performance reasons, you
may wish to reconsider your choice.

This option can only be set at server start or infihstgresgl.conf file.

30

Chapter 3. Server Run-time Environment

LC_MESSAGESstring)

Sets the language in which messages are displayed. Acceptable values are system-dependent; see
Section 7.Xor more information. If this variable is set to the empty string (which is the default)

then the value is inherited from the execution environment of the server in a system-dependent
way.

On some systems, this locale category does not exist. Setting this variable will still work, but
there will be no effect. Also, there is a chance that no translated messages for the desired language
exist. In that case you will continue to see the English messages.

LC_MONETAR¥tring)

Sets the locale to use for formatting monetary amounts, for example with tttear() family

of functions. Acceptable values are system-dependentSsegon 7.1for more information. If

this variable is set to the empty string (which is the default) then the value is inherited from the
execution environment of the server in a system-dependent way.

LC_NUMERI((string)

Sets the locale to use for formatting numbers, for example withothebar() family of func-

tions. Acceptable values are system-dependentSsetion 7.1for more information. If this
variable is set to the empty string (which is the default) then the value is inherited from the
execution environment of the server in a system-dependent way.

LC_TIME (string)

Sets the locale to use for formatting date and time values. (Currently, this setting does nothing,
but it may in the future.) Acceptable values are system-dependenBesgimn 7.1for more
information. If this variable is set to the empty string (which is the default) then the value is
inherited from the execution environment of the server in a system-dependent way.

MAX_CONNECTION@teger)

Determines the maximum number of concurrent connections to the database server. The default
is 32 (unless altered while building the server). This parameter can only be set at server start.

MAX_EXPR_DEPT@nteger)

Sets the maximum expression nesting depth of the parser. The default value is high enough for
any normal query, but you can raise it if needed. (But if you raise it too high, you run the risk of
backend crashes due to stack overflow.)

MAX_FILES_PER_PROCES@nteger)

Sets the maximum number of simultaneously open files in each server subprocess. The default
is 1000. The limit actually used by the code is the smaller of this setting and the result of
sysconf(_ SC_OPEN_MAX) . Therefore, on systems whesgsconf returns a reasonable limit,

you don’t need to worry about this setting. But on some platforms (notably, most BSD sys-
tems),sysconf returns a value that is much larger than the system can really support when a
large number of processes all try to open that many files. If you find yourself seeing “Too many
open files” failures, try reducing this setting. This option can only be set at server start or in
the postgresgl.conf configuration file; if changed in the configuration file, it only affects
subsequently-started server subprocesses.

MAX_FSM_RELATION@nteger)

Sets the maximum number of relations (tables) for which free space will be tracked in the shared
free-space map. The default is 1000. This option can only be set at server start.

31

Chapter 3. Server Run-time Environment

MAX_FSM_PAGEfnteger)

Sets the maximum number of disk pages for which free space will be tracked in the shared
free-space map. The default is 10000. This option can only be set at server start.

MAX_LOCKS_PER_TRANSACTI®Nteger)

The shared lock table is sized on the assumption that at meostiocks_per_transaction

* max_connections distinct objects will need to be locked at any one time. The default, 64,
which has historically proven sufficient, but you might need to raise this value if you have clients
that touch many different tables in a single transaction. This option can only be set at server start.

PASSWORD_ENCRYPTI@bbolean)

When a password is specified GREATE USERr ALTER USERwithout writing eitherEN-
CRYPTEDor UNENCRYPTEDRNhIs flag determines whether the password is to be encrypted. The
default is on (encrypt the password).

PORT(integer)
The TCP port the server listens on; 5432 by default. This option can only be set at server start.
SEARCH_PATHstring)

This variable specifies the order in which schemas are searched when an object (table, data
type, function, etc.) is referenced by a simple name with no schema component. When there are
objects of identical names in different schemas, the one found first in the search path is used. An
object that is not in any of the schemas in the search path can only be referenced by specifying
its containing schema with a qualified (dotted) name.

The value fosearch_path has to be a comma-separated list of schema names. If one of the list
items is the special valuguser , then the schema having the same name aSHSSION_USER
is substituted, if there is such a schema. (If $oker is ignored.)

The system catalog schenmy_catalog , is always searched, whether it is mentioned in the
path or not. If it is mentioned in the path then it will be searched in the specified order. If
pg_catalog is not in the path then it will be searchedforesearching any of the path items.

It should also be noted that the temporary-table schemaemp_ nnn, is implicitly searched
before any of these.

When objects are created without specifying a particular target schema, they will be placed in
the first schema listed in the search path. An error is reported if the search path is empty.

The default value for this parameter'$ser, public’ (where the second part will be ig-
nored if there is no schema namgublic). This supports shared use of a database (where no
users have private schemas, and all share ugentit), private per-user schemas, and combi-
nations of these. Other effects can be obtained by altering the default search path setting, either
globally or per-user.

The current effective value of the search path can be examined via the SQL fuoation
rent_schemas() . This is not quite the same as examining the valuseafch_path , since
current_schemas() shows how the requests appearingearch_path were resolved.

For more information on schema handling, seeRbstgreSQL User’s Guide
STATEMENT_TIMEOUfinteger)

Aborts any statement that takes over the specified number of milliseconds. A value of zero turns
off the timer.

32

Chapter 3. Server Run-time Environment

SHARED_BUFFER@nteger)

Sets the number of shared memory buffers used by the database server. The default is 64. Each
buffer is typically 8192 bytes. This must be greater than 16, as well as at least twice the value
of MAX_CONNECTION®&owever, a higher value can often improve performance on modern ma-
chines. Values of at least a few thousand are recommended for production installations. This
option can only be set at server start.

Increasing this parameter may cause PostgreSQL to request more System V shared memory than
your operating system’s default configuration allows. Seetion 3.5.%or information on how
to adjust these parameters, if necessary.

SILENT_MODE(bool)

Runs the server silently. If this option is set, the server will automatically run in background and
any controlling ttys are disassociated, thus no messages are written to standard output or standard
error (same effect gsostmaster ’s -S option). Unless some logging system such as syslog is
enabled, using this option is discouraged since it makes it impossible to see error messages.

SORT_MENinteger)

Specifies the amount of memory to be used by internal sorts and hashes before switching to
temporary disk files. The value is specified in kilobytes, and defaults to 1024 kilobytes (1 MB).
Note that for a complex query, several sorts might be running in parallel, and each one will be
allowed to use as much memory as this value specifies before it starts to put data into temporary
files. Also, each running backend could be doing one or more sorts simultaneously, so the total
memory used could be many times the valuSORT_MEMSorts are used b§RDER ByYmerge

joins, andCREATE INDEX

SQL_INHERITANCE(bool)

This controls the inheritance semantics, in particular whether subtables are included by various
commands by default. They were not included in versions prior to 7.1. If you need the old
behavior you can set this variable to off, but in the long run you are encouraged to change your
applications to use theNLYkeyword to exclude subtables. See the SQL language reference and
the PostgreSQL User’s Guid®r more information about inheritance.

SSL (boolean)
Enables SSL connections. Please r8adtion 3.7efore using this. The default is off.
SUPERUSER_RESERVED_CONNECTIQNSger)

Determines the number of “connection slots” that are reserved for connections by PostgreSQL
superusers. At moshax_connections ~ connections can ever be active simultaneously. When-
ever the number of active concurrent connections is at l@ast connections minus su-
peruser_reserved_connections , hew connections will be accepted only from superuser
accounts.

The default value is 2. The value must be less than the valueawfconnections . This pa-
rameter can only be set at server start.

TCPIP_SOCKET(boolean)

If this is true, then the server will accept TCP/IP connections. Otherwise only local Unix domain
socket connections are accepted. It is off by default. This option can only be set at server start.

TIMEZONE(string)

Sets the time zone for displaying and interpreting timestamps. The default is to use whatever the
system environment specifies as the time zone.

33

Chapter 3. Server Run-time Environment

TRANSFORM_NULL_EQUASolean)

When turned on, expressions of the fogrpr = NULL (or NULL = expr) are treated asxpr

IS NULL, that is, they return true éxpr evaluates to the null value, and false otherwise. The
correct behavior obxpr = NULL is to always return null (unknown). Therefore this option
defaults to off.

However, filtered forms in Microsoft Access generate queries that appear éxprse= NULL

to test for null values, so if you use that interface to access the database you might want to
turn this option on. Since expressions of the fasgpr = NULL always return the null value
(using the correct interpretation) they are not very useful and do not appear often in normal
applications, so this option does little harm in practice. But new users are frequently confused
about the semantics of expressions involving null values, so this option is not on by default.

Note that this option only affects the literaloperator, not other comparison operators or other
expressions that are computationally equivalent to some expression involving the equals operator
(such asN). Thus, this option is not a general fix for bad programming.

Refer to thePostgreSQL User’s Guider related information.
UNIX_SOCKET_DIRECTORY¥tring)

Specifies the directory of the Unix-domain socket on which the server is to listen for connections
from client applications. The default is normaltynp , but can be changed at build time.

UNIX_SOCKET GROURtring)

Sets the group owner of the Unix domain socket. (The owning user of the socket is always the
user that starts the server.) In combination with the optitiiX_SOCKET_PERMISSIONS$his

can be used as an additional access control mechanism for this socket type. By default this is the
empty string, which uses the default group for the current user. This option can only be set at
server start.

UNIX_SOCKET_PERMISSIONSinteger)

Sets the access permissions of the Unix domain socket. Unix domain sockets use the usual Unix
file system permission set. The option value is expected to be an numeric mode specification in
the form accepted by thehmod andumask system calls. (To use the customary octal format the
number must start with @ (zero).)

The default permissions ag¥77, meaning anyone can connect. Reasonable alternatives are
0770 (only user and group, see also und&iX_SOCKET_GROURNd0700 (only user). (Note

that actually for a Unix domain socket, only write permission matters and there is no point in
setting or revoking read or execute permissions.)

This access control mechanism is independent of the one describbdjier 6
This option can only be set at server start.
VACUUM_ME(ihteger)

Specifies the maximum amount of memory to be used VMCUUMto keep track of
to-be-reclaimed tuples. The value is specified in kilobytes, and defaults to 8192 kilobytes.
Larger settings may improve the speed of vacuuming large tables that have many deleted tuples.

VIRTUAL_HOST(string)

Specifies the TCP/IP host name or address on which the postmaster is to listen for connections
from client applications. Defaults to listening on all configured addresses (including localhost).

34

Chapter 3. Server Run-time Environment

3.4.5. WAL
See als@ection 12.3or details on WAL tuning.

CHECKPOINT_SEGMENT®teger)

Maximum distance between automatic WAL checkpoints, in log file segments (each segment is
normally 16 megabytes). This option can only be set at server start or pottyeesql.conf
file.

CHECKPOINT_TIMEOUTinteger)

Maximum time between automatic WAL checkpoints, in seconds. This option can only be set at
server start or in thpostgresql.conf file.

COMMIT_DELAYXinteger)

Time delay between writing a commit record to the WAL buffer and flushing the buffer out to
disk, in microseconds. A nonzero delay allows multiple transactions to be committed with only
onefsync system call, if system load is high enough additional transactions may become ready
to commit within the given interval. But the delay is just wasted if no other transactions become
ready to commit. Therefore, the delay is only performed if at I€¥MIT_SIBLINGS other
transactions are active at the instant that a backend process has written its commit record.

COMMIT_SIBLINGS(integer)

Minimum number of concurrent open transactions to require before performing the
COMMIT_DELAYdelay. A larger value makes it more probable that at least one other transaction
will become ready to commit during the delay interval.

WAL_BUFFERS$integer)

Number of disk-page buffers in shared memory for WAL logging. The default is 4. This option
can only be set at server start.

WAL_DEBU@nteger)
If nonzero, turn on WAL-related debugging output on standard error.
WAL_SYNC_METH(8rring)

Method used for forcing WAL updates out to disk. Possible values=a¥NC(call fsync()

at each commit)FDATASYN(call fdatasync() at each commit)OPEN_SYNQwrite WAL

files with open() optionO_SYNG, or OPEN_DATASYN(write WAL files with open() option
O_DSYNUZ Not all of these choices are available on all platforms. This option can only be set at
server start or in thpostgresgl.conf file.

3.4.6. Short Options

For convenience there are also single letter option switches available for many parameters. They are
described inrable 3-2

Table 3-2. Short option key

Short option Equivalent

-B X shared_buffers = X

35

Chapter 3. Server Run-time Environment

Short option Equivalent

-d X server_min_messages = DEBUG x
-F fsync = off

-h x \virtual_host = X

-i tcpip_socket = on

-k x unix_socket_directory = X
-l ssl = on

-N x max_connections = X

P X port = X

fi ,fh ,-fm,-fn ,-fs ,-ft a enable_indexscan=off ,

enable_hashjoin=off ,
enable_mergejoin=off ,
enable_nestloop=off ,
enable_seqgscan=off ,
enable_tidscan=off

-S a show_statement_stats = on
-S Xa sort_mem = X
-tpa , -tpl ,-te a show_parser_stats=on ,

show_planner_stats=on ,
show_executor_stats=on

Notes:
a. For historical reasons, these options must be passed to the individual backend process via
the-o postmaster option, for example,

$ postmaster -0 -S 1024 -s’
or viaPGOPTIONSrom the client side, as explained above.

3.5. Managing Kernel Resources

A large PostgreSQL installation can quickly exhaust various operating system resource limits. (On
some systems, the factory defaults are so low that you don't even need a really “large” installation.)
If you have encountered this kind of problem, keep reading.

3.5.1. Shared Memory and Semaphores

Shared memory and semaphores are collectively referred to as “System V IPC” (together with mes-
sage queues, which are not relevant for PostgreSQL). Almost all modern operating systems provide
these features, but not all of them have them turned on or sufficiently sized by default, especially sys-
tems with BSD heritage. (For the QNX and BeOS ports, PostgreSQL provides its own replacement
implementation of these facilities.)

The complete lack of these facilities is usually manifested by an lllegal system call error upon post-
master start. In that case there’s nothing left to do but to reconfigure your kernel -- PostgreSQL won't
work without them.

When PostgreSQL exceeds one of the various hard IPC limits, the postmaster will refuse to start and
should leave an instructive error message describing the problem encountered and what to do about
it. (See alsdSection 3.3.) The relevant kernel parameters are named consistently across different
systemsiTable 3-3gives an overview. The methods to set them, however, vary. Suggestions for some

36

Chapter 3. Server Run-time Environment

platforms are given below. Be warned that it is often necessary to reboot your machine, and possibly
even recompile the kernel, to change these settings.

Table 3-3. System V IPC parameters

Name Description Reasonable values
SHMMAX Maximum size of shared 250kB + 8.2 kB *
memory segment (bytes) shared_buffers +14.2 kB *
max_connections or infinity
SHMMIN Minimum size of shared 1
memory segment (bytes)
SHMALL Total amount of shared memorjf bytes, same aSHMMAXf

available (bytes or pages) pages,
ceill(SHMMAX/PAGE_SIZE)

SHMSEG Maximum number of shared |only 1 segment is needed, but
memory segments per procesghe default is much higher
SHMMNI Maximum number of shared [like SHMSE®Ius room for other
memory segments system-widapplications
SEMMNI Maximum number of semaphofe= ceil(max_connections
identifiers (i.e., sets) 16)
SEMMNS Maximum number of ceil(max_connections /
semaphores system-wide 16) * 17 + room for other
applications
SEMMSL Maximum number of >=17
semaphores per set
SEMMAP Number of entries in semaphorgee text
map
SEMVMX Maximum value of semaphore|>= 255 (The default is often
32767, don’t change unless
asked to.)

The most important shared memory parameteSHMMAXthe maximum size, in bytes, of a shared
memory segment. If you get an error message fsamget like Invalid argument, it is possible that

this limit has been exceeded. The size of the required shared memory segment varies both with the
number of requested buffer®(option) and the number of allowed connectioms ¢ption), although

the former is the most significant. (You can, as a temporary solution, lower these settings to eliminate
the failure.) As a rough approximation, you can estimate the required segment size by multiplying the
number of buffers and the block size (8 kB by default) plus ample overhead (at least half a megabyte).
Any error message you might get will contain the size of the failed allocation request.

Less likely to cause problems is the minimum size for shared memory segrsems1()y, which

should be at most approximately 256 kB for PostgreSQL (it is usually just 1). The maximum number
of segments system-wid8KIMMN) or per-processJHMSEEshould not cause a problem unless your
system has them set to zero. Some systems also have a limit on the total amount of shared memory in
the system; see the platform-specific instructions below.

PostgreSQL uses one semaphore per allowed conneetiaypfion), in sets of 16. Each such set will

also contain a 17th semaphore which contains a “magic number”, to detect collision with semaphore
sets used by other applications. The maximum number of semaphores in the system &EsatidG

which consequently must be at least as high as the connection setting plus one extra for each 16
allowed connections (see the formulaTable 3-3. The parameteBEMMNIdetermines the limit on

37

Chapter 3. Server Run-time Environment

the number of semaphore sets that can exist on the system at one time. Hence this parameter must be at
leastceil(max_connections / 16) . Lowering the number of allowed connections is a temporary
workaround for failures, which are usually confusingly worded “No space left on device”, from the
functionsemget()

In some cases it might also be necessary to increes#MARo be at least on the order SEMMNS

This parameter defines the size of the semaphore resource map, in which each contiguous block of
available semaphores needs an entry. When a semaphore set is freed it is either added to an existing
entry that is adjacent to the freed block or it is registered under a new map entry. If the map is full, the
freed semaphores get lost (until reboot). Fragmentation of the semaphore space could over time lead
to fewer available semaphores than there should be.

The SEMMSIparameter, which determines how many semaphores can be in a set, must be at least 17
for PostgreSQL.

Various other settings related to “semaphore undo”, suSEsMNEndSEMUMEare not of concern
for PostgreSQL.

BSD/OS

Shared Memory. By default, only 4 MB of shared memory is supported. Keep in mind that
shared memory is not pageable; it is locked in RAM. To increase the number of shared buffers
supported by the postmaster, add the following to your kernel configuration fil-MALL

value of 1024 represents 4 MB of shared memory. The following increases the maximum shared
memory area to 32 MB:

options "SHMALL=8192"
options "SHMMAX=\(SHMALL*PAGE_SIZE\)"

For those running 4.1 or later, just make the above changes, recompile the kernel, and reboot. For
those running earlier releases, upatch to find thesysptsize value in the current kernel.
This is computed dynamically at boot time.

$ bpatch -r sysptsize

0x9 = 9
Next, addSYSPTSIZE as a hard-coded value in the kernel configuration file. Increase the value
you found using bpatch. Add 1 for every additional 4 MB of shared memory you desire.

options "SYSPTSIZE=16"
sysptsize cannot be changed bysctl

Semaphores. You may need to increase the number of semaphores. By default, PostgreSQL
allocates 34 semaphores, which is over half the default system total of 60.

Set the values you want in your kernel configuration file, e.g.:

options "SEMMNI=40"

options "SEMMNS=240"
options "SEMUME=40"
options "SEMMNU=120"

FreeBSD
NetBSD
OpenBSD

The optionsSYSVSHMINdSYSVSEMeed to be enabled when the kernel is compiled. (They are
by default.) The maximum size of shared memory is determined by the optigmAXPGEN

38

Chapter 3. Server Run-time Environment

pages). The following shows an example of how to set the various parameters:

options SYSVSHM

options SHMMAXPGS=4096
options SHMSEG=256
options SYSVSEM

options SEMMNI=256
options SEMMNS=512
options SEMMNU=256
options SEMMAP=256

(On NetBSD and OpenBSD the key word is actuallyion singular.)

You may also want to use the sysctl setting to lock shared memory into RAM and prevent it from
being paged out to swap.

HP-UX

The default settings tend to suffice for normal installations. On HP-UX 10, the factory default
for SEMMN$ 128, which might be too low for larger database sites.

IPC parameters can be set in the System Administration Manager (SAM) ueteel
Configuration— Configurable Parameters. Hit Create A New Kernel when you're done.

Linux

The default shared memory limit (boBHMMARNASHMALLI is 32 MB in 2.2 kernels, but it can
be changed in thproc file system (without reboot). For example, to allow 128 MB:

$ echo 134217728 >/proc/sys/kernel/shmall
$ echo 134217728 >/proc/sys/kernel/shmmax

You could put these commands into a script run at boot-time.

Alternatively, you can use sysctl, if available, to control these parameters. Look for a file called
letc/sysctl.conf and add lines like the following to it:

kernel.shmall = 134217728
kernel.shmmax = 134217728

This file is usually processed at boot time, but sysctl can also be called explicitly later.

Other parameters are sufficiently sized for any application. If you want to see

for yourself look in /usr/src/linux/include/asm- Xxx /shmpara m.h and
Jusr/src/linux/include/linux/sem.h

MacOS X
Edit the file /System/Library/Startupltems/SystemTuning/SystemTuning and

change the following values:

sysctl -w kern.sysv.shmmax
sysctl -w kern.sysv.shmmin
sysctl -w kern.sysv.shmmni
sysctl -w kern.sysv.shmseg
sysctl -w kern.sysv.shmall

These values have the same meanings on MacOS X as those listed for previous operating sys-
tems.

39

Chapter 3. Server Run-time Environment

SCO OpenServer

In the default configuration, only 512 kB of shared memory per segment is allowed,
which is about enough foiB 24 -N 12 . To increase the setting, first change directory to
/etc/conf/cf.d . To display the current value &HMMAXnN bytes, run

Jconfigure -y SHMMAX
To set a new value faBHMMAXun:
Jconfigure SHMMAX=value

wherevalue is the new value you want to use (in bytes). After settBtgMMAXrebuild the
kernel

Jlink_unix
and reboot.
Solaris

At least in version 2.6, the default maximum size of a shared memory segments is too low for
PostgreSQL. The relevant settings can be changgddisystem , for example:

set shmsys:shminfo_shmmax=0x2000000
set shmsys:shminfo_shmmin=1

set shmsys:shminfo_shmmni=256

set shmsys:shminfo_shmseg=256

set semsys:seminfo_semmap=256
set semsys:seminfo_semmni=512
set semsys:seminfo_semmns=512
set semsys:seminfo_semms|=32

You need to reboot for the changes to take effect.

See also http://www.sunworld.com/swol-09-1997/swol-09-insidesolaris.html for information on
shared memory under Solaris.

UnixWare

On UnixWare 7, the maximum size for shared memory segments is 512 kB in the default con-
figuration. This is enough for abouB 24 -N 12 . To display the current value SHMMAX
run

[etc/conf/bin/idtune -g SHMMAX

which displays the current, default, minimum, and maximum values, in bytes. To set a new value
for SHMMAXun:

/etc/conf/bin/idtune SHMMAX value

wherevalue is the new value you want to use (in bytes). After settBtgvMMAXrebuild the
kernel

/etc/conf/bin/idbuild -B

and reboot.

40

Chapter 3. Server Run-time Environment

3.5.2. Resource Limits

Unix-like operating systems enforce various kinds of resource limits that might interfere with the
operation of your PostgreSQL server. Of particular importance are limits on the number of processes
per user, the number of open files per process, and the amount of memory available to each process.
Each of these have a “hard” and a “soft” limit. The soft limit is what actually counts but it can be
changed by the user up to the hard limit. The hard limit can only be changed by the root user. The
system callsetrlimit is responsible for setting these parameters. The shell’'s built-in command
ulimit ~ (Bourne shells) olimit (csh) is used to control the resource limits from the command line.

On BSD-derived systems the filetc/login.conf controls the various resource limits set during

login. See login.conf for details. The relevant parametersnas@roc , openfiles , anddatasize

For example:

default:\

:datasize-cur=256M:\
:maxproc-cur=256:\
:openfiles-cur=256:\

(-cur is the soft limit. Appendmax to set the hard limit.)

Kernels can also have system-wide limits on some resources.

« On Linux/proc/sysffs/file-max determines the maximum number of open files that the ker-
nel will support. It can be changed by writing a different number into the file or by adding an as-
signment inetc/sysctl.conf . The maximum limit of files per process is fixed at the time the
kernel is compiled; sesr/src/linux/Documentation/proc.txt for more information.

The PostgreSQL server uses one process per connection so you should provide for at least as many
processes as allowed connections, in addition to what you need for the rest of your system. This is
usually not a problem but if you run several servers on one machine things might get tight.

The factory default limit on open files is often set to “socially friendly” values that allow many users

to coexist on a machine without using an inappropriate fraction of the system resources. If you run
many servers on a machine this is perhaps what you want, but on dedicated servers you may want to
raise this limit.

On the other side of the coin, some systems allow individual processes to open large numbers of
files; if more than a few processes do so then the system-wide limit can easily be exceeded. If
you find this happening, and don’t want to alter the system-wide limit, you can set PostgreSQL’s
max_files_per_process configuration parameter to limit the consumption of open files.

3.6. Shutting Down the Server
There are several ways to shut down the database server. You control the type of shutdown by sending

different signals to the server process.

SIGTERM

After receiving SIGTERM, the postmaster disallows new connections, but lets existing backends
end their work normally. It shuts down only after all of the backends terminate normally. This is
Smart Shutdown

41

Chapter 3. Server Run-time Environment

SIGINT

The postmaster disallows new connections and sends all existing backends SIGTERM, which
will cause them to abort their current transactions and exit promptly. It then waits for the back-
ends to exit and finally shuts down. ThisHast Shutdown

SIGQUIT

This is Immediate Shutdownvhich will cause the postmaster to send a SIGQUIT to all back-
ends and exit immediately (without properly shutting itself down). The backends likewise exit
immediately upon receiving SIGQUIT. This will lead to recovery (by replaying the WAL log)
upon next start-up. This is recommended only in emergencies.

Important: It is best not to use SIGKILL to shut down the postmaster. This will prevent the post-
master from releasing shared memory and semaphores, which may then have to be done by
manually.

The PID of the postmaster process can be found using the ps program, or from tlatfiles-
ter.pid in the data directory. So for example, to do a fast shutdown:

$ kill -INT ‘head -1 /usr/local/pgsql/data/postmaster.pid*

The program pg_ctl is a shell script that provides a more convenient interface for shutting down the
postmaster.

3.7. Secure TCP/IP Connections with SSL

PostgreSQL has native support for using SSL connections to encrypt client/server communications for
increased security. This requires OpenSSL be installed on both client and server systems and support
enabled at build time (seéhapter).

With SSL support compiled in, the PostgreSQL server can be started with SSL support by setting the
parametessl to on inpostgresgl.conf . When starting in SSL mode, the server will look for the
filesserver.key andserver.crt in the data directory. These files should contain the server private
key and certificate respectively. These files must be set up correctly before an SSL-enabled server can
start. If the private key is protected with a passphrase, the server will prompt for the passphrase and
will not start until it has been entered.

The server will listen for both standard and SSL connections on the same TCP/IP port, and will
negotiate with any connecting client on whether to use SSL.C3expter 6about how to force the
server to require use of SSL for certain connections.

For details on how to create your server private key and certificate, refer to the OpenSSL documenta-
tion. A simple self-signed certificate can be used to get started for testing, but a certificate signed by
a certificate authority (CA) (either one of the global CAs or a local one) should be used in production
so the client can verify the server’s identity. To create a quick self-signed certificate, use the following
OpenSSL command:

openss| req -new -text -out server.req

Fill out the information thabpenssl asks for. Make sure that you enter the local host name as
Common Name; the challenge password can be left blank. The script will generate a key that is

42

Chapter 3. Server Run-time Environment

passphrase protected; it will not accept a passphrase that is less than four characters long. To remove
the passphrase (as you must if you want automatic start-up of the server), run the commands

openssl rsa -in privkey.pem -out server.key
rm privkey.pem

Enter the old passphrase to unlock the existing key. Now do

openssl req -x509 -in server.req -text -key server.key -out server.crt
chmod og-rwx server.key

to turn the certificate into a self-signed certificate and to copy the key and certificate to where the
server will look for them.

3.8. Secure TCP/IP Connections with SSH Tunnels

Acknowledgement: Idea taken from an email by Gene Selkov, Jr. (<selkovjr@mcs.anl.gov >)
written on 1999-09-08 in response to a question from Eric Marsden.

One can use SSH to encrypt the network connection between clients and a PostgreSQL server. Done
properly, this provides an adequately secure network connection.

First make sure that an SSH server is running properly on the same machine as PostgreSQL and that
you can log in usingsh as some user. Then you can establish a secure tunnel with a command like
this from the client machine:

ssh -L 3333:foo.com:5432 joe@foo.com

The first number in theL argument, 3333, is the port number of your end of the tunnel; it can be
chosen freely. The second humber, 5432, is the remote end of the tunnel -- the port number your server
is using. The name or the address in between the port numbers is the host with the database server
you are going to connect to. In order to connect to the database server using this tunnel, you connect
to port 3333 on the local machine:

psql -h localhost -p 3333 templatel

To the database server it will then look as though you are reallyjos@foo.com and it will use
whatever authentication procedure was set up for this user. In order for the tunnel setup to succeed
you must be allowed to connect \ah as joe@foo.com, just as if you had attempted tossbeto

set up a terminal session.

Tip: Several other applications exist that can provide secure tunnels using a procedure similar in
concept to the one just described.

43

Chapter 4. Database Users and Privileges

Every database cluster contains a set of database users. Those users are separate from the users man-
aged by the operating system on which the server runs. Users own database objects (for example,
tables) and can assign privileges on those objects to other users to control who has access to which
object.

This chapter describes how to create and manage users and introduces the privilege system. More
information about the various types of database objects and the effects of privileges can be found in
the PostgreSQL User’s Guide

4.1. Database Users

Database users are conceptually completely separate from operating system users. In practice it might
be convenient to maintain a correspondence, but this is not required. Database user names are global
across a database cluster installation (and not per individual database). To create a us@RB&THe
USERSQL command:

CREATE USERhame

name follows the rules for SQL identifiers: either unadorned without special characters, or double-
guoted. To remove an existing user, use the analop@P USERommand:

DROP USERame

For convenience, the programs createuser and dropuser are provided as wrappers around these SQL
commands that can be called from the shell command line:

createuser name
dropuser name

In order to bootstrap the database system, a freshly initialized system always contains one predefined
user. This user will have the fixed ID 1, and by default (unless altered when running initdb) it will
have the same name as the operating system user that initialized the database cluster. Customarily,
this user will be named postgres. In order to create more users you first have to connect as this initial
user.

Exactly one user identity is active for a connection to the database server. The user name to use for
a particular database connection is indicated by the client that is initiating the connection request in
an application-specific fashion. For example, the psqgl program uses tbemmand line option to
indicate the user to connect as. Many applications assume the name of the current operating sys-
tem user by default (including createuser and psql). Therefore it is convenient to maintain a naming
correspondence between the two user sets.

The set of database users a given client connection may connect as is determined by the client authen-
tication setup, as explained @hapter 6 (Thus, a client is not necessarily limited to connect as the
user with the same name as its operating system user, in the same way a person is not constrained in
its login name by her real name.) Since the user identity determines the set of privileges available to a
connected client, it is important to carefully configure this when setting up a multiuser environment.

44

Chapter 4. Database Users and Privileges

4.2. User Attributes

A database user may have a number of attributes that define its privileges and interact with the client
authentication system.

superuser

A database superuser bypasses all permission checks. Also, only a superuser can create new
users. To create a database superuselCREATE USERname CREATEUSER

database creation

A user must be explicitly given permission to create databases (except for superusers, since those
bypass all permission checks). To create such a useCREBATE USERame CREATEDB

password

A password is only significant if the client authentication method requires the user to sup-
ply a password when connecting to the database.pBlseword , md5 andcrypt authenti-

cation methods make use of passwords. Database passwords are separate from operating sys-
tem passwords. Specify a password upon user creationGREATE USERhame PASSWORD

'string’

A user’s attributes can be modified after creation WitlTER USER See the reference pages for
CREATE USERNJALTER USERor details.

A user can also set personal defaults for many of the run-time configuration settings described in
Section 3.4For example, if for some reason you want to disable index scans (hint: not a good idea)
anytime you connect, you can use

ALTER USER myname SET enable_indexscan TO off;

This will save the setting (but not set it immediately) and in subsequent connections it will appear
as thougtBSET enable_indexscan TO off; had been called right before the session started. You
can still alter this setting during the session; it will only be the default. To undo any such setting, use
ALTER USERusername RESET varname ;.

4.3. Groups

As in Unix, groups are a way of logically grouping users to ease management of privileges: privileges
can be granted to, or revoked from, a group as a whole. To create a group, use

CREATE GROURame
To add users to or remove users from a group, use

ALTER GROURame ADD USERunamel, ...
ALTER GROURmame DROP USERunamel, ...

4.4. Privileges

When a database object is created, it is assigned an owner. The owner is the user that executed the
creation statement. To change the owner of a table, index, sequence, or view, ASEERe TABLE

45

Chapter 4. Database Users and Privileges

command. By default, only an owner (or a superuser) can do anything with the object. In order to
allow other users to use privilegesmust be granted.

There are several different privilegeSELECT, INSERT, UPDATE DELETE RULE REFERENCES
TRIGGER CREATETEMPORAREXECUTEUSAGEandALL PRIVILEGES. For more information on
the different types of privileges support by PostgreSQL, refer tasiRaNTpage in thePostgreSQL
Reference Manuall he right to modify or destroy an object is always the privilege of the owner only.
To assign privileges, theRANTcommand is used. So,jde is an existing user, amgtcounts is an
existing table, the privilege to update the table can be granted with

GRANT UPDATE ON accounts TO joe;

The user executing this command must be the owner of the table. To grant a privilege to a group, use
GRANT SELECT ON accounts TO GROUP staff;

The special “user” nameUBLIC can be used to grant a privilege to every user on the system. Writing

ALL in place of a specific privilege specifies that all privileges will be granted.

To revoke a privilege, use the fittingly namr&VOKEommand:
REVOKE ALL ON accounts FROM PUBLIC;

The special privileges of the table owner (i.e., the right tdO&DP GRANTREVOKEetc) are always
implicit in being the owner, and cannot be granted or revoked. But the table owner can choose to
revoke his own ordinary privileges, for example to make a table read-only for himself as well as
others.

4.5. Functions and Triggers

Functions and triggers allow users to insert code into the backend server that other users may exe-
cute without knowing it. Hence, both mechanisms permit usefigd@mn horseothers with relative
impunity. The only real protection is tight control over who can define functions.

Functions written in any language except SQL run inside the backend server process with the operat-
ing systems permissions of the database server daemon process. It is possible to change the server’s
internal data structures from inside of trusted functions. Hence, among many other things, such func-
tions can circumvent any system access controls. This is an inherent problem with user-defined C
functions.

46

Chapter 5. Managing Databases

Every instance of a running PostgreSQL server manages one or more databases. Databases are there-
fore the topmost hierarchical level for organizing SQL objects (“database objects”). This chapter
describes the properties of databases, and how to create, manage, and destroy them.

5.1. Overview

A database is a named collection of SQL objects (“database objects”). Generally, every database
object (tables, functions, etc.) belongs to one and only one database. (But there are a few system
catalogs, for exampleg_database , that belong to a whole installation and are accessible from

each database within the installation.) More accurately, a database is a collection of schemas and the

schemas contain the tables, functions, etc. So the full hierarchy is: server, database, schema, table (or
something else instead of a table).

An application that connects to the database server specifies in its connection request the name of the
database it wants to connect to. It is not possible to access more than one database per connection. (But
an application is not restricted in the number of connections it opens to the same or other databases.)
It is possible, however, to access more than one schema from the same connection. Schemas are a
purely logical structure and who can access what is managed by the privilege system. Databases are
physically separated and access control is managed at the connection level. If one PostgreSQL server
instance is to house projects or users that should be separate and for the most part unaware of each
other, it is therefore recommendable to put them into separate databases. If the projects or users are
interrelated and should be able to use each other’s resources they should be put in the same databases

but possibly into separate schemas. More information about managing schemas BadsttreSQL
User's Guide

Note: SQL calls databases “catalogs”, but there is no difference in practice.

5.2. Creating a Database

In order to create a databases, the PostgreSQL server must be up and runn8egr(®ee3.3.
Databases are created with the query language cOm@REATE DATABASE

CREATE DATABASHame

wherename follows the usual rules for SQL identifiers. The current user automatically becomes the

owner of the new database. It is the privilege of the owner of a database to remove it later on (which
also removes all the objects in it, even if they have a different owner).

The creation of databases is a restricted operationS8eton 4.Zor how to grant permission.

Since you need to be connected to the database server in order to execDRELKEE DATABASE
command, the question remains how firet database at any given site can be created. The first
database is always created by thidb command when the data storage area is initialized. (See

Section 3.2 By convention this database is callethplatel . So to create the first “real” database
you can connect templatel

The name “templatel” is no accident: When a new database is created, the template database is essen-
tially cloned. This means that any changes you makenplatel are propagated to all subsequently

47

Chapter 5. Managing Databases

created databases. This implies that you should not use the template database for real work, but when
used judiciously this feature can be convenient. More details app&acition 5.3

As an extra convenience, there is also a program that you can execute from the shell to create new
databasegyreatedb

createdb dbname

createdb does no magic. It connects to the templatel database and issu&REAZE DATABASE
command, exactly as described above. It uses the psql program internally. The reference page on
createdb contains the invocation details. Note tleedatedb without any arguments will create a
database with the current user name, which may or may not be what you want.

Note: Chapter 6 contains information about how to restrict who can connect to a given database.

Sometimes you want to create a database for someone else. That user should become the owner of the
new database, so he can configure and manage it himself. To achieve that, use one of the following
commands:

CREATE DATABASHEbname OWNERusername ;

from the SQL environment, or

createdb -O username dbname

You must be a superuser to be allowed to create a database for someone else.

5.3. Template Databases

CREATE DATABAS&ctually works by copying an existing database. By default, it copies the standard
system database namethplatel . Thus that database is the “template” from which new databases

are made. If you add objects templatel , these objects will be copied into subsequently cre-

ated user databases. This behavior allows site-local modifications to the standard set of objects in
databases. For example, if you install the procedural language PL/pgS@hjlatel , it will au-
tomatically be available in user databases without any extra action being taken when those databases
are made.

There is a second standard system database n@mpldte0 . This database contains the same data

as the initial contents aémplatel , that is, only the standard objects predefined by your version of
PostgreSQLtemplate0 should never be changed afteitdb . By instructingCREATE DATABASE

to copytemplate0 instead oftemplatel , you can create a “virgin” user database that contains
none of the site-local additions tamplatel . This is particularly handy when restoringp@ dump

dump: the dump script should be restored in a virgin database to ensure that one recreates the correct
contents of the dumped database, without any conflicts with additions that may now be present in
templatel

To create a database by copyiegplate0 , use

CREATE DATABASHbname TEMPLATE templateO;

from the SQL environment, or

createdb -T templateO dbname

48

Chapter 5. Managing Databases

from the shell.

It is possible to create additional template databases, and indeed one might copy any database in an
installation by specifying its name as the templateGREATE DATABASH is important to under-

stand, however, that this is not (yet) intended as a general-pur@eY* DATABASHacility. In

particular, it is essential that the source database be idle (no data-altering transactions in progress)
for the duration of the copying operatiobREATE DATABASH®iIll check that no backend processes

(other than itself) are connected to the source database at the start of the operation, but this does not
guarantee that changes cannot be made while the copy proceeds, which would result in an inconsistent
copied database. Therefore, we recommend that databases used as templates be treated as read-only.

Two useful flags exist ipg_database for each database: the columtaistemplate anddatal-

lowconn . datistemplate may be set to indicate that a database is intended as a templaRHor

ATE DATABASEIf this flag is set, the database may be cloned by any uselGREATEDRrivileges;

if it is not set, only superusers and the owner of the database may clondaitallbwconn s false,

then no new connections to that database will be allowed (but existing sessions are not killed simply
by setting the flag false). Themplate0 database is normally markedtallowconn =false to
prevent modification of it. Botkemplate0 andtemplatel should always be marked withatis-

template =true .

After preparing a template database, or making any changes to one, it is a good idea to perform
VACUUM FREEZ& VACUUM FULL FREEZE that database. If this is done when there are no other
open transactions in the same database, then it is guaranteed that all tuples in the database are “frozen”
and will not be subject to transaction ID wraparound problems. This is particularly important for a
database that will hawgatallowconn set to false, since it will be impossible to do routine mainte-
nanceVACUUKIon such a database. S&ection 8.2.3or more information.

Note: templatel and template0 do not have any special status beyond the fact that the name
templatel is the default source database name for CREATE DATABAS&nd the default database-
to-connect-to for various programs such as createdb . For example, one could drop templatel
and recreate it from template0 without any ill effects. This course of action might be advisable if
one has carelessly added a bunch of junk in templatel

5.4. Database Configuration

Recall fromSection 3.4hat the PostgreSQL server provides a large number of run-time configuration
variables. You can set database-specific default values for many of these settings.

For example, if for some reason you want to disable the GEQO optimizer for a given database, you'd
ordinarily have to either disable it for all databases or make sure that every connecting client is careful
to isSUESET geqo TO off, . To make this setting the default you can execute the command

ALTER DATABASE mydb SET geqo TO off;

This will save the setting (but not set it immediately) and in subsequent connections it will appear as
thoughSET geqo TO off; had been called right before the session started. Note that users can still
alter this setting during the session; it will only be the default. To undo any such settingl TER
DATABASEdbname RESET varname ; .

49

Chapter 5. Managing Databases

5.5. Alternative Locations

It is possible to create a database in a location other than the default location for the installation.
Remember that all database access occurs through the database server, so any location specified must
be accessible by the server.

Alternative database locations are referenced by an environment variable which gives the absolute
path to the intended storage location. This environment variable must be present in the server’s en-
vironment, so it must have been defined before the server was started. (Thus, the set of available
alternative locations is under the site administrator’s control; ordinary users can’t change it.) Any
valid environment variable name may be used to reference an alternative location, although using
variable names with a prefix fGDATAS recommended to avoid confusion and conflict with other
variables.

To create the variable in the environment of the server process you must first shut down the server,
define the variable, initialize the data area, and finally restart the serveiSg8ten 3.andSection
3.3) To set an environment variable, type

PGDATA2=/home/postgres/data
export PGDATA2

in Bourne shells, or
setenv PGDATA2 /home/postgres/data

in csh or tcsh. You have to make sure that this environment variable is always defined in the server
environment, otherwise you won't be able to access that database. Therefore you probably want to set
it in some sort of shell start-up file or server start-up script.

To create a data storage area WGDATA2 ensure that the containing directory (here,
/home/postgres) already exists and is writable by the user account that runs the server (see
Section 3.). Then from the command line, type

initlocation PGDATA2
(notinitiocation $PGDATA2). Then you can restart the server.
To create a database within the new location, use the command

CREATE DATABASHame WITH LOCATION = ’location '

wherelocation is the environment variable you usédGDATA2N this example. Thereatedb
command has the optied for this purpose.

Databases created in alternative locations can be accessed and dropped like any other database.

Note: It can also be possible to specify absolute paths directly to the CREATE DATABASE
command without defining environment variables. This is disallowed by default because it is a
security risk. To allow it, you must compile PostgreSQL with the C preprocessor macro
ALLOW_ABSOLUTE_DBPATH8fined. One way to do this is to run the compilation step like this:

gmake CPPFLAGS=-DALLOW_ABSOLUTE_DBPATHS all

50

Chapter 5. Managing Databases
5.6. Destroying a Database
Databases are destroyed with the commaROP DATABASE

DROP DATABASHame

Only the owner of the database (i.e., the user that created it), or a superuser, can drop a database.
Dropping a database removes all objects that were contained within the database. The destruction of
a database cannot be undone.

You cannot execute tBROP DATABASEommand while connected to the victim database. You can,
however, be connected to any other database, includingripatel database, which would be the
only option for dropping the last user database of a given cluster.

For convenience, there is also a shell program to drop databases:
dropdb dbname

(Unlike createdb , it is not the default action to drop the database with the current user name.)

51

Chapter 6. Client Authentication

When a client application connects to the database server, it specifies which PostgreSQL user name
it wants to connect as, much the same way one logs into a Unix computer as a particular user. Within
the SQL environment the active database user name determines access privileges to database objects
-- seeChapter 4for more information. Therefore, it is essential to restrict which database users can
connect.

Authenticationis the process by which the database server establishes the identity of the client, and
by extension determines whether the client application (or the user who runs the client application) is
permitted to connect with the user name that was requested.

PostgreSQL offers a number of different client authentication methods. The method used to authenti-
cate a particular client connection can be selected on the basis of (client) host address, database, and
user.

PostgreSQL user names are logically separate from user names of the operating system in which the
server runs. If all the users of a particular server also have accounts on the server’s machine, it makes
sense to assign database user names that match their operating system user names. However, a server
that accepts remote connections may have many users who have no local account, and in such cases
there need be no connection between database user names and OS user names.

6.1. The pg_hba.conf file

Client authentication is controlled by the fileg_hba.conf in the data directory, e.g.,
/usr/local/pgsql/data/pg_hba.conf . (HBA stands for host-based authentication.) A default
pg_hba.conf file is installed when the data directory is initialized ibigdb

The general format of theg_hba.conf file is a set of records, one per line. Blank lines are ignored,

as is any text after the “#” comment character. A record is made up of a number of fields which are
separated by spaces and/or tabs. Fields can contain white space if the field value is quoted. Records
cannot be continued across lines.

Each record specifies a connection type, a client IP address range (if relevant for the connection type),
a database name, a user name, and the authentication method to be used for connections matching
these parameters. The first record with a matching connection type, client address, requested database,
and user name is used to perform authentication. There is no “fall-through” or “backup”: if one record

is chosen and the authentication fails, subsequent records are not considered. If no record matches,
access is denied.

A record may have one of the three formats

local database user authentication-method [authentication-option]

host database user IP-address IP-mask authentication-method [authentication-
option]

hostssl database wuser IP-address IP-mask authentication-method [authentication-
option]

The meaning of the fields is as follows:

local

This record matches connection attempts using Unix domain sockets. Without a record of this
type, Unix-domain socket connections are disallowed

52

Chapter 6. Client Authentication

host

This record matches connection attempts using TCP/IP networks. Note that TCP/IP connec-
tions are disabled unless the server is started withitheption or thetcpip_socket post-
gresgl.conf configuration parameter is enabled.

hostssl

This record matches connection attempts using SSL over TGigAP.records will match either
SSL or non-SSL connection attempts, bastssl records require SSL connections.

To be able make use of this option the server must be built with SSL support enabled. Further-
more, SSL must be enabled by enabling the optidnin postgresgl.conf (seeSection 3.4.

database

Specifies which databases this record matches. The \lluespecifies that it matches all
databases. The valsameuser specifies that the record matches if the requested database has
the same name as the requested user. The galuegroup specifies that the requested user

must a member of the group with the same name as the requested database. Otherwise, this is
the name of a specific PostgreSQL database. Multiple database names can be supplied by
separating them with commas. A file containing database names can be specified by preceding
the file name with@ The file must be in the same directoryms hba.conf

user

Specifies which PostgreSQL users this record matches. The alalugpecifies that it matches

all users. Otherwise, this is the name of a specific PostgreSQL user. Multiple user names can be
supplied by separating them with commas. Group names can be specified by preceding the group
name with+. A file containing user names can be specified by preceding the file namewith

The file must be in the same directoryms hba.conf

IP-address
IP-mask

These two fields contain IP address/mask values in standard dotted decimal notation. (IP ad-
dresses can only be specified numerically, not as domain or host names.) Taken together they
specify the client machine IP addresses that this record matches. The precise logic is that

(actual-IP-address xor IP-address-field) and IP-mask-field

must be zero for the record to match. (Of course IP addresses can be spoofed but this consider-
ation is beyond the scope of PostgreSQL.)
These fields only apply thost andhostssl records.

authentication-method

Specifies the authentication method to use when connecting via this record. The possible choices
are summarized here; details areSiection 6.2
trust

The connection is allowed unconditionally. This method allows anyone that can connect to
the PostgreSQL database to login as any PostgreSQL user they like, without the need for a
password. Se8ection 6.2.%or details.

reject

The connection is rejected unconditionally. This is useful for “filtering out” certain hosts
from a group.

53

Chapter 6. Client Authentication

md>5

Requires the client to supply an MD5 encrypted password for authentication. This is the
only method that allows encrypted passwords to be storpd ishadow . SeeSection 6.2.2
for details.

crypt

Like md5 method but uses older crypt encryption, which is needed for pre-7.2 clieds.
is preferred for 7.2 and later clients. Sgection 6.2.Zor details.

password

Same as "md5", but the password is sent in clear text over the network. This should not be
used on untrusted networks. Sgection 6.2.2or detalils.

krb4

Kerberos V4 is used to authenticate the user. This is only available for TCP/IP connections.
SeeSection 6.2.3or details.

krb5

Kerberos V5 is used to authenticate the user. This is only available for TCP/IP connections.
SeeSection 6.2.3or details.

ident

Obtain the operating system user name of the client (for TCP/IP connections by contacting
the ident server on the client, for local connections by getting it from the operating system)
and check if the user is allowed to connect as the requested database user by consulting the
map specified after thdent key word.

If you use the mapameuser , the user names are assumed to be identical. If not, the map
name is looked up in the filpg_ident.conf in the same directory asy_hba.conf

The connection is accepted if that file contains an entry for this map name with the ident-
supplied user name and the requested PostgreSQL user name.

For local connections, this only works on machines that support Unix-domain socket cre-
dentials (currently Linux, FreeBSD, NetBSD, and BSD/OS).

SeeSection 6.2.4elow for details.
pam

Authenticate using the Pluggable Authentication Modules (PAM) service provided by the
operating system. Se&ection 6.2.5or details.

authentication-option

The meaning of this optional field depends on the chosen authentication method and is described
in the next section.

Since thepg_hba.conf records are examined sequentially for each connection attempt, the order of
the records is significant. Typically, earlier records will have tight connection match parameters and
weaker authentication methods, while later records will have looser match parameters and stronger
authentication methods. For example, one might wish taruse authentication for local TCP con-
nections but require a password for remote TCP connections. In this case a record spgaifying

54

Chapter 6. Client Authentication

authentication for connections from 127.0.0.1 would appear before a record specifying password au-
thentication for a wider range of allowed client IP addresses.

Important: Do not prevent the superuser from accessing the templatel database. Various utility
commands need access to templatel.

Thepg_hba.conf file is read on start-up and when the postmaster receives a SIGHUP signal. If you
edit the file on an active system, you will need to signal the postmaster (pgieg reload or
kil -HUP) to make it re-read the file.

An example of gg_hba.conf file is shown inExample 6-1 See below for details on the different
authentication methods.

Example 6-1. An examplepg_hba.conf file

Allow any user on the local system to connect to any database under

any user name using Unix-domain sockets (the default for local

connections).

#

TYPE DATABASE USER IP-ADDRESS IP-MASK METHOD
local all all trust

The same using local loopback TCP/IP connections.

#
TYPE DATABASE USER IP-ADDRESS IP-MASK METHOD
host all all 127.0.0.1 255.255.255.255 trust

Allow any user from any host with IP address 192.168.93.x to connect
to database "templatel" as the same user name that ident reports for
the connection (typically the Unix user name).

#
TYPE DATABASE USER IP-ADDRESS IP-MASK METHOD
host templatel all 192.168.93.0 255.255.255.0 ident sameuser

Allow a user from host 192.168.12.10 to connect to database
"templatel" if the user's password is correctly supplied.

#
TYPE DATABASE USER IP-ADDRESS IP-MASK METHOD
host templatel all 192.168.12.10 255.255.255.255 md5

In the absence of preceding "host" lines, these two lines will

reject all connection from 192.168.54.1 (since that entry will be

matched first), but allow Kerberos V connections from anywhere else
on the Internet. The zero mask means that no bits of the host IP
address are considered so it matches any host.

#

#

TYPE DATABASE USER IP-ADDRESS IP-MASK METHOD
host all all 192.168.54.1 255.255.255.255 reject
host all all 0.0.0.0 0.0.0.0 krb5

Allow users from 192.168.x.x hosts to connect to any database, if

they pass the ident check. If, for example, ident says the user is

"bryanh" and he requests to connect as PostgreSQL user "guestl”, the
connection is allowed if there is an entry in pg_ident.conf for map

"omicron" that says "bryanh" is allowed to connect as "guestl".

55

Chapter 6. Client Authentication

#

TYPE DATABASE USER IP-ADDRESS IP-MASK METHOD
host all all 192.168.0.0 255.255.0.0 ident omicron

If these are the only three lines for local connections, they will

allow local users to connect only to their own databases (databases

with the same name as their user name) except for administrators and

members of group "support" who may connect to all databases. The file

$PGDATA/admins contains a list of user names. Passwords are required in

all cases.

#

TYPE DATABASE USER IP-ADDRESS IP-MASK METHOD
local sameuser all md5

local all @admins md5

local all +support md5

The last two lines above can be combined into a single line:
local all @admins,+support md5

The database column can also use lists and file names, but not groups:
local dbl,db2,@demodbs all md5

6.2. Authentication methods

The following describes the authentication methods in more detail.

6.2.1. Trust authentication

Whentrust authentication is specified, PostgreSQL assumes that anyone who can connect to the
server is authorized to access the database as whatever database user he specifies (including the
database superuser). This method should only be used when there is adequate system-level protec-
tion on connections to the postmaster port.

trust authentication is appropriate and very convenient for local connections on a single-user work-
station. It is usuallynot appropriate by itself on a multiuser machine. However, you may be able
to usetrust even on a multiuser machine, if you restrict access to the postmaster’s socket file us-

ing file-system permissions. To do this, set the parameii@r socket_permissions (and possi-
bly unix_socket_group) in postgresql.conf , as described isection 3.4.40r you could set
unix_socket_directory to place the socket file in a suitably restricted directory.

Setting file-system permissions only helps for Unix-socket connections. Local TCP connections are
not restricted by it; therefore, if you want to use permissions for local security, remokesghe.
127.0.0.1 ... line frompg_hba.conf , or change itto a nomust authentication method.

trust authentication is only suitable for TCP connections if you trust every user on every machine
that is allowed to connect to the server by tiee hba.conf lines that specifyrust . It is seldom
reasonable to ugeust for any TCP connections other than those from localhost (127.0.0.1).

56

Chapter 6. Client Authentication

6.2.2. Password authentication

Password-based authentication methods inctud& crypt , andpassword . These methods oper-

ate similarly except for the way that the password is sent across the connection. If you are at all
concerned about password “sniffing” attacks theds is preferred, withcrypt a second choice if

you must support pre-7.2 clients. Plaisssword should especially be avoided for connections over

the open Internet (unless you use SSL, SSH, or other communications security wrappers around the
connection).

PostgreSQL database passwords are separate from operating system user passwords. The password for
each database user is stored ingheshadow system catalog table. Passwords can be managed with

the query language commandREATE USERNJALTER USERe.g.,CREATE USER foo WITH
PASSWORD ’secret’; . By default, that is, if no password has been set up, the stored password is

null and password authentication will always fail for that user.

To restrict the set of users that are allowed to connect to certain databases, list the users separated by
commas, or in a separate file. The file should contain user names separated by commas or one user
name per line, and be in the same directorpgshba.conf . Mention the (base) name of the file
preceded with@in the user column. The database column can similarly accept a list of values or a file
name. You can also specify group hames by preceding the group name with

6.2.3. Kerberos authentication

Kerberos is an industry-standard secure authentication system suitable for distributed computing over
a public network. A description of the Kerberos system is far beyond the scope of this document; in
all generality it can be quite complex (yet powerful). The Kerberos F&QMIT Project Athenacan

be a good starting point for exploration. Several sources for Kerberos distributions exist.

In order to use Kerberos, support for it must be enabled at build timeC8apter 1for more in-
formation. Both Kerberos 4 and 5 are supported, but only one version can be supported in any one
build.

PostgreSQL operates like a normal Kerberos service. The name of the service prinsgral-is
cename/hostname@realm , whereservicename ispostgres (unless a different service name
was selected at configure time witbonfigure --with-krb-srvnam=whatever). hostname

is the fully qualified domain name of the server machine. The service principal’s realm is the preferred
realm of the server machine.

Client principals must have their PostgreSQL user name as their first component, for example
pgusername/otherstuff@realm . At present the realm of the client is not checked by
PostgreSQL; so if you have cross-realm authentication enabled, then any principal in any realm that
can communicate with yours will be accepted.

Make sure that your server key file is readable (and preferably only readable) by the
PostgreSQL server account (s8ection 3.1 The location of the key file is specified with the
krb_server_keyfile run time configuration parameter. (See aection 3.4 The default is
/etc/srvtab if you are using Kerberos 4 arriLE:/usr/local/pgsgl/etc/krb5.keytab (or
whichever directory was specified sgconfdir at build time) with Kerberos 5.

To generate the keytab file, use for example (with version 5)

kadmin% ank -randkey postgres/server.my.domain.org
kadmin% ktadd -k krb5.keytab postgres/server.my.domain.org

1. http://www.nrl.navy.mil/CCS/people/kenh/kerberos-fag.html
2. ftp://athena-dist.mit.edu

57

Chapter 6. Client Authentication

Read the Kerberos documentation for details.

When connecting to the database make sure you have a ticket for a principal matching the requested
database user name. An example: For database userfire@meboth principalfred @ EXAMPLE.COM
andfred/users.example.com@EXAMPLE.COM can be used to authenticate to the database server.

If you use mod_auth_krb and mod_perl on your Apache web server, you cauihdgpe Ker-
berosV5SaveCredentials with a mod_perl script. This gives secure database access over the web,
no extra passwords required.

6.2.4. Ident-based authentication

The ident authentication method works by inspecting the client’s operating system user name and
determining the allowed database user names by using a map file that lists the permitted corresponding
user name pairs. The determination of the client’s user name is the security-critical point, and it works
differently depending on the connection type.

6.2.4.1. Ident Authentication over TCP/IP

The “Identification Protocol” is described RFC 1413 Virtually every Unix-like operating system
ships with an ident server that listens on TCP port 113 by default. The basic functionality of an ident
server is to answer questions like “What user initiated the connection that goes out of yoXiigpairt
connects to my poit?”. Since PostgreSQL knows bothandY when a physical connection is estab-
lished, it can interrogate the ident server on the host of the connecting client and could theoretically
determine the operating system user for any given connection this way.

The drawback of this procedure is that it depends on the integrity of the client: if the client machine

is untrusted or compromised an attacker could run just about any program on port 113 and return any
user name he chooses. This authentication method is therefore only appropriate for closed networks
where each client machine is under tight control and where the database and system administrators
operate in close contact. In other words, you must trust the machine running the ident server. Heed
the warning:

RFC 1413

The Identification Protocol is not intended as an authorization or access control protocol.

6.2.4.2. Ident Authentication over Local Sockets

On systems supportinrgO_PEERCRERequests for Unix-domain sockets (currently Linux, FreeBSD,
NetBSD, and BSD/OS), ident authentication can also be applied to local connections. In this case,
no security risk is added by using ident authentication; indeed it is a preferable choice for local
connections on such systems.

On systems withou8O_PEERCRERequests, ident authentication is only available for TCP/IP connec-
tions. As a work around, it is possible to specify the localhost address 127.0.0.1 and make connections
to this address.

6.2.4.3. Ident Maps

When using ident-based authentication, after having determined the name of the operating system
user that initiated the connection, PostgreSQL checks whether that user is allowed to connect as the
database user he is requesting to connect as. This is controlled by the ident map argument that follows

58

Chapter 6. Client Authentication

theident keyword in thepg_hba.conf file. There is a predefined ident mapmeuser , which
allows any operating system user to connect as the database user of the same name (if the latter
exists). Other maps must be created manually.

Ident maps other thasameuser are defined in the fileg_ident.conf in the data directory, which
contains lines of the general form:

map-name ident-username database-username

Comments and whitespace are handled in the usual wayn@pename is an arbitrary name that will

be used to refer to this mappingpg_hba.conf . The other two fields specify which operating system
user is allowed to connect as which database user. The s@paame can be used repeatedly to
specify more user-mappings within a single map. There is no restriction regarding how many database
users a given operating system user may correspond to and vice versa.

The pg_ident.conf file is read on start-up and when the postmaster receives a SIGHUP signal. If
you edit the file on an active system, you will need to signal the postmaster fugsioi) reload
orkill -HUP) to make it re-read the file.

A pg_ident.conf file that could be used in conjunction with tpg_hba.conf file in Example

6-1is shown inExample 6-2In this example setup, anyone logged in to a machine on the 192.168
network that does not have the Unix user name bryanh, ann, or robert would not be granted access.
Unix user robert would only be allowed access when he tries to connect as PostgreSQL user bob, not
as robert or anyone else. ann would only be allowed to connect as ann. User bryanh would be allowed
to connect as either bryanh himself or as guest1.

Example 6-2. An examplepg_ident.conf file

MAPNAME IDENT-USERNAME PG-USERNAME
omicron bryanh bryanh

omicron ann ann

bob has user name robert on these machines

omicron robert bob

bryanh can also connect as guestl

omicron bryanh guestl

6.2.5. PAM Authentication

This authentication type operates similarlyp@sswordexcept that it uses PAM (Pluggable Authen-
tication Modules) as the authentication mechanism. The default PAM service nansgiesql

You can optionally supply you own service name afterghm keyword in the file. For more infor-
mation about PAM, please read the Linux-PAM Paared the Solaris PAM Pafe

6.3. Authentication problems

Genuine authentication failures and related problems generally manifest themselves through error
messages like the following.

3. http:/lwww.kernel.org/pub/linux/libs/pam/
4. http://lwww.sun.com/software/solaris/pam/

59

Chapter 6. Client Authentication
No pg_hba.conf entry for host 123.123.123.123, user andym, database testdb

This is what you are most likely to get if you succeed in contacting the server, but it does not want to
talk to you. As the message suggests, the server refused the connection request because it found no
authorizing entry in itpg_hba.conf configuration file.

Password authentication failed for user 'andym’

Messages like this indicate that you contacted the server, and it is willing to talk to you, but not
until you pass the authorization method specified in gbehba.conf file. Check the password

you are providing, or check your Kerberos or ident software if the complaint mentions one of those
authentication types.

FATAL 1: user "andym" does not exist

The indicated user name was not found.

FATAL 1: Database "testdb" does not exist in the system catalog.

The database you are trying to connect to does not exist. Note that if you do not specify a database
name, it defaults to the database user name, which may or may not be the right thing.

Note that the server log may contain more information about an authentication failure than is reported
to the client. If you are confused about the reason for a failure, check the log.

60

Chapter 7. Localization

Describes the available localization features from the point of view of the administrator.
PostgreSQL supports localization with three approaches:

- Using the locale features of the operating system to provide locale-specific collation order, number
formatting, translated messages, and other aspects.

« Using explicit multiple-byte character sets defined in the PostgreSQL server to support languages
that require more characters than will fit into a single byte, and to provide character set recoding
between client and server. The number of supported character sets is fixed at the time the server is
compiled, and internal operations such as string comparisons require expansion of each character
into a 32-bit word.

- Single byte character recoding provides a more light-weight solution for users of multiple, yet
single-byte character sets.

7.1. Locale Support

Localesupport refers to an application respecting cultural preferences regarding alphabets, sorting,
number formatting, etc. PostgreSQL uses the standard ISO C and POSIX-like locale facilities pro-
vided by the server operating system. For additional information refer to the documentation of your
system.

7.1.1. Overview

Locale support is automatically initialized when a database cluster is creatednising . initdb

will initialize the database cluster with the locale setting of its execution environment; so if your
system is already set to use the locale that you want in your database cluster then there is nothing else
you need to do. If you want to use a different locale (or you are not sure which locale your system is
set to), you can telhitdb exactly which locale you want with the optiefiocale . For example:

$ initdb --locale=sv_SE

This example sets the locale to Swedish)(as spoken in SwedesE). Other possibilities might be

en_US (U.S. English) andr_CA (Canada, French). If more than one character set can be useful for

a locale then the specifications look like this: Cz.1ISO8859-2 . What locales are available under

what names on your system depends on what was provided by the operating system vendor and what
was installed.

Occasionally it is useful to mix rules from several locales, e.g., use U.S. collation rules but Spanish
messages. To support that, a set of locale subcategories exist that control only a certain aspect of the
localization rules.

LC_COLLATE String sort order

61

Chapter 7. Localization

LC_CTYPE Character classification (What is a letter? The
upper-case equivalent?)

LC_MESSAGES Language of messages

LC_MONETARY Formatting of currency amounts

LC_NUMERIC Formatting of numbers

LC_TIME Formatting of dates and times

The category names translate into namesiafb options to override the locale choice for a specific
category. For instance, to set the locale to French Canadian, but use U.S. rules for formatting currency,
useinitdb --locale=fr_CA --lc-monetary=en_US

If you want the system to behave as if it had no locale support, use the specialdar&eSIX.

The nature of some locale categories is that their value has to be fixed for the lifetime of a database
cluster. Thatis, onceitdb has run, you cannot change them anymb@.COLLATEandLC_CTYPE

are those categories. They affect the sort order of indexes, so they must be kept fixed, or indexes on
text columns will become corrupt. PostgreSQL enforces this by recording the values@DLLATE
andLC_CTYPEthat are seen bipitdb . The server automatically adopts those two values when it is
started.

The other locale categories can be changed as desired whenever the server is started by setting the
run-time configuration variables that have the same name as the locale categor&ec(gae3.4or

details). The defaults that are chosenitiglb are actually only written into the configuration file
postgresgl.conf to serve as defaults when the server is started. If you delete the assignments from
postgresgl.conf then the server will inherit the settings from the execution environment.

Note that the locale behavior of the server is determined by the environment variables seen by the
server, not by the environment of any client. Therefore, be careful to configure the correct locale
settings before starting the server. A consequence of this is that if client and server are set up to
different locales, messages may appear in different languages depending on where they originated.

Note: When we speak of inheriting the locale from the execution environment, this means the
following on most operating systems: For a given locale category, say the collation, the following
environment variables are consulted in this order until one is found to be set: LC_ALL, LC_COLLATE
(the variable corresponding to the respective category), LANG If none of these environment vari-
ables are set then the locale defaults to C.

Some message localization libraries also look at the environment variable LANGUAGEvhich over-
rides all other locale settings for the purpose of setting the language of messages. If in doubt,
please refer to the documentation of your operating system, in particular the gettext manual page,
for more information.

To enable messages translated to the user’s preferred languagentide-nls option must be
used. This option is independent of the other locale support.

7.1.2. Benefits

Locale support influences in particular the following features:

« Sort order iNORDER BYjueries.

« Theto_char family of functions

62

Chapter 7. Localization

« TheLIKE and~ operators for pattern matching

The only severe drawback of using the locale support in PostgreSQL is its speed. So use locale only
if you actually need it. It should be noted in particular that selecting a non-C locale disables index
optimizations forLIKE and~ operators, which can make a huge difference in the speed of searches
that use those operators.

7.1.3. Problems

If locale support doesn’t work in spite of the explanation above, check that the locale support in your
operating system is correctly configured. To check whether a given locale is installed and functional
you can use Perl, for example. Perl has also support for locales and if a locale is pedken will
complain something like this:

$ export LC_CTYPE="not_exist’
$ perl -v
perl: warning: Setting locale failed.
perl: warning: Please check that your locale settings:
LC_ALL = (unset),
LC_CTYPE = "not_exist",
LANG = (unset)
are supported and installed on your system.
perl: warning: Falling back to the standard locale ("C").

Check that your locale files are in the right location. Possible locations incluxtéib/locale
(Linux, Solaris),/usr/share/locale (Linux), /usr/lib/nis/loc (DUX 4.0). Check the locale
man page of your system if you are not sure.

Check that PostgreSQL is actually using the locale that you thinklitGisCOLLATEandLC_CTYPE
settings are determined at initdb time and cannot be changed without repeating initdb. Other locale
settings includind.C_MESSAGE&ndLC_MONETAR#re determined by the environment the postmas-

ter is started in, and can be changed with a simple postmaster restart. You can chezibelL ATE
andLC_CTYPEsettings of a database with thentrib/pg_controldata utility program.

The directorysrc/test/locale contains a test suite for PostgreSQL’s locale support.

Client applications that handle server-side errors by parsing the text of the error message will ob-

viously have problems when the server’s messages are in a different language. If you create such
an application you need to devise a plan to cope with this situation. The embedded SQL interface

(ecpg) is also affected by this problem. Itis currently recommended that servers interfacing with ecpg

applications be configured to send messages in English.

Maintaining catalogs of message translations requires the on-going efforts of many volunteers that
want to see PostgreSQL speak their preferred language well. If messages in your language is currently
not available or fully translated, your assistance would be appreciated. If you want to help, refer to
the Developer's Guider write to the developers’ mailing list.

63

7.2. Multibyte Support

Author: Tatsuo Ishii (<ishii@postgresgl.org

site! for more information.

Multibyte (MB) support is intended to allow PostgreSQL to handle multiple-byte character sets such
as EUC (Extended Unix Code), Unicode, and Mule internal code. With MB enabled you can use
multibyte character sets in regular expressions (regexp), LIKE, and some other functions. The default
encoding system is selected while initializing your PostgreSQL installation using initdb. Note that
this can be overridden when you create a database using createdb or by using the SQL command
CREATE DATABASES0 you can have multiple databases each with a different encoding system. Note

Chapter 7. Localization

>), last updated 2002-07-24. Check Tatsuo’s web

that MB can handle single byte characters sets such as ISO-8859-1.

Multibyte support is enabled by default since PostgreSQL version 7.3.

7.2.1. Supported character set encodings

Following encoding can be used as database encoding.

Table 7-1. Character Set Encodings

Encoding Description

SQL_ASCII ASCII

EUC_JP Japanese EUC

EUC_CN Chinese EUC

EUC_KR Korean EUC

JOHAB Korean EUC (Hangle base)

EUC_TW Taiwan EUC

UNICODE Unicode (UTF-8)

MULE_INTERNAL Mule internal code

LATINL ISO 8859-1 ECMA-94 Latin Alphabet No.1

LATIN2 ISO 8859-2 ECMA-94 Latin Alphabet No.2

LATIN3 ISO 8859-3 ECMA-94 Latin Alphabet No.3

LATIN4 ISO 8859-4 ECMA-94 Latin Alphabet No.4

LATINS ISO 8859-9 ECMA-128 Latin Alphabet No.5

LATING ISO 8859-10 ECMA-144 Latin Alphabet No.6

LATIN7 ISO 8859-13 Latin Alphabet No.7

LATINS ISO 8859-14 Latin Alphabet No.8

LATIN9 ISO 8859-15 Latin Alphabet No.9

LATIN10 ISO 8859-16 ASRO SR 14111 Latin Alphabet
No.10

ISO-8859-5 ECMA-113 Latin/Cyrillic

ISO-8859-6 ECMA-114 Latin/Arabic

ISO-8859-7 ECMA-118 Latin/Greek

ISO-8859-8 ECMA-121 Latin/Hebrew

1. http://www.sra.co.jp/people/t-ishii/PostgreSQL/

64

Chapter 7. Localization

Encoding Description

KOI8 KOI8-R(U)

WIN Windows CP1251

ALT Windows CP866

WIN1256 IArabic Windows CP1256

TCVN Viethamese TCVN-5712 (Windows CP1258)
WIN874 Thai Windows CP874

Important: Before PostgreSQL7.2, LATINS mistakenly meant ISO 8859-5. From 7.2 on, LATIN5S
means 1SO 8859-9. If you have a LATINS database created on 7.1 or earlier and want to migrate
to 7.2 (or later), you should be very careful about this change.

Important: Not all APIs supports all the encodings listed above. For example, the PostgreSQL
JDBC driver does not support MULE_INTERNAL LATING , LATIN8, and LATIN10 .

7.2.2. Setting the Encoding
initdb defines the default encoding for a PostgreSQL installation. For example:
$ initdb -E EUC_JP

sets the default encoding BUC_JP (Extended Unix Code for Japanese). Note that you can-use
encoding instead ofE if you prefer to type longer option strings. If nB or --encoding option
is given, SQL_ASCII is used.

You can create a database with a different encoding:
$ createdb -E EUC_KR korean

will create a database named korean ViIBtFC_KRencoding. Another way to accomplish this is to use
a SQL command:

CREATE DATABASE korean WITH ENCODING = 'EUC_KR’;

The encoding for a database is represented &pheoding columin the pg_database system cata-
log. You can see that by using tHe option or thel command opsql .

$ psql -l
List of databases

Database | Owner | Encoding
euc_cn | t-ishii | EUC_CN
euc_jp | t-ishii | EUC_JP
euc_kr | t-ishii | EUC_KR
euc_tw | t-ishii | EUC_TW
mule_internal | t-ishii | MULE_INTERNAL
regression | t-ishii | SQL_ASCII
templatel | t-ishii | EUC_JP

65

Chapter 7. Localization

test | t-ishii | EUC_JP
unicode | t-ishii | UNICODE
(9 rows)

7.2.3. Automatic encoding conversion between server and client

PostgreSQL supports an automatic encoding conversion between server and client for some encod-
ings. The conversion info is stored jig_conversion system catalog. You can create a new con-
version by usinCREATE CONVERSIORostgreSQL comes with some predefined conversions. They
are listed inTable 7-2

Table 7-2. Client/Server Character Set Encodings

Server Encoding Available Client Encodings

SQL_ASCII SQL_ASCII, UNICODE MULE_INTERNAL

EUC_JP EUC_JP, SJIS , UNICODE MULE_INTERNAL

EUC_CN EUC_CNUNICODE MULE_INTERNAL

EUC_KR EUC_KRUNICODE MULE_INTERNAL

JOHAB JOHAB UNICODE

EUC_TW EUC_TWBIGS, UNICODE MULE_INTERNAL

LATIN1 LATIN1 , UNICODE MULE_INTERNAL

LATIN2 LATIN2 , WIN1250, UNICODE MULE_INTERNAL

LATIN3 LATIN3 , UNICODE MULE_INTERNAL

LATIN4 LATIN4 , UNICODE MULE_INTERNAL

LATINS LATINS , UNICODE

LATING LATING , UNICODE MULE_INTERNAL

LATIN7 LATIN7 , UNICODE MULE_INTERNAL

LATIN8 LATIN8 , UNICODE MULE_INTERNAL

LATIN9 LATIN9 , UNICODE MULE_INTERNAL

LATIN1O LATIN10 , UNICODE MULE_INTERNAL

ISO_8859 5 ISO_8859 5, UNICODE MULE_INTERNALWIN,
IALT, KOI8

ISO 8859 6 ISO 8859 6 , UNICODE

ISO_8859 7 ISO_8859 7 , UNICODE

ISO_8859 8 ISO_8859 8 , UNICODE

UNICODE EUC_JPR, SJIS , EUC_KRUHG JOHAB EUC_CN
GBK EUC_TWBIG5, LATINL to LATIN10,
ISO_8859 5 ,1SO_8859 6 ,1SO_8859 7,
ISO_8859_8 , WIN, ALT, KOI8, WIN1256, TCVN
\WIN874, GB18030, WIN1250

MULE_INTERNAL EUC _JP, SJIS , EUC_KREUC_CNEUC_TWw
BIG5, LATIN1 to LATINS, WIN, ALT, WIN1250,
BIG5, ISO_8859 5 , KOI8

66

Chapter 7. Localization

Server Encoding

Available Client Encodings

KOI8

ISO_8859 5 , WIN, ALT, KOI8, UNICODE
MULE_INTERNAL

WIN ISO_8859_5 , WIN, ALT, KOI8, UNICODE
MULE_INTERNAL

ALT 1ISO_8859_5 , WIN, ALT, KOI8, UNICODE
MULE_INTERNAL

WIN1256 WIN1256, UNICODE

TCVN TCVN UNICODE

WIN874 \WIN874, UNICODE

To enable the automatic encoding translation, you have to tell PostgreSQL the encoding you would
like to use in the client. There are several ways to accomplish this.

« Using the\encoding command in psghencoding allows you to change client encoding on the
fly. For example, to change the encodingts |, type:

\encoding SJIS

Using libpg functions\encoding actually callsPQsetClientEncoding() for its purpose.
int PQsetClientEncoding(PGconn * conn, const char * encoding)

whereconn is a connection to the server, ardcoding is an encoding you want to use. If it
successfully sets the encoding, it returns 0, otherwise -1. The current encoding for this connection
can be shown by using:

int PQclientEncoding(const PGconn * conn)

Note that it returns the encoding ID, not a symbolic string sudbias JP. To convert an encoding
ID to an encoding hame, you can use:

char *pg_encoding_to_char(int encoding_id)

Using SET CLIENT_ENCODING TOSetting the client encoding can be done with this SQL com-
mand:

SET CLIENT_ENCODING TO ’encoding’;
Also you can use the SQL92 syntakT NAMESor this purpose:
SET NAMES ’encoding’;
To query the current client encoding:
SHOW CLIENT_ENCODING;
To return to the default encoding:
RESET CLIENT_ENCODING;

UsingPGCLIENTENCODINGf environment variabl®GCLIENTENCODING defined in the client’'s
environment, that client encoding is automatically selected when a connection to the server is made.
(This can subsequently be overridden using any of the other methods mentioned above.)

Using client_encoding variable. If thdient_encoding variable inpostgresgl.conf is set,
that client encoding is automatically selected when a connection to the server is made. (This can
subsequently be overridden using any of the other methods mentioned above.)

67

Chapter 7. Localization

7.2.4. What happens if the translation is not possible?

Suppose you choosC_JPfor the server andATIN1 for the client, then some Japanese characters
cannot be translated intoATIN1 . In this case, a letter that cannot be represented inATeN1
character set would be transformed as:

(HEXA DECIMAL)

7.2.5. References

These are good sources to start learning about various kinds of encoding systems.

ftp://ftp.ora.com/pub/examples/nutshell/ujip/doc/cjk.inf

Detailed explanations &UC_JP, EUC_CNEUC_KREUC_TWappear in section 3.2.
http://www.unicode.org/

The web site of the Unicode Consortium
RFC 2044

UTF-8 is defined here.

7.2.6. History

Dec 7, 2000
* An automatic encoding translation between Unicode and other

encodings are implemented
* Changes above will appear in 7.1

May 20, 2000

* SJIS UDC (NEC selection IBM kanji) support contributed
by Eiji Tokuya

* Changes above will appear in 7.0.1

Mar 22, 2000
* Add new libpg functions PQsetClientEncoding, PQclientEncoding
* Jconfigure --with-mb=EUC_JP
now deprecated. use
Jconfigure --enable-multibyte=EUC_JP
instead
* Add SQL_ASCII regression test case
* Add SJIS User Defined Character (UDC) support
* All of above will appear in 7.0

July 11, 1999

* Add support for WIN1250 (Windows Czech) as a client encoding
(contributed by Pavel Behal)

68

* fix some compiler warnings (contributed by Tomoaki Nishiyama)

Mar 23, 1999

* Add support for KOI8(KOI8-R), WIN(CP1251), ALT(CP866)
(thanks Oleg Broytmann for testing)

* Fix problem with MB and locale

Jan 26, 1999
* Add support for Big5 for frontend encoding

(you need to create a database with EUC_TW to use Big5)
* Add regression test case for EUC_TW

(contributed by Jonah Kuo < jonahkuo@mail.ttn.com.tw >)

Dec 15, 1998
* Bugs related to SQL_ASCII support fixed

Nov 5, 1998
* 6.4 release. In this version, pg_database has "encoding"
column that represents the database encoding

Jul 22, 1998

* determine encoding at initdb/createdb rather than compile time

* support for PGCLIENTENCODING when issuing COPY command
* support for SQL92 syntax "SET NAMES"

* support for LATIN2-5

* add UNICODE regression test case

* new test suite for MB

* clean up source files

Jun 5, 1998

* add support for the encoding translation between the backend
and the frontend

* new command SET CLIENT_ENCODING etc. added

* add support for LATIN1 character set

* enhance 8-bit cleanliness

April 21, 1998 some enhancements/fixes
* character_length(), position(), substring() are now aware of
multi-byte characters
* add octet_length()
* add --with-mb option to configure
* new regression tests for EUC_KR
(contributed by Soonmyung Hong)
* add some test cases to the EUC_JP regression test
* fix problem in regress/regress.sh in case of System V
* fix toupper(), tolower() to handle 8bit chars

Mar 25, 1998 MB PL2 is incorporated into PostgreSQL 6.3.1

Mar 10, 1998 PL2 released

* add regression test for EUC_JP, EUC_CN and MULE_INTERNAL
* add an English document (this file)

* fix problems concerning 8-bit single byte characters

Mar 1, 1998 PL1 released

Chapter 7. Localization

69

Chapter 7. Localization

7.2.7. WIN1250 on Windows/ODBC

The WIN1250 character set on Windows client platforms can be used with PostgreSQL with locale
support enabled.

The following should be kept in mind:

« Success depends on proper system locales. This has been tested with Red Hat 6.0 and Slackware
3.6, with thecs _CZ.is08859-2 locale.

- Never try to set the server’'s database encoding to WIN1250. Always use LATIN2 instead since
there is no WIN1250 locale in Unix.

« The WIN1250 encoding is usable only for Windows ODBC clients. The characters are recoded on
the fly, to be displayed and stored back properly.

WIN1250 on Windows/ODBC

=

Compile PostgreSQL with locale enabled and the server-side encoding 26t .

n

Set up your installation. Do not forget to create locale variables in your environment. For example
(this may not be correct forour environment):

LC_ALL=cs_CZ.ISO8859-2

You have to start the server with locales set!
Try it with the Czech language, and have it sort on a query.

Install ODBC driver for PostgreSQL on your Windows machine.

o o M w

Set up your data source properly. Include this line in your ODBC configuration dialog in the
field Connect Settings:

SET CLIENT_ENCODING = "WIN1250’;

7. Now try it again, but in Windows with ODBC.

7.3. Single-byte character set recoding

You can set up this feature with thesnable-recode option toconfigure . This option was
formerly described as “Cyrillic recode support” which doesn't express all its power. It can be used for
anysingle-byte character set recoding.

This method uses a filgharset.conf file located in the database directoBQDATA It's a typical
configuration text file where spaces and newlines separate items and records and # specifies com-
ments. Three keywords with the following syntax are recognized here:

BaseCharset server_charset
RecodeTable from_charset to_charset file_name
HostCharset host_spec host_charset

70

Chapter 7. Localization

BaseCharset defines the encoding of the database server. All character set names are only used for
mapping inside oéharset.conf ~ so you can freely use typing-friendly names.

RecodeTable records specify translation tables between server and client. The file name is relative
to thePGDATAdirectory. The table file format is very simple. There are no keywords and characters
are represented by a pair of decimal or hexadecimal (Ox prefixed) values on single lines:

char_value translated_char_value

HostCharset records define the client character set by IP address. You can use a single IP address,
an IP mask range starting from the given address or an IP interval (e.g., 127.0.0.1, 192.168.1.100/24,
192.168.1.20-192.168.1.40).

Thecharset.conf file is always processed up to the end, so you can easily specify exceptions from
the previous rules. In therc/data/ directory you will find an exampleharset.conf and a few
recoding tables.

As this solution is based on the client’s IP address and character set mapping there are obviously some
restrictions as well. You cannot use different encodings on the same host at the same time. It is also
inconvenient when you boot your client hosts into multiple operating systems. Nevertheless, when
these restrictions are not limiting and you do not need multibyte characters then it is a simple and
effective solution.

71

Chapter 8. Routine Database Maintenance
Tasks

8.1. General Discussion

There are a few routine maintenance chores that must be performed on a regular basis to keep a Post-
greSQL installation running smoothly. The tasks discussed here are repetitive in nature and can easily
be automated using standard Unix tools such as cron scripts. But it is the database administrator’s
responsibility to set up appropriate scripts, and to check that they execute successfully.

One obvious maintenance task is creation of backup copies of the data on a regular schedule. Without
a recent backup, you have no chance of recovery after a catastrophe (disk failure, fire, mistakenly
dropping a critical table, etc). The backup and recovery mechanisms available in PostgreSQL are
discussed at length i@hapter 9

The other main category of maintenance task is periodic “vacuuming” of the database. This activity
is discussed ifsection 8.2

Something else that might need periodic attention is log file management. This is discuSeetian
8.4

PostgreSQL is low-maintenance compared to some other database products. Nonetheless, appropriate
attention to these tasks will go far towards ensuring a pleasant and productive experience with the
system.

8.2. Routine Vacuuming

PostgreSQL'/ACUUMommand must be run on a regular basis for several reasons:

1. To recover disk space occupied by updated or deleted rows.
2. To update data statistics used by the PostgreSQL query planner.
3. To protect against loss of very old data dugremsaction ID wraparound

The frequency and scope WACUUBI performed for each of these reasons will vary depending on

the needs of each installation. Therefore, database administrators must understand these issues and
develop an appropriate maintenance strategy. This section concentrates on explaining the high-level
issues; for details about command syntax and so on, sagstbduMommand reference page.

Beginning in PostgreSQL 7.2, the standard fornvaCuuntan run in parallel with normal database
operations (selects, inserts, updates, deletes, but not changes to table schemas). Routine vacuuming is
therefore not nearly as intrusive as it was in prior releases, and it's not as critical to try to schedule it

at low-usage times of day.

8.2.1. Recovering disk space

In normal PostgreSQL operation, dRDATEor DELETEOf a row does not immediately remove the old
tuple (version of the row). This approach is necessary to gain the benefits of multiversion concurrency
control (see th&ostgreSQL User’s Guigethe tuple must not be deleted while it is still potentially
visible to other transactions. But eventually, an outdated or deleted tuple is no longer of interest to any

72

Chapter 8. Routine Database Maintenance Tasks

transaction. The space it occupies must be reclaimed for reuse by new tuples, to avoid infinite growth
of disk space requirements. This is done by runnMAGUUM

Clearly, a table that receives frequent updates or deletes will need to be vacuumed more often than
tables that are seldom updated. It may be useful to set up periodic cron tasks that vacuum only selected
tables, skipping tables that are known not to change often. This is only likely to be helpful if you have
both large heavily-updated tables and large seldom-updated tables --- the extra cost of vacuuming a
small table isn’t enough to be worth worrying about.

The standard form of ACUUNS best used with the goal of maintaining a fairly level steady-state usage
of disk space. The standard form finds old tuples and makes their space available for re-use within
the table, but it does not try very hard to shorten the table file and return disk space to the operating
system. If you need to return disk space to the operating system you caAQs&M FULE-- but

what'’s the point of releasing disk space that will only have to be allocated again soon? Moderately
frequent standar6YACUUBI are a better approach than infrequgACUUM FUL4 for maintaining
heavily-updated tables.

Recommended practice for most sites is to schedule a database-witig/Monce a day at a low-

usage time of day, supplemented by more frequent vacuuming of heavily-updated tables if necessary.
(If you have multiple databases in an installation, don’t forget to vacuum each onejcilnendb

script may be helpful.) Use plamwACUUMNOtVACUUM FULLfor routine vacuuming for space recov-

ery.

VACUUM FULIis recommended for cases where you know you have deleted the majority of tuples
in a table, so that the steady-state size of the table can be shrunk substantiaWa@itbMm FULs
more aggressive approach.

If you have a table whose contents are deleted completely every so often, consider doing it with
TRUNCATRather than usin@ELETEfollowed by VACUUM

8.2.2. Updating planner statistics

The PostgreSQL query planner relies on statistical information about the contents of tables in order
to generate good plans for queries. These statistics are gathered AyAhgzEcommand, which

can be invoked by itself or as an optional stefy ACUUMIt is important to have reasonably accurate
statistics, otherwise poor choices of plans may degrade database performance.

As with vacuuming for space recovery, frequent updates of statistics are more useful for heavily-
updated tables than for seldom-updated ones. But even for a heavily-updated table, there may be no
need for statistics updates if the statistical distribution of the data is not changing much. A simple
rule of thumb is to think about how much the minimum and maximum values of the columns in the
table change. For exampletimestamp column that contains the time of row update will have a
constantly-increasing maximum value as rows are added and updated; such a column will probably
need more frequent statistics updates than, say, a column containing URLs for pages accessed on
a website. The URL column may receive changes just as often, but the statistical distribution of its
values probably changes relatively slowly.

It is possible to runPANALYZEon specific tables and even just specific columns of a table, so the
flexibility exists to update some statistics more frequently than others if your application requires it. In
practice, however, the usefulness of this feature is doubtful. Beginning in PostgreSQINALY,ZE

is a fairly fast operation even on large tables, because it uses a statistical random sampling of the rows
of a table rather than reading every single row. So it's probably much simpler to just run it over the
whole database every so often.

73

Chapter 8. Routine Database Maintenance Tasks

Tip: Although per-column tweaking of ANALYZEfrequency may not be very productive, you may
well find it worthwhile to do per-column adjustment of the level of detail of the statistics collected
by ANALYZE Columns that are heavily used in WHERElauses and have highly irregular data dis-
tributions may require a finer-grain data histogram than other columns. See ALTER TABLE SET
STATISTICS .

Recommended practice for most sites is to schedule a databaseMAtd&ZEonce a day at a low-
usage time of day; this can usefully be combined with a nightigUUNMHowever, sites with relatively
slowly changing table statistics may find that this is overkill, and that less-fregixitYZEruns are
sufficient.

8.2.3. Preventing transaction ID wraparound failures

PostgreSQL’s MVCC transaction semantics depend on being able to compare transacko)ID (
numbers: a tuple with an insertion XID newer than the current transaction’s XID is “in the future” and
should not be visible to the current transaction. But since transaction IDs have limited size (32 bits
at this writing) an installation that runs for a long time (more than 4 billion transactions) will suffer
transaction ID wraparoundthe XID counter wraps around to zero, and all of a sudden transactions
that were in the past appear to be in the future --- which means their outputs become invisible. In
short, catastrophic data loss. (Actually the data is still there, but that’s cold comfort if you can’t get at
it.)

Prior to PostgreSQL 7.2, the only defense against XID wraparound wasrticdke- at least every 4
billion transactions. This of course was not very satisfactory for high-traffic sites, so a better solution
has been devised. The new approach allows an installation to remain up indefinitely, \mitdbut

or any sort of restart. The price is this maintenance requirersgaty table in the database must be
vacuumed at least once every billion transactions

In practice this isn’t an onerous requirement, but since the consequences of failing to meet it can be
complete data loss (not just wasted disk space or slow performance), some special provisions have
been made to help database administrators keep track of the time since W#eastMT he remainder

of this section gives the details.

The new approach to XID comparison distinguishes two special XIDs, numbers 1 and 2
(BootstrapXID andFrozenXID). These two XIDs are always considered older than every normal
XID. Normal XIDs (those greater than 2) are compared using modttlar2hmetic. This means that

for every normal XID, there are two billion XIDs that are “older” and two billion that are “newer”;
another way to say it is that the normal XID space is circular with no endpoint. Therefore, once a
tuple has been created with a particular normal XID, the tuple will appear to be “in the past” for
the next two billion transactions, no matter which normal XID we are talking about. If the tuple
still exists after more than two billion transactions, it will suddenly appear to be in the future. To
prevent data loss, old tuples must be reassigned theRxdEZenXID sometime before they reach the
two-billion-transactions-old mark. Once they are assigned this special XID, they will appear to be
“in the past” to all normal transactions regardless of wraparound issues, and so such tuples will be
good until deleted, no matter how long that is. This reassignment of XID is handied®@yum

VACUU normal policy is to reassighrozenXID to any tuple with a normal XID more than one
billion transactions in the past. This policy preserves the original insertion XID until it is not likely to
be of interest anymore (in fact, most tuples will probably live and die without ever being “frozen”).
With this policy, the maximum safe interval betwegACUUBI of any table is exactly one billion
transactions: if you wait longer, it's possible that a tuple that was not quite old enough to be reassigned
last time is now more than two billion transactions old and has wrapped around into the future --- i.e.,
is lost to you. (Of course, it'll reappear after another two billion transactions, but that's no help.)

74

Chapter 8. Routine Database Maintenance Tasks

Since periodicvACUUBR! are needed anyway for the reasons described earlier, it's unlikely that any
table would not be vacuumed for as long as a billion transactions. But to help administrators ensure
this constraint is metyACUUMtores transaction ID statistics in the system talgledatabase . In
particular, thedatfrozenxid ~ field of a database’sg_database row is updated at the completion

of any database-wide vacuum operation (MACUUNMhat does not name a specific table). The value
stored in this field is the freeze cutoff XID that was used by tetuUMommand. All normal XIDs

older than this cutoff XID are guaranteed to have been replac&ddagnXID within that database.

A convenient way to examine this information is to execute the query

SELECT datname, age(datfrozenxid) FROM pg_database;

Theage column measures the number of transactions from the cutoff XID to the current transaction’s
XID.

With the standard freezing policy, tlegle column will start at one billion for a freshly-vacuumed
database. When thege approaches two billion, the database must be vacuumed again to avoid risk
of wraparound failures. Recommended practice is to vacuum each database at least once every half-
a-billion (500 million) transactions, so as to provide plenty of safety margin. To help meet this rule,
each database-wideACUUNMwutomatically delivers a warning if there are giy database entries
showing amge of more than 1.5 billion transactions, for example:

play=# vacuum;

WARNING: Some databases have not been vacuumed in 1613770184 transactions.
Better vacuum them within 533713463 transactions,
or you may have a wraparound failure.

VACUUM

VACUUMvith the FREEZEoption uses a more aggressive freezing policy: tuples are frozen if they
are old enough to be considered good by all open transactions. In particulafAG@UM FREEZE

is performed in an otherwise-idle database, it is guaranteedathaitples in that database will be
frozen. Hence, as long as the database is not modified in any way, it will not need subsequent vac-
uuming to avoid transaction ID wraparound problems. This technique is useddby to prepare
thetemplate0 database. It should also be used to prepare any user-created databases that are to be

markeddatallowconn =false in pg_database , since there isn’'t any convenient way to vacuum
a database that you can’t connect to. Note th&tUUI automatic warning message about unvac-
uumed databases will ignorg_database entries withdatallowconn = false , so as to avoid

giving false warnings about these databases; therefore it's up to you to ensure that such databases are
frozen correctly.

8.3. Routine Reindexing

PostgreSQL is unable to reuse B-tree index pages in certain cases. The problem is that if indexed rows
are deleted, those index pages can only be reused by rows with similar values. For example, if indexed
rows are deleted and newly inserted/updated rows have much higher values, the new rows can't use
the index space made available by the deleted rows. Instead, such new rows must be placed on new
index pages. In such cases, disk space used by the index will grow indefinitely, 8veTLiNG run
frequently.

As a solution, you can use tiREINDEXcommand periodically to discard pages used by deleted rows.
There is als@ontrib/reindexdb which can reindex an entire database.

75

Chapter 8. Routine Database Maintenance Tasks

8.4. Log File Maintenance

It's a good idea to save the database server’s log output somewhere, rather than just routing it to
/dev/null . The log output is invaluable when it comes time to diagnose problems. However, the
log output tends to be voluminous (especially at higher debug levels) and you won'’t want to save it
indefinitely. You need to “rotate” the log files so that new log files are started and old ones thrown
away every so often.

If you simply direct the postmaster’s stderr into a file, the only way to truncate the log file is to stop
and restart the postmaster. This may be OK for development setups but you won't want to run a
production server that way.

The simplest production-grade approach to managing log output is to send it all to syslog and let
syslog deal with file rotation. To do this, s8tlog to 2 (log to syslog only) ipostgresgl.conf

Then you can send aIGHUP signal to the syslog daemon whenever you want to force it to start
writing a new log file.

On many systems, however, syslog is not very reliable, particularly with large log messages; it may

truncate or drop messages just when you need them the most. You may find it more useful to pipe the
postmaster’s stderr to some type of log rotation script. If you start the postmaster with pg_ctl, then the

postmaster’s stderr is already redirected to stdout, so you just need a pipe command:

pg_ctl start | logrotate

The PostgreSQL distribution doesn’t include a suitable log rotation program, but there are many
available on the net; one is included in the Apache distribution, for example.

76

Chapter 9. Backup and Restore

As everything that contains valuable data, PostgreSQL databases should be backed up regularly. While
the procedure is essentially simple, it is important to have a basic understanding of the underlying
technigues and assumptions.

There are two fundamentally different approaches to backing up PostgreSQL data:

+ SQL dump

« File system level backup

9.1. SQL Dump

The idea behind the SQL-dump method is to generate a text file with SQL commands that, when
fed back to the server, will recreate the database in the same state as it was at the time of the dump.
PostgreSQL provides the utility program pg_dump for this purpose. The basic usage of this command
is:

pg_dump dbname > outfile

As you see, pg_dump writes its results to the standard output. We will see below how this can be
useful.

pg_dump is a regular PostgreSQL client application (albeit a particularly clever one). This means that
you can do this backup procedure from any remote host that has access to the database. But remember
that pg_dump does not operate with special permissions. In particular, you must have read access to
all tables that you want to back up, so in practice you almost always have to be a database superuser.

To specify which database server pg_dump should contact, use the command line -bptioss

and-p port . The default host is the local host or whatever ypGHOSENvironment variable spec-
ifies. Similarly, the default port is indicated by tR&PORTenvironment variable or, failing that, by
the compiled-in default. (Conveniently, the server will normally have the same compiled-in default.)

As any other PostgreSQL client application, pg_dump will by default connect with the database user
name that is equal to the current operating system user name. To override this, either speuify the
option or set the environment varial&USERRemember that pg_dump connections are subject to
the normal client authentication mechanisms (which are describ@tapter §.

Dumps created by pg_dump are internally consistent, that is, updates to the database while pg_dump
is running will not be in the dump. pg_dump does not block other operations on the database while
it is working. (Exceptions are those operations that need to operate with an exclusive lock, such as
VACUUM FULI

Important: When your database schema relies on OIDs (for instance as foreign keys) you must
instruct pg_dump to dump the OIDs as well. To do this, use the -o command line option. “Large
objects” are not dumped by default, either. See pg_dump’s command reference page if you use
large objects.

77

Chapter 9. Backup and Restore

9.1.1. Restoring the dump

The text files created by pg_dump are intended to be read in by the psqgl program. The general com-
mand form to restore a dump is

psqgl dbname < infile

whereinfile is what you used asutfile for the pg_dump command. The databaskname

will not be created by this command, you must create it yourself feanplate0 before executing

psql (e.g., withcreatedb -T template0 dbname). psql supports similar options to pg_dump for
controlling the database server location and the user names. See its reference page for more informa-
tion.

If the objects in the original database were owned by different users, then the dump will instruct psql
to connect as each affected user in turn and then create the relevant objects. This way the original own-
ership is preserved. This also means, however, that all these users must already exist, and furthermore
that you must be allowed to connect as each of them. It might therefore be necessary to temporarily
relax the client authentication settings.

The ability of pg_dump and psql to write to or read from pipes makes it possible to dump a database
directly from one server to another, for example

pg_dump -h hostl dbname | psql -h host2 dbname

Important: The dumps produced by pg_dump are relative to template0 . This means that any
languages, procedures, etc. added to templatel will also be dumped by pg_dump. As a result,
when restoring, if you are using a customized templatel , you must create the empty database
from template0 , as in the example above.

9.1.2. Using pg_dumpall

The above mechanism is cumbersome and inappropriate when backing up an entire database cluster.
For this reason the pg_dumpall program is provided. pg_dumpall backs up each database in a given
cluster and also makes sure that the state of global data such as users and groups is preserved. The
call sequence for pg_dumpall is simply

pg_dumpall > outfile

The resulting dumps can be restored with psql as described above. But in this case it is definitely
necessary that you have database superuser access, as that is required to restore the user and group
information.

9.1.3. Large Databases

Acknowledgement: Originally written by Hannu Krosing (<hannu@trust.ee >) on 1999-06-19

Since PostgreSQL allows tables larger than the maximum file size on your system, it can be prob-
lematic to dump the table to a file, since the resulting file will likely be larger than the maximum size

78

Chapter 9. Backup and Restore
allowed by your system. As pg_dump writes to the standard output, you can just use standard *nix
tools to work around this possible problem.

Use compressed dumpsUse your favorite compression program, for example gzip.
pg_dump dbname | gzip > filename .gz
Reload with

createdb dbname
gunzip -c filename .9z | psql dbname

or

cat filename .gz | gunzip | psql dbname

Use split. This allows you to split the output into pieces that are acceptable in size to the underlying
file system. For example, to make chunks of 1 megabyte:

pg_dump dbname | split -b 1m - filename
Reload with

createdb dbname
cat filename * | psql dbname

Use the custom dump format. If PostgreSQL was built on a system with the zlib compression
library installed, the custom dump format will compress data as it writes it to the output file. For large
databases, this will produce similar dump sizes to ugiig , but has the added advantage that the
tables can be restored selectively. The following command dumps a database using the custom dump
format:

pg_dump -Fc dbname > filename

See the pg_dump and pg_restore reference pages for details.

9.1.4. Caveats

pg_dump (and by implication pg_dumpall) has a few limitations which stem from the difficulty to
reconstruct certain information from the system catalogs.

Specifically, the order in which pg_dump writes the objects is not very sophisticated. This can lead
to problems for example when functions are used as column default values. The only answer is to
manually reorder the dump. If you created circular dependencies in your schema then you will have
more work to do.

For reasons of backward compatibility, pg_dump does not dump large objects by default. To dump
large objects you must use either the custom or the TAR output format, and uge thion in
pg_dump. See the reference pages for details. The diregiotryb/pg_dumplo of the PostgreSQL
source tree also contains a program that can dump large objects.

Please familiarize yourself with the pg_dump reference page.

79

Chapter 9. Backup and Restore

9.2. File system level backup

An alternative backup strategy is to directly copy the files that PostgreSQL uses to store the data in
the database. I8ection 3.4t is explained where these files are located, but you have probably found
them already if you are interested in this method. You can use whatever method you prefer for doing
usual file system backups, for example

tar -cf backup.tar /usr/local/pgsql/data

There are two restrictions, however, which make this method impractical, or at least inferior to the
pg_dump method:

1. The database serverustbe shut down in order to get a usable backup. Half-way measures such
as disallowing all connections will not work as there is always some buffering going on. For this
reason it is also not advisable to trust file systems that claim to support “consistent snapshots”.
Information about stopping the server can be foun8ection 3.6

Needless to say that you also need to shut down the server before restoring the data.

2.1f you have dug into the details of the file system layout you may be tempted to try to back up
or restore only certain individual tables or databases from their respective files or directories.
This will not work because the information contained in these files contains only half the truth.
The other half is in the commit log filgsg_clog/* , which contain the commit status of all
transactions. A table file is only usable with this information. Of course it is also impossible to
restore only a table and the associgtgdclog data because that will render all other tables in
the database cluster useless.

Also note that the file system backup will not necessarily be smaller than an SQL dump. On the
contrary, it will most likely be larger. (pg_dump does not need to dump the contents of indexes for
example, just the commands to recreate them.)

9.3. Migration between releases

As a general rule, the internal data storage format is subject to change between releases of Post-
greSQL. This does not apply to different “patch levels”, these always have compatible storage for-
mats. For example, releases 7.0.1, 7.1.2, and 7.2 are not compatible, whereas 7.1.1 and 7.1.2 are.
When you update between compatible versions, then you can simply reuse the data area in disk by the
new executables. Otherwise you need to “back up” your data and “restore” it on the new server, using
pg_dump. (There are checks in place that prevent you from doing the wrong thing, so no harm can
be done by confusing these things.) The precise installation procedure is not subject of this section,
these details are i@hapter 1

The least downtime can be achieved by installing the new server in a different directory and running
both the old and the new servers in parallel, on different ports. Then you can use something like

pg_dumpall -p 5432 | psqgl -d templatel -p 6543

to transfer your data, or use an intermediate file if you want. Then you can shut down the old server
and start the new server at the port the old one was running at. You should make sure that the database
is not updated after you run pg_dumpall, otherwise you will obviously lose that dat&Hagter Gor

80

Chapter 9. Backup and Restore

information on how to prohibit access. In practice you probably want to test your client applications
on the new setup before switching over.

If you cannot or do not want to run two servers in parallel you can do the back up step before installing
the new version, bring down the server, move the old version out of the way, install the new version,
start the new server, restore the data. For example:

pg_dumpall > backup

pg_ctl stop

mv /usr/local/pgsql /usr/local/pgsql.old
cd /usr/src/postgresql-7.3.2

gmake install

initdb -D /usr/local/pgsqgl/data
postmaster -D /usr/local/pgsql/data
psql templatel < backup

SeeChapter Zabout ways to start and stop the server and other details. The installation instructions
will advise you of strategic places to perform these steps.

Note: When you “move the old installation out of the way” it is no longer perfectly usable. Some
parts of the installation contain information about where the other parts are located. This is usually
not a big problem but if you plan on using two installations in parallel for a while you should assign
them different installation directories at build time.

81

Chapter 10. Monitoring Database Activity

A database administrator frequently wonders, “What is the system doing right now?” This chapter
discusses how to find that out.

Several tools are available for monitoring database activity and analyzing performance. Most of this
chapter is devoted to describing PostgreSQitaistics collectorbut one should not neglect regular
Unix monitoring programs such @s andtop . Also, once one has identified a poorly-performing
query, further investigation may be needed using Postgre SEXP&AIN command. Th&ostgreSQL
User’s Guidediscusse&XPLAIN and other methods for understanding the behavior of an individual

query.

10.1. Standard Unix Tools

On most platforms, PostgreSQL modifies its command title as reportes], Isp that individual server
processes can readily be identified. A sample display is

$ ps auxww | grep “postgres

postgres 960 0.0 1.1 6104 1480 pts/1 SN 13:17 0:00 postmas-
ter -i

postgres 963 0.0 1.1 7084 1472 pts/l SN 13:17 0:00 postgres: stats buffer pro-
cess

postgres 965 0.0 1.1 6152 1512 pts/1 SN 13:17 0:00 postgres: stats col-
lector process

postgres 998 0.0 2.3 6532 2992 pts/1 SN 13:18 0:00 postgres: tgl run-
bug 127.0.0.1 idle

postgres 1003 0.0 2.4 6532 3128 pts/1 SN 13:19 0:00 postgres: tgl re-
gression [local] SELECT waiting

postgres 1016 0.1 2.4 6532 3080 pts/1 SN 13:19 0:00 postgres: tgl re-
gression [local] idle in transaction

(The appropriate invocation p6 varies across different platforms, as do the details of what is shown.

This example is from a recent Linux system.) The first process listed heregestrmasterthe master

server process. The command arguments shown for it are the same ones given when it was launched.
The next two processes implement the statistics collector, which will be described in detail in the next
section. (These will not be present if you have set the system not to start the statistics collector.) Each
of the remaining processes is a server process handling one client connection. Each such process sets
its command line display in the form

postgres: user database host activity

The user, database, and connection source host items remain the same for the life of the client connec-
tion, but the activity indicator changes. The activity maydie (i.e., waiting for a client command),

idle in transaction (waiting for client inside 8EGIN block), or a command type name such as
SELECT Also,waiting is attached if the server is presently waiting on a lock held by another server
process. In the above example we can infer that process 1003 is waiting for process 1016 to complete
its transaction and thereby release some lock or other.

Tip: Solaris requires special handling. You must use /usr/ucb/ps , rather than /bin/ps . You also
must use two w flags, not just one. In addition, your original invocation of the postmaster must
have a shorter ps status display than that provided by each backend. If you fail to do all three
things, the ps output for each backend will be the original postmaster command line.

82

Chapter 10. Monitoring Database Activity

10.2. Statistics Collector

PostgreSQL'statistics collectois a subsystem that supports collection and reporting of information
about server activity. Presently, the collector can count accesses to tables and indexes in both disk-
block and individual-row terms. It also supports determining the exact query currently being executed
by other server processes.

10.2.1. Statistics Collection Configuration

Since collection of statistics adds some overhead to query execution, the system can be configured to
collect or not collect information. This is controlled by configuration variables that are normally set
in postgresgl.conf (seeSection 3.4or details about setting configuration variables).

The variableSTATS_START_COLLECTORwst be set tarue for the statistics collector to be
launched at all. This is the default and recommended setting, but it may be turned off if you have no
interest in statistics and want to squeeze out every last drop of overhead. (The savings is likely to be
small, however.) Note that this option cannot be changed while the server is running.

The variablesSTATS_ COMMAND_STRINSTATS_BLOCK_LEVELand STATS_ROW_LEVEktontrol

how much information is actually sent to the collector, and thus determine how much run-time over-
head occurs. These respectively determine whether a server process sends its current command string,
disk-block-level access statistics, and row-level access statistics to the collector. Normally these vari-
ables are set ipostgresql.conf so that they apply to all server processes, but it is possible to turn
them on or off in individual server processes using3k& command. (To prevent ordinary users from

hiding their activity from the administrator, only superusers are allowed to change these variables with
SET)

Important: Since the variables STATS_COMMAND_STRING STATS_BLOCK_LEVEL and
STATS_ROW_LEVELdefault to false , no statistics are actually collected in the default
configuration. You must turn one or more of them on before you will get useful results from the
statistical display functions.

10.2.2. Viewing Collected Statistics

Several predefined views are available to show the results of statistics collection, li$tdalari0-1
Alternatively, one can build custom views using the underlying statistics functions.

When using the statistics to monitor current activity, it is important to realize that the information
does not update instantaneously. Each individual server process transmits new access counts to the
collector just before waiting for another client command; so a query still in progress does not affect the
displayed totals. Also, the collector itself emits new totals at most onqegptat_stat_interval

milliseconds (500 by default). So the displayed totals lag behind actual activity.

Another important point is that when a server process is asked to display any of these statistics, it first
fetches the most recent totals emitted by the collector process. It then continues to use this snapshot for
all statistical views and functions until the end of its current transaction. So the statistics will appear
not to change as long as you continue the current transaction. This is a feature, not a bug, because it
allows you to perform several queries on the statistics and correlate the results without worrying that
the numbers are changing underneath you. But if you want to see new results with each query, be sure
to do the queries outside any transaction block.

83

Table 10-1. Standard Statistics Views

Chapter 10. Monitoring Database Activity

View Name

Description

pg_stat_activity

One row per server process, showing process|ID,
database, user, and current query. The current
query column is only available to superusers; for
others it reads as null. (Note that because of the
collector’s reporting delay, current query will

only be up-to-date for long-running queries.)

pg_stat_database

One row per database, showing number of active
backends, total transactions committed and total
rolled back in that database, total disk blocks
read, and total number of buffer hits (i.e., block
read requests avoided by finding the block
already in buffer cache).

pg_stat_all_tables

For each table in the current database, total
numbers of sequential and index scans, total
numbers of tuples returned by each type of scan,
and totals of tuple insertions, updates, and
deletes.

pg_stat_sys_tables Same apg_stat_all_tables , except that
only system tables are shown.
pg_stat_user_tables Same apg_stat_all_tables , except that

only user tables are shown.

pg_stat_all_indexes

For each index in the current database, the total
number of index scans that have used that index,
the number of index tuples read, and the number
of successfully fetched heap tuples. (This may be
less when there are index entries pointing to
expired heap tuples.)

pg_stat_sys_indexes

Same apg_stat_all_indexes , except that
only indexes on system tables are shown.

pg_stat_user_indexes

Same apg_stat_all_indexes , except that
only indexes on user tables are shown.

pg_statio_all_tables

For each table in the current database, the tota
number of disk blocks read from that table, the
number of buffer hits, the numbers of disk blogks
read and buffer hits in all the indexes of that
table, the numbers of disk blocks read and buffer
hits from the table’s auxiliary TOAST table (if
any), and the numbers of disk blocks read and
buffer hits for the TOAST table’s index.

pg_statio_sys_tables

Same apg_statio_all_tables , except that
only system tables are shown.

pg_statio_user_tables

Same apg_statio_all_tables , except that
only user tables are shown.

pg_statio_all_indexes

For each index in the current database, the
numbers of disk blocks read and buffer hits in

that index.

84

Chapter 10. Monitoring Database Activity

View Name Description

pg_statio_sys_indexes Same apg_statio_all_indexes , except that
only indexes on system tables are shown.

pg_statio_user_indexes Same agg_statio_all_indexes , except that
only indexes on user tables are shown.

pg_statio_all_sequences For each sequence object in the current database,
the numbers of disk blocks read and buffer hits in
that sequence.

pg_statio_sys_sequences Same apg_statio_all_sequences , except
that only system sequences are shown. (Presently,
no system sequences are defined, so this view is

always empty.)

pg_statio_user_sequences Same apg_statio_all_sequences , except
that only user sequences are shown.

The per-index statistics are particularly useful to determine which indexes are being used and how
effective they are.

Thepg_statio_ views are primarily useful to determine the effectiveness of the buffer cache. When
the number of actual disk reads is much smaller than the number of buffer hits, then the cache is
satisfying most read requests without invoking a kernel call.

Other ways of looking at the statistics can be set up by writing queries that use the same underlying
statistics access functions as these standard views do. These functions are [Tstigle ih0-2 The
per-database access functions accept a database OID to identify which database to report on. The
per-table and per-index functions accept a table or index OID (note that only tables and indexes in
the current database can be seen with these functions). The per-backend access functions accept a
backend ID number, which ranges from one to the number of currently active backends.

Table 10-2. Statistics Access Functions

Function Return Type Description
pg_stat_get_db_numbackends [infeigke) Number of active backends in
database
pg_stat_get_db_xact_commit |igiitt) Transactions committed in
database
pg_stat_get _db_xact_rollback |iginbid) Transactions rolled back in
database
pg_stat_get_db_blocks_fetched |igint(oid) Number of disk block fetch
requests for database
pg_stat_get_db_blocks_hit i) Number of disk block requests
found in cache for database
pg_stat_get_numscans (oid) |igint Number of sequential scans
done when argument is a table,
or number of index scans done
when argument is an index

85

Chapter 10. Monitoring Database Activity

Function Return Type Description

pg_stat_get_tuples_returned big(otd) Number of tuples read by
sequential scans when argument
is a table, or number of index
tuples read when argument is an
index

pg_stat_get_tuples_fetched bigiitt) Number of valid (unexpired)
table tuples fetched by
sequential scans when argument
is a table, or fetched by index
scans using this index when
argument is an index

pg_stat_get_tuples_inserted big{otd) Number of tuples inserted into
table

pg_stat_get_tuples_updated bigiitt) Number of tuples updated in
table

pg_stat_get_tuples_deleted bigiitt) Number of tuples deleted from
table

pg_stat_get_blocks_fetched bigiitt) Number of disk block fetch
requests for table or index

pg_stat_get_blocks_hit (oid[ygint Number of disk block requests

found in cache for table or index

pg_stat_get_backend_idset €et of integer Set of currently active backend
IDs (from 1 to N where N is the
number of active backends). See
usage example below.

pg_backend_pid () integer Process ID of the attached
backend

pg_stat_get_backend_pid (intetemyer) Process ID of all backend
processes

pg_stat_get_backend_dbid (ioteger) Database ID of backend process

pg_stat_get_backend_userid oidnteger) User ID of backend process

pg_stat_get_backend_activity fext (integer) Current query of backend
process (NULL if caller is not
superuser)

pg_stat_reset () boolean Reset all currently collected
statistics.

Note: Blocks_fetched minus blocks_hit gives the number of kernel read() calls issued for the
table, index, or database; but the actual number of physical reads is usually lower due to kernel-
level buffering.

The functionpg_stat_get_backend_idset provides a convenient way to generate one row for
each active backend. For example, to show the PIDs and current queries of all backends:

86

Chapter 10. Monitoring Database Activity

SELECT pg_stat_get_backend_pid(S.backendid) AS procpid,
pg_stat_get_backend_activity(S.backendid) AS current_query
FROM (SELECT pg_stat_get_backend_idset() AS backendid) AS S;

10.3. Viewing Locks

Another useful tool for monitoring database activity is tite locks system catalog. This allows
the database administrator to view information about the outstanding locks in the lock manager. For
example, this capability can be used to:

- View all the locks currently outstanding, all the locks on relations in a particular database, all the
locks on a particular relation, or all the locks held by a particular PostgreSQL session.

- View the relation in the current database with the most ungranted locks (which might be a source
of contention among database clients).

- Determine the effect of lock contention on overall database performance, as well as the extent to
which contention varies with overall database traffic.

For more information on locking and managing concurrency with PostgreSQL, refer feotite
greSQL User’s Guide

Note: When the pg_locks view is accessed, the internal lock manager data structures are mo-
mentarily locked, and a copy is made for the view to display. This ensures that the view produces
a consistent set of results, while not blocking normal lock manager operations longer than neces-
sary. Nonetheless there could be some impact on database performance if this view is examined
often.

Table 10-3shows the definition of thpg_locks columns. Thepg_locks view contains one row per
lockable object and requested lock mode. Thus, the same lockable object may appear many times, if
multiple transactions are holding or waiting for locks on it. A lockable object is either a relation or a
transaction ID. (Note that this view includes only table-level locks, not row-level ones. If a transaction

is waiting for a row-level lock, it will appear in the view as waiting for the transaction ID of the current
holder of that row lock.)

Table 10-3. Lock Status System View

Column Name ‘Type Description

87

Chapter 10. Monitoring Database Activity

Column Name Type Description

relation oid The OID of the locked relation
or null if the lockable object is &
transaction ID. This column can
be joined with thepg_class
system catalog to get more
information on the locked
relation. Note however that thig
will only work for relations in
the current database (those fo
which thedatabase column is
either the current database’s
OID or zero).

database oid The OID of the database in
which the locked relation exists,
or null if the lockable object is a
transaction ID. If the lock is on
globally-shared table, this field
will be zero. This column can he
joined with thepg_database
system catalog to get more
information on the locked
object’s database.

transaction xid The ID of a transaction, or null
if the lockable object is a
relation. Every transaction holds
an exclusive lock on its
transaction ID for its entire
duration. If one transaction finds
it necessary to wait specifically
for another transaction, it does|
So by attempting to acquire share
lock on the other transaction ID.
That will succeed only when th
other transaction terminates and
releases its locks.

pid integer The process ID of the
PostgreSQL backend belongin
to the session that has acquire
or is attempting to acquire the
lock. If you have enabled the
statistics collector, this column
can be joined with the
pg_stat_activity view to
get more information on the
backend holding or waiting to
hold the lock.

D

[}

D

O «Q

88

Chapter 10. Monitoring Database Activity

Column Name Type Description

mode text The mode of the requested or
held lock on the lockable objec
For more information on the
different lock modes available
PostgreSQL, refer to the
PostgreSQL User’s Guide

isgranted boolean True if this lock has been
granted (is held by this sessior
False indicates that this sessio
is currently waiting to acquire
this lock, which implies that
some other session is holding a
conflicting lock mode on the
same lockable object. This
backend will sleep until the
other lock is released (or a
deadlock situation is detected)
A single backend can be waiting
to acquire at most one lock at a
time.

—

>

~

>

89

Chapter 11. Monitoring Disk Usage

This chapter discusses how to monitor the disk usage of a PostgreSQL database system. In the current
release, the database administrator does not have much control over the on-disk storage layout, so
this chapter is mostly informative and can give you some ideas how to manage the disk usage with
operating system tools.

11.1. Determining Disk Usage

Each table has a primary heap disk file where most of the data is stored. To store long column val-
ues, there is also a TOAST file associated with the table, named based on the table’s OID (actually
pg_class.relfilenode), and an index on the TOAST table. There also may be indexes associated
with the base table.

You can monitor disk space from three places: from psql ugi@uUUNNformation, from psql using
contrib/dbsize , and from the command line using contrib/oid2name. Using psql on a recently
vacuumed (or analyzed) database, you can issue queries to see the disk usage of any table:

play=# SELECT relfilenode, relpages
play-# FROM pg_class
play-# WHERE relname = ’customer’;
relfilenode | relpages

+

16806 | 60

1 row)

Each page is typically 8 kilobytes. (Remembyelpages is only updated byACUUNMNJANALYZE)
To show the space used by TOAST tables, use a query based on the heap relfilenode shown above:

play=# SELECT relname, relpages
play-# FROM pg_class
play-# WHERE relname = 'pg_toast 16806 OR

play-# relname = ’'pg_toast_16806_index’
play-# ORDER BY relname;

relname | relpages
pg_toast_16806 | 0
pg_toast_16806_index | 1

You can easily display index usage too:

play=# SELECT c2.relname, c2.relpages
play-# FROM pg_class c, pg_class c2, pg_index i
play-# WHERE c.relname = ’customer’ AND
play-# c.oid = iindrelid AND
play-# c2.0id = i.indexrelid
play-# ORDER BY c2.relname;

relname | relpages

+

customer_id_indexdex | 26

90

Chapter 11. Monitoring Disk Usage

Itis easy to find your largest files using psql:

play=# SELECT relname, relpages
play-# FROM pg_class
play-# ORDER BY relpages DESC;

relname | relpages
bigtable | 3290
customer | 3144
contrib/dbsize loads functions into your database that allow you to find the size of a table or

database from inside psql without the needfaCUUM/ANALYZE.

You can also useontrib/oid2name to show disk usage. SE&EADME.oid2name for examples. It
includes a script that shows disk usage for each database.

11.2. Disk Full Failure

The most important disk monitoring task of a database administrator is to make sure the disk doesn't
grow full. A filled data disk may result in subsequent corruption of database indexes, but not of the
fundamental data tables. If the WAL files are on the same disk (as is the case for a default configura-
tion) then a filled disk during database initialization may result in corrupted or incomplete WAL files.
This failure condition is detected and the database server will refuse to start up.

If you cannot free up additional space on the disk by deleting other things you can move some of
the database files to other file systems and create a symlink from the original location. But note that
pg_dump cannot save the location layout information of such a setup; a restore would put everything
back in one place. To avoid running out of disk space, you can place the WAL files or individual
databases in other locations while creating them. See the initdb documentati@eaiah 5.5or

more information.

Tip: Some file systems perform badly when they are almost full, so do not wait until the disk is full
to take action.

91

Chapter 12. Write-Ahead Logging (WAL)

Author: Vadim Mikheev and Oliver Elphick

12.1. General Description

Write Ahead LoggingdWAL) is a standard approach to transaction logging. Its detailed description
may be found in most (if not all) books about transaction processing. Briefly, WAL'’s central concept

is that changes to data files (where tables and indexes reside) must be written only after those changes
have been logged - that is, when log records have been flushed to permanent storage. When we follow
this procedure, we do not need to flush data pages to disk on every transaction commit, because we
know that in the event of a crash we will be able to recover the database using the log: any changes
that have not been applied to the data pages will first be redone from the log records (this is roll-
forward recovery, also known as REDO) and then changes made by uncommitted transactions will be
removed from the data pages (roll-backward recovery - UNDO).

12.1.1. Immediate Benefits of WAL

The first obvious benefit of using WAL is a significantly reduced number of disk writes, since only
the log file needs to be flushed to disk at the time of transaction commit; in multiuser environments,
commits of many transactions may be accomplished with a siaghie() of the log file. Further-

more, the log file is written sequentially, and so the cost of syncing the log is much less than the cost
of flushing the data pages.

The next benefit is consistency of the data pages. The truth is that, before WAL, PostgreSQL was
never able to guarantee consistency in the case of a crash. Before WAL, any crash during writing
could resultin:

1.index tuples pointing to nonexistent table rows
2.index tuples lost in split operations
3. totally corrupted table or index page content, because of partially written data pages

Problems with indexes (problems 1 and 2) could possibly have been fixed by additipmn)
calls, but it is not obvious how to handle the last case without WAL; WAL saves the entire data page
content in the log if that is required to ensure page consistency for after-crash recovery.

12.1.2. Future Benefits

UNDO operation is not implemented. This means that changes made by aborted transactions will still
occupy disk space and that we still need a permapgriiog file to hold the status of transactions,

since we are not able to re-use transaction identifiers. Once UNDO is implemgmteldg will no

longer be required to be permanent; it will be possible to renpgvelog at shutdown. (However,

the urgency of this concern has decreased greatly with the adoption of a segmented storage method
for pg_clog --- it is no longer necessary to keep @gl clog entries around forever.)

With UNDO, it will also be possible to implemesavepointso allow partial rollback of invalid trans-
action operations (parser errors caused by mistyping commands, insertion of duplicate primary/unique

92

Chapter 12. Write-Ahead Logging (WAL)

keys and so on) with the ability to continue or commit valid operations made by the transaction before
the error. At present, any error will invalidate the whole transaction and require a transaction abort.

WAL offers the opportunity for a new method for database on-line backup and restore (BAR). To use
this method, one would have to make periodic saves of data files to another disk, a tape or another
host and also archive the WAL log files. The database file copy and the archived log files could be
used to restore just as if one were restoring after a crash. Each time a new database file copy was
made the old log files could be removed. Implementing this facility will require the logging of data
file and index creation and deletion; it will also require development of a method for copying the data
files (operating system copy commands are not suitable).

A difficulty standing in the way of realizing these benefits is that they require saving WAL entries for
considerable periods of time (eg, as long as the longest possible transaction if transaction UNDO is
wanted). The present WAL format is extremely bulky since it includes many disk page snapshots. This
is not a serious concern at present, since the entries only need to be kept for one or two checkpoint
intervals; but to achieve these future benefits some sort of compressed WAL format will be needed.

12.2. Implementation

WAL is automatically enabled from release 7.1 onwards. No action is required from the administrator
with the exception of ensuring that the additional disk-space requirements of the WAL logs are met,
and that any necessary tuning is done Seetion 12.3

WAL logs are stored in the directo®PGDAT#Apg_xlog , as a set of segment files, each 16 MB in size.
Each segment is divided into 8 kB pages. The log record headers are descrbeskiixlog.h ;

record content is dependent on the type of event that is being logged. Segment files are given ever-
increasing numbers as hames, startingd@d000000000000 . The numbers do not wrap, at present,

but it should take a very long time to exhaust the available stock of numbers.

The WAL buffers and control structure are in shared memory, and are handled by the backends; they
are protected by lightweight locks. The demand on shared memory is dependent on the number of
buffers. The default size of the WAL buffers is 8 buffers of 8 kB each, or 64 kB total.

It is of advantage if the log is located on another disk than the main database files. This may be
achieved by moving the directonyg_xlog , to another location (while the postmaster is shut down,
of course) and creating a symbolic link from the original locatioBRGDAT Ao the new location.

The aim of WAL, to ensure that the log is written before database records are altered, may be sub-
verted by disk drives that falsely report a successful write to the kernel, when, in fact, they have only

cached the data and not yet stored it on the disk. A power failure in such a situation may still lead

to irrecoverable data corruption. Administrators should try to ensure that disks holding PostgreSQL's

log files do not make such false reports.

12.2.1. Database Recovery with WAL

After a checkpoint has been made and the log flushed, the checkpoint’s position is saved in the file
pg_control . Therefore, when recovery is to be done, the backend first fgadentrol and then

the checkpoint record; then it performs the REDO operation by scanning forward from the log position
indicated in the checkpoint record. Because the entire content of data pages is saved in the log on the
first page modification after a checkpoint, all pages changed since the checkpoint will be restored to
a consistent state.

Usingpg_control to get the checkpoint position speeds up the recovery process, but to handle possi-
ble corruption obg_control , we should actually implement the reading of existing log segments in

93

Chapter 12. Write-Ahead Logging (WAL)

reverse order -- newest to oldest -- in order to find the last checkpoint. This has not been implemented,
yet.

12.3. WAL Configuration

There are several WAL-related parameters that affect database performance. This section explains
their use. ConsulBection 3.4or details about setting configuration parameters.

Checkpointgre points in the sequence of transactions at which it is guaranteed that the data files have
been updated with all information logged before the checkpoint. At checkpoint time, all dirty data
pages are flushed to disk and a special checkpoint record is written to the log file. As result, in the
event of a crash, the recoverer knows from what record in the log (known as the redo record) it should
start the REDO operation, since any changes made to data files before that record are already on disk.
After a checkpoint has been made, any log segments written before the undo records are no longer
needed and can be recycled or removed. (When WAL-based BAR is implemented, the log segments
would be archived before being recycled or removed.)

The postmaster spawns a special backend process every so often to create the next checkpoint. A
checkpoint is created eveGHECKPOINT_SEGMENT®&) segments, or evelgHECKPOINT_TIMEOUT
seconds, whichever comes first. The default settings are 3 segments and 300 seconds respectively. It
is also possible to force a checkpoint by using the SQL commECKPOINT

ReducingCHECKPOINT_SEGMENTshd/or CHECKPOINT_TIMEOUTauses checkpoints to be done
more often. This allows faster after-crash recovery (since less work will need to be redone). However,
one must balance this against the increased cost of flushing dirty data pages more often. In addition,
to ensure data page consistency, the first modification of a data page after each checkpoint results in
logging the entire page content. Thus a smaller checkpoint interval increases the volume of output to
the log, partially negating the goal of using a smaller interval, and in any case causing more disk I/O.

There will be at least one 16MB segment file, and will normally not be more tharCRBECK-
POINT_SEGMENTS 1 files. You can use this to estimate space requirements for WAL. Ordinarily,
when old log segment files are no longer needed, they are recycled (renamed to become the next
sequential future segments). If, due to a short-term peak of log output rate, there are more than 2
* CHECKPOINT_SEGMENTRS1 segment files, the unneeded segment files will be deleted instead of
recycled until the system gets back under this limit.

There are two commonly used WAL functionsiginsert andLogFlush . Loginsert is used to

place a new record into the WAL buffers in shared memory. If there is no space for the new record,
Loginsert will have to write (move to kernel cache) a few filled WAL buffers. This is undesirable
becausé.oglinsert is used on every database low level modification (for example, tuple insertion)

at a time when an exclusive lock is held on affected data pages, so the operation needs to be as fast
as possible. What is worse, writing WAL buffers may also force the creation of a new log segment,
which takes even more time. Normally, WAL buffers should be written and flushed_byFush

request, which is made, for the most part, at transaction commit time to ensure that transaction records
are flushed to permanent storage. On systems with high log outgfiush requests may not occur

often enough to prevent WAL buffers being written lyginsert . On such systems one should in-
crease the number of WAL buffers by modifying thestgresgl.conf WAL_BUFFERS parameter.

The default number of WAL buffers is 8. Increasing this value will correspondingly increase shared
memory usage.

TheCOMMIT_DELAYarameter defines for how many microseconds the backend will sleep after writ-
ing a commit record to the log wittoginsert but before performing BogFlush . This delay allows

other backends to add their commit records to the log so as to have all of them flushed with a single log
sync. No sleep will occur ifsync is not enabled or if fewer thabOMMIT_SIBLINGSother backends

94

Chapter 12. Write-Ahead Logging (WAL)

are not currently in active transactions; this avoids sleeping when it's unlikely that any other backend
will commit soon. Note that on most platforms, the resolution of a sleep request is ten milliseconds,
so that any honzerGOMMIT_DELAXetting between 1 and 10000 microseconds will have the same
effect. Good values for these parameters are not yet clear; experimentation is encouraged.

The WAL_SYNC_METHQiarameter determines how PostgreSQL will ask the kernel to force WAL
updates out to disk. All the options should be the same as far as reliability goes, but it's quite platform-
specific which one will be the fastest. Note that this parameter is irrelevastifiChas been turned

off.

Setting theWAL_DEBU@arameter to any nonzero value will result in eacbinsert andLogFlush
WAL call being logged to standard error. At present, it makes no difference what the nonzero value
is. This option may be replaced by a more general mechanism in the future.

95

Chapter 13. Regression Tests

13.1. Introduction

The regression tests are a comprehensive set of tests for the SQL implementation in PostgreSQL. They
test standard SQL operations as well as the extended capabilities of PostgreSQL. The test suite was
originally developed by Jolly Chen and Andrew Yu, and was extensively revised and repackaged by
Marc Fournier and Thomas Lockhart. From PostgreSQL 6.1 onward the regression tests are current
for every official release.

13.2. Running the Tests

The regression test can be run against an already installed and running server, or using a temporary in-
stallation within the build tree. Furthermore, there is a “parallel” and a “sequential” mode for running
the tests. The sequential method runs each test script in turn, whereas the parallel method starts up
multiple server processes to run groups of tests in parallel. Parallel testing gives confidence that inter-
process communication and locking are working correctly. For historical reasons, the sequential test
is usually run against an existing installation and the parallel method against a temporary installation,
but there are no technical reasons for this.

To run the regression tests after building but before installation, type

$ gmake check

in the top-level directory. (Or you can changesto/test/regress and run the command there.)

This will first build several auxiliary files, such as platform-dependent “expected” files and some
sample user-defined trigger functions, and then run the test driver script. At the end you should see
something like

All 77 tests passed.

or otherwise a note about what tests failed. Seetion 13.3elow for more.

Note: Because this test method runs a temporary server, it will not work when you are the root
user (the server will not start as root). If you already did the build as root, you do not have to start
all over. Instead, make the regression test directory writable by some other user, log in as that
user, and restart the tests. For example,

root# chmod -R a+w src/test/regress
root# chmod -R at+w contrib/spi
root# Su - joeuser

joeuser$ cd top-level build directory
joeuser$ gmake check

(The only possible “security risk” here is that other users might be able to alter the regression test
results behind your back. Use common sense when managing user permissions.)

Alternatively, run the tests after installation.

96

Chapter 13. Regression Tests

Tip: The parallel regression test starts quite a few processes under your user ID. Presently, the
maximum concurrency is twenty parallel test scripts, which means sixty processes --- there’s a
backend, a psql, and usually a shell parent process for the psql for each test script. So if your
system enforces a per-user limit on the number of processes, make sure this limit is at least
seventy-five or so, else you may get random-seeming failures in the parallel test. If you are not in
a position to raise the limit, you can edit the file src/test/regress/parallel_schedule to split
the larger concurrent test sets into more manageable groups.

Tip: On some systems, the default Bourne-compatible shell (/bin/sh) gets confused when it has
to manage too many child processes in parallel. This may cause the parallel test run to lock up or
fail. In such cases, specify a different Bourne-compatible shell on the command line, for example:

$ gmake SHELL=/bin/ksh check

If no non-broken shell is available, you can alter the parallel test schedule as suggested above.

To run the tests after installation (s€bapter }, initialize a data area and start the server, as explained
in Chapter 3then type

$ gmake installcheck

The tests will expect to contact the server at the local host and the default port number, unless directed
otherwise byPGHOSTNdPGPOR®ENvironment variables.

13.3. Test Evaluation

Some properly installed and fully functional PostgreSQL installations can “fail” some of these regres-
sion tests due to platform-specific artifacts such as varying floating-point representation and time zone
support. The tests are currently evaluated using a simple diff comparison against the outputs generated
on areference system, so the results are sensitive to small system differences. When a test is reported
as “failed”, always examine the differences between expected and actual results; you may well find
that the differences are not significant. Nonetheless, we still strive to maintain accurate reference files
across all supported platforms, so it can be expected that all tests pass.

The actual outputs of the regression tests are in files irsttigest/regress/results direc-

tory. The test script uses diff to compare each output file against the reference outputs stored in
the srcltest/regress/expected directory. Any differences are saved for your inspection in
src/test/regress/regression.diffs . (Or you can run diff yourself, if you prefer.)

13.3.1. Error message differences

Some of the regression tests involve intentional invalid input values. Error messages can come from
either the PostgreSQL code or from the host platform system routines. In the latter case, the messages
may vary between platforms, but should reflect similar information. These differences in messages
will result in a “failed” regression test that can be validated by inspection.

97

Chapter 13. Regression Tests

13.3.2. Locale differences

If you run the tests against an already-installed server that was initialized with a collation order locale
different than C then there may be differences due to sort order and follow-up failures. The regression
test suite is set up to handle this problem by providing alternative result files that together are known
to handle a large number of locales. For example, for the “char” test, the expectebafikut

handles th€ andPOSIX locales, and the filehar_1.out handles many other locales. The regression

test driver will automatically pick the best file to match against when checking for success and for
computing failure differences. (This means that the regression tests cannot detect whether the results
are appropriate for the configured locale. The tests will simply pick the one result file that works best.)

If for some reason the existing expected files do not cover some locale, you can add a new file. The
naming scheme igestname _digit .out . The actual digit is not significant. Remember that the
regression test driver will consider all such files to be equally valid test results. If the test results are
platform-dependent, the technique describe8éstion 13.4hould be used instead.

13.3.3. Date and time differences

Some of the queries in therology test will fail if you run the test on the day of a daylight-saving

time changeover, or the day before or after one. These queries assume that the intervals between
midnight yesterday, midnight today and midnight tomorrow are exactly twenty-four hours -- which is
wrong if daylight-saving time went into or out of effect meanwhile.

Most of the date and time results are dependent on the time zone environment. The reference files are
generated for time zoreST8PDT(Berkeley, California) and there will be apparent failures if the tests

are not run with that time zone setting. The regression test driver sets environment e@azte
PST8PDT, which normally ensures proper results. However, your system must provide library support
for the PST8PDTtime zone, or the time zone-dependent tests will fail. To verify that your machine
does have this support, type the following:

$ env TZ=PST8PDT date

The command above should have returned the current system time RSU8®DTtime zone. If
the PST8PDTdatabase is not available, then your system may have returned the time in GMT. If the
PST8PDTtime zone is not available, you can set the time zone rules explicitly:

PGTZ="PST8PDT7,M04.01.0,M10.05.03’; export PGTZ

There appear to be some systems that do not accept the recommended syntax for explicitly setting the
local time zone rules; you may need to use a diffeREBtZsetting on such machines.

Some systems using older time zone libraries fail to apply daylight-saving corrections to dates be-
fore 1970, causing pre-1970 PDT times to be displayed in PST instead. This will result in localized
differences in the test results.

13.3.4. Floating-point differences

Some of the tests involve computing 64-hib(ble precision) numbers from table columns.
Differences in results involving mathematical functionsiofible precision columns have been
observed. The float8 and geometry tests are particularly prone to small differences across platforms, or
even with different compiler optimization options. Human eyeball comparison is needed to determine
the real significance of these differences which are usually 10 places to the right of the decimal point.

98

Chapter 13. Regression Tests

Some systems signal errors fragrow() andexp() differently from the mechanism expected by the
current PostgreSQL code.

13.3.5. Polygon differences

Several of the tests involve operations on geographic data about the Oakland/Berkeley, California
street map. The map data is expressed as polygons whose vertices are represented asises of
precision numbers (decimal latitude and longitude). Initially, some tables are created and loaded
with geographic data, then some views are created that join two tables using the polygon intersection
operator ##), then a select is done on the view.

When comparing the results from different platforms, differences occur in the 2nd or 3rd place to the
right of the decimal point. The SQL statements where these problems occur are the following:

SELECT * from street;
SELECT * from iexit;

13.3.6. Row ordering differences

You might see differences in which the same rows are output in a different order than what appears
in the expected file. In most cases this is not, strictly speaking, a bug. Most of the regression test
scripts are not so pedantic as to use an ORDER BY for every single SELECT, and so their result row
orderings are not well-defined according to the letter of the SQL specification. In practice, since we
are looking at the same queries being executed on the same data by the same software, we usually
get the same result ordering on all platforms, and so the lack of ORDER BY isn’t a problem. Some
gueries do exhibit cross-platform ordering differences, however. (Ordering differences can also be
triggered by non-C locale settings.)

Therefore, if you see an ordering difference, it's not something to worry about, unless the query does
have an ORDER BY that your result is violating. But please report it anyway, so that we can add an
ORDER BY to that particular query and thereby eliminate the bogus “failure” in future releases.

You might wonder why we don'’t order all the regress test queries explicitly to get rid of this issue
once and for all. The reason is that that would make the regression tests less useful, not more, since
they'd tend to exercise query plan types that produce ordered results to the exclusion of those that
don't.

13.3.7. The “random” test

There is at least one case in the “random” test script that is intended to produce random results. This
causes random to fail the regression test once in a while (perhaps once in every five to ten trials).

Typing
diff results/random.out expected/random.out

should produce only one or a few lines of differences. You need not worry unless the random test
always fails in repeated attempts. (On the other hand, if the random testésreported to fail even
in many trials of the regression tests, you probaibiguldworry.)

99

Chapter 13. Regression Tests

13.4. Platform-specific comparison files

Since some of the tests inherently produce platform-specific results, we have provided a way to supply
platform-specific result comparison files. Frequently, the same variation applies to multiple platforms;
rather than supplying a separate comparison file for every platform, there is a mapping file that defines
which comparison file to use. So, to eliminate bogus test “failures” for a particular platform, you must
choose or make a variant result file, and then add a line to the mapping file, whishlisap

Each line in the mapping file is of the form
testname/platformpattern=comparisonfilename

The test name is just the name of the particular regression test module. The platform pattern is a pattern
in the style of expr (that is, a regular expression with an imphicinchor at the start). It is matched
against the platform name as printed dmnfig.guess followed by :gcc or :cc , depending on
whether you use the GNU compiler or the system’s native compiler (on systems where there is a
difference). The comparison file name is the name of the substitute result comparison file.

For example: some systems using older time zone libraries fail to apply daylight-saving corrections
to dates before 1970, causing pre-1970 PDT times to be displayed in PST instead. This causes a
few differences in théorology regression test. Therefore, we provide a variant comparison file,
horology-no-DST-before-1970.out , which includes the results to be expected on these systems.

To silence the bogus “failure” message on HPPA platfomessyitmap includes

horology/hppa=horology-no-DST-before-1970

which will trigger on any machine for which the outputaainfig.guess begins with ‘hppa”. Other
lines inresultmap select the variant comparison file for other platforms where it's appropriate.

100

Appendix A. Release Notes

A.1l. Release 7.3.2

Release date: 2003-02-04

This has a variety of fixes from 7.3.1.

A.1.1. Migration to version 7.3.2

A dump/restore isot required for those running 7.3.*.

A.1.2. Changes

Restore creation of OID column in CREATE TABLE AS / SELECT INTO

Fix pg_dump core dump when dumping views having comments

Dump DEFERRABLE/INITIALLY DEFERRED constraints properly

Fix UPDATE when child table’s column numbering differs from parent
Increase default value of max_fsm_relations

Fix problem when fetching backwards in a cursor for a single-row query
Make backward fetch work properly with cursor on SELECT DISTINCT query
Fix problems with loading pg_dump files containing contrib/lo usage

Fix problem with all-numeric user names

Fix possible memory leak and core dump during disconnect in libpgtcl

Make plpython’s spi_execute command handle nulls properly (Andrew Bosma)
Adjust plpython error reporting so that its regression test passes again

Work with bison 1.875

Handle mixed-case names properly in plpgsql's %type (Neil)

Fix core dump in pltcl when executing a query rewritten by a rule

Repair array subscript overruns (per report from Yichen Xie)

Reduce MAX_TIME_PRECISION from 13 to 10 in floating-point case
Correctly case-fold variable names in per-database and per-user settings

Fix coredump in plpgsqgl's RETURN NEXT when SELECT into record returns no rows
Fix outdated use of pg_type.typprtlen in python client interface

Correctly handle fractional seconds in timestamps in JDBC driver

Improve performance of getimportedKeys() in JDBC

Make shared-library symlinks work standardly on HPUX (Giles)

Repair inconsistent rounding behavior for timestamp, time, interval

SSL negotiation fixes (Nathan Mueller)

Make libpq's ~/.pgpass feature work when connecting with PQconnectDB
Update my2pg, ora2pg

Translation updates

Add casts between types lo and oid in contrib/lo

fastpath code now checks for privilege to call function

101

Appendix A. Release Notes

A.2. Release 7.3.1

Release date: 2002-12-18

This has a variety of fixes from 7.3.

A.2.1. Migration to version 7.3.1

A dump/restore isot required for those running 7.3. However, it should be noted that the main
PostgreSQL interface library, libpg, has a new major version number for this release, which will
require that client code using libpq be relinked.

A.2.2. Changes

Fix a core dump of COPY TO when client/server encodings don’t match
(Tom)

Allow pg_dump to work with pre-7.2 servers (Philip)

contrib/adddepend fixes (Tom)

Fix problem with deletion of per-user/per-database config settings
(Tom)

contrib/vacuumlo fix (Tom)

Allow 'password’ encryption even when pg_shadow contains MD5 passwords
(Bruce)

contrib/dbmirror fix (Steven Singer)

Optimizer fixes (Tom)

contrib/tsearch fixes (Teodor Sigaev, Magnus)

Fix encoding name resolution to work in Turkish locale (Nicolai Tufar)

Increment libpq library’s major version number (Bruce)

pg_hba.conf error reporting fixes (Bruce, Neil)

Add SCO OpenServer 5.0.4 as a supported platform (Bruce)

Prevent EXPLAIN from crashing server (Tom)

SSL fixes (Nathan Mueller)

Prevent composite column creation via ALTER TABLE (Tom)

Fix conversion between LATIN9 and UNICODE (Peter)

Translation updates

A.3. Release 7.3

Release date: 2002-11-27

102

Appendix A. Release Notes

A.3.1. Overview

Major changes in this release:

Schemas

Schemas allow users to create objects in separate namespaces, so two people or applications can
have tables with the same name. There is also a public schema for shared tables. Table/index
creation can be restricted by removing permissions on the public schema.

Drop Column
PostgreSQL now supports taeTER TABLE ... DROP COLUMNunctionality.
Table Functions

Functions returning multiple rows and/or multiple columns are now much easier to use than
before. You can call such a “table function” in tBELECT FROMIause, treating its output like a
table. Also, PL/pgSQL functions can now return sets.

Prepared Queries
PostgreSQL now supports prepared queries, for improved performance.
Dependency Tracking

PostgreSQL now records object dependencies, which allows improvements in manpR@as.
statements now take eitheASCADBr RESTRICTto control whether dependent objects are also
dropped.

Privileges

Functions and procedural languages now have privileges, and functions can be defined to run
with the privileges of their creator.

Internationalization

Both multibyte and locale support are now always enabled.
Logging

A variety of logging options have been enhanced.
Interfaces

A large number of interfaces have been moved to http://gborg.postgresql.org where they can be
developed and released independently.

Functions/Identifiers

By default, functions can now take up to 32 parameters, and identifiers can be up to 63 bytes
long. Also,OPAQUEHS now deprecated: there are specific “pseudo-datatypes” to represent each
of the former meanings @PAQUEN function argument and result types.

A.3.2. Migration to version 7.3

A dump/restore using pg_dump is required for those wishing to migrate data from any
previous release. If your application examines the system catalogs, additional changes

103

Appendix A. Release Notes

will be required due to the introduction of schemas in 7.3; for more information, see:
http://www.ca.postgresqgl.org/docs/momjian/upgrade_tips, 7.3

Observe the following incompatibilities:

« Pre-6.3 clients are no longer supported.

+ pg_hba.conf now has a column for the user name and additional features. Existing files need to
be adjusted.

- Severabostgresgl.conf logging parameters have been renamed.
« LIMIT ## has been disabled; useMIT # OFFSET #.

« INSERT statements with column lists must specify a value for each specified column. For exam-
ple,INSERT INTO tab (coll, col2) VALUES (vall’) is now invalid. It's still allowed to
supply fewer columns than expected if tINSERT does not have a column list.

- serial columns are no longer automaticalUNIQUE thus, an index will not automatically be
created.

- A SETcommand inside an aborted transaction is now rolled back.

« COPYno longer considers missing trailing columns to be null. All columns need to be specified.
(However, one may achieve a similar effect by specifying a column list icteycommand.)

« The data typeimestamp is now equivalent tdimestamp without time zone , instead of
timestamp with time zone

- Pre-7.3 databases loaded into 7.3 will not have the new object dependengi@safor columns,
unigue constraints, and foreign keys. See the direatomyib/adddepend/ for a detailed de-
scription and a script that will add such dependencies.

« An empty string () is no longer allowed as the input into an integer field. Formerly, it was silently
interpreted as 0.

A.3.3. Changes

A.3.3.1. Server Operation

Add pg_locks view to show locks (Neil)

Security fixes for password negotiation memory allocation (Neil)

Remove support for version 0 FE/BE protocol (PostgreSQL 6.2 and
earlier) (Tom)

Reserve the last few backend slots for superusers, add parameter
superuser_reserved_connections to control this (Nigel J. Andrews)

A.3.3.2. Performance

Improve startup by calling localtime() only once (Tom)

Cache system catalog information in flat files for faster startup
(Tom)

Improve caching of index information (Tom)

2. http://www.ca.postgresql.org/docs/momijian/upgrade_tips_7.3

104

Appendix A. Release Notes

Optimizer improvements (Tom, Fernando Nasser)

Catalog caches now store failed lookups (Tom)

Hash function improvements (Neil)

Improve performance of query tokenization and network handling (Peter)

Speed improvement for large object restore (Mario Weilguni)

Mark expired index entries on first lookup, saving later heap fetches
(Tom)

Avoid excessive NULL bitmap padding (Manfred Koizar)

Add BSD-licensed gsort() for Solaris, for performance (Bruce)

Reduce per-row overhead by four bytes (Manfred Koizar)

Fix GEQO optimizer bug (Neil Conway)

Make WITHOUT OID actually save four bytes per row (Manfred Koizar)

Add default_statistics_target variable to specify ANALYZE buckets
(Neil)

Use local buffer cache for temporary tables so no WAL overhead (Tom)

Improve free space map performance on large tables (Stephen Marshall,
Tom)

Improved WAL write concurrency (Tom)

A.3.3.3. Privileges

Add privileges on functions and procedural languages (Peter)

Add OWNER to CREATE DATABASE so superusers can create databases
on behalf of unprivileged users. (Gavin Sherry, Tom)

Add new object permission bits EXECUTE and USAGE (Tom)

Add SET SESSION AUTHORIZATION DEFAULT and RESET SESSION AUTHORIZATION
(Tom)

Allow functions to be executed with the privilege of the function
owner (Peter)

A.3.3.4. Server Configuration

Server log messages now tagged with LOG, not DEBUG (Bruce)

Add user column to pg_hba.conf (Bruce)

Have log_connections output two lines in log file (Tom)

Remove debug_level from postgresqgl.conf, now server_min_messages
(Bruce)

New ALTER DATABASE/USER ... SET command for per-user/database

initialization (Peter)

New parameters server_min_messages and client_min_messages to
control which messages are sent to the server logs or client
applications (Bruce)

Allow pg_hba.conf to specify lists of users/databases separated by
commas, group names prepended with +, and file names prepended
with @ (Bruce)

Remove secondary password file capability and pg_password utility
(Bruce)

Add variable db_user_namespace for database-local user names (Bruce)

SSL improvements (Bear Giles)

105

Appendix A. Release Notes

Make encryption of stored passwords the default (Bruce)

Allow pg_statistics to be reset by calling pg_stat_reset()
(Christopher)

Add log_duration parameter (Bruce)

Rename debug_print_query to log_statement (Bruce)

Rename show_query_stats to show_statement_stats (Bruce)

Add param log_min_error_statement to print commands to logs on error
(Gavin)

A.3.3.5. Queries

Make cursors insensitive, meaning their contents do not change (Tom)

Disable LIMIT #,# syntax; now only LIMIT # OFFSET # supported (Bruce)

Increase identifier length to 63 (Neil, Bruce)

UNION fixes for merging >= 3 columns of different lengths (Tom)

Add DEFAULT keyword to INSERT, e.g., INSERT ... (..., DEFAULT, ...)
(Rod)

Allow views to have default values using ALTER COLUMN ... SET DEFAULT
(Neil)

Fail on INSERTSs with column lists that don’t supply all column
values, e.g., INSERT INTO tab (coll, col2) VALUES (‘vall’); (Rod)

Fix for join aliases (Tom)

Fix for FULL OUTER JOINs (Tom)

Improve reporting of invalid identifier and location (Tom, Gavin)

Fix OPEN cursor(args) (Tom)

Allow 'ctid’ to be used in a view and currtid(viewname) (Hiroshi)

Fix for CREATE TABLE AS with UNION (Tom)

SQL99 syntax improvements (Thomas)

Add statement_timeout variable to cancel queries (Bruce)

Allow prepared queries with PREPARE/EXECUTE (Neil)

Allow FOR UPDATE to appear after LIMIT/OFFSET (Bruce)

Add variable autocommit (Tom, David Van Wie)

A.3.3.6. Object Manipulation

Make equals signs optional in CREATE DATABASE (Gavin Sherry)

Make ALTER TABLE OWNER change index ownership too (Neil)

New ALTER TABLE tabname ALTER COLUMN colname SET STORAGE controls
TOAST storage, compression (John Gray)

Add schema support, CREATE/DROP SCHEMA (Tom)

Create schema for temporary tables (Tom)

Add variable search_path for schema search (Tom)

Add ALTER TABLE SET/DROP NOT NULL (Christopher)

New CREATE FUNCTION volatility levels (Tom)

Make rule names unique only per table (Tom)

Add 'ON tablename’ clause to DROP RULE and COMMENT ON RULE (Tom)

Add ALTER TRIGGER RENAME (Joe)

New current_schema() and current_schemas() inquiry functions (Tom)

Allow functions to return multiple rows (table functions) (Joe)

106

Appendix A. Release Notes

Make WITH optional in CREATE DATABASE, for consistency (Bruce)

Add object dependency tracking (Rod, Tom)

Add RESTRICT/CASCADE to DROP commands (Rod)

Add ALTER TABLE DROP for non-CHECK CONSTRAINT (Rod)

Autodestroy sequence on DROP of table with SERIAL (Rod)

Prevent column dropping if column is used by foreign key (Rod)

Automatically drop constraints/functions when object is dropped (Rod)

Add CREATE/DROP OPERATOR CLASS (Bill Studenmund, Tom)

Add ALTER TABLE DROP COLUMN (Christopher, Tom, Hiroshi)

Prevent inherited columns from being removed or renamed (Alvaro
Herrera)

Fix foreign key constraints to not error on intermediate database
states (Stephan)

Propagate column or table renaming to foreign key constraints

Add CREATE OR REPLACE VIEW (Gavin, Neil, Tom)

Add CREATE OR REPLACE RULE (Gavin, Neil, Tom)

Have rules execute alphabetically, returning more predictable values
(Tom)

Triggers are now fired in alphabetical order (Tom)

Add /contrib/adddepend to handle pre-7.3 object dependencies (Rod)

Allow better casting when inserting/updating values (Tom)

A.3.3.7. Utility Commands

Have COPY TO output embedded carriage returns and newlines as \r and
\n (Tom)

Allow DELIMITER in COPY FROM to be 8-bit clean (Tatsuo)

Make pg_dump use ALTER TABLE ADD PRIMARY KEY, for performance (Neil)

Disable brackets in multistatement rules (Bruce)

Disable VACUUM from being called inside a function (Bruce)

Allow dropdb and other scripts to use identifiers with spaces (Bruce)

Restrict database comment changes to the current database

Allow comments on operators, independent of the underlying function
(Rod)

Rollback SET commands in aborted transactions (Tom)

EXPLAIN now outputs as a query (Tom)

Display condition expressions and sort keys in EXPLAIN (Tom)

Add 'SET LOCAL var = value’ to set configuration variables for a
single transaction (Tom)

Allow ANALYZE to run in a transaction (Bruce)

Improve COPY syntax using new WITH clauses, keep backward
compatibility (Bruce)

Fix pg_dump to consistently output tags in non-ASCII dumps (Bruce)

Make foreign key constraints clearer in dump file (Rod)

Add COMMENT ON CONSTRAINT (Rod)

Allow COPY TO/FROM to specify column names (Brent Verner)

Dump UNIQUE and PRIMARY KEY contraints as ALTER TABLE (Rod)

Have SHOW output a query result (Joe)

Generate failure on short COPY lines rather than pad NULLs (Neil)

Fix CLUSTER to preserve all table attributes (Alvaro Herrera)

107

Appendix A. Release Notes

New pg_settings table to view/modify GUC settings (Joe)

Add smart quoting, portability improvements to pg_dump output (Peter)

Dump serial columns out as SERIAL (Tom)

Enable large file support, >2G for pg_dump (Peter, Philip Warner,
Bruce)

Disallow TRUNCATE on tables that are involved in referential
constraints (Rod)

Have TRUNCATE also auto-truncate the toast table of the relation (Tom)

Add clusterdb utility that will auto-cluster an entire database
based on previous CLUSTER operations (Alvaro Herrera)

Overhaul pg_dumpall (Peter)

Allow REINDEX of TOAST tables (Tom)

Implemented START TRANSACTION, per SQL99 (Neil)

Fix rare index corruption when a page split affects bulk delete (Tom)

Fix ALTER TABLE ... ADD COLUMN for inheritance (Alvaro Herrera)

A.3.3.8. Data Types and Functions

Fix factorial(0) to return 1 (Bruce)

Date/time/timezone improvements (Thomas)

Fix for array slice extraction (Tom)

Fix extract/date_part to report proper microseconds for timestamp
(Tatsuo)

Allow text_substr() and bytea_substr() to read TOAST values more
efficiently (John Gray)

Add domain support (Rod)

Make WITHOUT TIME ZONE the default for TIMESTAMP and TIME data types
(Thomas)

Allow alternate storage scheme of 64-bit integers for date/time types
using --enable-integer-datetimes in configure (Thomas)

Make timezone(timestamptz) return timestamp rather than a string
(Thomas)

Allow fractional seconds in date/time types for dates prior to 1BC
(Thomas)

Limit timestamp data types to 6 decimal places of precision (Thomas)

Change timezone conversion functions from timetz() to timezone()
(Thomas)

Add configuration variables datestyle and timezone (Tom)

Add OVERLAY(), which allows substitution of a substring in a string
(Thomas)

Add SIMILAR TO (Thomas, Tom)

Add regular expression SUBSTRING(string FROM pat FOR escape) (Thomas)

Add LOCALTIME and LOCALTIMESTAMP functions (Thomas)

Add named composite types using CREATE TYPE typename AS (column)
(Joe)

Allow composite type definition in the table alias clause (Joe)

Add new API to simplify creation of C language table functions (Joe)

Remove ODBC-compatible empty parentheses from calls to SQL99
functions for which these parentheses do not match the standard
(Thomas)

108

Appendix A. Release Notes

Allow macaddr data type to accept 12 hex digits with no separators
(Mike Wyer)

Add CREATE/DROP CAST (Peter)

Add IS DISTINCT FROM operator (Thomas)

Add SQL99 TREAT() function, synonym for CAST() (Thomas)

Add pg_backend_pid() to output backend pid (Bruce)

Add IS OF /IS NOT OF type predicate (Thomas)

Allow bit string constants without fully-specified length (Thomas)

Allow conversion between 8-byte integers and bit strings (Thomas)

Implement hex literal conversion to bit string literal (Thomas)

Allow table functions to appear in the FROM clause (Joe)

Increase maximum number of function parameters to 32 (Bruce)

No longer automatically create index for SERIAL column (Tom)

Add current_database() (Rod)

Fix cash_words() to not overflow buffer (Tom)

Add functions replace(), split_part(), to_hex() (Joe)

Fix LIKE for bytea as a right-hand argument (Joe)

Prevent crashes caused by SELECT cash_out(2) (Tom)

Fix to_char(1,FM999.99) to return a period (Karel)

Fix trigger/type/language functions returning OPAQUE to return
proper type (Tom)

A.3.3.9. Internationalization

Add additional encodings: Korean (JOHAB), Thai (WIN874), Viethamese
(TCVN), Arabic (WIN1256), Simplified Chinese (GBK), Korean (UHC)
(Eiji Tokuya)

Enable locale support by default (Peter)

Add locale variables (Peter)

Escape byes >= 0x7f for multibyte in PQescapeBytea/PQunescapeBytea
(Tatsuo)

Add locale awareness to regular expression character classes

Enable multibyte support by default (Tatso)

Add GB18030 multibyte support (Bill Huang)

Add CREATE/DROP CONVERSION, allowing loadable encodings (Tatsuo,
Kaori)

Add pg_conversion table (Tatsuo)

Add SQL99 CONVERT() function (Tatsuo)

pg_dumpall, pg_controldata, and pg_resetxlog now national-language
aware (Peter)

New and updated translations

A.3.3.10. Server-side Languages

Allow recursive SQL function (Peter)

Change PL/Tcl build to use configured compiler and Makefile.shlib
(Peter)

Overhaul the PL/pgSQL FOUND variable to be more Oracle-compatible
(Neil, Tom)

109

Appendix A. Release Notes

Allow PL/pgSQL to handle quoted identifiers (Tom)
Allow set-returning PL/pgSQL functions (Neil)

Make PL/pgSQL schema-aware (Joe)

Remove some memory leaks (Nigel J. Andrews, Tom)

A.3.3.11. Psq|

Don’t lowercase psql \connect database name for 7.2.0 compatibility
(Tom)

Add psql \timing to time user queries (Greg Sabino Mullane)

Have psqgl \d show index information (Greg Sabino Mullane)

New psql \dD shows domains (Jonathan Eisler)

Allow psql to show rules on views (Paul ?)

Fix for psql variable substitution (Tom)

Allow psql \d to show temporary table structure (Tom)

Allow psql \d to show foreign keys (Rod)

Fix \? to honor \pset pager (Bruce)

Have psql reports its version number on startup (Tom)

Allow \copy to specify column names (Tom)

A.3.3.12. Libpq

Add $HOME/.pgpass to store host/user password combinations (Alvaro
Herrera)

Add PQunescapeBytea() function to libpg (Patrick Welche)

Fix for sending large queries over non-blocking connections
(Bernhard Herzog)

Fix for libpg using timers on Win9X (David Ford)

Allow libpq notify to handle servers with different-length
identifiers (Tom)

Add libpg PQescapeString() and PQescapeBytea() to Win32 (Bruce)

Fix for SSL with non-blocking connections (Jack Bates)

Add libpg connection timeout parameter (Denis A Ustimenko)

A.3.3.13. JDBC

Allow JDBC to compile with JDK 1.4 (Dave)

Add JDBC 3 support (Barry)

Allows JDBC to set loglevel by adding ?loglevel=X to the connection
URL (Barry)

Add Driver.info() message that prints out the version number (Barry)

Add updateable result sets (Raghu Nidagal, Dave)

Add support for callable statements (Paul Bethe)

Add query cancel capability

Add refresh row (Dave)

Fix MD5 encryption handling for multibyte servers (Jun Kawai)

Add support for prepared statements (Barry)

110

Appendix A. Release Notes

A.3.3.14. Miscellaneous Interfaces

Fixed ECPG bug concerning octal numbers in single quotes (Michael)

Move src/interfaces/libpgeasy to http://gborg.postgresql.org (Marc,
Bruce)

Improve Python interface (Elliot Lee, Andrew Johnson, Greg Copeland)

Add libpgtcl connection close event (Gerhard Hintermayer)

Move src/interfaces/libpg++ to http://gborg.postgresqgl.org (Marc,
Bruce)

Move src/interfaces/odbc to http://gborg.postgresql.org (Marc)

Move src/interfaces/libpgeasy to http://gborg.postgresql.org (Marc,
Bruce)

Move src/interfaces/perl5 to http://gborg.postgresqgl.org (Marc,
Bruce)

Remove src/bin/pgaccess from main tree, now at
http://www.pgaccess.org (Bruce)

Add pg_on_connection_loss command to libpgtcl (Gerhard Hintermayer,
Tom)

A.3.3.15. Source Code

Fix for parallel make (Peter)

AlIX fixes for linking Tcl (Andreas Zeugswetter)

Allow PL/Perl to build under Cygwin (Jason Tishler)

Improve MIPS compiles (Peter, Oliver Elphick)

Require Autoconf version 2.53 (Peter)

Require readline and zlib by default in configure (Peter)

Allow Solaris to use Intimate Shared Memory (ISM), for performance
(Scott Brunza, P.J. Josh Rovero)

Always enable syslog in compile, remove --enable-syslog option
(Tatsuo)

Always enable multibyte in compile, remove --enable-multibyte option
(Tatsuo)

Always enable locale in compile, remove --enable-locale option
(Peter)

Fix for Win9x DLL creation (Magnus Naeslund)

Fix for link() usage by WAL code on Win32, BeOS (Jason Tishler)

Add sys/types.h to c.h, remove from main files (Peter, Bruce)

Fix AIX hang on SMP machines (Tomoyuki Niijima)

AIX SMP hang fix (Tomoyuki Niijima)

Fix pre-1970 date handling on newer glibc libraries (Tom)

Fix PowerPC SMP locking (Tom)

Prevent gcc -ffast-math from being used (Peter, Tom)

Bison>= 1.50 now required for developer builds

Kerberos 5 support now builds with Heimdal (Peter)

Add appendix in the User’'s Guide which lists SQL features (Thomas)

Improve loadable module linking to use RTLD_NOW (Tom)

New error levels WARNING, INFO, LOG, DEBUG[1-5] (Bruce)

New src/port directory holds replaced libc functions (Peter, Bruce)

New pg_namespace system catalog for schemas (Tom)

Add pg_class.relnamespace for schemas (Tom)

111

Appendix A. Release Notes

Add pg_type.typnamespace for schemas (Tom)

Add pg_proc.pronamespace for schemas (Tom)

Restructure aggregates to have pg_proc entries (Tom)

System relations now have their own namespace, pg_* test not required
(Fernando Nasser)

Rename TOAST index names to be *_index rather than *_idx (Neil)

Add namespaces for operators, opclasses (Tom)

Add additional checks to server control file (Thomas)

New Polish FAQ (Marcin Mazurek)

Add Posix semaphore support (Tom)

Document need for reindex (Bruce)

Rename some internal identifiers to simplify Win32 compile (Jan,
Katherine Ward)

Add documentation on computing disk space (Bruce)

Remove KSQO from GUC (Bruce)

Fix memory leak in rtree (Kenneth Been)

Modify a few error messages for consistency (Bruce)

Remove unused system table columns (Peter)

Make system columns NOT NULL where appropriate (Tom)

Clean up use of sprintf in favor of snprintf() (Neil, Jukka Holappa)

Remove OPAQUE and create specific subtypes (Tom)

Cleanups in array internal handling (Joe, Tom)

Disallow pg_atoi(”) (Bruce)

Remove parameter wal_files because WAL files are now recycled (Bruce)

Add version numbers to heap pages (Tom)

A.3.3.16. Contrib

Allow inet arrays in /contrib/array (Neil)

Gist fixes (Teodor Sigaev, Neil)

Upgrade /contrib/mysq|l

Add /contrib/dbsize which shows table sizes without vacuum (Peter)

Add /contrib/intagg, integer aggregator routines (mlw)

Improve /contrib/oid2name (Neil, Bruce)

Improve /contrib/tsearch (Oleg, Teodor Sigaev)

Cleanups of /contrib/rserver (Alexey V. Borzov)

Update /contrib/oracle conversion utility (Gilles Darold)

Update /contrib/dblink (Joe)

Improve options supported by /contrib/vacuumlo (Mario Weilguni)

Improvements to /contrib/intarray (Oleg, Teodor Sigaev, Andrey
Oktyabrski)

Add /contrib/reindexdb utility (Shaun Thomas)

Add indexing to /contrib/isbn_issn (Dan Weston)

Add /contrib/dbmirror (Steven Singer)

Improve /contrib/pgbench (Neil)

Add /contrib/tablefunc table function examples (Joe)

Add /contrib/ltree data type for tree structures (Teodor Sigaev,
Oleg Bartunov)

Move /contrib/pg_controldata, pg_resetxlog into main tree (Bruce)

Fixes to /contrib/cube (Bruno Wolff)

112

Appendix A. Release Notes

Improve /contrib/fulltextindex (Christopher)

A.4. Release 7.2.4

Release date: 2003-01-30

This has a variety of fixes from 7.2.3, including fixes to prevent possible data loss.

A.4.1. Migration to version 7.2.4

A dump/restore iot required for those running 7.2.X.

A.4.2. Changes

Fix some additional cases of VACUUM "No one parent tuple was found" error
Prevent VACUUM from being called inside a function (Bruce)

Ensure pg_clog updates are sync'd to disk before marking checkpoint complete
Avoid integer overflow during large hash joins

Make GROUP commands work when pg_group.grolist is large enough to be toasted
Fix errors in datetime tables; some timezone names weren't being recognized

Fix integer overflows in circle_poly(), path_encode(), path_add() (Neil)

Repair long-standing logic errors in Iseg_eq(), Iseg_ne(), Iseg_center()

A.5. Release 7.2.3

Release date: 2002-10-01

This has a variety of fixes from 7.2.2, including fixes to prevent possible data loss.

A.5.1. Migration to version 7.2.3

A dump/restore isot required for those running 7.2.X.

A.5.2. Changes

Prevent possible compressed transaction log loss (Tom)

Prevent non-superuser from increasing most recent vacuum info (Tom)
Handle pre-1970 date values in newer versions of glibc (Tom)

Fix possible hang during server shutdown

113

Appendix A. Release Notes

Prevent spinlock hangs on SMP PPC machines (Tomoyuki Niijima)
Fix pg_dump to properly dump FULL JOIN USING (Tom)

A.6. Release 7.2.2

Release date: 2002-08-23

This has a variety of fixes from 7.2.1.

A.6.1. Migration to version 7.2.2

A dump/restore isot required for those running 7.2.X.

A.6.2. Changes

Allow EXECUTE of "CREATE TABLE AS ... SELECT" in PL/pgSQL (Tom)

Fix for compressed transaction log id wraparound (Tom)

Fix PQescapeBytea/PQunescapeBytea so that they handle bytes > 0x7f (Tatsuo)

Fix for psql and pg_dump crashing when invoked with non-existand long
options (Tatsuo)

Fix crash when invoking geometric operators (Tom)

Allow OPEN cursor(args) (Tom)

Fix for rtree_gist index build (Teodor)

Fix for dumping user-defined aggregates (Tom)

Contrib/intarray fixes (Oleg)

Fix for complex UNION/EXCEPT/INTERSECT queries using parens (Tom)

Fix to pg_convert (Tatsuo)

Fix for crash with long DATA strings (Thomes, Neil)

Fix for repeat(), Ipad(), rpad() and long strings (Neil)

A.7. Release 7.2.1

Release date: 2002-03-21

This has a variety of fixes from 7.2.

114

Appendix A. Release Notes

A.7.1. Migration to version 7.2.1

A dump/restore isiotrequired for those running 7.2.

A.7.2. Changes

Ensure that sequence counters do not go backwards after a crash (Tom)
Fix pgaccess kanji-coversion key binding (Tatsuo)
Optimizer improvements (Tom)
Cash I/O improvements (Tom)
New Russian FAQ
Compile fix for missing AuthBlockSig (Heiko)
Additional time zones and time zone fixes (Thomas)
Allow psql \connect to handle mixed case database and user names (Tom)
Return proper OID on command completion even with ON INSERT rules (Tom)
Allow COPY FROM to use 8-bit DELIMITERS (Tatsuo)
Fix bug in extract/date_part for milliseconds/microseconds (Tatsuo)
Improve handling of multiple UNIONSs with different lengths (Tom)
contrib/btree_gist improvements (Teodor Sigaev)
contrib/tsearch dictionary improvements, see README.tsearch for

an additional installation step (Thomas T. Thai, Teodor Sigaev)
Fix for array subscripts handling (Tom)
Allow EXECUTE of "CREATE TABLE AS ... SELECT" in PL/pgSQL (Tom)

A.8. Release 7.2

Release date: 2002-02-04

A.8.1. Overview

This release improves PostgreSQL for use in high-volume applications.

Major changes in this release:

VACUUM

Vacuuming no longer locks tables, thus allowing normal user access during the vacuum. A new
VACUUM FULcommand does old-style vacuum by locking the table and shrinking the on-disk
copy of the table.

Transactions
There is no longer a problem with installations that exceed four billion transactions.
OIDs

OIDs are now optional. Users can now create tables without OIDs for cases where OID usage is
excessive.

115

Appendix A. Release Notes

Optimizer

The system now computes histogram column statistics durig YZE allowing much better
optimizer choices.

Security

A new MD5 encryption option allows more secure storage and transfer of passwords. A new
Unix-domain socket authentication option is available on Linux and BSD systems.

Statistics

Administrators can use the new table access statistics module to get fine-grained information
about table and index usage.

Internationalization

Program and library messages can now be displayed in several languages.

A.8.2. Migration to version 7.2

A dump/restore usingg_dump is required for those wishing to migrate data from any previous re-
lease.

Observe the following incompatibilities:

« The semantics of theACUUMommand have changed in this release. You may wish to update your
maintenance procedures accordingly.

- In this release, comparisons usiagNULL will always return false (or NULL, more precisely).
Previous releases automatically transformed this synté& t8ULL. The old behavior can be re-
enabled using postgresgl.conf parameter.

« The pg_hba.conf and pg_ident.conf configuration is now only reloaded after receiving a
SIGHUP signal, not with each connection.

« The functionoctet_length() now returns the uncompressed data length.

« The date/time valugurrent’ is no longer available. You will need to rewrite your applications.

« The timestamp() , time() , and interval() functions are no longer available. Instead of
timestamp() , usetimestamp ’string’ or CAST

TheSELECT ... LIMIT ## syntax will be removed in the next release. You should change your
queries to use separate LIMIT and OFFSET clausesL.BT 10 OFFSET 20 .

A.8.3. Changes

A.8.3.1. Server Operation

Create temporary files in a separate directory (Bruce)

Delete orphaned temporary files on postmaster startup (Bruce)

Added unigue indexes to some system tables (Tom)

System table operator reorganization (Oleg Bartunov, Teodor Sigaev, Tom)

116

Appendix A. Release Notes

Renamed pg_log to pg_clog (Tom)

Enable SIGTERM, SIGQUIT to kill backends (Jan)

Removed compile-time limit on number of backends (Tom)
Better cleanup for semaphore resource failure (Tatsuo, Tom)
Allow safe transaction ID wraparound (Tom)

Removed OIDs from some system tables (Tom)

Removed "triggered data change violation" error check (Tom)
SPI portal creation of prepared/saved plans (Jan)

Allow SPI column functions to work for system columns (Tom)
Long value compression improvement (Tom)

Statistics collector for table, index access (Jan)

Truncate extra-long sequence names to a reasonable value (Tom)
Measure transaction times in milliseconds (Thomas)

Fix TID sequential scans (Hiroshi)

Superuser ID now fixed at 1 (Peter E)

New pg_ctl "reload" option (Tom)

A.8.3.2. Performance

Optimizer improvements (Tom)

New histogram column statistics for optimizer (Tom)

Reuse write-ahead log files rather than discarding them (Tom)
Cache improvements (Tom)

IS NULL, IS NOT NULL optimizer improvement (Tom)

Improve lock manager to reduce lock contention (Tom)

Keep relcache entries for index access support functions (Tom)
Allow better selectivity with NaN and infinities in NUMERIC (Tom)
R-tree performance improvements (Kenneth Been)

B-tree splits more efficient (Tom)

A.8.3.3. Privileges

Change UPDATE, DELETE permissions to be distinct (Peter E)

New REFERENCES, TRIGGER privileges (Peter E)

Allow GRANT/REVOKE to/from more than one user at a time (Peter E)

New has_table_privilege() function (Joe Conway)

Allow non-superuser to vacuum database (Tom)

New SET SESSION AUTHORIZATION command (Peter E)

Fix bug in privilege modifications on newly created tables (Tom)

Disallow access to pg_statistic for non-superuser, add user-accessible views (Tom)

A.8.3.4. Client Authentication

Fork postmaster before doing authentication to prevent hangs (Peter E)

Add ident authentication over Unix domain sockets on Linux, *BSD (Helge Bahmann, Oliver Elphick, Teodor Si
Add a password authentication method that uses MD5 encryption (Bruce)

Allow encryption of stored passwords using MD5 (Bruce)

PAM authentication (Dominic J. Eidson)

117

Appendix A. Release Notes

Load pg_hba.conf and pg_ident.conf only on startup and SIGHUP (Bruce)

A.8.3.5. Server Configuration

Interpretation of some time zone abbreviations as Australian rather than North American now settable at run tin
New parameter to set default transaction isolation level (Peter E)

New parameter to enable conversion of "expr = NULL" into "expr IS NULL", off by default (Peter E)

New parameter to control memory usage by VACUUM (Tom)

New parameter to set client authentication timeout (Tom)

New parameter to set maximum number of open files (Tom)

A.8.3.6. Queries

Statements added by INSERT rules now execute after the INSERT (Jan)

Prevent unadorned relation names in target list (Bruce)

NULLs now sort after all normal values in ORDER BY (Tom)

New IS UNKNOWN, IS NOT UNKNOWN Boolean tests (Tom)

New SHARE UPDATE EXCLUSIVE lock mode (Tom)

New EXPLAIN ANALYZE command that shows run times and row counts (Martijn van Oosterhout)
Fix problem with LIMIT and subqueries (Tom)

Fix for LIMIT, DISTINCT ON pushed into subqueries (Tom)

Fix nested EXCEPT/INTERSECT (Tom)

A.8.3.7. Schema Manipulation

Fix SERIAL in temporary tables (Bruce)

Allow temporary sequences (Bruce)

Sequences now use int8 internally (Tom)

New SERIALS creates int8 columns with sequences, default still SERIAL4 (Tom)

Make OIDs optional using WITHOUT OIDS (Tom)

Add %TYPE syntax to CREATE TYPE (lan Lance Taylor)

Add ALTER TABLE / DROP CONSTRAINT for CHECK constraints (Christopher Kings-Lynne)
New CREATE OR REPLACE FUNCTION to alter existing function (preserving the function OID) (Gavin Sherry
Add ALTER TABLE / ADD [UNIQUE | PRIMARY] (Christopher Kings-Lynne)

Allow column renaming in views

Make ALTER TABLE / RENAME COLUMN update column names of indexes (Brent Verner)

Fix for ALTER TABLE / ADD CONSTRAINT ... CHECK with inherited tables (Stephan Szabo)
ALTER TABLE RENAME update foreign-key trigger arguments correctly (Brent Verner)

DROP AGGREGATE and COMMENT ON AGGREGATE now accept an aggtype (Tom)

Add automatic return type data casting for SQL functions (Tom)

Allow GiST indexes to handle NULLs and multikey indexes (Oleg Bartunov, Teodor Sigaev, Tom)
Enable partial indexes (Martijn van Oosterhout)

118

Appendix A. Release Notes

A.8.3.8. Utility Commands

Add RESET ALL, SHOW ALL (Marko Kreen)

CREATE/ALTER USER/GROUP now allow options in any order (Vince)

Add LOCK A, B, C functionality (Neil Padgett)

New ENCRYPTED/UNENCRYPTED option to CREATE/ALTER USER (Bruce)

New light-weight VACUUM does not lock table; old semantics are available as VACUUM FULL (Tom)

Disable COPY TO/FROM on views (Bruce)

COPY DELIMITERS string must be exactly one character (Tom)

VACUUM warning about index tuples fewer than heap now only appears when appropriate (Martijn van Oostert
Fix permission checks for CREATE INDEX (Tom)

Disallow inappropriate use of CREATE/DROP INDEX/TRIGGER/VIEW (Tom)

A.8.3.9. Data Types and Functions

SUM(), AVG(), COUNT() now uses int8 internally for speed (Tom)

Add convert(), convert2() (Tatsuo)

New function bit_length() (Peter E)

Make the "n" in CHAR(n)/VARCHAR(n) represents letters, not bytes (Tatsuo)
CHAR(), VARCHAR() now reject strings that are too long (Peter E)

BIT VARYING now rejects bit strings that are too long (Peter E)

BIT now rejects bit strings that do not match declared size (Peter E)

INET, CIDR text conversion functions (Alex Pilosov)

INET, CIDR operators << and <<= indexable (Alex Pilosov)

Bytea \### now requires valid three digit octal number

Bytea comparison improvements, now supportg s, >, >=, <, and <=

Bytea now supports B-tree indexes

Bytea now supports LIKE, LIKE...ESCAPE, NOT LIKE, NOT LIKE...ESCAPE
Bytea now supports concatenation

New bytea functions: position, substring, trim, btrim, and length

New encode() function mode, "escaped”, converts minimally escaped bytea to/from text
Add pg_database_encoding_max_length() (Tatsuo)

Add pg_client_encoding() function (Tatsuo)

now() returns time with millisecond precision (Thomas)

New TIMESTAMP WITHOUT TIMEZONE data type (Thomas)

Add ISO date/time specification with "T", yyyy-mm-ddThh:mm:ss (Thomas)
New xid/int comparison functions (Hiroshi)

Add precision to TIME, TIMESTAMP, and INVERVAL data types (Thomas)
Modify type coercion logic to attempt binary-compatible functions first (Tom)
New encode() function installed by default (Marko Kreen)

Improved to_*() conversion functions (Karel Zak)

Optimize LIKE/ILIKE when using single-byte encodings (Tatsuo)

New functions in contrib/pgcrypto: crypt(), hmac(), encrypt(), gen_salt() (Marko Kreen)
Correct description of translate() function (Bruce)

Add INTERVAL argument for SET TIME ZONE (Thomas)

Add INTERVAL YEAR TO MONTH (etc.) syntax (Thomas)

Optimize length functions when using single-byte encodings (Tatsuo)

Fix path_inter, path_distance, path_length, dist_ppath to handle closed paths (Curtis Barrett, Tom)
octet_length(text) now returns non-compressed length (Tatsuo, Bruce)
Handle "July” full name in date/time literals (Greg Sabino Mullane)

Some datatype() function calls now evaluated differently

119

Appendix A. Release Notes

Add support for Julian and ISO time specifications (Thomas)

A.8.3.10. Internationalization

National language support in psql, pg_dump, libpg, and server (Peter E)

Message translations in Chinese (simplified, traditional), Czech, French, German, Hungarian, Russian, Swedi:
ter E, Serguei A. Mokhov, Karel Zak, Weiping He, Zhenbang Wei, Kovacs Zoltan)

Make trim, Itrim, rtrim, btrim, Ipad, rpad, translate multibyte aware (Tatsuo)

Add LATIN5,6,7,8,9,10 support (Tatsuo)

Add ISO 8859-5,6,7,8 support (Tatsuo)

Correct LATINS to mean ISO-8859-9, not ISO-8859-5 (Tatsuo)

Make mic2ascii() non-ASCII aware (Tatsuo)

Reject invalid multibyte character sequences (Tatsuo)

A.8.3.11. PL/pgSQL

Now uses portals for SELECT loops, allowing huge result sets (Jan)
CURSOR and REFCURSOR support (Jan)

Can now return open cursors (Jan)

Add ELSEIF (Klaus Reger)

Improve PL/pgSQL error reporting, including location of error (Tom)
Allow IS or FOR key words in cursor declaration, for compatibility (Bruce)
Fix for SELECT ... FOR UPDATE (Tom)

Fix for PERFORM returning multiple rows (Tom)

Make PL/pgSQL use the server’s type coercion code (Tom)
Memory leak fix (Jan, Tom)

Make trailing semicolon optional (Tom)

A.8.3.12. PL/Perl

New untrusted PL/Perl (Alex Pilosov)
PL/Perl is now built on some platforms even if libperl is not shared (Peter E)

A.8.3.13. PL/Tcl

Now reports errorinfo (Vsevolod Lobko)
Add spi_lastoid function (bob@redivi.com)

A.8.3.14. PL/Python

...Is new (Andrew Bosma)

120

Appendix A. Release Notes
A.8.3.15. Psql

\d displays indexes in unique, primary groupings (Christopher Kings-Lynne)
Allow trailing semicolons in backslash commands (Greg Sabino Mullane)
Read password from /devi/tty if possible

Force new password prompt when changing user and database (Tatsuo, Tom)
Format the correct number of columns for Unicode (Patrice)

A.8.3.16. Libpg

New function PQescapeString() to escape quotes in command strings (Florian Weimer)
New function PQescapeBytea() escapes binary strings for use as SQL string literals

A.8.3.17. JDBC

Return OID of INSERT (Ken K)

Handle more data types (Ken K)

Handle single quotes and newlines in strings (Ken K)

Handle NULL variables (Ken K)

Fix for time zone handling (Barry Lind)

Improved Druid support

Allow eight-bit characters with non-multibyte server (Barry Lind)
Support BIT, BINARY types (Ned Wolpert)

Reduce memory usage (Michael Stephens, Dave Cramer)
Update DatabaseMetaData (Peter E)

Add DatabaseMetaData.getCatalogs() (Peter E)

Encoding fixes (Anders Bengtsson)

Get/setCatalog methods (Jason Davies)
DatabaseMetaData.getColumns() now returns column defaults (Jason Davies)
DatabaseMetaData.getColumns() performance improvement (Jeroen van Vianen)
Some JDBC1 and JDBC2 merging (Anders Bengtsson)
Transaction performance improvements (Barry Lind)

Array fixes (Greg Zoller)

Serialize addition

Fix batch processing (Rene Pijlman)

ExecSQL method reorganization (Anders Bengtsson)
GetColumn() fixes (Jeroen van Vianen)

Fix isWriteable() function (Rene Pijlman)

Improved passage of JDBC2 conformance tests (Rene Pijlman)
Add bytea type capability (Barry Lind)

Add isNullable() (Rene Pijiman)

JDBC date/time test suite fixes (Liam Stewart)

Fix for SELECT 'id’ AS xxx FROM table (Dave Cramer)

Fix DatabaseMetaData to show precision properly (Mark Lillywhite)
New getimported/getExported keys (Jason Davies)

MD5 password encryption support (Jeremy Wohl)

Fix to actually use type cache (Ned Wolpert)

121

Appendix A. Release Notes
A.8.3.18. ODBC

Remove query size limit (Hiroshi)

Remove text field size limit (Hiroshi)

Fix for SQLPrimaryKeys in multibyte mode (Hiroshi)

Allow ODBC procedure calls (Hiroshi)

Improve boolean handing (Aidan Mountford)

Most configuration options on setable via DSN (Hiroshi)
Multibyte, performance fixes (Hiroshi)

Allow driver to be used with iODBC or unixODBC (Peter E)
MD5 password encryption support (Bruce)

Add more compatibility functions to odbc.sgl (Peter E)

A.8.3.19. ECPG

EXECUTE ... INTO implemented (Christof Petig)

Multiple row descriptor support (e.g. CARDINALITY) (Christof Petig)
Fix for GRANT parameters (Lee Kindness)

Fix INITIALLY DEFERRED bug

Various bug fixes (Michael, Christof Petig)

Auto allocation for indicator variable arrays (int *ind_p=NULL)

Auto allocation for string arrays (char **foo_pp=NULL)
ECPGfree_auto_mem fixed

All function names with external linkage are now prefixed by ECPG
Fixes for arrays of structures (Michael)

A.8.3.20. Misc. Interfaces

Python fix fetchone() (Gerhard Haring)

Use UTF, Unicode in Tcl where appropriate (Vsevolod Lobko, Reinhard Max)
Add Tcl COPY TO/FROM (ljb)

Prevent output of default index op class in pg_dump (Tom)

Fix libpgeasy memory leak (Bruce)

A.8.3.21. Build and Install

Configure, dynamic loader, and shared library fixes (Peter E)

Fixes in QNX 4 port (Bernd Tegge)

Fixes in Cygwin and Win32 ports (Jason Tishler, Gerhard Haring, Dmitry Yurtaev, Darko Prenosil, Mikhail Terek
Fix for Win32 socket communication failures (Magnus, Mikhail Terekhov)

Hurd compile fix (Oliver Elphick)

BeOS fixes (Cyril Velter)

Remove configure --enable-unicode-conversion, now enabled by multibyte (Tatsuo)
AlX fixes (Tatsuo, Andreas)

Fix parallel make (Peter E)

Install SQL language manual pages into OS-specific directories (Peter E)

Rename config.h to pg_config.h (Peter E)

Reorganize installation layout of header files (Peter E)

122

Appendix A. Release Notes

A.8.3.22. Source Code

Remove SEP_CHAR (Bruce)

New GUC hooks (Tom)

Merge GUC and command line handling (Marko Kreen)
Remove EXTEND INDEX (Martijn van Oosterhout, Tom)

New pgjindent utility to indent java code (Bruce)

Remove define of true/false when compiling under C++ (Leandro Fanzone, Tom)
pgindent fixes (Bruce, Tom)

Replace strcasecmp() with strcmp() where appropriate (Peter E)
Dynahash portability improvements (Tom)

Add 'volatile’ usage in spinlock structures

Improve signal handling logic (Tom)

A.8.3.23. Contrib

New contrib/rtree_gist (Oleg Bartunov, Teodor Sigaev)

New contrib/tsearch full-text indexing (Oleg, Teodor Sigaev)

Add contrib/dblink for remote database access (Joe Conway)

contrib/ora2pg Oracle conversion utility (Gilles Darold)

contrib/xml XML conversion utility (John Gray)

contrib/fulltextindex fixes (Christopher Kings-Lynne)

New contrib/fuzzystrmatch with levenshtein and metaphone, soundex merged (Joe Conway)
Add contrib/intarray boolean queries, binary search, fixes (Oleg Bartunov)

New pg_upgrade utility (Bruce)

Add new pg_resetxlog options (Bruce, Tom)

A.9. Release 7.1.3

Release date: 2001-08-15

A.9.1. Migration to version 7.1.3

A dump/restore isot required for those running 7.1.X.

A.9.2. Changes

Remove unused WAL segements of large transactions (Tom)

Multiaction rule fix (Tom)

PL/pgSQL memory allocation fix (Jan)

VACUUM buffer fix (Tom)

Regression test fixes (Tom)

pg_dump fixes for GRANT/REVOKE/comments on views, user-defined types (Tom)
Fix subselects with DISTINCT ON or LIMIT (Tom)

BeOS fix

123

Appendix A. Release Notes

Disable COPY TO/FROM a view (Tom)
Cygwin build (Jason Tishler)

A.10. Release 7.1.2

Release date: 2001-05-11

This has one fix from 7.1.1.

A.10.1. Migration to version 7.1.2

A dump/restore isot required for those running 7.1.X.

A.10.2. Changes

Fix PL/pgSQL SELECTs when returning no rows
Fix for psqgl backslash core dump

Referential integrity permission fix

Optimizer fixes

pg_dump cleanups

A.11. Release 7.1.1

Release date: 2001-05-05

This has a variety of fixes from 7.1.

A.11.1. Migration to version 7.1.1

A dump/restore im0t required for those running 7.1.

A.11.2. Changes

Fix for numeric MODULO operator (Tom)
pg_dump fixes (Philip)

pg_dump can dump 7.0 databases (Philip)
readline 4.2 fixes (Peter E)

124

Appendix A. Release Notes

JOIN fixes (Tom)

AIX, MSWIN, VAX, N32K fixes (Tom)
Multibytes fixes (Tom)

Unicode fixes (Tatsuo)

Optimizer improvements (Tom)

Fix for whole tuples in functions (Tom)

Fix for pg_ctl and option strings with spaces (Peter E)
ODBC fixes (Hiroshi)

EXTRACT can now take string argument (Thomas)
Python fixes (Darcy)

A.12. Release 7.1

Release date: 2001-04-13

This release focuses on removing limitations that have existed in the PostgreSQL code for many years.
Major changes in this release:

Write-ahead Log (WAL)

To maintain database consistency in case of an operating system crash, previous releases of
PostgreSQL have forced all data modifications to disk before each transaction commit. With
WAL, only one log file must be flushed to disk, greatly improving performance. If you have been

using -F in previous releases to disable disk flushes, you may want to consider discontinuing its
use.

TOAST
TOAST - Previous releases had a compiled-in row length limit, typically 8k - 32k. This limit

made storage of long text fields difficult. With TOAST, long rows of any length can be stored
with good performance.

Outer Joins

We now support outer joins. The UNION/NOT IN workaround for outer joins is no longer re-
quired. We use the SQL92 outer join syntax.

Function Manager

The previous C function manager did not handle null values properly, nor did it support 64-
bit CPU’s (Alpha). The new function manager does. You can continue using your old custom

functions, but you may want to rewrite them in the future to use the new function manager call
interface.

Complex Queries

A large number of complex queries that were unsupported in previous releases now work. Many
combinations of views, aggregates, UNION, LIMIT, cursors, subqueries, and inherited tables

now work properly. Inherited tables are now accessed by default. Subqueries in FROM are now
supported.

125

Appendix A. Release Notes

A.12.1. Migration to version 7.1

A dump/restore using pg_dump is required for those wishing to migrate data from any previous re-
lease.

A.12.2. Changes

Bug Fixes

Many multibyte/Unicode/locale fixes (Tatsuo and others)

More reliable ALTER TABLE RENAME (Tom)

Kerberos V fixes (David Wragg)

Fix for INSERT INTO...SELECT where targetlist has subqueries (Tom)

Prompt username/password on standard error (Bruce)

Large objects inv_read/inv_write fixes (Tom)

Fixes for to_char(), to_date(), to_ascii(), and to_timestamp() (Karel,
Daniel Baldoni)

Prevent query expressions from leaking memory (Tom)

Allow UPDATE of arrays elements (Tom)

Wake up lock waiters during cancel (Hiroshi)

Fix rare cursor crash when using hash join (Tom)

Fix for DROP TABLE/INDEX in rolled-back transaction (Hiroshi)

Fix psql crash from \I+ if MULTIBYTE enabled (Peter E)

Fix truncation of rule names during CREATE VIEW (Ross Reedstrom)

Fix PL/perl (Alex Kapranoff)

Disallow LOCK on views (Mark Hollomon)

Disallow INSERT/UPDATE/DELETE on views (Mark Hollomon)

Disallow DROP RULE, CREATE INDEX, TRUNCATE on views (Mark Hollomon)

Allow PL/pgSQL accept non-ASCII identifiers (Tatsuo)

Allow views to proper handle GROUP BY, aggregates, DISTINCT (Tom)

Fix rare failure with TRUNCATE command (Tom)

Allow UNION/INTERSECT/EXCEPT to be used with ALL, subqueries, views,
DISTINCT, ORDER BY, SELECT...INTO (Tom)

Fix parser failures during aborted transactions (Tom)

Allow temporary relations to properly clean up indexes (Bruce)

Fix VACUUM problem with moving rows in same page (Tom)

Modify pg_dump to better handle user-defined items in templatel (Philip)

Allow LIMIT in VIEW (Tom)

Require cursor FETCH to honor LIMIT (Tom)

Allow PRIMARY/FOREIGN Key definitions on inherited columns (Stephan)

Allow ORDER BY, LIMIT in sub-selects (Tom)

Allow UNION in CREATE RULE (Tom)

Make ALTER/DROP TABLE rollback-able (Vadim, Tom)

Store initdb collation in pg_control so collation cannot be changed (Tom)

Fix INSERT...SELECT with rules (Tom)

Fix FOR UPDATE inside views and subselects (Tom)

Fix OVERLAPS operators conform to SQL92 spec regarding NULLs (Tom)

Fix Ipad() and rpad() to handle length less than input string (Tom)

Fix use of NOTIFY in some rules (Tom)

Overhaul btree code (Tom)

Fix NOT NULL use in Pl/pgSQL variables (Tom)

Overhaul GIST code (Oleg)

Fix CLUSTER to preserve constraints and column default (Tom)

126

Appendix A. Release Notes

Improved deadlock detection handling (Tom)
Allow multiple SERIAL columns in a table (Tom)
Prevent occasional index corruption (Vadim)

Enhancements

Add OUTER JOINs (Tom)

Function manager overhaul (Tom)

Allow ALTER TABLE RENAME on indexes (Tom)

Improve CLUSTER (Tom)

Improve ps status display for more platforms (Peter E, Marc)

Improve CREATE FUNCTION failure message (Ross)

JDBC improvements (Peter, Travis Bauer, Christopher Cain, William Webber,
Gunnar)

Grand Unified Configuration scheme/GUC. Many options can now be set in
data/postgresqgl.conf, postmaster/postgres flags, or SET commands (Pe-

ter E)

Improved handling of file descriptor cache (Tom)

New warning code about auto-created table alias entries (Bruce)

Overhaul initdb process (Tom, Peter E)

Overhaul of inherited tables; inherited tables now accessed by default;
new ONLY keyword prevents it (Chris Bitmead, Tom)

ODBC cleanups/improvements (Nick Gorham, Stephan Szabo, Zoltan Kovacs,
Michael Fork)

Allow renaming of temp tables (Tom)

Overhaul memory manager contexts (Tom)

pg_dumpall uses CREATE USER or CREATE GROUP rather using COPY (Peter E)

Overhaul pg_dump (Philip Warner)

Allow pg_hba.conf secondary password file to specify only username (Pe-

ter E)

Allow TEMPORARY or TEMP keyword when creating temporary tables (Bruce)

New memory leak checker (Karel)

New SET SESSION CHARACTERISTICS (Thomas)

Allow nested block comments (Thomas)

Add WITHOUT TIME ZONE type qualifier (Thomas)

New ALTER TABLE ADD CONSTRAINT (Stephan)

Use NUMERIC accumulators for INTEGER aggregates (Tom)

Overhaul aggregate code (Tom)

New VARIANCE and STDDEV() aggregates

Improve dependency ordering of pg_dump (Philip)

New pg_restore command (Philip)

New pg_dump tar output option (Philip)

New pg_dump of large objects (Philip)

New ESCAPE option to LIKE (Thomas)

New case-insensitive LIKE - ILIKE (Thomas)

Allow functional indexes to use binary-compatible type (Tom)

Allow SQL functions to be used in more contexts (Tom)

New pg_config utility (Peter E)

New PL/pgSQL EXECUTE command which allows dynamic SQL and utility statements
(Jan)

New PL/pgSQL GET DIAGNOSTICS statement for SPI value access (Jan)

New quote_identifiers() and quote_literal() functions (Jan)

New ALTER TABLE table OWNER TO user command (Mark Hollomon)

Allow subselects in FROM, i.e. FROM (SELECT ...) [AS] alias (Tom)

Update PyGreSQL to version 3.1 (D’Arcy)

Store tables as files named by OID (Vadim)

New SQL function setval(seq,val,bool) for use in pg_dump (Philip)

127

Appendix A. Release Notes

Require DROP VIEW to remove views, no DROP TABLE (Mark)

Allow DROP VIEW viewl, view2 (Mark)

Allow multiple objects in DROP INDEX, DROP RULE, and DROP TYPE (Tom)

Allow automatic conversion to/from Unicode (Tatsuo, Eiji)

New /contrib/pgcrypto hashing functions (Marko Kreen)

New pg_dumpall --globals-only option (Peter E)

New CHECKPOINT command for WAL which creates new WAL log file (Vadim)

New AT TIME ZONE syntax (Thomas)

Allow location of Unix domain socket to be configurable (David J. MacKenzie)

Allow postmaster to listen on a specific IP address (David J. MacKenzie)

Allow socket path name to be specified in hostname by using leading slash
(David J. MacKenzie)

Allow CREATE DATABASE to specify template database (Tom)

New utility to convert MySQL schema dumps to SQL92 and PostgreSQL (Thomas)

New /contrib/rserv replication toolkit (Vadim)

New file format for COPY BINARY (Tom)

New /contrib/oid2name to map numeric files to table names (B Palmer)

New "idle in transaction” ps status message (Marc)

Update to pgaccess 0.98.7 (Constantin Teodorescu)

pg_ctl now defaults to -w (wait) on shutdown, new -l (log) option

Add rudimentary dependency checking to pg_dump (Philip)

Fix INET/CIDR type ordering and add new functions (Tom)

Make OID behave as an unsigned type (Tom)

Allow BIGINT as synonym for INT8 (Peter E)

New int2 and int8 comparison operators (Tom)

New BIT and BIT VARYING types (Adriaan Joubert, Tom, Peter E)
CHAR() no longer faster than VARCHAR() because of TOAST (Tom)
New GIST seg/cube examples (Gene Selkov)

Improved round(numeric) handling (Tom)

Fix CIDR output formatting (Tom)

New CIDR abbrev() function (Tom)

Performance

Write-Ahead Log (WAL) to provide crash recovery with less performance
overhead (Vadim)

ANALYZE stage of VACUUM no longer exclusively locks table (Bruce)

Reduced file seeks (Denis Perchine)

Improve BTREE code for duplicate keys (Tom)

Store all large objects in a single table (Denis Perchine, Tom)

Improve memory allocation performance (Karel, Tom)

Source Code

New function manager call conventions (Tom)

SGI portability fixes (David Kaelbling)

New configure --enable-syslog option (Peter E)

New BSDI README (Bruce)

configure script moved to top level, not /src (Peter E)
Makefile/configuration/compilation overhaul (Peter E)
New configure --with-python option (Peter E)

Solaris cleanups (Peter E)

Overhaul /contrib Makefiles (Karel)

New OpenSSL configuration option (Magnus, Peter E)

128

Appendix A. Release Notes

AIX fixes (Andreas)

QNX fixes (Maurizio)

New heap_open(), heap_openr() APl (Tom)

Remove colon and semi-colon operators (Thomas)

New pg_class.relkind value for views (Mark Hollomon)
Rename ichar() to chr() (Karel)

New documentation for btrim(), ascii(), chr(), repeat() (Karel)
Fixes for NT/Cygwin (Pete Forman)

AIX port fixes (Andreas)

New BeOS port (David Reid, Cyril Velter)

Add proofreader’'s changes to docs (Addison-Wesley, Bruce)
New Alpha spinlock code (Adriaan Joubert, Compaq)
UnixWare port overhaul (Peter E)

New Darwin/MacOS X port (Peter Bierman, Bruce Hartzler)
New FreeBSD Alpha port (Alfred)

Overhaul shared memory segments (Tom)

Add IBM S/390 support (Neale Ferguson)

Moved macmanuf to /contrib (Larry Rosenman)

Syslog improvements (Larry Rosenman)

New template0 database that contains no user additions (Tom)
New /contrib/cube and /contrib/seg GIST sample code (Gene Selkov)
Allow NetBSD’s libedit instead of readline (Peter)

Improved assembly language source code format (Bruce)
New contrib/pg_logger

New --template option to createdb

New contrib/pg_control utility (Oliver)

New FreeBSD tools ipc_check, start-scripts/freebsd

A.13. Release 7.0.3

Release date: 2000-11-11

This has a variety of fixes from 7.0.2.

A.13.1. Migration to version 7.0.3

A dumpl/restore isiot required for those running 7.0.*.

A.13.2. Changes

Jdbc fixes (Peter)

Large object fix (Tom)

Fix lean in COPY WITH OIDS leak (Tom)

Fix backwards-index-scan (Tom)

Fix SELECT ... FOR UPDATE so it checks for duplicate keys (Hiroshi)
Add --enable-syslog to configure (Marc)

Fix abort transaction at backend exit in rare cases (Tom)

129

Appendix A. Release Notes

Fix for psqgl \I+ when multibyte enabled (Tatsuo)

Allow PL/pgSQL to accept non ascii identifiers (Tatsuo)

Make vacuum always flush buffers (Tom)

Fix to allow cancel while waiting for a lock (Hiroshi)

Fix for memory aloocation problem in user authentication code (Tom)

Remove bogus use of int4out() (Tom)

Fixes for multiple subqueries in COALESCE or BETWEEN (Tom)

Fix for failure of triggers on heap open in certain cases (Jeroen van
Vianen)

Fix for erroneous selectivity of not-equals (Tom)

Fix for erroneous use of strcmp() (Tom)

Fix for bug where storage manager accesses items beyond end of file
(Tom)

Fix to include kernel errno message in all smgr elog messages (Tom)

Fix for '." not in PATH at build time (SL Baur)

Fix for out-of-file-descriptors error (Tom)

Fix to make pg_dump dump ’iscachable’ flag for functions (Tom)

Fix for subselect in targetlist of Append node (Tom)

Fix for mergejoin plans (Tom)

Fix TRUNCATE failure on relations with indexes (Tom)

Avoid database-wide restart on write error (Hiroshi)

Fix nodeMaterial to honor chgParam by recomputing its output (Tom)

Fix VACUUM problem with moving chain of update tuples when source and
destination of a tuple lie on the same page (Tom)

Fix user.c CommandCounterincrement (Tom)
Fix for AM/PM boundary problem in to_char() (Karel Zak)
Fix TIME aggregate handling (Tom)

Fix to_char() to avoid coredump on NULL input (Tom)

Buffer fix (Tom)

Fix for inserting/copying longer multibyte strings into char() data
types (Tatsuo)

Fix for crash of backend, on abort (Tom)

A.14. Release 7.0.2

Release date: 2000-06-05

This is a repackaging of 7.0.1 with added documentation.

A.14.1. Migration to version 7.0.2

A dumpl/restore isiot required for those running 7.*.

130

Appendix A. Release Notes

A.14.2. Changes

Added documentation to tarball.

A.15. Release 7.0.1

Release date: 2000-06-01

This is a cleanup release for 7.0.

A.15.1. Migration to version 7.0.1

A dump/restore isotrequired for those running 7.0.

A.15.2. Changes

Fix many CLUSTER failures (Tom)

Allow ALTER TABLE RENAME works on indexes (Tom)

Fix plpgsql to handle datetime->timestamp and timespan->interval (Bruce)
New configure --with-setproctitle switch to use setproctitle() (Marc, Bruce)
Fix the off by one errors in ResultSet from 6.5.3, and more.

jdbc ResultSet fixes (Joseph Shraibman)

optimizer tunings (Tom)

Fix create user for pgaccess

Fix for UNLISTEN failure

IRIX fixes (David Kaelbling)

QNX fixes (Andreas Kardos)

Reduce COPY IN lock level (Tom)

Change libpgeasy to use PQconnectdb() style parameters (Bruce)

Fix pg_dump to handle OID indexes (Tom)

Fix small memory leak (Tom)

Solaris fix for createdb/dropdb (Tatsuo)

Fix for non-blocking connections (Alfred Perlstein)

Fix improper recovery after RENAME TABLE failures (Tom)

Copy pg_ident.conf.sample into /lib directory in install (Bruce)

Add SJIS UDC (NEC selection IBM kanji) support (Eiji Tokuya)

Fix too long syslog message (Tatsuo)

Fix problem with quoted indexes that are too long (Tom)

JDBC ResultSet.getTimestamp() fix (Gregory Krasnow & Floyd Marinescu)
ecpg changes (Michael)

131

Appendix A. Release Notes

A.16. Release 7.0

Release date: 2000-05-08

This release contains improvements in many areas, demonstrating the continued growth of Post-
greSQL. There are more improvements and fixes in 7.0 than in any previous release. The developers
have confidence that this is the best release yet; we do our best to put out only solid releases, and this
one is no exception.

Major changes in this release:

Foreign Keys

Foreign keys are now implemented, with the exception of PARTIAL MATCH foreign keys. Many
users have been asking for this feature, and we are pleased to offer it.

Optimizer Overhaul

Continuing on work started a year ago, the optimizer has been improved, allowing better query
plan selection and faster performance with less memory usage.

Updated psql
psqgl, our interactive terminal monitor, has been updated with a variety of new features. See the
psqgl manual page for details.

Join Syntax

SQL92 join syntax is now supported, though onlyildNER JOIN for this releaseJOIN, NAT-
URAL JOIN, JOIN/USING, andJOIN/ONare available, as are column correlation names.

A.16.1. Migration to version 7.0

A dump/restore using pg_dump is required for those wishing to migrate data from any previous release
of PostgreSQL. For those upgrading from 6.5.*, you may instead use pg_upgrade to upgrade to this
release; however, a full dump/reload installation is always the most robust method for upgrades.

Interface and compatibility issues to consider for the new release include:

- The date/time typedatetime andtimespan have been superseded by the SQL92-defined types
timestamp andinterval . Although there has been some effort to ease the transition by allowing
PostgreSQL to recognize the deprecated type names and translate them to the new type names, this
mechanism may not be completely transparent to your existing application.

- The optimizer has been substantially improved in the area of query cost estimation. In some cases,
this will result in decreased query times as the optimizer makes a better choice for the preferred
plan. However, in a small number of cases, usually involving pathological distributions of data,
your query times may go up. If you are dealing with large amounts of data, you may want to check
your queries to verify performance.

- The JDBC and ODBC interfaces have been upgraded and extended.

« The string functiorCHAR_LENGTIHs now a native function. Previous versions translated this into
a call toLENGTH which could result in ambiguity with other types implementitRNGTHsuch as
the geometric types.

132

Appendix A. Release Notes

A.16.2. Changes

Bug Fixes

Prevent function calls exceeding maximum number of arguments (Tom)
Improve CASE construct (Tom)

Fix SELECT coalesce(f1,0) FROM int4_tbhl GROUP BY fl1 (Tom)

Fix SELECT sentence.words[0] FROM sentence GROUP BY sentence.words[0] (Tom)
Fix GROUP BY scan bug (Tom)

Improvements in SQL grammar processing (Tom)

Fix for views involved in INSERT ... SELECT ... (Tom)

Fix for SELECT a/2, a/2 FROM test_missing_target GROUP BY a/2 (Tom)
Fix for subselects in INSERT ... SELECT (Tom)

Prevent INSERT ... SELECT ... ORDER BY (Tom)

Fixes for relations greater than 2GB, including vacuum

Improve propagating system table changes to other backends (Tom)

Improve propagating user table changes to other backends (Tom)

Fix handling of temp tables in complex situations (Bruce, Tom)

Allow table locking at table open, improving concurrent reliability (Tom)
Properly quote sequence names in pg_dump (Ross J. Reedstrom)

Prevent DROP DATABASE while others accessing

Prevent any rows from being returned by GROUP BY if no rows processed (Tom)
Fix SELECT COUNT(1) FROM table WHERE ...’ if no rows matching WHERE (Tom)
Fix pg_upgrade so it works for MVCC (Tom)

Fix for SELECT ... WHERE x IN (SELECT ... HAVING SUM(x) > 1) (Tom)
Fix for "f1 datetime DEFAULT ’'now™ (Tom)

Fix problems with CURRENT_DATE used in DEFAULT (Tom)

Allow comment-only lines, and ;;; lines too. (Tom)

Improve recovery after failed disk writes, disk full (Hiroshi)

Fix cases where table is mentioned in FROM but not joined (Tom)

Allow HAVING clause without aggregate functions (Tom)

Fix for "--" comment and no trailing newline, as seen in perl interface
Improve pg_dump failure error reports (Bruce)

Allow sorts and hashes to exceed 2GB file sizes (Tom)

Fix for pg_dump dumping of inherited rules (Tom)

Fix for NULL handling comparisons (Tom)

Fix inconsistent state caused by failed CREATE/DROP commands (Hiroshi)
Fix for dbname with dash

Prevent DROP INDEX from interfering with other backends (Tom)

Fix file descriptor leak in verify_password()

Fix for "Unable to identify an operator =$" problem

Fix ODBC so no segfault if CommLog and Debug enabled (Dirk Niggemann)
Fix for recursive exit call (Massimo)

Fix for extra-long timezones (Jeroen van Vianen)

Make pg_dump preserve primary key information (Peter E)

Prevent databases with single quotes (Peter E)

Prevent DROP DATABASE inside transaction (Peter E)

ecpg memory leak fixes (Stephen Birch)

Fix for SELECT null::text, SELECT int4fac(null) and SELECT 2 + (null) (Tom)
Y2K timestamp fix (Massimo)

Fix for VACUUM 'HEAP_MOVED_IN was not expected’ errors (Tom)

Fix for views with tables/columns containing spaces (Tom)

Prevent permissions on indexes (Peter E)

133

Appendix A. Release Notes

Fix for spinlock stuck problem when error is generated (Hiroshi)

Fix ipcclean on Linux

Fix handling of NULL constraint conditions (Tom)

Fix memory leak in odbc driver (Nick Gorham)

Fix for permission check on UNION tables (Tom)

Fix to allow SELECT ’'a’ LIKE 'a’ (Tom)

Fix for SELECT 1 + NULL (Tom)

Fixes to CHAR

Fix log() on numeric type (Tom)

Deprecate ' and ';’ operators

Allow vacuum of temporary tables

Disallow inherited columns with the same name as new columns

Recover or force failure when disk space is exhausted (Hiroshi)

Fix INSERT INTO ... SELECT with AS columns matching result columns

Fix INSERT ... SELECT ... GROUP BY groups by target columns not source columns (Tom)

Fix CREATE TABLE test (a char(5) DEFAULT text ”, b int4) with INSERT (Tom)

Fix UNION with LIMIT

Fix CREATE TABLE x AS SELECT 1 UNION SELECT 2

Fix CREATE TABLE test(col char(2) DEFAULT user)

Fix mismatched types in CREATE TABLE ... DEFAULT

Fix SELECT * FROM pg_class where oid in (0,-1)

Fix SELECT COUNT(asdf) FROM pg_class WHERE oid=12

Prevent user who can create databases can modifying pg_database table (Pe-
ter E)

Fix btree to give a useful elog when key > 1/2 (page - overhead) (Tom)

Fix INSERT of 0.0 into DECIMAL(4,4) field (Tom)

Enhancements
New CLI interface include file sqlcli.h, based on SQL3/SQL98
Remove all limits on query length, row length limit still exists (Tom)
Update jdbc protocol to 2.0 (Jens Glaser < jens@jens.de >)
Add TRUNCATE command to quickly truncate relation (Mike Mascari)
Fix to give super user and createdb user proper update catalog rights (Pe-
ter E)
Allow ecpg bool variables to have NULL values (Christof)
Issue ecpg error if NULL value for variable with no NULL indicator (Christof)
Allow ~C to cancel COPY command (Massimo)
Add SET FSYNC and SHOW PG_OPTIONS commands(Massimo)
Function name overloading for dynamically-loaded C functions (Frankpitt)
Add CmdTuples() to libpg++(Vince)
New CREATE CONSTRAINT TRIGGER and SET CONSTRAINTS commands(Jan)
Allow CREATE FUNCTION/WITH clause to be used for all language types
configure --enable-debug adds -g (Peter E)
configure --disable-debug removes -g (Peter E)
Allow more complex default expressions (Tom)
First real FOREIGN KEY constraint trigger functionality (Jan)
Add FOREIGN KEY ... MATCH FULL ... ON DELETE CASCADE (Jan)
Add FOREIGN KEY ... MATCH <unspecified > referential actions (Don Baccus)
Allow WHERE restriction on ctid (physical heap location) (Hiroshi)
Move pginterface from contrib to interface directory, rename to pgeasy (Bruce)
Change pgeasy connectdb() parameter ordering (Bruce)
Require SELECT DISTINCT target list to have all ORDER BY columns (Tom)
Add Oracle’'s COMMENT ON command (Mike Mascari < mascarim@yahoo.com >)
libpg’'s PQsetNoticeProcessor function now returns previous hook(Peter E)
Prevent PQsetNoticeProcessor from being set to NULL (Peter E)
Make USING in COPY optional (Bruce)

134

Appendix A. Release Notes

Allow subselects in the target list (Tom)

Allow subselects on the left side of comparison operators (Tom)

New parallel regression test (Jan)

Change backend-side COPY to write files with permissions 644 not 666 (Tom)

Force permissions on PGDATA directory to be secure, even if it exists (Tom)

Added psqgl LASTOID variable to return last inserted oid (Peter E)

Allow concurrent vacuum and remove pg_vlock vacuum lock file (Tom)

Add permissions check for vacuum (Peter E)

New libpg functions to allow asynchronous connections: PQconnectStart(),
PQconnectPoll(), PQresetStart(), PQresetPoll(), PQsetenvStart(),
PQsetenvPoll(), PQsetenvAbort (Ewan Mellor)

New libpg PQsetenv() function (Ewan Mellor)

create/alter user extension (Peter E)

New postmaster.pid and postmaster.opts under $PGDATA (Tatsuo)

New scripts for create/drop user/db (Peter E)

Major psql overhaul (Peter E)

Add const to libpq interface (Peter E)

New libpg function PQoidValue (Peter E)

Show specific non-aggregate causing problem with GROUP BY (Tom)

Make changes to pg_shadow recreate pg_pwd file (Peter E)

Add aggregate(DISTINCT ...) (Tom)

Allow flag to control COPY input/output of NULLs (Peter E)

Make postgres user have a password by default (Peter E)

Add CREATE/ALTER/DROP GROUP (Peter E)

All administration scripts now support --long options (Peter E, Karel)

Vacuumdb script now supports --all option (Peter E)

ecpg new portable FETCH syntax

Add ecpg EXEC SQL IFDEF, EXEC SQL IFNDEF, EXEC SQL ELSE, EXEC SQL ELIF

and EXEC SQL ENDIF directives

Add pg_ctl script to control backend start-up (Tatsuo)

Add postmaster.opts.default file to store start-up flags (Tatsuo)

Allow --with-mb=SQL_ASCII

Increase maximum number of index keys to 16 (Bruce)

Increase maximum number of function arguments to 16 (Bruce)

Allow configuration of maximum number of index keys and arguments (Bruce)

Allow unprivileged users to change their passwords (Peter E)

Password authentication enabled; required for new users (Peter E)

Disallow dropping a user who owns a database (Peter E)

Change initdb option --with-mb to --enable-multibyte

Add option for initdb to prompts for superuser password (Peter E)

Allow complex type casts like col::numeric(9,2) and col::int2::float8 (Tom)

Updated user interfaces on initdb, initlocation, pg_dump, ipcclean (Pe-

ter E)

New pg_char_to_encoding() and pg_encoding_to_char() functions (Tatsuo)

Libpg non-blocking mode (Alfred Perlstein)

Improve conversion of types in casts that don't specify a length

New plperl internal programming language (Mark Hollomon)

Allow COPY IN to read file that do not end with a newline (Tom)

Indicate when long identifiers are truncated (Tom)

Allow aggregates to use type equivalency (Peter E)

Add Oracle’s to_char(), to_date(), to_datetime(), to_timestamp(), to_number()

conversion functions (Karel Zak <zakkr@zf.jcu.cz >)

Add SELECT DISTINCT ON (expr [, expr ...]) targetlist ... (Tom)

Check to be sure ORDER BY is compatible with the DISTINCT operation (Tom)

Add NUMERIC and int8 types to ODBC

Improve EXPLAIN results for Append, Group, Agg, Unique (Tom)

Add ALTER TABLE ... ADD FOREIGN KEY (Stephan Szabo)

135

Appendix A. Release Notes

Allow SELECT .. FOR UPDATE in PL/pgSQL (Hiroshi)

Enable backward sequential scan even after reaching EOF (Hiroshi)
Add btree indexing of boolean values, >= and <= (Don Baccus)
Print current line number when COPY FROM fails (Massimo)

Recognize POSIX time zone e.g. "PST+8" and "GMT-8" (Thomas)

Add DEC as synonym for DECIMAL (Thomas)

Add SESSION_USER as SQL92 keyword, same as CURRENT_USER (Thomas)
Implement SQL92 column aliases (aka correlation names) (Thomas)
Implement SQL92 join syntax (Thomas)

Make INTERVAL reserved word allowed as a column identifier (Thomas)
Implement REINDEX command (Hiroshi)

Accept ALL in aggregate function SUM(ALL col) (Tom)

Prevent GROUP BY from using column aliases (Tom)

New psql \encoding option (Tatsuo)

Allow PQrequestCancel() to terminate when in waiting-for-lock state (Hiroshi)
Allow negation of a negative number in all cases

Add ecpg descriptors (Christof, Michael)

Allow CREATE VIEW v AS SELECT fl::ichar(8) FROM tbl

Allow casts with length, like foo::char(8)

New libpg functions PQsetClientEncoding(), PQclientEncoding() (Tatsuo)
Add support for SJIS user defined characters (Tatsuo)

Larger views/rules supported

Make libpg’'s PQconndefaults() thread-safe (Tom)

Disable // as comment to be ANSI conforming, should use -- (Tom)
Allow column aliases on views CREATE VIEW name (collist)

Fixes for views with subqueries (Tom)

Allow UPDATE table SET fld = (SELECT ...) (Tom)

SET command options no longer require quotes

Update pgaccess to 0.98.6

New SET SEED command

New pg_options.sample file

New SET FSYNC command (Massimo)

Allow pg_descriptions when creating tables

Allow pg_descriptions when creating types, columns, and functions

Allow psqgl \copy to allow delimiters (Peter E)

Allow psql to print nulls as distinct from "™ [null] (Peter E)

Many array fixes (Tom)

Allow bare column names to be subscripted as arrays (Tom)

Improve type casting of int and float constants (Tom)

Cleanups for int8 inputs, range checking, and type conversion (Tom)
Fix for SELECT timespan(’21:11:26'::time) (Tom)

netmask('x.x.x.x/Q") is 255.255.255.255 instead of 0.0.0.0 (Oleg Sharoiko)
Add btree index on NUMERIC (Jan)

Perl fix for large objects containing NUL characters (Douglas Thomson)
ODBC fix for for large objects (free)

Fix indexing of cidr data type

Fix for Ethernet MAC addresses (macaddr type) comparisons

Fix for date/time types when overflows happened in computations (Tom)
Allow array on int8 (Peter E)

Fix for rounding/overflow of NUMERIC type, like NUMERIC(4,4) (Tom)
Allow NUMERIC arrays

Fix bugs in NUMERIC ceil() and floor() functions (Tom)

Make char_length()/octet_length including trailing blanks (Tom)

Made abstime/reltime use int4 instead of time_t (Peter E)

136

Appendix A. Release Notes

New lztext data type for compressed text fields

Revise code to handle coercion of int and float constants (Tom)

Start at new code to implement a BIT and BIT VARYING type (Adriaan Joubert)
NUMERIC now accepts scientific notation (Tom)

NUMERIC to int4 rounds (Tom)

Convert float4/8 to NUMERIC properly (Tom)

Allow type conversion with NUMERIC (Thomas)

Make ISO date style (2000-02-16 09:33) the default (Thomas)

Add NATIONAL CHAR [VARYING] (Thomas)

Allow NUMERIC round and trunc to accept negative scales (Tom)

New TIME WITH TIME ZONE type (Thomas)

Add MAX()/MIN() on time type (Thomas)

Add abs(), mod(), fac() for int8 (Thomas)

Rename functions to round(), sqrt(), cbrt(), pow() for float8 (Thomas)
Add transcendental math functions (e.g. sin(), acos()) for float8 (Thomas)
Add exp() and In() for NUMERIC type

Rename NUMERIC power() to pow() (Thomas)

Improved TRANSLATE() function (Edwin Ramirez, Tom)

Allow X=-Y operators (Tom)

Allow SELECT float8(COUNT(*))/(SELECT COUNT(*) FROM t) FROM t GROUP BY f1; (Tom)
Allow LOCALE to use indexes in regular expression searches (Tom)
Allow creation of functional indexes to use default types

Performance

Prevent exponential space consumption with many AND’s and OR’s (Tom)
Collect attribute selectivity values for system columns (Tom)

Reduce memory usage of aggregates (Tom)

Fix for LIKE optimization to use indexes with multibyte encodings (Tom)

Fix r-tree index optimizer selectivity (Thomas)

Improve optimizer selectivity computations and functions (Tom)

Optimize btree searching for cases where many equal keys exist (Tom)
Enable fast LIKE index processing only if index present (Tom)

Re-use free space on index pages with duplicates (Tom)

Improve hash join processing (Tom)

Prevent descending sort if result is already sorted(Hiroshi)

Allow commuting of index scan query qualifications (Tom)

Prefer index scans in cases where ORDER BY/GROUP BY is required (Tom)
Allocate large memory requests in fix-sized chunks for performance (Tom)

Fix vacuum’s performance by reducing memory allocation requests (Tom)
Implement constant-expression simplification (Bernard Frankpitt, Tom)

Use secondary columns to be used to determine start of index scan (Hiroshi)
Prevent quadruple use of disk space when doing internal sorting (Tom)
Faster sorting by calling fewer functions (Tom)

Create system indexes to match all system caches (Bruce, Hiroshi)

Make system caches use system indexes (Bruce)

Make all system indexes unique (Bruce)

Improve pg_statistics management for VACUUM speed improvement (Tom)
Flush backend cache less frequently (Tom, Hiroshi)

COPY now reuses previous memory allocation, improving performance (Tom)
Improve optimization cost estimation (Tom)

Improve optimizer estimate of range queries X > lowbound AND x < highbound (Tom)
Use DNF instead of CNF where appropriate (Tom, Taral)

Further cleanup for OR-of-AND WHERE-clauses (Tom)

Make use of index in OR clauses (x = 1 AND y = 2) OR (x = 2 AND y = 4) (Tom)
Smarter optimizer computations for random index page access (Tom)

New SET variable to control optimizer costs (Tom)

137

Appendix A. Release Notes

Optimizer queries based on LIMIT, OFFSET, and EXISTS qualifications (Tom)
Reduce optimizer internal housekeeping of join paths for speedup (Tom)
Major subquery speedup (Tom)

Fewer fsync writes when fsync is not disabled (Tom)

Improved LIKE optimizer estimates (Tom)

Prevent fsync in SELECT-only queries (Vadim)

Make index creation use psort code, because it is now faster (Tom)

Allow creation of sort temp tables > 1 Gig

Source Tree Changes

Fix for linux PPC compile

New generic expression-tree-walker subroutine (Tom)

Change form() to varargform() to prevent portability problems
Improved range checking for large integers on Alphas

Clean up #include in /include directory (Bruce)

Add scripts for checking includes (Bruce)

Remove un-needed #include’s from *.c files (Bruce)

Change #include's to use <> and "™ as appropriate (Bruce)
Enable WIN32 compilation of libpg
Alpha spinlock fix from Uncle George < gatgul@voicenet.com >

Overhaul of optimizer data structures (Tom)

Fix to cygipc library (Yutaka Tanida)

Allow pgsql to work on newer Cygwin snapshots (Dan)

New catalog version number (Tom)

Add Linux ARM

Rename heap_replace to heap_update

Update for QNX (Dr. Andreas Kardos)

New platform-specific regression handling (Tom)

Rename o0id8 - > oidvector and int28 - > int2vector (Bruce)
Included all yacc and lex files into the distribution (Peter E.)
Remove lextest, no longer needed (Peter E)

Fix for libpg and psgl on Win32 (Magnus)

Internally change datetime and timespan into timestamp and interval (Thomas)
Fix for plpgsgl on BSD/OS

Add SQL_ASCII test case to the regression test (Tatsuo)
configure --with-mb now deprecated (Tatsuo)

NT fixes

NetBSD fixes (Johnny C. Lam < lamj@stat.cmu.edu >)

Fixes for Alpha compiles

New multibyte encodings

A.17. Release 6.5.3

Release date: 1999-10-13

This is basically a cleanup release for 6.5.2. We have added a new PgAccess that was missing in 6.5.2,
and installed an NT-specific fix.

138

Appendix A. Release Notes

A.17.1. Migration to version 6.5.3

A dump/restore isot required for those running 6.5.*.

A.17.2. Changes

Updated version of pgaccess 0.98
NT-specific patch
Fix dumping rules on inherited tables

A.18. Release 6.5.2

Release date: 1999-09-15

This is basically a cleanup release for 6.5.1. We have fixed a variety of problems reported by 6.5.1
users.

A.18.1. Migration to version 6.5.2

A dump/restore isiot required for those running 6.5.*.

A.18.2. Changes

subselect+CASE fixes(Tom)
Add SHLIB_LINK setting for solaris_i386 and solaris_sparc ports(Daren Sefcik)
Fixes for CASE in WHERE join clauses(Tom)
Fix BTScan abort(Tom)
Repair the check for redundant UNIQUE and PRIMARY KEY indexes(Thomas)
Improve it so that it checks for multicolumn constraints(Thomas)
Fix for Win32 making problem with MB enabled(Hiroki Kataoka)
Allow BSD yacc and bison to compile pl code(Bruce)
Fix SET NAMES working
int8 fixes(Thomas)
Fix vacuum’s memory consumption(Hiroshi,Tatsuo)
Reduce the total memory consumption of vacuum(Tom)
Fix for timestamp(datetime)
Rule deparsing bugfixes(Tom)
Fix quoting problems in mkMakefile.tcldefs.sh.in and mkMakefile.tkdefs.sh.in(Tom)
This is to re-use space on index pages freed by vacuum(Vadim)
document -x for pg_dump(Bruce)
Fix for unary operators in rule deparser(Tom)
Comment out FileUnlink of excess segments during mdtruncate()(Tom)
IRIX linking fix from Yu Cao >yucao@falcon.kla-tencor.com <
Repair logic error in LIKE: should not return LIKE_ABORT
when reach end of pattern before end of text(Tom)
Repair incorrect cleanup of heap memory allocation during transaction abort(Tom)

139

Appendix A. Release Notes

Updated version of pgaccess 0.98

A.19. Release 6.5.1

Release date: 1999-07-15

This is basically a cleanup release for 6.5. We have fixed a variety of problems reported by 6.5 users.

A.19.1. Migration to version 6.5.1

A dump/restore isotrequired for those running 6.5.

A.19.2. Changes

Add NT README file

Portability fixes for linux_ppc, IRIX, linux_alpha, OpenBSD, alpha
Remove QUERY_LIMIT, use SELECT...LIMIT

Fix for EXPLAIN on inheritance(Tom)

Patch to allow vacuum on multisegment tables(Hiroshi)
R-Tree optimizer selectivity fix(Tom)

ACL file descriptor leak fix(Atsushi Ogawa)

New expresssion subtree code(Tom)

Avoid disk writes for read-only transactions(Vadim)

Fix for removal of temp tables if last transaction was aborted(Bruce)
Fix to prevent too large tuple from being created(Bruce)
plpgsql fixes

Allow port numbers 32k - 64k(Bruce)

Add ™ precidence(Bruce)

Rename sort files called pg_temp to pg_sorttemp(Bruce)
Fix for microseconds in time values(Tom)

Tutorial source cleanup

New linux_m68k port

Fix for sorting of NULL's in some cases(Tom)

Shared library dependencies fixed (Tom)

Fixed glitches affecting GROUP BY in subselects(Tom)
Fix some compiler warnings (Tomoaki Nishiyama)

Add Win1250 (Czech) support (Pavel Behal)

140

Appendix A. Release Notes

A.20. Release 6.5

Release date: 1999-06-09

This release marks a major step in the development team’s mastery of the source code we inherited
from Berkeley. You will see we are now easily adding major features, thanks to the increasing size
and experience of our world-wide development team.

Here is a brief summary of the more notable changes:

Multiversion concurrency control(MVCC)

This removes our old table-level locking, and replaces it with a locking system that is superior to
most commercial database systems. In a traditional system, each row that is modified is locked
until committed, preventing reads by other users. MVCC uses the natural multiversion nature of
PostgreSQL to allow readers to continue reading consistent data during writer activity. Writers
continue to use the compact pg_log transaction system. This is all performed without having to
allocate a lock for every row like traditional database systems. So, basically, we no longer are
restricted by simple table-level locking; we have something better than row-level locking.

Hot backups from pg_dump

pg_dump takes advantage of the new MVCC features to give a consistent database dump/backup
while the database stays online and available for queries.

Numeric data type
We now have a true numeric data type, with user-specified precision.
Temporary tables

Temporary tables are guaranteed to have uniqgue names within a database session, and are de-
stroyed on session exit.

New SQL features

We now have CASE, INTERSECT, and EXCEPT statement support. We have new
LIMIT/OFFSET, SET TRANSACTION ISOLATION LEVEL, SELECT ... FOR UPDATE, and
an improved LOCK TABLE command.

Speedups

We continue to speed up PostgreSQL, thanks to the variety of talents within our team. We have
sped up memory allocation, optimization, table joins, and row transfer routines.

Ports

We continue to expand our port list, this time including Windows NT/ix86 and NetBSD/arm32.
Interfaces

Most interfaces have new versions, and existing functionality has been improved.
Documentation

New and updated material is present throughout the documentation. New FAQs have been con-
tributed for SGI and AIX platforms. The&utorial has introductory information on SQL from
Stefan Simkovics. For theser’s Guide there are reference pages covering the postmaster and
more utility programs, and a new appendix contains details on date/time behavidgkdiitie-
istrator's Guidehas a new chapter on troubleshooting from Tom Lane. AndPtogrammer’s

141

Appendix A. Release Notes

Guidehas a description of query processing, also from Stefan, and details on obtaining the Post-
greSQL source tree via anonymous CVS and CVSup.

A.20.1. Migration to version 6.5

A dump/restore using pg_dump is required for those wishing to migrate data from any previous release
of PostgreSQL. pg_upgrade caat be used to upgrade to this release because the on-disk structure
of the tables has changed compared to previous releases.

The new Multiversion Concurrency Control (MVCC) features can give somewhat different behaviors
in multiuser environmentfRead and understand the following section to ensure that your existing
applications will give you the behavior you need.

A.20.1.1. Multiversion Concurrency Control

Because readers in 6.5 don't lock data, regardless of transaction isolation level, data read by one trans-
action can be overwritten by another. In other words, if a row is returne2Eh¥ CTit doesn’t mean

that this row really exists at the time it is returned (i.e. sometime after the statement or transaction
began) nor that the row is protected from being deleted or updated by concurrent transactions before
the current transaction does a commit or rollback.

To ensure the actual existence of a row and protect it against concurrent updates one SEISEG3e
FOR UPDATEr an appropriaté OCK TABLEstatement. This should be taken into account when
porting applications from previous releases of PostgreSQL and other environments.

Keep the above in mind if you are usingntrib/refint.* triggers for referential integrity. Addi-
tional techniques are required now. One way is toWBEK parent_table IN SHARE ROW EX-
CLUSIVE MODEcommand if a transaction is going to update/delete a primary key andQGk
parent_table IN SHARE MODE command if a transaction is going to update/insert a foreign key.

Note: Note that if you run a transaction in SERIALIZABLE mode then you must
execute the LOCK commands above before execution of any DML statement
(SELECT/INSERT/DELETE/UPDATE/FETCH/COPY_TQ in the transaction.

These inconveniences will disappear in the future when the ability to read dirty (uncommitted) data
(regardless of isolation level) and true referential integrity will be implemented.

A.20.2. Changes

Bug Fixes

Fix text<->float8 and text<->float4 conversion functions(Thomas)

Fix for creating tables with mixed-case constraints(Billy)

Change exp()/pow() behavior to generate error on underflow/overflow(Jan)
Fix bug in pg_dump -z

Memory overrun cleanups(Tatsuo)

Fix for lo_import crash(Tatsuo)

Adjust handling of data type names to suppress double quotes(Thomas)

142

Appendix A. Release Notes

Use type coercion for matching columns and DEFAULT(Thomas)

Fix deadlock so it only checks once after one second of sleep(Bruce)
Fixes for aggregates and PL/pgsql(Hiroshi)

Fix for subquery crash(Vadim)

Fix for libpg function PQfnumber and case-insensitive names(Bahman Rafatjoo)
Fix for large object write-in-middle, no extra block, memory consumption(Tatsuo)
Fix for pg_dump -d or -D and quote special characters in INSERT
Repair serious problems with dynahash(Tom)

Fix INET/CIDR portability problems

Fix problem with selectivity error in ALTER TABLE ADD COLUMN(Bruce)
Fix executor so mergejoin of different column types works(Tom)

Fix for Alpha OR selectivity bug

Fix OR index selectivity problem(Bruce)

Fix so \d shows proper length for char()/varchar()(Ryan)

Fix tutorial code(Clark)

Improve destroyuser checking(Oliver)

Fix for Kerberos(Rodney McDuff)

Fix for dropping database while dirty buffers(Bruce)

Fix so sequence nextval() can be case-sensitive(Bruce)

Fix !'= operator

Drop buffers before destroying database files(Bruce)

Fix case where executor evaluates functions twice(Tatsuo)

Allow sequence nextval actions to be case-sensitive(Bruce)

Fix optimizer indexing not working for negative numbers(Bruce)

Fix for memory leak in executor with fjlsNull

Fix for aggregate memory leaks(Erik Riedel)

Allow username containing a dash GRANT permissions

Cleanup of NULL in inet types

Clean up system table bugs(Tom)

Fix problems of PAGER and \? command(Masaaki Sakaida)

Reduce default multisegment file size limit to 1GB(Peter)

Fix for dumping of CREATE OPERATOR(Tom)

Fix for backward scanning of cursors(Hiroshi Inoue)

Fix for COPY FROM STDIN when using \i(Tom)

Fix for subselect is compared inside an expression(Jan)

Fix handling of error reporting while returning rows(Tom)

Fix problems with reference to array types(Tom,Jan)

Prevent UPDATE SET oid(Jan)

Fix pg_dump so -t option can handle case-sensitive tablenames

Fixes for GROUP BY in special cases(Tom, Jan)

Fix for memory leak in failed queries(Tom)

DEFAULT now supports mixed-case identifiers(Tom)

Fix for multisegment uses of DROP/RENAME table, indexes(Ole Gjerde)
Disable use of pg_dump with both -0 and -d options(Bruce)

Allow pg_dump to properly dump GROUP permissions(Bruce)

Fix GROUP BY in INSERT INTO table SELECT * FROM table2(Jan)
Fix for computations in views(Jan)

Fix for aggregates on array indexes(Tom)

Fix for DEFAULT handles single quotes in value requiring too many quotes
Fix security problem with non-super users importing/exporting large objects(Tom)
Rollback of transaction that creates table cleaned up properly(Tom)

Fix to allow long table and column names to generate proper serial hames(Tom)

Enhancements

Add "vacuumdb" utility
Speed up libpg by allocating memory better(Tom)

143

Appendix A. Release Notes

EXPLAIN all indexes used(Tom)

Implement CASE, COALESCE, NULLIF expression(Thomas)

New pg_dump table output format(Constantin)

Add string min()/max() functions(Thomas)

Extend new type coercion techniques to aggregates(Thomas)

New moddatetime contrib(Terry)

Update to pgaccess 0.96(Constantin)

Add routines for single-byte "char" type(Thomas)

Improved substr() function(Thomas)

Improved multibyte handling(Tatsuo)

Multiversion concurrency control/MVCC(Vadim)

New Serialized mode(Vadim)

Fix for tables over 2gigs(Peter)

New SET TRANSACTION ISOLATION LEVEL(Vadim)

New LOCK TABLE IN ... MODE(Vadim)

Update ODBC driver(Byron)

New NUMERIC data type(Jan)

New SELECT FOR UPDATE(Vadim)

Handle "NaN" and "Infinity" for input values(Jan)

Improved date/year handling(Thomas)

Improved handling of backend connections(Magnus)

New options ELOG_TIMESTAMPS and USE_SYSLOG options for log files(Massimo)

New TCL_ARRAYS option(Massimo)

New INTERSECT and EXCEPT(Stefan)

New pg_index.indisprimary for primary key tracking(D’Arcy)

New pg_dump option to allow dropping of tables before creation(Brook)

Speedup of row output routines(Tom)

New READ COMMITTED isolation level(Vadim)

New TEMP tables/indexes(Bruce)

Prevent sorting if result is already sorted(Jan)

New memory allocation optimization(Jan)

Allow psqgl to do \p\g(Bruce)

Allow multiple rule actions(Jan)

Added LIMIT/OFFSET functionality(Jan)

Improve optimizer when joining a large number of tables(Bruce)

New intro to SQL from S. Simkovics’ Master's Thesis (Stefan, Thomas)

New intro to backend processing from S. Simkovics’ Master’'s Thesis (Stefan)

Improved int8 support(Ryan Bradetich, Thomas, Tom)

New routines to convert between int8 and text/varchar types(Thomas)

New bushy plans, where meta-tables are joined(Bruce)

Enable right-hand queries by default(Bruce)

Allow reliable maximum number of backends to be set at configure time
(--with-maxbackends and postmaster switch (-N backends))(Tom)

GEQO default now 10 tables because of optimizer speedups(Tom)

Allow NULL=Var for MS-SQL portability(Michael, Bruce)

Modify contrib check_primary_key() so either "automatic" or "dependent’(Anand)

Allow psgl \d on a view show query(Ryan)

Speedup for LIKE(Bruce)

Ecpg fixes/features, see srclinterfaces/ecpg/Changelog file(Michael)

JDBC fixes/features, see src/interfaces/jdbc/CHANGELOG(Peter)

Make % operator have precedence like /(Bruce)

Add new postgres -O option to allow system table structure changes(Bruce)

Update contrib/pginterface/findoidjoins script(Tom)

Major speedup in vacuum of deleted rows with indexes(Vadim)

Allow non-SQL functions to run different versions based on arguments(Tom)

Add -E option that shows actual queries sent by \dt and friends(Masaaki Sakaida)

Add version number in start-up banners for psgl(Masaaki Sakaida)

144

Appendix A. Release Notes

New contrib/vacuumlo removes large objects not referenced(Peter)

New initialization for table sizes so non-vacuumed tables perform better(Tom)
Improve error messages when a connection is rejected(Tom)

Support for arrays of char() and varchar() fields(Massimo)

Overhaul of hash code to increase reliability and performance(Tom)

Update to PyGreSQL 2.4(D’Arcy)

Changed debug options so -d4 and -d5 produce different node displays(Jan)
New pg_options: pretty plan, pretty_parse, pretty_rewritten(Jan)

Better optimization statistics for system table access(Tom)

Better handling of non-default block sizes(Massimo)

Improve GEQO optimizer memory consumption(Tom)

UNION now suppports ORDER BY of columns not in target list(Jan)

Major libpg++ improvements(Vince Vielhaber)

pg_dump now uses -z(ACL'’s) as default(Bruce)

backend cache, memory speedups(Tom)

have pg_dump do everything in one snapshot transaction(Vadim)

fix for large object memory leakage, fix for pg_dumping(Tom)

INET type now respects netmask for comparisons

Make VACUUM ANALYZE only use a readlock(Vadim)

Allow VIEWs on UNIONS(Jan)

pg_dump now can generate consistent snapshots on active databases(Vadim)

Source Tree Changes

Improve port matching(Tom)

Portability fixes for SunOS

Add NT/Win32 backend port and enable dynamic loading(Magnus and Daniel Horak)
New port to Cobalt Qube(Mips) running Linux(Tatsuo)

Port to NetBSD/m68k(Mr. Mutsuki Nakajima)

Port to NetBSD/sun3(Mr. Mutsuki Nakajima)

Port to NetBSD/macppc(Toshimi Aoki)

Fix for tcl/tk configuration(Vince)

Removed CURRENT keyword for rule queries(Jan)

NT dynamic loading now works(Daniel Horak)

Add ARM32 support(Andrew McMurry)

Better support for HP-UX 11 and UnixWare

Improve file handling to be more uniform, prevent file descriptor leak(Tom)
New install commands for plpgsqgl(Jan)

A.21. Release 6.4.2

Release date: 1998-12-20

The 6.4.1 release was improperly packaged. This also has one additional bug fix.

A.21.1. Migration to version 6.4.2

A dump/restore isot required for those running 6.4.*.

145

Appendix A. Release Notes

A.21.2. Changes

Fix for datetime constant problem on some platforms(Thomas)

A.22. Release 6.4.1

Release date: 1998-12-18

This is basically a cleanup release for 6.4. We have fixed a variety of problems reported by 6.4 users.

A.22.1. Migration to version 6.4.1

A dump/restore im0t required for those running 6.4.

A.22.2. Changes

Add pg_dump -N flag to force double quotes around identifiers. This is
the default(Thomas)

Fix for NOT in where clause causing crash(Bruce)

EXPLAIN VERBOSE coredump fix(Vadim)

Fix shared-library problems on Linux

Fix test for table existance to allow mixed-case and whitespace in
the table name(Thomas)

Fix a couple of pg_dump bugs

Configure matches template/.similar entries better(Tom)

Change builtin function names from SPI_* to spi_*

OR WHERE clause fix(Vadim)

Fixes for mixed-case table names(Billy)

contrib/linux/postgres.init.csh/sh fix(Thomas)

libpg memory overrun fix

SunOS fixes(Tom)

Change exp() behavior to generate error on underflow(Thomas)
pg_dump fixes for memory leak, inheritance constraints, layout change
update pgaccess to 0.93

Fix prototype for 64-bit platforms

Multibyte fixes(Tatsuo)

New ecpg man page

Fix memory overruns(Tatsuo)

Fix for lo_import() crash(Bruce)

Better search for install program(Tom)

Timezone fixes(Tom)

HP-UX fixes(Tom)

Use implicit type coercion for matching DEFAULT values(Thomas)
Add routines to help with single-byte (internal) character type(Thomas)
Compilation of libpg for Win32 fixes(Magnus)

Upgrade to PyGreSQL 2.2(D’Arcy)

146

Appendix A. Release Notes

A.23. Release 6.4

Release date: 1998-10-30

There arananynew features and improvements in this release. Thanks to our developers and main-
tainers, nearly every aspect of the system has received some attention since the previous release. Here
is a brief, incomplete summary:

- Views and rules are now functional thanks to extensive new code in the rewrite rules system from
Jan Wieck. He also wrote a chapter on it for Pregrammer’s Guide

- Jan also contributed a second procedural language, PL/pgSQL, to go with the original PL/pgTCL
procedural language he contributed last release.

- We have optional multiple-byte character set support from Tatsuo Ishii to complement our existing
locale support.

- Client/server communications has been cleaned up, with better support for asynchronous messages
and interrupts thanks to Tom Lane.

« The parser will now perform automatic type coercion to match arguments to available operators
and functions, and to match columns and expressions with target columns. This uses a generic
mechanism which supports the type extensibility features of PostgreSQL. There is a new chapter
in theUser's Guidewhich covers this topic.

- Three new data types have been added. Two tyipess, andcidr , support various forms of IP
network, subnet, and machine addressing. There is now an 8-byte integer type available on some
platforms. See the chapter on data types inUker’s Guidefor details. A fourth typeserial | is
now supported by the parser as an amalgam ofitde type, a sequence, and a unique index.

« Several more SQL92-compatible syntax features have been added, indiNE8ERT DEFAULT
VALUES

« The automatic configuration and installation system has received some attention, and should be
more robust for more platforms than it has ever been.

A.23.1. Migration to version 6.4

A dump/restore using pg_dump or pg_dumpall is required for those wishing to migrate data from any
previous release of PostgreSQL.

A.23.2. Changes

Bug Fixes

Fix for a tiny memory leak in PQsetdb/PQfinish(Bryan)

Remove char2-16 data types, use char/varchar(Darren)

Pgfn not handles a NOTICE message(Anders)

Reduced busywaiting overhead for spinlocks with many backends (dg)
Stuck spinlock detection (dg)

Fix up "ISO-style" timespan decoding and encoding(Thomas)

147

Appendix A. Release Notes

Fix problem with table drop after rollback of transaction(Vadim)
Change error message and remove non-functional update message(Vadim)
Fix for COPY array checking

Fix for SELECT 1 UNION SELECT NULL

Fix for buffer leaks in large object calls(Pascal)

Change owner from oid to int4 type(Bruce)

Fix a bug in the oracle compatibility functions btrim() Itrim() and rtrim()
Fix for shared invalidation cache overflow(Massimo)

Prevent file descriptor leaks in failed COPY’s(Bruce)

Fix memory leak in libpgtcl's pg_select(Constantin)

Fix problems with username/passwords over 8 characters(Tom)

Fix problems with handling of asynchronous NOTIFY in backend(Tom)
Fix of many bad system table entries(Tom)

Enhancements

Upgrade ecpg and ecpglib,see src/interfaces/ecpc/ChangelLog(Michael)

Show the index used in an EXPLAIN(Zeugswetter)

EXPLAIN invokes rule system and shows plan(s) for rewritten queries(Jan)
Multibyte awareness of many data types and functions, via configure(Tatsuo)
New configure --with-mb option(Tatsuo)

New initdb --pgencoding option(Tatsuo)

New createdb -E multibyte option(Tatsuo)

Select version(); now returns PostgreSQL version(Jeroen)

Libpg now allows asynchronous clients(Tom)

Allow cancel from client of backend query(Tom)

Psqgl now cancels query with Control-C(Tom)

Libpg users need not issue dummy queries to get NOTIFY messages(Tom)
NOTIFY now sends sender's PID, so you can tell whether it was your own(Tom)
PGresult struct now includes associated error message, if any(Tom)

Define "tz_hour" and "tz_minute" arguments to date_part()(Thomas)

Add routines to convert between varchar and bpchar(Thomas)

Add routines to allow sizing of varchar and bpchar into target columns(Thomas)
Add bit flags to support timezonehour and minute in data retrieval(Thomas)
Allow more variations on valid floating point numbers (e.g. ".1", "1le6")(Thomas)
Fixes for unary minus parsing with leading spaces(Thomas)

Implement TIMEZONE_HOUR, TIMEZONE_MINUTE per SQL92 specs(Thomas)
Check for and properly ignore FOREIGN KEY column constraints(Thomas)
Define USER as synonym for CURRENT_USER per SQL92 specs(Thomas)
Enable HAVING clause but no fixes elsewhere yet.

Make "char" type a synonym for "char(1)" (actually implemented as bpchar)(Thomas)
Save string type if specified for DEFAULT clause handling(Thomas)

Coerce operations involving different data types(Thomas)

Allow some index use for columns of different types(Thomas)

Add capabilities for automatic type conversion(Thomas)

Cleanups for large objects, so file is truncated on open(Peter)

Readline cleanups(Tom)

Allow psgl \f \ to make spaces as delimiter(Bruce)

Pass pg_attribute.atttypmod to the frontend for column field lengths(Tom,Bruce)
Msql compatibility library in /contrib(Aldrin)

Remove the requirement that ORDER/GROUP BY clause identifiers be
included in the target list(David)

Convert columns to match columns in UNION clauses(Thomas)

Remove fork()/exec() and only do fork()(Bruce)

Jdbc cleanups(Peter)

Show backend status on ps command line(only works on some platforms)(Bruce)
Pg_hba.conf now has a sameuser option in the database field

148

Appendix A. Release Notes

Make lo_unlink take oid param, not int4

New DISABLE_COMPLEX_MACRO for compilers that can’t handle our macros(Bruce)
Libpgtcl now handles NOTIFY as a Tcl event, need not send dummy queries(Tom)
libpgtcl cleanups(Tom)

Add -error option to libpgtcl's pg_result command(Tom)

New locale patch, see docs/README/locale(Oleg)

Fix for pg_dump so CONSTRAINT and CHECK syntax is correct(ccb)

New contrib/lo code for large object orphan removal(Peter)

New psql command "SET CLIENT_ENCODING TO ’encoding™ for multibytes
feature, see /doc/README.mb(Tatsuo)

/contrib/noupdate code to revoke update permission on a column

Libpg can now be compiled on win32(Magnus)

Add PQsetdbLogin() in libpg

New 8-byte integer type, checked by configure for OS support(Thomas)
Better support for quoted table/column names(Thomas)

Surround table and column names with double-quotes in pg_dump(Thomas)
PQreset() now works with passwords(Tom)

Handle case of GROUP BY target list column number out of range(David)
Allow UNION in subselects

Add auto-size to screen to \d? commands(Bruce)

Use UNION to show all \d? results in one query(Bruce)

Add \d? field search feature(Bruce)

Pg_dump issues fewer \connect requests(Tom)

Make pg_dump -z flag work better, document it in manual page(Tom)

Add HAVING clause with full support for subselects and unions(Stephan)
Full text indexing routines in contrib/fulltextindex(Maarten)

Transaction ids now stored in shared memory(Vadim)

New PGCLIENTENCODING when issuing COPY command(Tatsuo)

Support for SQL92 syntax "SET NAMES"(Tatsuo)

Support for LATIN2-5(Tatsuo)

Add UNICODE regression test case(Tatsuo)

Lock manager cleanup, new locking modes for LLL(Vadim)

Allow index use with OR clauses(Bruce)

Allows "SELECT NULL ORDER BY 1;"

Explain VERBOSE prints the plan, and now pretty-prints the plan to

the postmaster log file(Bruce)

Add indexes display to \d command(Bruce)

Allow GROUP BY on functions(David)

New pg_class.relkind for large objects(Bruce)

New way to send libpg NOTICE messages to a different location(Tom)
New \w write command to psql(Bruce)

New /contrib/findoidjoins scans oid columns to find join relationships(Bruce)
Allow binary-compatible indexes to be considered when checking for valid
Indexes for restriction clauses containing a constant(Thomas)

New ISBN/ISSN code in /contrib/isbn_issn

Allow NOT LIKE, IN, NOT IN, BETWEEN, and NOT BETWEEN constraint(Thomas)
New rewrite system fixes many problems with rules and views(Jan)

* Rules on relations work

* Event qualifications on insert/update/delete work

* New OLD variable to reference CURRENT, CURRENT will be remove in future
* Update rules can reference NEW and OLD in rule qualifications/actions
* Insert/update/delete rules on views work

* Multiple rule actions are now supported, surrounded by parentheses

* Regular users can create views/rules on tables they have RULE permits
* Rules and views inherit the permissions on the creator

* No rules at the column level

* No UPDATE NEW/OLD rules

149

Appendix A. Release Notes

* New pg_tables, pg_indexes, pg_rules and pg_views system views
* Only a single action on SELECT rules

* Total rewrite overhaul, perhaps for 6.5

* handle subselects

* handle aggregates on views

* handle insert into select from view works

System indexes are now multikey(Bruce)

Oidint2, oidint4, and oidname types are removed(Bruce)

Use system cache for more system table lookups(Bruce)

New backend programming language PL/pgSQL in backend/pl(Jan)
New SERIAL data type, auto-creates sequence/index(Thomas)

Enable assert checking without a recompile(Massimo)

User lock enhancements(Massimo)

New setval() command to set sequence value(Massimo)

Auto-remove unix socket file on start-up if no postmaster running(Massimo)
Conditional trace package(Massimo)

New UNLISTEN command(Massimo)

Psqgl and libpg now compile under win32 using win32.mak(Magnus)
Lo_read no longer stores trailing NULL(Bruce)

Identifiers are now truncated to 31 characters internally(Bruce)
Createuser options now availble on the command line

Code for 64-bit integer supported added, configure tested, int8 type(Thomas)
Prevent file descriptor leaf from failed COPY(Bruce)

New pg_upgrade command(Bruce)

Updated /contrib directories(Massimo)

New CREATE TABLE DEFAULT VALUES statement available(Thomas)
New INSERT INTO TABLE DEFAULT VALUES statement available(Thomas)
New DECLARE and FETCH feature(Thomas)

libpg’'s internal structures now not exported(Tom)

Allow up to 8 key indexes(Bruce)

Remove ARCHIVE keyword, that is no longer used(Thomas)

pg_dump -n flag to supress quotes around indentifiers

disable system columns for views(Jan)

new INET and CIDR types for network addresses(TomH, Paul)

no more double quotes in psqgl output

pg_dump now dumps views(Terry)

new SET QUERY_LIMIT(Tatsuo,Jan)

Source Tree Changes

/contrib cleanup(Jun)

Inline some small functions called for every row(Bruce)
Alpha/linux fixes

HP-UX cleanups(Tom)

Multibyte regression tests(Soonmyung.)

Remove --disabled options from configure

Define PGDOC to use POSTGRESDIR by default
Make regression optional

Remove extra braces code to pgindent(Bruce)

Add bsdi shared library support(Bruce)

New --without-CXX support configure option(Brook)
New FAQ_CVS

Update backend flowchart in tools/backend(Bruce)
Change atttypmod from intl6 to int32(Bruce, Tom)
Getrusage() fix for platforms that do not have it(Tom)
Add PQconnectdb, PGUSER, PGPASSWORD to libpg man page
NS32K platform fixes(Phil Nelson, John Buller)

150

Appendix A. Release Notes

SCO 7/UnixWare 2.x fixes(Billy,others)

Sparc/Solaris 2.5 fixes(Ryan)

Pgbuiltin.3 is obsolete, move to doc files(Thomas)

Even more documention(Thomas)

Nextstep support(Jacek)

Aix support(David)

pginterface manual page(Bruce)

shared libraries all have version numbers

merged all OS-specific shared library defines into one file
smarter TCL/TK configuration checking(Billy)

smarter perl configuration(Brook)

configure uses supplied install-sh if no install script found(Tom)
new Makefile.shlib for shared library configuration(Tom)

A.24. Release 6.3.2

Release date: 1998-04-07

This is a bug-fix release for 6.3.x. Refer to the release notes for version 6.3 for a more complete
summary of new features.

Summary:

« Repairs automatic configuration support for some platforms, including Linux, from breakage inad-
vertently introduced in version 6.3.1.

- Correctly handles function calls on the left side of BETWEEN and LIKE clauses.

A dump/restore is NOT required for those running 6.3 or 6.3.Inake distclean , make, and
make install is all that is required. This last step should be performed while the postmaster is not
running. You should re-link any custom applications that use PostgreSQL libraries.

For upgrades from pre-6.3 installations, refer to the installation and migration instructions for version
6.3.

A.24.1. Changes

Configure detection improvements for tcl/tk(Brook Milligan, Alvin)
Manual page improvements(Bruce)

BETWEEN and LIKE fix(Thomas)

fix for psql \connect used by pg_dump(Oliver Elphick)
New odbc driver

pgaccess, version 0.86

gsort removed, now uses libc version, cleanups(Jeroen)
fix for buffer over-runs detected(Maurice Gittens)

fix for buffer overrun in libpgtcl(Randy Kunkee)

fix for UNION with DISTINCT or ORDER BY(Bruce)
gettimeofday configure check(Doug Winterburn)

Fix "indexes not used" bug(Vadim)

151

Appendix A. Release Notes

docs additions(Thomas)

Fix for backend memory leak(Bruce)

libreadline cleanup(Erwan MAS)

Remove DISTDIR(Bruce)

Makefile dependency cleanup(Jeroen van Vianen)
ASSERT fixes(Bruce)

A.25. Release 6.3.1

Release date: 1998-03-23

Summary:

- Additional support for multibyte character sets.
- Repair byte ordering for mixed-endian clients and servers.
- Minor updates to allowed SQL syntax.

« Improvements to the configuration autodetection for installation.

A dump/restore is NOT required for those running 6.3mAke distclean , make, andmake in-
stall is all that is required. This last step should be performed while the postmaster is not running.
You should re-link any custom applications that use PostgreSQL libraries.

For upgrades from pre-6.3 installations, refer to the installation and migration instructions for version
6.3.

A.25.1. Changes

ecpg cleanup/fixes, now version 1.1(Michael Meskes)
pg_user cleanup(Bruce)

large object fix for pg_dump and tclsh (alvin)

LIKE fix for multiple adjacent underscores

fix for redefining builtin functions(Thomas)

ultrix4 cleanup

upgrade to pg_access 0.83

updated CLUSTER manual page

multibyte character set support, see doc/README.mb(Tatsuo)
configure --with-pgport fix

pg_ident fix

big-endian fix for backend communications(Kataoka)
SUBSTR() and substring() fix(Jan)

several jdbc fixes(Peter)

libpgtcl improvements, see libptcl/README(Randy Kunkee)
Fix for "Datasize = 0" error(Vadim)

Prevent \do from wrapping(Bruce)

152

Appendix A. Release Notes

Remove duplicate Russian character set entries

Sunos4 cleanup

Allow optional TABLE keyword in LOCK and SELECT INTO(Thomas)
CREATE SEQUENCE options to allow a negative integer(Thomas)
Add "PASSWORD" as an allowed column identifier(Thomas)

Add checks for UNION target fields(Bruce)

Fix Alpha port(Dwayne Bailey)

Fix for text arrays containing quotes(Doug Gibson)

Solaris compile fix(Albert Chin-A-Young)

Better identify tcl and tk libs and includes(Bruce)

A.26. Release 6.3

Release date: 1998-03-01

There arananynew features and improvements in this release. Here is a brief, incomplete summary:

« Many new SQL features, including full SQL92 subselect capability (everything is here but target-
list subselects).

« Support for client-side environment variables to specify time zone and date style.

- Socket interface for client/server connection. This is the default now so you may need to start
postmaster with the flag.

« Better password authorization mechanisms. Default table permissions have changed.

+ Old-styletime travelhas been removed. Performance has been improved.

Note: Bruce Momjian wrote the following notes to introduce the new release.

There are some general 6.3 issues that | want to mention. These are only the big items that can not be
described in one sentence. A review of the detailed changes list is still needed.

First, we now have subselects. Now that we have them, | would like to mention that without subselects,
SQL is a very limited language. Subselects are a major feature, and you should review your code for
places where subselects provide a better solution for your queries. | think you will find that there are
more uses for subselects than you may think. Vadim has put us on the big SQL map with subselects,
and fully functional ones too. The only thing you can’t do with subselects is to use them in the target
list.

Second, 6.3 uses Unix domain sockets rather than TCP/IP by default. To enable connections from
other machines, you have to use the new postmaster -i option, and of courpg_édd.conf
Also, for this reason, the format gf_hba.conf has changed.

153

Appendix A. Release Notes

Third, char() fields will now allow faster access thamarchar() ortext . Specifically, thaext
andvarchar() have a penalty for access to any columns after the first column of thisdiyse)

used to also have this access penalty, but it no longer does. This may suggest that you redesign some
of your tables, especially if you have short character columns that you have defieedhas() or

text . This and other changes make 6.3 even faster than earlier releases.

We now have passwords definable independent of any Unix file. There are new SQL USER com-
mands. See th&dministrator’s Guiddor more information. There is a new table, pg_shadow, which

is used to store user information and user passwords, and it by default only SELECT-able by the post-
gres super-user. pg_user is now a view of pg_shadow, and is SELECT-able by PUBLIC. You should
keep using pg_user in your application without changes.

User-created tables now no longer have SELECT permission to PUBLIC by default. This was done
because the ANSI standard requires it. You can of course GRANT any permissions you want after the
table is created. System tables continue to be SELECT-able by PUBLIC.

We also have real deadlock detection code. No more sixty-second timeouts. And the new locking code
implements a FIFO better, so there should be less resource starvation during heavy use.

Many complaints have been made about inadequate documentation in previous releases. Thomas has
put much effort into many new manuals for this release. Check out the doc/ directory.

For performance reasons, time travel is gone, but can be implemented using triggers (see
pgsql/contrib/spi/README). Please check out the new \d command for types, operators, etc.
Also, views have their own permissions now, not based on the underlying tables, so permissions
on them have to be set separately. Chéaisql/interfaces for some new ways to talk to
PostgreSQL.

This is the first release that really required an explanation for existing users. In many ways, this was
necessary because the new release removes many limitations, and the work-arounds people were using
are no longer needed.

A.26.1. Migration to version 6.3

A dump/restore using pg_dump or pg_dumpall is required for those wishing to migrate data from any
previous release of PostgreSQL.

A.26.2. Changes

Bug Fixes

Fix binary cursors broken by MOVE implementation(Vadim)

Fix for tcl library crash(Jan)

Fix for array handling, from Gerhard Hintermayer

Fix acl error, and remove duplicate pqgtrace(Bruce)

Fix psql \e for empty file(Bruce)

Fix for textcat on varchar() fields(Bruce)

Fix for DBT Sendproc (Zeugswetter Andres)

Fix vacuum analyze syntax problem(Bruce)

Fix for international identifiers(Tatsuo)

Fix aggregates on inherited tables(Bruce)

Fix substr() for out-of-bounds data

Fix for select 1=1 or 2=2, select 1=1 and 2=2, and select sum(2+2)(Bruce)
Fix notty output to show status result. -q option still turns it off(Bruce)
Fix for count(*), aggs with views and multiple tables and sum(3)(Bruce)

154

Appendix A. Release Notes

Fix cluster(Bruce)

Fix for PQtrace start/stop several times(Bruce)

Fix a variety of locking problems like newer lock waiters getting

lock before older waiters, and having readlock people not share
locks if a writer is waiting for a lock, and waiting writers not
getting priority over waiting readers(Bruce)

Fix crashes in psgl when executing queries from external files(James)
Fix problem with multiple order by columns, with the first one having
NULL values(Jeroen)

Use correct hash table support functions for float8 and int4(Thomas)
Re-enable JOIN= option in CREATE OPERATOR statement (Thomas)
Change precedence for boolean operators to match expected behavior(Thomas)
Generate elog(ERROR) on over-large integer(Bruce)

Allow multiple-argument functions in constraint clauses(Thomas)

Check boolean input literals for 'true’,'false’,’'yes’,’'no’,’1’,’0’

and throw elog(ERROR) if unrecognized(Thomas)

Major large objects fix

Fix for GROUP BY showing duplicates(Vadim)

Fix for index scans in MergeJion(Vadim)

Enhancements

Subselects with EXISTS, IN, ALL, ANY keywords (Vadim, Bruce, Thomas)

New User Manual(Thomas, others)

Speedup by inlining some frequently-called functions

Real deadlock detection, no more timeouts(Bruce)

Add SQL92 "constants" CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP,
CURRENT_USER(Thomas)

Modify constraint syntax to be SQL92-compliant(Thomas)

Implement SQL92 PRIMARY KEY and UNIQUE clauses using indexes(Thomas)
Recognize SQL92 syntax for FOREIGN KEY. Throw elog notice(Thomas)

Allow NOT NULL UNIQUE constraint clause (each allowed separately before)(Thomas)
Allow PostgreSQL-style casting ("::") of non-constants(Thomas)

Add support for SQL3 TRUE and FALSE boolean constants(Thomas)

Support SQL92 syntax for IS TRUE/IS FALSE/IS NOT TRUE/IS NOT FALSE(Thomas)
Allow shorter strings for boolean literals (e.g. "t*, "tr", "tru")(Thomas)

Allow SQL92 delimited identifiers(Thomas)

Implement SQL92 binary and hexadecimal string decoding (b'10' and x'1F’)(Thomas)
Support SQL92 syntax for type coercion of literal strings

(e.g. "DATETIME 'now™)(Thomas)

Add conversions for int2, int4, and OID types to and from text(Thomas)

Use shared lock when building indexes(Vadim)

Free memory allocated for an user query inside transaction block after

this query is done, was turned off in <= 6.2.1(Vadim)

New SQL statement CREATE PROCEDURAL LANGUAGE(Jan)

New PostgreSQL Procedural Language (PL) backend interface(Jan)

Rename pg_dump -H option to -h(Bruce)

Add Java support for passwords, European dates(Peter)

Use indexes for LIKE and ~, !~ operations(Bruce)

Add hash functions for datetime and timespan(Thomas)

Time Travel removed(Vadim, Bruce)

Add paging for \d and \z, and fix \i(Bruce)

Add Unix domain socket support to backend and to frontend library(Goran)
Implement CREATE DATABASE/WITH LOCATION and initlocation utility(Thomas)
Allow more SQL92 and/or PostgreSQL reserved words as column identifiers(Thomas)
Augment support for SQL92 SET TIME ZONE...(Thomas)

SET/SHOW/RESET TIME ZONE uses TZ backend environment variable(Thomas)

155

Appendix A. Release Notes

Implement SET keyword = DEFAULT and SET TIME ZONE DEFAULT(Thomas)
Enable SET TIME ZONE using TZ environment variable(Thomas)
Add PGDATESTYLE environment variable to frontend and backend initialization(Thomas)
Add PGTZ, PGCOSTHEAP, PGCOSTINDEX, PGRPLANS, PGGEQO

frontend library initialization environment variables(Thomas)

Regression tests time zone automatically set with "setenv PGTZ PST8PDT"(Thomas)
Add pg_description table for info on tables, columns, operators, types, and
aggregates(Bruce)

Increase 16 char limit on system table/index names to 32 characters(Bruce)
Rename system indexes(Bruce)
Add 'GERMAN'’ option to SET DATESTYLE(Thomas)

Define an "ISO-style" timespan output format with "hh:mm:ss" fields(Thomas)
Allow fractional values for delta times (e.g. '2.5 days’)(Thomas)
Validate numeric input more carefully for delta times(Thomas)

Implement day of year as possible input to date_part()(Thomas)

Define timespan_finite() and text_timespan() functions(Thomas)

Remove archive stuff(Bruce)
Allow for a pg_password authentication database that is separate from

the system password file(Todd)

Dump ACLs, GRANT, REVOKE permissions(Matt)

Define text, varchar, and bpchar string length functions(Thomas)

Fix Query handling for inheritance, and cost computations(Bruce)

Implement CREATE TABLE/AS SELECT (alternative to SELECT/INTO)(Thomas)
Allow NOT, IS NULL, IS NOT NULL in constraints(Thomas)

Implement UNIONs for SELECT(Bruce)
Add UNION, GROUP, DISTINCT to INSERT(Bruce)
varchar() stores only necessary bytes on disk(Bruce)

Fix for BLOBs(Peter)

Mega-Patch for JDBC...see README_6.3 for list of changes(Peter)

Remove unused "option" from PQconnectdb()

New LOCK command and lock manual page describing deadlocks(Bruce)

Add new psql \da, \dd, \df, \do, \dS, and \dT commands(Bruce)

Enhance psqgl \z to show sequences(Bruce)

Show NOT NULL and DEFAULT in psqgl \d table(Bruce)

New psql .psqlrc file start-up(Andrew)

Modify sample start-up script in contrib/linux to show syslog(Thomas)

New types for IP and MAC addresses in contrib/ip_and_mac(TomH)

Unix system time conversions with date/time types in contrib/unixdate(Thomas)
Update of contrib stuff(Massimo)

Add Unix socket support to DBD::Pg(Goran)

New python interface (PyGreSQL 2.0)(D’Arcy)

New frontend/backend protocol has a version number, network byte order(Phil)
Security features in pg_hba.conf enhanced and documented, many cleanups(Phil)
CHAR() now faster access than VARCHAR() or TEXT

ecpg embedded SQL preprocessor

Reduce system column overhead(Vadmin)

Remove pg_time table(Vadim)

Add pg_type attribute to identify types that need length (bpchar, varchar)

Add report of offending line when COPY command fails

Allow VIEW permissions to be set separately from the underlying tables.

For security, use GRANT/REVOKE on views as appropriate(Jan)

Tables now have no default GRANT SELECT TO PUBLIC. You must
explicitly grant such permissions.

Clean up tutorial examples(Darren)

Source Tree Changes

156

Appendix A. Release Notes

Add new html development tools, and flow chart in /tools/backend

Fix for SCO compiles

Stratus computer port Robert Gillies

Added support for shlib for BSD44_derived & i386_solaris

Make configure more automated(Brook)

Add script to check regression test results

Break parser functions into smaller files, group together(Bruce)

Rename heap_create to heap_create_and_catalog, rename heap_creatr
to heap_create()(Bruce)

Sparc/Linux patch for locking(TomsS)

Remove PORTNAME and reorganize port-specific stuff(Marc)

Add optimizer README file(Bruce)

Remove some recursion in optimizer and clean up some code there(Bruce)
Fix for NetBSD locking(Henry)

Fix for libptcl make(Tatsuo)

AIX patch(Darren)

Change IS TRUE, IS FALSE, ... to expressions using "=" rather than
function calls to istrue() or isfalse() to allow optimization(Thomas)
Various fixes NetBSD/Sparc related(TomH)

Alpha linux locking(Travis,Ryan)

Change elog(WARN) to elog(ERROR)(Bruce)

FAQ for FreeBSD(Marc)

Bring in the PostODBC source tree as part of our standard distribution(Marc)
A minor patch for HP/UX 10 vs 9(Stan)

New pg_attribute.atttypmod for type-specific info like varchar length(Bruce)
UnixWare patches(Billy)

New i386 ’lock’ for spin lock asm(Billy)

Support for multiplexed backends is removed

Start an OpenBSD port

Start an AUX port

Start a Cygnus port

Add string functions to regression suite(Thomas)

Expand a few function names formerly truncated to 16 characters(Thomas)
Remove un-needed malloc() calls and replace with palloc()(Bruce)

A.27. Release 6.2.1

Release date: 1997-10-17

6.2.1 is a bug-fix and usability release on 6.2.

Summary:

« Allow strings to span lines, per SQL92.

- Include example trigger function for inserting user names on table updates.

This is a minor bug-fix release on 6.2. For upgrades from pre-6.2 systems, a full dump/reload is
required. Refer to the 6.2 release notes for instructions.

157

Appendix A. Release Notes

A.27.1. Migration from version 6.2 to version 6.2.1

This is a minor bug-fix release. A dump/reload is not required from version 6.2, but is required from
any release prior to 6.2.

In upgrading from version 6.2, if you choose to dump/reload you will find that avg(money) is now
calculated correctly. All other bug fixes take effect upon updating the executables.

Another way to avoid dump/reload is to use the following SQL command frsgh to update the
existing system table:

update pg_aggregate set aggfinalfn = ’'cash_div_flt8’
where aggname = 'avg’ and aggbasetype = 790;

This will need to be done to every existing database, including templatel.

A.27.2. Changes

Allow TIME and TYPE column names(Thomas)

Allow larger range of true/false as boolean values(Thomas)

Support output of "now" and "current"(Thomas)

Handle DEFAULT with INSERT of NULL properly(Vadim)

Fix for relation reference counts problem in buffer manager(Vadim)

Allow strings to span lines, like ANSI(Thomas)

Fix for backward cursor with ORDER BY(Vadim)

Fix avg(cash) computation(Thomas)

Fix for specifying a column twice in ORDER/GROUP BY(Vadim)
Documented new libpg function to return affected rows, PQcmdTuples(Bruce)
Trigger function for inserting user names for INSERT/UPDATE(Brook Milligan)

A.28. Release 6.2

Release date: 1997-10-02

A dump/restore is required for those wishing to migrate data from previous releases of PostgreSQL.

A.28.1. Migration from version 6.1 to version 6.2
This migration requires a complete dump of the 6.1 database and a restore of the database in 6.2.

Note that thepg_dump andpg_dumpall utility from 6.2 should be used to dump the 6.1 database.

158

Appendix A. Release Notes

A.28.2. Migration from version 1. x to version 6.2

Those migrating from earlier 1.* releases should first upgrade to 1.09 because the COPY output
format was improved from the 1.02 release.

A.28.3. Changes

Bug Fixes

Fix problems with pg_dump for inheritance, sequences, archive tables(Bruce)

Fix compile errors on overflow due to shifts, unsigned, and bad prototypes
from Solaris(Diab Jerius)

Fix bugs in geometric line arithmetic (bad intersection calculations)(Thomas)

Check for geometric intersections at endpoints to avoid rounding ugliness(Thomas)

Catch non-functional delete attempts(Vadim)

Change time function names to be more consistent(Michael Reifenberg)

Check for zero divides(Michael Reifenberg)

Fix very old bug which made tuples changed/inserted by a commnd

visible to the command itself (so we had multiple update of

updated tuples, etc)(Vadim)

Fix for SELECT null, 'fail FROM pg_am (Patrick)

SELECT NULL as EMPTY_FIELD now allowed(Patrick)

Remove un-needed signal stuff from contrib/pginterface

Fix OR (where x != 1 or x isnull didn't return tuples with x NULL) (Vadim)

Fix time_cmp function (Vadim)

Fix handling of functions with non-attribute first argument in

WHERE clauses (Vadim)

Fix GROUP BY when order of entries is different from order

in target list (Vadim)

Fix pg_dump for aggregates without sfuncl (Vadim)

Enhancements

Default genetic optimizer GEQO parameter is now 8(Bruce)

Allow use parameters in target list having aggregates in functions(Vadim)

Added JDBC driver as an interface(Adrian & Peter)

pg_password utility

Return number of tuples inserted/affected by INSERT/UPDATE/DELETE etc.(Vadim)
Triggers implemented with CREATE TRIGGER (SQL3)(Vadim)

SPI (Server Programming Interface) allows execution of queries inside

C-functions (Vadim)

NOT NULL implemented (SQL92)(Robson Paniago de Miranda)

Include reserved words for string handling, outer joins, and unions(Thomas)
Implement extended comments ("/* ... */") using exclusive states(Thomas)

Add "/I" single-line comments(Bruce)

Remove some restrictions on characters in operator names(Thomas)

DEFAULT and CONSTRAINT for tables implemented (SQL92)(Vadim & Thomas)

Add text concatenation operator and function (SQL92)(Thomas)

Support WITH TIME ZONE syntax (SQL92)(Thomas)

Support INTERVAL unit TO unit syntax (SQL92)(Thomas)

Define types DOUBLE PRECISION, INTERVAL, CHARACTER,

and CHARACTER VARYING (SQL92)(Thomas)

Define type FLOAT(p) and rudimentary DECIMAL(p,s), NUMERIC(p,s) (SQL92)(Thomas)
Define EXTRACT(), POSITION(), SUBSTRING(), and TRIM() (SQL92)(Thomas)

Define CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP (SQL92)(Thomas)
Add syntax and warnings for UNION, HAVING, INNER and OUTER JOIN (SQL92)(Thomas)

159

Appendix A. Release Notes

Add more reserved words, mostly for SQL92 compliance(Thomas)

Allow hh:mm:ss time entry for timespan/reltime types(Thomas)

Add center() routines for Iseg, path, polygon(Thomas)

Add distance() routines for circle-polygon, polygon-polygon(Thomas)

Check explicitly for points and polygons contained within polygons

using an axis-crossing algorithm(Thomas)

Add routine to convert circle-box(Thomas)

Merge conflicting operators for different geometric data types(Thomas)

Replace distance operator "<===>" with "<->"(Thomas)

Replace "above" operator "™ with "> and "below" operator "!|' with "<A"(Thomas)
Add routines for text trimming on both ends, substring, and string position(Thomas)
Added conversion routines circle(box) and poly(circle)(Thomas)

Allow internal sorts to be stored in memory rather than in files(Bruce & Vadim)
Allow functions and operators on internally-identical types to succeed(Bruce)
Speed up backend start-up after profiling analysis(Bruce)

Inline frequently called functions for performance(Bruce)

Reduce open() calls(Bruce)

psql: Add PAGER for \h and \?,\C fix

Fix for psgl pager when no tty(Bruce)

New entab utility(Bruce)

General trigger functions for referential integrity (Vadim)

General trigger functions for time travel (Vadim)

General trigger functions for AUTOINCREMENT/IDENTITY feature (Vadim)
MOVE implementation (Vadim)

Source Tree Changes

HP-UX 10 patches (Vladimir Turin)

Added SCO support, (Daniel Harris)

MKLinux patches (Tatsuo Ishii)

Change geometric box terminology from "length" to "width"(Thomas)
Deprecate temporary unstored slope fields in geometric code(Thomas)
Remove restart instructions from INSTALL(Bruce)

Look in /usr/ucb first for install(Bruce)

Fix c++ copy example code(Thomas)

Add -o to psql manual page(Bruce)

Prevent relname unallocated string length from being copied into database(Bruce)
Cleanup for NAMEDATALEN use(Bruce)

Fix pg_proc names over 15 chars in output(Bruce)

Add strNcpy() function(Bruce)

remove some (void) casts that are unnecessary(Bruce)

new interfaces directory(Marc)

Replace fopen() calls with calls to fd.c functions(Bruce)

Make functions static where possible(Bruce)

enclose unused functions in #ifdef NOT_USED(Bruce)

Remove call to difftime() in timestamp support to fix SunOS(Bruce & Thomas)
Changes for Digital Unix

Portability fix for pg_dumpall(Bruce)

Rename pg_attribute.attnvals to attdispersion(Bruce)

"intro/unix" manual page now "pgintro"(Bruce)

"built-in" manual page now "pgbuiltin“(Bruce)

"drop" manual page now "drop_table"(Bruce)

Add "create_trigger", "drop_trigger" manual pages(Thomas)

Add constraints regression test(Vadim & Thomas)

Add comments syntax regression test(Thomas)

Add PGINDENT and support program(Bruce)

Massive commit to run PGINDENT on all *.c and *.h files(Bruce)

160

Appendix A. Release Notes

Files moved to /src/tools directory(Bruce)
SPI and Trigger programming guides (Vadim & D’Arcy)

A.29. Release 6.1.1

Release date: 1997-07-22

A.29.1. Migration from version 6.1 to version 6.1.1

This is a minor bug-fix release. A dump/reload is not required from version 6.1, but is required from
any release prior to 6.1. Refer to the release notes for 6.1 for more details.

A.29.2. Changes

fix for SET with options (Thomas)

allow pg_dump/pg_dumpall to preserve ownership of all tables/objects(Bruce)
new psql \connect option allows changing usernames without changing databases
fix for initdb --debug option(Yoshihiko Ichikawa))

lextest cleanup(Bruce)

hash fixes(Vadim)

fix date/time month boundary arithmetic(Thomas)

fix timezone daylight handling for some ports(Thomas, Bruce, Tatsuo)
timestamp overhauled to use standard functions(Thomas)

other code cleanup in date/time routines(Thomas)

psql's \d now case-insensitive(Bruce)

psqgl's backslash commands can now have trailing semicolon(Bruce)

fix memory leak in psql when using \g(Bruce)

major fix for endian handling of communication to server(Thomas, Tatsuo)
Fix for Solaris assembler and include files(Yoshihiko Ichikawa)

allow underscores in usernames(Bruce)

pg_dumpall now returns proper status, portability fix(Bruce)

A.30. Release 6.1

Release date: 1997-06-08

The regression tests have been adapted and extensively modified for the 6.1 release of PostgreSQL.

Three new data typesidtetime |, timespan , andcircle) have been added to the native set of
PostgreSQL types. Points, boxes, paths, and polygons have had their output formats made consistent

161

Appendix A. Release Notes

across the data types. The polygon output in misc.out has only been spot-checked for correctness
relative to the original regression output.

PostgreSQL 6.1 introduces a new, alternate optimizer which gesesticalgorithms. These algo-
rithms introduce a random behavior in the ordering of query results when the query contains multiple
qualifiers or multiple tables (giving the optimizer a choice on order of evaluation). Several regression
tests have been modified to explicitly order the results, and hence are insensitive to optimizer choices.
A few regression tests are for data types which are inherently unordered (e.g. points and time inter-
vals) and tests involving those types are explicitly bracketed seithgeqo to ’off’ andreset

geqo.

The interpretation of array specifiers (the curly braces around atomic values) appears to have changed
sometime after the original regression tests were generated. The cigxeatted/*.out files

reflect this new interpretation, which may not be correct!

The float8 regression test fails on at least some platforms. This is due to differences in implementa-
tions ofpow() andexp() and the signaling mechanisms used for overflow and underflow conditions.

The “random” results in the random test should cause the “random” test to be “failed”, since the
regression tests are evaluated using a simple diff. However, “random” does not seem to produce
random results on my test machine (Linux/gcc/i686).

A.30.1. Migration to version 6.1
This migration requires a complete dump of the 6.0 database and a restore of the database in 6.1.

Those migrating from earlier 1.* releases should first upgrade to 1.09 because the COPY output
format was improved from the 1.02 release.

A.30.2. Changes

Bug Fixes

packet length checking in library routines

lock manager priority patch

check for under/over flow of float8(Bruce)

multitable join fix(Vadim)

SIGPIPE crash fix(Darren)

large object fixes(Sven)

allow btree indexes to handle NULLs(Vadim)

timezone fixes(D'Arcy)

select SUM(x) can return NULL on no rows(Thomas)
internal optimizer, executor bug fixes(Vadim)

fix problem where inner loop in < or <= has no rows(Vadim)
prevent re-commuting join index clauses(Vadim)

fix join clauses for multiple tables(Vadim)

fix hash, hashjoin for arrays(Vadim)

fix btree for abstime type(Vadim)

large object fixes(Raymond)

fix buffer leak in hash indexes (Vadim)

fix rtree for use in inner scan (Vadim)

fix gist for use in inner scan, cleanups (Vadim, Andrea)
avoid unnecessary local buffers allocation (Vadim, Massimo)
fix local buffers leak in transaction aborts (Vadim)

fix file manager memmory leaks, cleanups (Vadim, Massimo)
fix storage manager memmory leaks (Vadim)

162

Appendix A. Release Notes

fix btree duplicates handling (Vadim)

fix deleted tuples re-incarnation caused by vacuum (Vadim)

fix SELECT varchar()/char() INTO TABLE made zero-length fields(Bruce)
many psql, pg_dump, and libpg memory leaks fixed using Purify (Igor)

Enhancements

attribute optimization statistics(Bruce)

much faster new btree bulk load code(Paul)

BTREE UNIQUE added to bulk load code(Vadim)

new lock debug code(Massimo)

massive changes to libpg++(Leo)

new GEQO optimizer speeds table multitable optimization(Martin)
new WARN message for non-unique insert into unique key(Marc)
update x=-3, no spaces, now valid(Bruce)

remove case-sensitive identifier handling(Bruce,Thomas,Dan)
debug backend now pretty-prints tree(Darren)

new Oracle character functions(Edmund)

new plaintext password functions(Dan)

no such class or insufficient privilege changed to distinct messages(Dan)
new ANSI timestamp function(Dan)

new ANSI Time and Date types (Thomas)

move large chunks of data in backend(Martin)

multicolumn btree indexes(Vadim)

new SET var TO value command(Martin)

update transaction status on reads(Dan)

new locale settings for character types(Oleg)

new SEQUENCE serial number generator(Vadim)

GROUP BY function now possible(Vadim)

re-organize regression test(Thomas,Marc)

new optimizer operation weights(Vadim)

new psql \z grant/permit option(Marc)

new MONEY data type(D’'Arcy,Thomas)

tcp socket communication speed improved(Vadim)

new VACUUM option for attribute statistics, and for certain columns (Vadim)
many geometric type improvements(Thomas,Keith)

additional regression tests(Thomas)

new datestyle variable(Thomas,Vadim,Martin)

more comparison operators for sorting types(Thomas)

new conversion functions(Thomas)

new more compact btree format(Vadim)

allow pg_dumpall to preserve database ownership(Bruce)
new SET GEQO=# and R_PLANS variable(Vadim)

old (IGEQO) optimizer can use right-sided plans (Vadim)
typechecking improvement in SQL parser(Bruce)

new SET, SHOW, RESET commands(Thomas,Vadim)

new \connect database USER option

new destroydb -i option (Igor)

new \dt and \di psgl commands (Darren)

SELECT "\n" now escapes newline (A. Duursma)

new geometry conversion functions from old format (Thomas)

Source tree changes

new configuration script(Marc)
readline configuration option added(Marc)
OS-specific configuration options removed(Marc)

163

Appendix A. Release Notes

new OS-specific template files(Marc)

no more need to edit Makefile.global(Marc)
re-arrange include files(Marc)

nextstep patches (Gregor Hoffleit)

removed WIN32-specific code(Bruce)

removed postmaster -e option, now only postgres -e option (Bruce)
merge duplicate library code in front/backends(Martin)
now works with eBones, international Kerberos(Jun)
more shared library support

c++ include file cleanup(Bruce)

warn about buggy flex(Bruce)

DG/UX, Ultrix, IRIX, AIX portability fixes

A.31. Release 6.0

Release date: 1997-01-29

A dump/restore is required for those wishing to migrate data from previous releases of PostgreSQL.

A.31.1. Migration from version 1.09 to version 6.0

This migration requires a complete dump of the 1.09 database and a restore of the database in 6.0.

A.31.2. Migration from pre-1.09 to version 6.0

Those migrating from earlier 1.* releases should first upgrade to 1.09 because the COPY output
format was improved from the 1.02 release.

A.31.3. Changes

Bug Fixes

ALTER TABLE bug - running postgress process needs to re-read table definition
Allow vacuum to be run on one table or entire database(Bruce)

Array fixes

Fix array over-runs of memory writes(Kurt)

Fix elusive btree range/non-range bug(Dan)

Fix for hash indexes on some types like time and date

Fix for pg_log size explosion

Fix permissions on lo_export()(Bruce)

Fix unitialized reads of memory(Kurt)

Fixed ALTER TABLE ... char(3) bug(Bruce)

Fixed a few small memory leaks

Fixed EXPLAIN handling of options and changed full_path option name
Fixed output of group acl permissions

Memory leaks (hunt and destroy with tools like Purify(Kurt)

Minor improvements to rules system

164

Appendix A. Release Notes

NOTIFY fixes

New asserts for run-checking
Overhauled parser/analyze code to properly report errors and increase speed
Pg_dump -d now handles NULL's properly(Bruce)

Prevent SELECT NULL from crashing server (Bruce)

Properly report errors when INSERT ... SELECT columns did not match

Properly report errors when insert column names were not correct

Psql \g filename now works(Bruce)

Psql fixed problem with multiple statements on one line with multiple outputs
Removed duplicate system OIDs

SELECT * INTO TABLE . GROUP/ORDER BY gives unlink error if table exists(Bruce)
Several fixes for queries that crashed the backend

Starting quote in insert string errors(Bruce)

Submitting an empty query now returns empty status, not just

query(Bruce)

Enhancements

Add EXPLAIN manual page(Bruce)

Add UNIQUE index capability(Dan)

Add hostname/user level access control rather than just hostname and user
Add synonym of != for <>(Bruce)

Allow "select oid,* from table"

Allow BY,ORDER BY to specify columns by number, or by non-alias table.column(Bruce)
Allow COPY from the frontend(Bryan)

Allow GROUP BY to use alias column name(Bruce)

Allow actual compression, not just reuse on the same page(Vadim)

Allow installation-configuration option to auto-add all local users(Bryan)
Allow libpg to distinguish between text value " and null(Bruce)

Allow non-postgres users with createdb privs to destroydb’s

Allow restriction on who can create C functions(Bryan)

Allow restriction on who can do backend COPY(Bryan)

Can shrink tables, pg_time and pg_log(Vadim & Erich)

Change debug level 2 to print queries only, changed debug heading layout(Bruce)
Change default decimal constant representation from float4 to float8(Bruce)
European date format now set when postmaster is started

Execute lowercase function names if not found with exact case

Fixes for aggregate/GROUP processing, allow ’'select sum(func(x),sum(x+y) from Zz’
Gist now included in the distrubution(Marc)

Idend authentication of local users(Bryan)

Implement BETWEEN qualifier(Bruce)

Implement IN qualifier(Bruce)

Libpg has PQgetisnull()(Bruce)

Libpg++ improvements

New options to initdb(Bryan)

Pg_dump allow dump of OIDs(Bruce)

Pg_dump create indexes after tables are loaded for speed(Bruce)
Pg_dumpall dumps all databases, and the user table

Pginterface additions for NULL values(Bruce)

Prevent postmaster from being run as root

Psqgl \h and \? is now readable(Bruce)

Psqgl allow backslashed, semicolons anywhere on the line(Bruce)

Psqgl changed command prompt for lines in query or in quotes(Bruce)
Psql char(3) now displays as (bp)char in \d output(Bruce)

Psql return code now more accurate(Bryan?)

Psql updated help syntax(Bruce)

Re-visit and fix vacuum(Vadim)

Reduce size of regression diffs, remove timezone name difference(Bruce)

165

Appendix A. Release Notes

Remove compile-time parameters to enable binary distributions(Bryan)
Reverse meaning of HBA masks(Bryan)

Secure Authentication of local users(Bryan)

Speed up vacuum(Vadim)

Vacuum now had VERBOSE option(Bruce)

Source tree changes

All functions now have prototypes that are compared against the calls
Allow asserts to be disabled easly from Makefile.global(Bruce)
Change oid constants used in code to #define names
Decoupled sparc and solaris defines(Kurt)

Gcee -Wall compiles cleanly with warnings only from unfixable constructs
Major include file reorganization/reduction(Marc)

Make now stops on compile failure(Bryan)

Makefile restructuring(Bryan, Marc)

Merge bsdi_2_1 to bsdi(Bruce)

Monitor program removed

Name change from Postgres95 to PostgreSQL

New config.h file(Marc, Bryan)

PG_VERSION now set to 6.0 and used by postmaster
Portability additions, including Ultrix, DG/UX, AIX, and Solaris
Reduced the number of #define's, centeralized #define's

Remove duplicate OIDS in system tables(Dan)

Remove duplicate system catalog info or report mismatches(Dan)
Removed many os-specific #define’'s

Restructured object file generation/location(Bryan, Marc)
Restructured port-specific file locations(Bryan, Marc)
Unused/uninialized variables corrected

A.32. Release 1.09

Release date: 1996-11-04

Sorry, we didn't keep track of changes from 1.02 to 1.09. Some of the changes listed in 6.0 were
actually included in the 1.02.1 to 1.09 releases.

A.33. Release 1.02

Release date: 1996-08-01

166

Appendix A. Release Notes

A.33.1. Migration from version 1.02 to version 1.02.1

Here is a new migration file for 1.02.1. Itincludes the 'copy’ change and a script to convert old ASCII
files.

Note: The following notes are for the benefit of users who want to migrate databases from Post-
gres95 1.01 and 1.02 to Postgres95 1.02.1.

If you are starting afresh with Postgres95 1.02.1 and do not need to migrate old databases, you
do not need to read any further.

In order to upgrade older Postgres95 version 1.01 or 1.02 databases to version 1.02.1, the following
steps are required:

1. Startup anew 1.02.1 postmaster

2. Add the new built-in functions and operators of 1.02.1 to 1.01 or 1.02 databases. This is done by
running the new 1.02.1 server against your own 1.01 or 1.02 database and applying the queries
attached at the end of the file. This can be done easily thrpsmih. If your 1.01 or 1.02 database
is namedestdb and you have cut the commands from the end of this file and saved them in
addfunc.sql

% psql testdb -f addfunc.sql

Those upgrading 1.02 databases will get a warning when executing the last two statements in the
file because they are already present in 1.02. This is not a cause for concern.

A.33.2. Dump/Reload Procedure

If you are trying to reload a pg_dump or text-modepy tablename to stdout generated with a
previous version, you will need to run the attaclked script on the ASCII file before loading it into

the database. The old format used '’ as end-of-data, while '\." is now the end-of-data marker. Also,
empty strings are now loaded in as ” rather than NULL. See the copy manual page for full details.

sed 's/MN\.$M\\./g’ <in_file >out_file

If you are loading an older binary copy or non-stdout copy, there is no end-of-data character, and
hence no conversion necessary.

-- following lines added by agc to reflect the case-insensitive

-- regexp searching for varchar (in 1.02), and bpchar (in 1.02.1)

create operator ~* (leftarg = bpchar, rightarg = text, procedure = texticregexeq);

create operator !~* (leftarg = bpchar, rightarg = text, procedure = texticregexne);

create operator ~* (leftarg = varchar, rightarg = text, procedure = texticregexeq);

create operator !~* (leftarg = varchar, rightarg = text, procedure = tex-
ticregexne);

167

Appendix A. Release Notes

A.33.3. Changes

Source code maintenance and development
* worldwide team of volunteers
* the source tree now in CVS at ftp.ki.net

Enhancements

*

psql (and underlying libpg library) now has many more options for
formatting output, including HTML

pg_dump now output the schema and/or the data, with many fixes to
enhance completeness.

psql used in place of monitor in administration shell scripts.

monitor to be deprecated in next release.

date/time functions enhanced

NULL insert/update/comparison fixed/enhanced

TCL/TK lib and shell fixed to work with both tck7.4/tk4.0 and tcl7.5/tk4.1

Bug Fixes (almost too numerous to mention)

*

*

*

*

indexes

storage management

check for NULL pointer before dereferencing
Makefile fixes

New Ports

*

*

*

added SolarisX86 port
added BSD/OS 2.1 port
added DG/UX port

A.34. Release 1.01

Release date: 1996-02-23

A.34.1. Migration from version 1.0 to version 1.01

The following notes are for the benefit of users who want to migrate databases from Postgres95 1.0
to Postgres95 1.01.

If you are starting afresh with Postgres95 1.01 and do not need to migrate old databases, you do not
need to read any further.

In order to Postgres95 version 1.01 with databases created with Postgres95 version 1.0, the following
steps are required:

1. Setthe definition oONAMEDATALEM src/Makefile.global

2. Decide whether you want to use Host based authentication.

to 16 andOIDNAMELENo 20.

a. Ifyoudo, you mustcreate afile name_hba in your top-level data directory (typically

the value of yousPGDATA. src/libpg/pg_hba shows an example syntax.

b. If you do not want host-based authentication, you can comment out the line

168

Appendix A. Release Notes

HBA =1
in src/Makefile.global

Note that host-based authentication is turned on by default, and if you do not take steps
A or B above, the out-of-the-box 1.01 will not allow you to connect to 1.0 databases.

Compile and install 1.01, but DO NOT do tirétdb step.

Before doing anything else, terminate your 1.0 postmaster, and backup your eXRGDATA
directory.

Set yourPGDATAenvironment variable to your 1.0 databases, but set up path up so that 1.01
binaries are being used.

Modify the file SPGDATAPG_VERSIONfrom 5.0 t0 5.1
Start up a new 1.01 postmaster

Add the new built-in functions and operators of 1.01 to 1.0 databases. This is done by running
the new 1.01 server against your own 1.0 database and applying the queries attached and saving
in the file 1.0 _to_1.01.sql. This can be done easily thropmih . If your 1.0 database is name

testdb

% psql testdb -f 1.0 to_1.01.sql

and then execute the following commands (cut and paste from here):

-- add builtin functions that are new to 1.01

create function intdeqoid (int4, oid) returns bool as 'foo’
language 'internal’;

create function oideqint4 (oid, int4) returns bool as 'foo
language ’internal’;

create function char2icregexeq (char2, text) returns bool as 'foo’
language 'internal’;

create function char2icregexne (char2, text) returns bool as 'foo’
language 'internal’;

create function chardicregexeq (char4, text) returns bool as 'foo’
language 'internal’;

create function chardicregexne (char4, text) returns bool as 'foo’
language 'internal’;

create function char8icregexeq (char8, text) returns bool as 'foo’
language 'internal’;

create function char8icregexne (char8, text) returns bool as 'foo’
language 'internal’;

create function charl6icregexeq (charl6, text) returns bool as 'foo
language ’internal’;

create function charl6icregexne (charl6, text) returns bool as 'foo
language 'internal’;

create function texticregexeq (text, text) returns bool as ’foo’
language 'internal’;

create function texticregexne (text, text) returns bool as ’foo’
language 'internal’;

)

1

-- add builtin functions that are new to 1.01

create operator = (leftarg = int4, rightarg = oid, procedure = int4eqoid);
create operator = (leftarg = oid, rightarg = int4, procedure = oideqint4);
create operator ~* (leftarg = char2, rightarg = text, procedure = char2icregexeq);
create operator !~* (leftarg = char2, rightarg = text, procedure = char2icregexne);

169

Appendix A. Release Notes

create operator ~* (leftarg = char4, rightarg = text, procedure = chardicregexeq);
create operator !~* (leftarg = char4, rightarg = text, procedure = chardicregexne);
create operator ~* (leftarg = char8, rightarg = text, procedure = char8icregexeq);
create operator !~* (leftarg = char8, rightarg = text, procedure = char8icregexne);
create operator ~* (leftarg = charl6, rightarg = text, procedure = charl6icregexeq);
create operator !~* (leftarg = charl6, rightarg = text, procedure = charl6icregexne);
create operator ~* (leftarg = text, rightarg = text, procedure = texticregexeq);
create operator !~* (leftarg = text, rightarg = text, procedure = tex-

ticregexne);

A.34.2. Changes

Incompatibilities:

* 1.01 is backwards compatible with 1.0 database provided the user
follow the steps outlined in the MIGRATION_from_1.0 to_1.01 file.
If those steps are not taken, 1.01 is not compatible with 1.0 database.

Enhancements:

* added PQdisplayTuples() to libpg and changed monitor and psql to use it

* added NeXT port (requires SysVIPC implementation)

* added CAST .. AS ... syntax

* added ASC and DESC keywords

* added 'internal’ as a possible language for CREATE FUNCTION
internal functions are C functions which have been statically linked
into the postgres backend.

* a new type "name" has been added for system identifiers (table names,
attribute names, etc.) This replaces the old charl6 type. The
of name is set by the NAMEDATALEN #define in src/Makefile.global

* a readable reference manual that describes the query language.

* added host-based access control. A configuration file ($PGDATA/pg_hba)
is used to hold the configuration data. If host-based access control
is not desired, comment out HBA=1 in src/Makefile.global.

* changed regex handling to be uniform use of Henry Spencer’s regex code
regardless of platform. The regex code is included in the distribution

* added functions and operators for case-insensitive regular expressions.
The operators are ~* and !~*.

* pg_dump uses COPY instead of SELECT loop for better performance

Bug fixes:
* fixed an optimizer bug that was causing core dumps when
functions calls were used in comparisons in the WHERE clause
* changed all uses of getuid to geteuid so that effective uids are used
* psgl now returns non-zero status on errors when using -c
* applied public patches 1-14

170

Appendix A. Release Notes

A.35. Release 1.0

Release date: 1995-09-05

A.35.1. Changes

Copyright change:
* The copyright of Postgres 1.0 has been loosened to be freely modifiable

and modifiable for any purpose. Please read the COPYRIGHT file.
Thanks to Professor Michael Stonebraker for making this possible.

Incompatibilities:

*

*

date formats have to be MM-DD-YYYY (or DD-MM-YYYY if you're using
EUROPEAN STYLE). This follows SQL-92 specs.
"delimiters" is now a keyword

Enhancements:

*

*

sql LIKE syntax has been added

copy command now takes an optional USING DELIMITER specification.
delimiters can be any single-character string.

IRIX 5.3 port has been added.

Thanks to Paul Walmsley and others.

updated pg_dump to work with new libpqg

\d has been added psql

Thanks to Keith Parks

regexp performance for architectures that use POSIX regex has been
improved due to caching of precompiled patterns.

Thanks to Alistair Crooks

a new version of libpg++

Thanks to William Wanders

Bug fixes:

*

*

*

*

arbitrary userids can be specified in the createuser script

\c to connect to other databases in psgl now works.

bad pg_proc entry for floatdinc() is fixed

users with usecreatedb field set can now create databases without
having to be usesuper

remove access control entries when the entry no longer has any
permissions

fixed non-portable datetimes implementation

added kerberos flags to the src/backend/Makefile

libpg now works with kerberos

typographic errors in the user manual have been corrected.

btrees with multiple index never worked, now we tell you they don't
work when you try to use them

171

Appendix A. Release Notes

A.36. Postgres95 Release 0.03

Release date: 1995-07-21

A.36.1. Changes

Incompatible changes:

* BETA-0.3 IS INCOMPATIBLE WITH DATABASES CREATED WITH PREVIOUS VERSIONS
(due to system catalog changes and indexing structure changes).
double-quote (") is deprecated as a quoting character for string literals;
you need to convert them to single quotes ().

name of aggregates (eg. int4dsum) are renamed in accordance with the
SQL standard (eg. sum).

CHANGE ACL syntax is replaced by GRANT/REVOKE syntax.

float literals (eg. 3.14) are now of type float4 (instead of float8 in
previous releases); you might have to do typecasting if you depend on it
being of type float8. If you neglect to do the typecasting and you assign
a float literal to a field of type float8, you may get incorrect values
stored!

LIBPQ has been totally revamped so that frontend applications

can connect to multiple backends

the usesysid field in pg_user has been changed from int2 to int4 to

allow wider range of Unix user ids.

the netbsd/freebsd/bsd o/s ports have been consolidated into a

single BSD44_derived port. (thanks to Alistair Crooks)

SQL standard-compliance (the following details changes that makes postgres95
more compliant to the SQL-92 standard):

* the following SQL types are now built-in: smallint, int(eger), float, real,
char(N), varchar(N), date and time.

The following are aliases to existing postgres types:
smallint -> int2
integer, int -> int4

float, real -> float4
char(N) and varchar(N) are implemented as truncated text types. In
addition, char(N) does blank-padding.

* single-quote (°) is used for quoting string literals; ” (in addition to
\") is supported as means of inserting a single quote in a string

* SQL standard aggregate names (MAX, MIN, AVG, SUM, COUNT) are used
(Also, aggregates can now be overloaded, i.e. you can define your
own MAX aggregate to take in a user-defined type.)

* CHANGE ACL removed. GRANT/REVOKE syntax added.

- Privileges can be given to a group using the "GROUP" keyword.
For example:

GRANT SELECT ON foobar TO GROUP my_group;
The keyword 'PUBLIC’ is also supported to mean all users.

Privileges can only be granted or revoked to one user or group
at a time.

"WITH GRANT OPTION" is not supported. Only class owners can change
access control

- The default access control is to to grant users readonly access.

172

Appendix A. Release Notes

You must explicitly grant insert/update access to users. To change
this, modify the line in

src/backend/utils/acl.h
that defines ACL_WORLD_DEFAULT

Bug fixes:

* the bug where aggregates of empty tables were not run has been fixed. Now,
aggregates run on empty tables will return the initial conditions of the
aggregates. Thus, COUNT of an empty table will now properly return O.
MAX/MIN of an empty table will return a tuple of value NULL.

allow the use of \; inside the monitor

the LISTEN/NOTIFY asynchronous notification mechanism now work

NOTIFY in rule action bodies now work

hash indexes work, and access methods in general should perform better.

creation of large btree indexes should be much faster. (thanks to Paul
Aoki)

Other changes and enhancements:

* addition of an EXPLAIN statement used for explaining the query execution
plan (eg. "EXPLAIN SELECT * FROM EMP" prints out the execution plan for
the query).

* WARN and NOTICE messages no longer have timestamps on them. To turn on
timestamps of error messages, uncomment the line in
src/backend/utils/elog.h:

/* define ELOG_TIMESTAMPS */

* On an access control violation, the message

"Either no such class or insufficient privilege"
will be given. This is the same message that is returned when
a class is not found. This dissuades non-privileged users from
guessing the existence of privileged classes.

* some additional system catalog changes have been made that are not
visible to the user.

libpgtcl changes:

* The -oid option has been added to the "pg_result" tcl command.
pg_result -oid returns oid of the last tuple inserted. If the
last command was not an INSERT, then pg_result -oid returns ™.

* the large object interface is available as pg_lo* tcl commands:
pg_lo_open, pg_lo_close, pg_lo_creat, etc.

Portability enhancements and New Ports:
* flex/lex problems have been cleared up. Now, you should be able to use

flex instead of lex on any platforms. We no longer make assumptions of
what lexer you use based on the platform you use.

* The Linux-ELF port is now supported. Various configuration have been
tested: The following configuration is known to work:

kernel 1.2.10, gcc 2.6.3, libc 4.7.2, flex 2.5.2, bison 1.24
with everything in ELF format,

New utilities:
* ipcclean added to the distribution
ipcclean usually does not need to be run, but if your backend crashes

and leaves shared memory segments hanging around, ipcclean will
clean them up for you.

New documentation:
* the user manual has been revised and libpg documentation added.

173

Appendix A. Release Notes

A.37. Postgres95 Release 0.02

Release date: 1995-05-25

A.37.1. Changes

Incompatible changes:

* The SQL statement for creating a database is 'CREATE DATABASE' instead
of 'CREATEDB’. Similarly, dropping a database is 'DROP DATABASE’ instead
of 'DESTROYDB'. However, the names of the executables ’'createdb’ and
‘destroydb’ remain the same.

New tools:

* pgperl - a Perl (4.036) interface to Postgres95

* pg_dump - a utility for dumping out a postgres database into a
script file containing query commands. The script files are in a ASCII
format and can be used to reconstruct the database, even on other
machines and other architectures. (Also good for converting

a Postgres 4.2 database to Postgres95 database.)

The following ports have been incorporated into postgres95-beta-0.02:
* the NetBSD port by Alistair Crooks

* the AIX port by Mike Tung

* the Windows NT port by Jon Forrest (more stuff but not done yet)
* the Linux ELF port by Brian Gallew

The following bugs have been fixed in postgres95-beta-0.02:

* new lines not escaped in COPY OUT and problem with COPY OUT when first
attribute is a '’

* cannot type return to use the default user id in createuser

* SELECT DISTINCT on big tables crashes

* Linux installation problems

* monitor doesn’t allow use of ’'localhost as PGHOST

* psql core dumps when doing \c or \I

* the "pgtclsh" target missing from src/bin/pgtclsh/Makefile

* libpgtcl has a hard-wired default port number

* SELECT DISTINCT INTO TABLE hangs

* CREATE TYPE doesn’t accept 'variable’ as the internallength

* wrong result using more than 1 aggregate in a SELECT

174

Appendix A. Release Notes

A.38. Postgres95 Release 0.01

Release date: 1995-05-01

Initial release.

175

Bibliography

Selected references and readings for SQL and PostgreSQL.

Some white papers and technical reports from the original POSTGRES development team are avail-
able at the University of California, Berkeley, Computer Science Department wéb site

SQL Reference Books

Judith Bowman, Sandra Emerson, and Marcy DarnovERg,Practical SQL Handbook: Using Struc-
tured Query Languagérhird Edition, Addison-Wesley, ISBN 0-201-44787-8, 1996.

C. J. Date and Hugh DarweA,Guide to the SQL Standard: A user’s guide to the standard database
language SQLFourth Edition, Addison-Wesley, ISBN 0-201-96426-0, 1997.

C. J. DateAn Introduction to Database Systeriwslume 1, Sixth Edition, Addison-Wesley, 1994.

Ramez Elmasri and Shamkant NavatRandamentals of Database Syste®sl Edition, Addison-
Wesley, ISBN 0-805-31755-4, August 1999.

Jim Melton and Alan R. Simon)nderstanding the New SQL: A complete guidergan Kaufmann,
ISBN 1-55860-245-3, 1993.

Jeffrey D. Ullman Principles of Database and Knowledge: Base Syst&@isime 1, Computer Sci-
ence Press, 1988.

PostgreSQL-Specific Documentation

Stefan SimkovicsEnhancement of the ANSI SQL Implementation of Postgre®@partment of
Information Systems, Vienna University of Technology, November 29, 1998.

Discusses SQL history and syntax, and describes the additibNTBRSECTandEXCEPTcon-
structs into PostgreSQL. Prepared as a Master’s Thesis with the support of O. Univ. Prof. Dr.
Georg Gottlob and Univ. Ass. Mag. Katrin Seyr at Vienna University of Technology.

A. Yu and J. Chen, The POSTGRES Grolipe Postgres95 User Manydlniversity of California,
Sept. 5, 1995.

Zelaine Fong,The design and implementation of the POSTGRES query optfmizeiversity of
California, Berkeley, Computer Science Department.

1. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/
2. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/UCB-MS-zfong.pdf

176

Bibliography

Proceedings and Articles

Nels Olson Partial indexing in POSTGRES: research projedniversity of California, UCB Engin
T7.49.1993 0676, 1993.

L. Ong and J. Goh, “A Unified Framework for Version Modeling Using Production Rules in a
Database SystemERL Technical Memorandum M90/33niversity of California, April, 1990.

L. Rowe and M. Stonebraker, “The POSTGRES data nitdetoc. VLDB Conference, Sept. 1987.

P. Seshadri and A. Swami, “Generalized Partial Inde%eBroc. Eleventh International Conference
on Data Engineering, 6-10 March 1995, IEEE Computer Society Press, Cat. N0.95CH35724,
1995, p. 420-7.

M. Stonebraker and L. Rowe, “The design of POSTGREBroc. ACM-SIGMOD Conference on
Management of Data, May 1986.

M. Stonebraker, E. Hanson, and C. H. Hong, “The design of the POSTGRES rules system”, Proc.
IEEE Conference on Data Engineering, Feb. 1987.

M. Stonebraker, “The design of the POSTGRES storage syst@moc. VLDB Conference, Sept.
1987.

M. Stonebraker, M. Hearst, and S. Potamianos, “A commentary on the POSTGRES ruleg"system
SIGMOD Record 18(3)Sept. 1989.

M. Stonebraker, “The case for partial indeXe$SIGMOD Record 18(4)Dec. 1989, p. 4-11.

M. Stonebraker, L. A. Rowe, and M. Hirohama, “The implementation of POSTEREGnsactions
on Knowledge and Data Engineering 2(1BEE, March 1990.

M. Stonebraker, A. Jhingran, J. Goh, and S. Potamianos, “On Rules, Procedures, Caching and Views
in Database Systeri¥s Proc. ACM-SIGMOD Conference on Management of Data, June 1990.

"@@N@S”PF*’

http://s2k-ftp.CS.Berkeley. EDU:8000/postgres/papers/ERL-M87-13.pdf
http://simon.cs.cornell.edu/home/praveen/papers/partindex.de95.ps.Z

http://s2k-ftp.CS.Berkeley. EDU:8000/postgres/papers/ERL-M85-95. pdf
http://s2k-ftp.CS.Berkeley. EDU:8000/postgres/papers/ERL-M87-06.pdf
http://s2k-ftp.CS.Berkeley. EDU:8000/postgres/papers/ERL-M89-82.pdf
http://s2k-ftp.CS.Berkeley. EDU:8000/postgres/papers/ERL-M89-17.pdf
http://s2k-ftp.CS.Berkeley. EDU:8000/postgres/papers/ERL-M90-34.pdf
0. http://s2k-ftp.CS.Berkeley. EDU:8000/postgres/papers/ERL-M90-36.pdf

177

Index

Symbols

$libdir, ?

aggregate, ?
aggregate functions, ?

extending, ?
alias

(See label)

for table name in query, ?
all, ?
and

operator, ?
any, ?,?
anyarray, ?
arrays, ?, ?

constants, ?
Australian time zones, ?
auto-increment

(See serial)
autocommit, ?
averagel

function, ?

B-tree
(See indexes)
backup,77
between, ?
bigint, ?
bigserial, ?
binary strings
concatenation, ?
length, ?
bison, ?
bit strings
constants, ?
data type, ?
BLOB
(See large object)
Boolean
data type, ?
operators

(See operators, logical)

box (data type), ?
BSD/OS, ?, ?

case, ?
case sensitivity
SQL commands, ?
catalogs, ?
character set encoding, ?
character strings
concatenation, ?
constants, ?
data types, ?
length, ?
cid, ?
cidr, ?
circle, ?
client authenticatiorf2
cluster, ?
column, ?
columns
system column£0
col_description, ?
comments
in SQL, ?
comparison
operators, ?
concurrency, ?
conditionals, ?
configuration
server, ?
configure 5
connection loss, ?
constants, ?
COPY, ?
with libpq, ?
count, ?
CREATE TABLE, ?
createdb, ?
crypt, ?
cstring, ?

currval, ?

178

data area

(See database cluster)
data types, ?, ?

constants, ?

extending, ?

numeric, ?

type casts, ?
database47

creating, ?
database cluster, ?
date

constants, ?

current, ?

data type, ?

output format, ?

(See Also Formatting)

date style, ?
deadlock

timeout, ?
decimal

(See numeric)
DELETE, ?
Digital UNIX

(See Tru64 UNIX) G
dirty read, ?
disk space7?2
disk usage90
DISTINCT, 2, ?
double precision, ?
DROP TABLE, ?
duplicate, ?
dynamic loading, ?
dynamic_library_path, ?, ?

elog, ?

PL/Perl, ?
embedded SQL

inC,?
environment variables, ?
error message, ?
escaping binary strings, ?
escaping strings, ?
except, ?
exists, ?
extending SQL, ?

types, ?

Index

false, ?
FETCH
embedded SQL, ?
files, ?
flex, ?
float4
(See real)
float8
(See double precision)
floating point, ?
foreign key, ?
formatting, ?
FreeBSD, ?,?,?
fsync, ?
function, ?, ?
internal, ?
SQL, ?
functions, ?

genetic query optimization, ?
GEQO

(See genetic query optimization)
get_bit, ?
get_byte, ?
group, ?
GROUP BY, ?

hash

(See indexes)
has_database_privilege, ?
has_function_privilege, ?
has_language_privilege, ?
has_schema_privilege, ?
has_table_privilege, ?
HAVING, ?
hierarchical database, ?
HP-UX, ?, ?

179

ident, ?
identifiers, ?
in, ?
index scan, ?
indexes, ?
B-tree, ?
hash, ?
multicolumn, ?
on functions, ?
partial, ?
R-tree, ?
unique, ?
inet (data type), ?
inheritance, ?, ?
initlocation, ?
input function, ?
INSERT, ?
installation,1
on Windows, ?, ?
int2
(See smallint)
int4
(See integer)
int8
(See bigint)
integer, ?
internal, ?
intersection, ?
interval, ?
IRIX, ?
IS NULL, ?
isolation levels, ?
read committed, ?
read serializable, ?

join, ?
outer, ?
self, ?

joins, ?
cross, ?
left, ?
natural, ?
outer, ?

Index

Kerberos57

key words
list of, ?
syntax, ?

label
column, ?
table, ?
language_handler, ?
large object, ?
LC_COLLATE, ?
Idconfig, ?
length
binary strings
(See binary strings, length)
character strings
(See character strings, length)
libperl, ?
libpgtcl, ?
libpq, ?
libpg-fe.h, ?
libpg-int.h, ?, ?
libpython, ?
like, ?
limit, ?
line, ?
Linux, ?,?, ?
locale, ?61
locking, ?
log files, 75

MAC address
(See macaddr)
macaddr (data type), ?

MacOS X, ?, ?
make, ?
MANPATH, ?
(See Also man pages)
max, ?
MDS5, ?
min, ?
multibyte, 63

180

Index

P
names password, ?
qualified, ? -pgpass, ?
unqualified, ? PATH, ?
?
namespaces, ?, ? Eat:] (;jata type), °
NetBSD, ?, ?, ? er. :
‘ PGDATA, ?
networ PGDATABASE, ?
addresses, ? PGHOST, ?
nextval, ? PGPASSWORD, ?
nonblocking connection, ?, ? PGPORT, ?
nonrepeatable read, ? pgtcl
not closing, ?
operator, ? connecting, ?,?,?,?,?,?
notin. 2 connection loss, ?
. ing. ?
notice processor, ? Z"Tat'ni’ '
NOTIFY, ?, ? elete, =
lif. 2 export, ?
nuft,) import, ?
numeric notify, ?
constants, ? opening, ?
numeric (data type), ? positioning, ?, ?
query, ?
reading, ?
writing, ?
PGUSER, ?
object identifier pg_config, ?, ?
data type, ? pg_conndefaults, ?
object-oriented database, ? pg_connect, ?,?,?,?,?
obj_description, ? pg_ctl, ?
offset pg_dumpall, ?
with query results, ? Pg_execute, ?
oID. 2. 2 pg_function_is_visible, ?
T pg_get_constraintdef, ?
opaque, ? .

5o pg_get_indexdef, ?
OpenBSD, 2, 2, 7 pg_get_ruledef, ?
OpenSSL, ? pg_get_userbyid, ?

(See Also SSL) pg_get_viewdef, ?
operators, ? pg_hba.conf52

logical, ? pg_ident.conf, ?

precedence, ? pg_lo_close, ?

syntax, ? pg_lo_creat, ?
or pg_lo_export, ?

i ?
operator, ? pg_:o_:mpc:(rt,o.
0_lIseek, 7
Oracle, ?, ? P90
pg_lo_open, ?

ORDER BY, ?,?

_ pg_lo_read, ?
output function, ? pg_lo_tell, ?
overlay, ? pg_lo_unlink, ?
overloading, ? pg_lo_write, ?

pg_opclass_is_visible, ?

181

pg_operator_is_visible, ?
pg_table_is_visible, ?
pg_type_is_visible, ?
phantom read, ?
PIC, ?
PL/Perl, ?
PL/pgSQL, ?
PL/Python, ?
PL/SQL, ?
PL/Tcl, ?
point, ?
polygon, ?
port, ?
postgres user, ?
postmaster, ?, ?
ps

to monitor activity,82
psql, ?
Python, ?

qualified names, ?
query, ?
quotes
and identifiers, ?
escaping, ?

R-tree
(See indexes)
range table, ?
readline, ?
real, ?
record, ?
referential integrity, ?
regclass, ?
regoper, ?
regoperator, ?
regproc, ?
regprocedure, ?
regression test, ?
regtype, ?
regular expressions, ?, ?
(See Also pattern matching)
reindex,75
relation, ?
relational database, ?
row, ?

Index

rules, ?
and views, ?

schema
current, ?
schemas, ?
current schema, ?
SCO OpenServer, ?
search path, ?
changing at runtime, ?
current, ?
search_path, ?
SELECT, ?
select list, ?
semaphores36
sequences, ?
and serial type, ?
sequential scan, ?
serial, ?
serial4, ?
serial8, ?
SETOF, ?
(See Also function)
setting
current, ?
set, ?
setval, ?
set_bit, ?
set_byte, ?
shared libraries, ?
shared memona6
SHMMAX, ?
SIGHUP, ?,?,?
similar to, ?
sliced bread
(See TOAST)
smallint, ?
Solaris, ?, ?, ?
some, ?
sorting
query results, ?
SPI
allocating space, ?,?,?,?,?,?
connecting, ?, ?,?, ?
copying tuple descriptors, ?
copying tuples, ?, ?
cursors, ?,?,?,?,?
decoding tuples, ?,?,?,?,?,?,?
disconnecting, ?

182

executing, ?

modifying tuples, ?
SPI_connect, ?
SPI_copytuple, ?
SPI_copytupledesc, ?
SPI_copytupleintoslot, ?
SPI_cursor_close, ?
SPI_cursor_fetch, ?
SPI_cursor_find, ?
SPI_cursor_move, ?
SPI_cursor_open, ?
SPI_exec, ?
SPI_execp, ?
SPI_finish, ?
SPI_fname, ?
SPI_fnumber, ?
SPI_freeplan, ?
SPI_freetuple, ?
SPI_freetuptable, ?
SPI_getbinval, ?
SPI_getrelname, ?
SPI_gettype, ?
SPI_gettypeid, ?
SPI_getvalue, ?
spi_lastoid, ?
SPI_modifytuple, ?
SPI_palloc, ?
SPI_pfree, ?
SPI_prepare, ?
SPI_repalloc, ?
SPI_saveplan, ?
ssh,43
SSL, ?242,?
standard deviation, ?
statistics 83
strings

(See character strings)
subqueries, ?, ?
subquery, ?
substring, ?, ?, ?
sum, ?
superuser, ?
syntax

SQL, ?

table, ?
Tcl, ?,?
TCP/IP, ?
text

Index

(See character strings)
threads
with libpq, ?
tid, ?
time
constants, ?
current, ?
data type, ?
output format, ?
(See Also Formatting)
time with time zone
data type, ?
time without time zone
time, ?
time zone, ?
time zones, ?, ?
timeout
authentication, ?
deadlock, ?
timestamp
data type, ?
timestamp with time zone
data type, ?
timestamp without time zone
data type, ?
timezone
conversion, ?
TOAST, ?
and user-defined types, ?
transaction ID
wraparoundy4
transaction isolation level, ?
transactions, ?
trigger, ?
triggers
in PL/Tcl, ?
Tru64 UNIX, ?
true, ?
types
(See data types)

union, ?
UnixWare, ?, ?
unqualified names, ?
UPDATE, ?
upgrading3, 80
user

current, ?

183

Index

vacuum,7/2

variance, ?

version, ?, ?

view, ?

views
updating, ?

void, ?

where, ?

xid, ?

yacc, ?

184

	PostgreSQL 7.3.2 Administrator's Guide
	Table of Contents
	List of Tables
	List of Examples
	Preface
	1. What is PostgreSQL?
	2. A Short History of PostgreSQL
	2.1. The Berkeley POSTGRES Project
	2.2. Postgres95
	2.3. PostgreSQL

	3. What's In This Book
	4. Overview of Documentation Resources
	5. Terminology and Notation
	6. Bug Reporting Guidelines
	6.1. Identifying Bugs
	6.2. What to report
	6.3. Where to report bugs

	Chapter 1. Installation Instructions
	1.1. Short Version
	1.2. Requirements
	1.3. Getting The Source
	1.4. If You Are Upgrading
	1.5. Installation Procedure
	1.6. PostInstallation Setup
	1.6.1. Shared Libraries
	1.6.2. Environment Variables

	1.7. Supported Platforms

	Chapter 2. Installation on Windows
	Chapter 3. Server Runtime Environment
	3.1. The PostgreSQL User Account
	3.2. Creating a Database Cluster
	3.3. Starting the Database Server
	3.3.1. Server Startup Failures
	3.3.2. Client Connection Problems

	3.4. Runtime Configuration
	3.4.1. pgsettings
	3.4.2. Planner and Optimizer Tuning
	3.4.3. Logging and Debugging
	3.4.4. General Operation
	3.4.5. WAL
	3.4.6. Short Options

	3.5. Managing Kernel Resources
	3.5.1. Shared Memory and Semaphores
	3.5.2. Resource Limits

	3.6. Shutting Down the Server
	3.7. Secure TCP/IP Connections with SSL
	3.8. Secure TCP/IP Connections with SSH Tunnels

	Chapter 4. Database Users and Privileges
	4.1. Database Users
	4.2. User Attributes
	4.3. Groups
	4.4. Privileges
	4.5. Functions and Triggers

	Chapter 5. Managing Databases
	5.1. Overview
	5.2. Creating a Database
	5.3. Template Databases
	5.4. Database Configuration
	5.5. Alternative Locations
	5.6. Destroying a Database

	Chapter 6. Client Authentication
	6.1. The pghba.conf file
	6.2. Authentication methods
	6.2.1. Trust authentication
	6.2.2. Password authentication
	6.2.3. Kerberos authentication
	6.2.4. Identbased authentication
	6.2.4.1. Ident Authentication over TCP/IP
	6.2.4.2. Ident Authentication over Local Sockets
	6.2.4.3. Ident Maps

	6.2.5. PAM Authentication

	6.3. Authentication problems

	Chapter 7. Localization
	7.1. Locale Support
	7.1.1. Overview
	7.1.2. Benefits
	7.1.3. Problems

	7.2. Multibyte Support
	7.2.1. Supported character set encodings
	7.2.2. Setting the Encoding
	7.2.3. Automatic encoding conversion between server and client
	7.2.4. What happens if the translation is not possible?
	7.2.5. References
	7.2.6. History
	7.2.7. WIN1250 on Windows/ODBC

	7.3. Singlebyte character set recoding

	Chapter 8. Routine Database Maintenance Tasks
	8.1. General Discussion
	8.2. Routine Vacuuming
	8.2.1. Recovering disk space
	8.2.2. Updating planner statistics
	8.2.3. Preventing transaction ID wraparound failures

	8.3. Routine Reindexing
	8.4. Log File Maintenance

	Chapter 9. Backup and Restore
	9.1. SQL Dump
	9.1.1. Restoring the dump
	9.1.2. Using pgdumpall
	9.1.3. Large Databases
	9.1.4. Caveats

	9.2. File system level backup
	9.3. Migration between releases

	Chapter 10. Monitoring Database Activity
	10.1. Standard Unix Tools
	10.2. Statistics Collector
	10.2.1. Statistics Collection Configuration
	10.2.2. Viewing Collected Statistics

	10.3. Viewing Locks

	Chapter 11. Monitoring Disk Usage
	11.1. Determining Disk Usage
	11.2. Disk Full Failure

	Chapter 12. WriteAhead Logging (WAL)
	12.1. General Description
	12.1.1. Immediate Benefits of WAL
	12.1.2. Future Benefits

	12.2. Implementation
	12.2.1. Database Recovery with WAL

	12.3. WAL Configuration

	Chapter 13. Regression Tests
	13.1. Introduction
	13.2. Running the Tests
	13.3. Test Evaluation
	13.3.1. Error message differences
	13.3.2. Locale differences
	13.3.3. Date and time differences
	13.3.4. Floatingpoint differences
	13.3.5. Polygon differences
	13.3.6. Row ordering differences
	13.3.7. The random test

	13.4. Platformspecific comparison files

	Appendix A. Release Notes
	A.1. Release 7.3.2
	A.1.1. Migration to version 7.3.2
	A.1.2. Changes

	A.2. Release 7.3.1
	A.2.1. Migration to version 7.3.1
	A.2.2. Changes

	A.3. Release 7.3
	A.3.1. Overview
	A.3.2. Migration to version 7.3
	A.3.3. Changes
	A.3.3.1. Server Operation
	A.3.3.2. Performance
	A.3.3.3. Privileges
	A.3.3.4. Server Configuration
	A.3.3.5. Queries
	A.3.3.6. Object Manipulation
	A.3.3.7. Utility Commands
	A.3.3.8. Data Types and Functions
	A.3.3.9. Internationalization
	A.3.3.10. Serverside Languages
	A.3.3.11. Psql
	A.3.3.12. Libpq
	A.3.3.13. JDBC
	A.3.3.14. Miscellaneous Interfaces
	A.3.3.15. Source Code
	A.3.3.16. Contrib

	A.4. Release 7.2.4
	A.4.1. Migration to version 7.2.4
	A.4.2. Changes

	A.5. Release 7.2.3
	A.5.1. Migration to version 7.2.3
	A.5.2. Changes

	A.6. Release 7.2.2
	A.6.1. Migration to version 7.2.2
	A.6.2. Changes

	A.7. Release 7.2.1
	A.7.1. Migration to version 7.2.1
	A.7.2. Changes

	A.8. Release 7.2
	A.8.1. Overview
	A.8.2. Migration to version 7.2
	A.8.3. Changes
	A.8.3.1. Server Operation
	A.8.3.2. Performance
	A.8.3.3. Privileges
	A.8.3.4. Client Authentication
	A.8.3.5. Server Configuration
	A.8.3.6. Queries
	A.8.3.7. Schema Manipulation
	A.8.3.8. Utility Commands
	A.8.3.9. Data Types and Functions
	A.8.3.10. Internationalization
	A.8.3.11. PL/pgSQL
	A.8.3.12. PL/Perl
	A.8.3.13. PL/Tcl
	A.8.3.14. PL/Python
	A.8.3.15. Psql
	A.8.3.16. Libpq
	A.8.3.17. JDBC
	A.8.3.18. ODBC
	A.8.3.19. ECPG
	A.8.3.20. Misc. Interfaces
	A.8.3.21. Build and Install
	A.8.3.22. Source Code
	A.8.3.23. Contrib

	A.9. Release 7.1.3
	A.9.1. Migration to version 7.1.3
	A.9.2. Changes

	A.10. Release 7.1.2
	A.10.1. Migration to version 7.1.2
	A.10.2. Changes

	A.11. Release 7.1.1
	A.11.1. Migration to version 7.1.1
	A.11.2. Changes

	A.12. Release 7.1
	A.12.1. Migration to version 7.1
	A.12.2. Changes

	A.13. Release 7.0.3
	A.13.1. Migration to version 7.0.3
	A.13.2. Changes

	A.14. Release 7.0.2
	A.14.1. Migration to version 7.0.2
	A.14.2. Changes

	A.15. Release 7.0.1
	A.15.1. Migration to version 7.0.1
	A.15.2. Changes

	A.16. Release 7.0
	A.16.1. Migration to version 7.0
	A.16.2. Changes

	A.17. Release 6.5.3
	A.17.1. Migration to version 6.5.3
	A.17.2. Changes

	A.18. Release 6.5.2
	A.18.1. Migration to version 6.5.2
	A.18.2. Changes

	A.19. Release 6.5.1
	A.19.1. Migration to version 6.5.1
	A.19.2. Changes

	A.20. Release 6.5
	A.20.1. Migration to version 6.5
	A.20.1.1. Multiversion Concurrency Control

	A.20.2. Changes

	A.21. Release 6.4.2
	A.21.1. Migration to version 6.4.2
	A.21.2. Changes

	A.22. Release 6.4.1
	A.22.1. Migration to version 6.4.1
	A.22.2. Changes

	A.23. Release 6.4
	A.23.1. Migration to version 6.4
	A.23.2. Changes

	A.24. Release 6.3.2
	A.24.1. Changes

	A.25. Release 6.3.1
	A.25.1. Changes

	A.26. Release 6.3
	A.26.1. Migration to version 6.3
	A.26.2. Changes

	A.27. Release 6.2.1
	A.27.1. Migration from version 6.2 to version 6.2.1
	A.27.2. Changes

	A.28. Release 6.2
	A.28.1. Migration from version 6.1 to version 6.2
	A.28.2. Migration from version 1.x to version 6.2
	A.28.3. Changes

	A.29. Release 6.1.1
	A.29.1. Migration from version 6.1 to version 6.1.1
	A.29.2. Changes

	A.30. Release 6.1
	A.30.1. Migration to version 6.1
	A.30.2. Changes

	A.31. Release 6.0
	A.31.1. Migration from version 1.09 to version 6.0
	A.31.2. Migration from pre1.09 to version 6.0
	A.31.3. Changes

	A.32. Release 1.09
	A.33. Release 1.02
	A.33.1. Migration from version 1.02 to version 1.02.1
	A.33.2. Dump/Reload Procedure
	A.33.3. Changes

	A.34. Release 1.01
	A.34.1. Migration from version 1.0 to version 1.01
	A.34.2. Changes

	A.35. Release 1.0
	A.35.1. Changes

	A.36. Postgres95 Release 0.03
	A.36.1. Changes

	A.37. Postgres95 Release 0.02
	A.37.1. Changes

	A.38. Postgres95 Release 0.01

	Bibliography
	SQL Reference Books
	PostgreSQLSpecific Documentation
	Proceedings and Articles

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

