PostgreSQL 7.3.2 Programmer’s
Guide

The PostgreSQL Global Development Group

PostgreSQL 7.3.2 Programmer’s Guide
by The PostgreSQL Global Development Group
Copyright © 1996-2002 by The PostgreSQL Global Development Group

Legal Notice

PostgreSQL is Copyright © 1996-2002 by the PostgreSQL Global Development Group and is distributed under the terms of the license of the
University of California below.

Postgres95 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written
agreement is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in all
copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE

AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PRO-
VIDED HEREUNDER IS ON AN “AS-IS” BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents

L (=] = 1o TSR i
1. What iS POSIOrES QL 2....ceiieeeecectesesteseeeeee st ne e s aesaestesee e enennennenes i
2. A Short History of POStOreSQL.......ccviriiiirierie s i

2.1. The Berkeley POSTGRES PrOjJECL........covoiieirieireeerieteseeeseeseeesee e ii
2.2, POSIGIESO5.....e ettt r e n e ii
2.3, POSIGIES QL. ettt e iii
3. What's IN ThiS BOOK......c.cciiiiirieieieeee sttt sttt e s sne e e neeneenenneees iii
4. Overview of Documentation RESOUICES......ccceveererirerieieeee e s iv
5. Terminology and NOTAION...........cuiireeieiee et seeean v
6. Bug RepOorting GUIEINES.........coi ettt ean v
Lo o 1= 01 1Y T T =0 To LSS Vi
oI Y] o F= L (o TN (=T oL o APPSR Vi
6.3. Where t0 repPOrt DUGS.oove oot Vil

[CHENE INTEITACES ...ttt b bbb e et ae b e ke b e e et ebesbesaeseeneneas 1

R [T o] oTo I O I o] = 1 V2SS 1
R 1 (o o 18 ox 1T o TSRSV 1
1.2. Database ConNection FUNCLIONS..........coviirirerinee e 1
1.3. Command Execution FUNCLIONS..........cooiiiiirininiee e 7

1.3.1. MaiN ROULINES.ottt sb b s e 7
1.3.2. Escaping strings for inclusion in SQL qUENIES........ccceceeveveveereseeeene. 8
1.3.3. Escaping binary strings for inclusion in SQL queries.........cc.cccccvvveunnee. 9
1.3.4. Retrieving SELECT Result Information..........cccocveeevvveeevnvevceeneseeeene. 9
1.3.5. Retrieving SELECT Result ValUES........ccccvvevevieieeee e 10
1.3.6. Retrieving Non-SELECT Result Information..........ccccecvevvieveveecennnnnnn 11
1.4. Asynchronous QUErY PrOCESSING......cccoviirereeieresistesesieseeesteseseessessesesessessenss 12
1.5. The Fast-Path INterface........c.cccvriiiniiee e 15
1.6. Asynchronous NOtIfiCAtIQN........cccceeeriie e 15
1.7. Functions Associated with the COPY Command..........ccccocevenreneneneneiereenens 16
1.8. [ibpg TracCing FUNCLONS.......ccooiireiree et 18
1.9. [ibpg Control FUNCLIONScoiiiree et 18
1.10. EnVironmMent VariableS........cooereieireie e sre e 19
5 O 1= ST 20
1.12. Threading BENAVIOL........c.coiiiiiee e 20
1.13. Building Libpg PrOgrams........coeereerneineesiee st 21
1.14. EXAMPIE PrOgrams.......cccoeiieirieerieie sttt sttt 22

2. LArge ODJECES....cuiieieiecte ettt ettt et b bbbt e 31
2% I T 11 oo [o 1o o SRS 31
2.2. Implementation FEATUIES.........cov ittt 31
AR T [1 (=5 = (o L= USSP 31

2.3.1. Creating @ Large ODJECT........cooiiiieeeeeee e 32
2.3.2. Importing & Large ODJECL.........ccooiiireieere e 32
2.3.3. Exporting @ Large ODJECL.........cooiiireierere e 32
2.3.4. Opening an Existing Large ODJecCt........ccccoo i 32
2.3.5. Writing Data to a Large ODJeCL.........ccccooreiinineieeeeeeee e 33
2.3.6. Reading Data from a Large ObJecCt..........ccocovineieirienienere e 33
2.3.7. Seeking on a Large ODJecCt........ccccovvieiinicieie e 33
2.3.8. Closing a Large Object DeSCHPLOL........ccvevveveeeere e 33
2.3.9. Removing a Large ObJECL.......cccceveieeieeecese e 33
2.4, Server-side BUIlt-in FUNCHONS........cocoiiiiiiiceeere e e 33

2.5. Accessing Large Objects from LiDPG........ccoeereernennieneenee e 34
3. pgtcl - Tl BINAING LIDFaryi.......cooceiiee e 39
10 700 I T 11 o To [1o 1o o SR 39
3.2. Loading pgtcl into your appliCatiQn...........cccoeereerrenerieesieeneee et 40
3.3. pgtcl Command Reference INformation............ccooeeereineieneienee e 40
PO_CONNECL.....cuiiiiitiii e e bbb 40

[oTo e [1<To0] o] 0= ot ST 42
PG_CONNAETAUILS.......oeeieetiee e e 43

16 T =3 ST o 3OS USSP 44

o1 (=210 L A ST USSR 45
PO_SEIECL......eee e bbb e a7
PO_EXECULR......eueetieteete ettt st see st b e s b e e s e ae e e e seesaeesbesbe e e e ebe e e e seeeneas 49

70 R 115 (= o 1S 51
PJ_0ON_CONNECHION_IOSS.....cciiieiecieeie st st 52

o7 [(o T o (== | OSSR 53

o7 [[T 1= o VS 54

o7 R (o T o o 1= =S 55

oY TR (o T == o PSS 56

o1 T (o T (=S 57

oY T (o TR == S 58

oo T o T (=] LSS 59

o7 T (o T 1 LTS 60

oo T (o TN L2] o1 o S 61

0T T [0 T =34 o Lo] OSSR 62

4. ECPG - Embedded SQL IN.C....c.ooiiiiieeereeeee e seeee s st aeae e e see e seenaesessesnnsenns 63
T I 0T O T ot =T o OSSR 63
4.2. Connecting to the Database SEIVEL.........ccriiririeereee s 63
4.3. CloSING @ CONNECHION.ciuiuiietiietieeteesie et 64
4.4, RUNNING SQL COMMANGS.......cciriiiiiriiiniirierieeseee et 64
4.5, PASSING DALA........coiieiiiriiiriee et 65
4.6. Error HANAINGceiiiirieiieeeete et 66
A.7. INCIUAING FlES....ciiiiiiiiecee ettt 69
4.8. Processing Embedded SQL Programs...........cccueereereinninesenesseeseeeseeeseens 69
4.9, LIDrary FUNCHONS......coieirieerietire ettt 70
4.10. Porting From Other RDBMS PacKages.........cccverirerieierienesese e seeesesesie s 70
4.1, FOr the DEVEIOPEE.......coi ettt bbb 71
4.11.1. THE PreprOCESSOL. . .cueeeeetertertestereeesiesie st sbestesee e esesbesbeseeseess e saessesreseas 71
4.01.2. TRE LIDFAY.. ..ot e 72

TN | D = O [11T o =TSPTSRO 74
5.1. Setting Up the JIDBC DIVEL........ccoiiiiiriiieeeeee ettt 74
5.1.1. Getting the DIiVEL......c..cce et 74
5.1.2. Setting up the Class Path........c.ccccooveeiiniciice e 74
5.1.3. Preparing the Database for IDBC..........cccccvivrevevesiese e 74

5.2, USING thE DIIVEL.....ciiceieie ettt sre e tesr e s e nne s 75
5.2.1. IMpOorting JDBC........ocieoeeeee ettt et 75
5.2.2. LOAdING the DIVEL........ccueeeeee ettt 75
5.2.3. Connecting to the Database..........ccocecveereievineieieece e 76
5.2.4. Closing the CONNECHAN.........ccceciiierceeeee e 76

5.3. Issuing a Query and Processing the ResUlL..........ccccooeveeecvie e 76
5.3.1. Using thestatement or PreparedStatement Interface........cccce.... 77
5.3.2. Using theResultSet INterface........ccocevvevvreivvineieeee e 77

5.4. Performing UPAAtes..........ccoviririnieirieenee ettt st 78

5.5. Creating and Modifying Database ODbjJectS........ccccvvvvvreeririevinenereeeeeen 78

5.6. StOriNg BiNArY DAtaL........ccoeviiueriiieerieerieereeie ettt 79
5.7. PostgreSQL Extensions to the IDBC ARL.........ccoeiiriineinienee e 81
5.7.1. Accessing the EXIENSIONS. ..o 81
5.7.1.1. Classrg.postgresgl.PGConnection .occoevevenenenereeeneneee 82
B5.7.1.1.1. MEtNOGS. ...ttt 82
5.7.1.2. Classrg.postgresgl.Fastpath ~ .cocooiiiicreeeee e 83
B5.7.1.2.1. MEtNOGS.......cctiieiiisiiisieisiee e 83
5.7.1.3. Classrg.postgresgl.fastpath.FastpathArg .o, 85
5.7.1.3.1. CONSIIUCTOLS......coueeiiriieie et 85
5.7.2. GEOMELriC DAta TYPES....ceeieeuerterierie ettt 86
5.7.3. Large ODJECIS....c.iiiiiitiieeeee st e e 98
5.7.3.1. Classrg.postgresgl.largeobject.LargeObject ~ 98
5.7.3.1.1. Variables........ccoii e 99
5.7.3.1.2. MEtNOGS. ...ttt 99

5.7.3.2. Classrg.postgresqgl.largeobject.LargeObjectManager

100

5.7.3.2.1. Variables.........ccoeiiineieseee e 101
5.7.3.2.2. MEtNOGS.couiiieiieieeree e 101
5.8. Using the driver in a multithreaded or a servlet environment...........cccccc...... 102
5.9. Connection PooIS ANd DataSOUICES........cccvrirrerireieriee e 102
5.9.1. JDBC, JDK Version SUPPAQALL......cccevereererreresrerieseeseeneseseseeseeseeseesessenns 102
5.9.2. JDBC Connection Pooling ARL........ccceii e 102
5.9.3. Application Servers: ConnectionPoolDataSource..........cccccveeveennnne. 103
5.9.4. Applications: DAtaSOUICE.........ccceverrerrenineie e 104
5.9.5. DataSources and JNDL.........ccccvivrirrrrernienesesesenee e e 106
5.9.6. Specific Application Server Configuratians...........cccoceeevrivverereennnn. 106
5.10. FUrther REAAING........ccorriririeerieeriee ettt 107
6. PYGreSQL - PYthon INTEIfACE ...t e 108
L0 I I T T T Y/ Yo [=S 108
B.1. 1. CONSLANTS.....cteieetietieie ettt sttt st st s be et saeeeesaeeeeseesnnans 108
6.2.pg MOAUIE FUNCHIONS.......ootiiie et eae s 109
(o70] o1 =T o SR TSP UP PR 109
L AETNOST. ..t 111
SEL dETNOSE ... e e 112
(o< 0[] 0o ST 113
ST A0 (=1 o] o VOSSR UUOTSRRRN 114
(o T< G [(o] o ST 115
ST 0 (= (o] o) AU SRS 116
(o< 0 [11T PP 117
LT 0 L= 1Y/ 118
gL AEIDASE... .o e e e 119
Set_defbasE......oecee e ————————— 120
6.3. Connection ODJECHJODIECT ...vvieeie e 121
(0[] Y PRSPPSO 121
(ST TP TR 123
ClOS . e ettt 124
FIBNO .t 125
(o =] (1])Y/ 126
INSEIEADIE.......c.i it 127
1011 T =S 128
GELIINME bbb e 129

L= 0o (oo VAT oSO STTTSOUS OO 130

LoTo Lo (OSSR 131
GEEIO et bbb 132
[OIMPONL. ...ttt 133

6.4. Database Wrapper CIagiB..........cccoeoiveirrinnerneres et 134
PKEY... ettt bbbt 134

g€ _dAtADASES. .. .o e 136

o< = o] LTSS 137

JEL ALINAIMES.ottt st e et s ae e e sae e e seenanan 138

[0 = OO UR P TPTURUPRTPRRPR 139
1= SRR 140

B oo F= L= PSSP 141

(ol [T | AT PPORSR 142
EIBTE. .. e b e 143

6.5. Query Result ObjechgqueryobjECt ccecveeeeiere e 144
EUIESUIL ...t e e st s e e te s aeeaae e saeeeesneeeesrennaens 144
ICTIFESUIL. ... e e 145

IS 1T o LSS 146
FIRIANAME. . e e 147
FIRIANUML et ebe e 148
LT 0] L= S 149

(SN T = 10 TSI @][Tox 1T | = o= S 150
0] o = o USRS 150

0] (01 S 152

1= = o S 153
WITE 1. eeee ettt st e e s et e e e e s es e st e eese e e eneesenseseentensenee e enenrenes 154
ST SRR 155

L= | SRR 156

0T] 1] S 157

Sl Z ettt b et E e be e sh et e Ee e Re e she e teenneenreeereenneenreeaa 158
EXPIONT. ..t e e e 159

[I. SErver PrOgramIMiNGcooeeeieerieierieieseete sttt s e b e b e b e b se b e sseseseebeseebeseere e 160
A Y (o3 11 (o {0 = U R 162
7.1. PostgreSQL Architectural CONCEPLS......cceierirerere e 162
8. EXtending SQL: AN OVEIVIEW.......c.ciiiuiriiieireeieeie st reeesie s et st ses e saesbesbeseeseeessessesas 165
8.1. How EXtensibility WOIKS..........cociriiiiiee e 165
8.2. The PostgreSQL TYPE SYSIEML......coceiiiiriieieeeiesie et 165
8.3. About the PostgreSQL System Catalags........ccooeverereererienienenenesesee e 165
9. Extending SQL: FUNCLONS........cciiiiieiire ettt s e e e e e e sneenaesresnaens 169
LS 20 [11 70T [o 1o 1o FOU PSP O TR RTRTPR 169
9.2. Query Language (SQL) FUNCHONS.......ccoeveiiee e 169
S I B = U 0 o] 1= RS 169
9.2.2. SQL FUuNctions on Base TYPES.......ccccveveeereieeriesesees e seesie e eee e 170
9.2.3. SQL Functions on COMpPOSIte TYPES.....ccvrrerrereereeiesesreseseeseeseeessens 171
9.2.4. SQL Table FUNCLIONS........ccceieeitecriciecre ettt sanens 173
9.2.5. SQL Functions RetUrNing SeLS......ccccceeerivrevirenereeiese e e 173

9.3. Procedural Language FUNCHONS.........cccvieriereeeeese e seeseeee e ee s e 174
9.4, INtErN@l FUNCLIONScoiiieiet e 175
9.5. C Language FUNCLIONS........ccccereeeeire et ene s 175
9.5.1. DYNamIC LOAAING.......cccreireirire ettt 175
9.5.2. Base Types in C-Language FUuNCtians..........ccocecevevenrenneneneneneennns 177

Vi

9.5.3. Version-0 Calling Conventions for C-Language Functions............... 179

9.5.4. Version-1 Calling Conventions for C-Language Functions............... 181

9.5.5. Composite Types in C-Language Functians...........cccceeevvveneceeennnn 183

9.5.6. Table FUNCLION ARL.......c.o e 185

9.5.6.1. Returning Rows (COmMpPOSIte TYPES).....ccveerrerrrererienerieennene 185

9.5.6.2. REtUIMNING SeLS......oiiirieiree e 186

S I Y41 1 To T @ To [TSP 191

9.5.8. Compiling and Linking Dynamically-Loaded Functions.................... 191

9.6. FUNCLION OVEIOAAING......ciii ittt 194

9.7. TabIe FUNCHONS.......oiieee e e 195

9.8. Procedural Language Handlers...........oooernenienn e 196

10. EXIENAING SQL: TYPES .eieeieeeieeterie ettt sttt be st st sa e e et s be st be e e e e e eneneas 198
11. Extending SQL: OPEIatOLS......cciiieieeiiieiesiesteeteeteeeesteseeste e eeesteeseessesreeseesressaessesneenns 200
0 0 R 111 o To 1B od 1 T o TSSO URUTPTRSRRTRN 200
R = 10 0] = S 200
11.3. Operator Optimization INformation............ccccceeveviereeriene e 200
11.3.1. COMMUTATOR......coetirttirieiriees ettt 201

11.3.2. NEGATOR......o ottt ettt 201

11.3.3. RESTRICT ...ttt 202

L12.3.4. JOIN. ittt 203

L11.3.5. HASHES. ..ottt s 203
11.3.6.MERGE$SORT1 SORT2 LTCMP GTCMP....cvrvrerrrrreeerereeseeseeseeseeeesenes 204

12. Extending SQL: AQQreOALES......ccvvviereeeeererestes e eseee e s e stesaesesseesessessestestesseneeneesesees 206
13. The RUIE SYSTEIM.....oiiiiiitiiieie et 208
R 00 R 11 To 11 o3 1T o TSRS 208
13.2. What iS @ QUETY TIEEZ....cuieieieriiirieirieer ettt 208
13.2.1. The Parts of @ QUEIY trBEcireieeeee e 208

13.3. Views and the RUIE SYStEML.........ccoerirce e 210
13.3.1. Implementation of Views in POStgreSQL.........ccccvoerrenneneneieneennes 210

13.3.2. HOW SELECT RUIES WOIK......ccoeiriiierieeeire e 210

13.3.3. View Rules in Non-SELECT Statements.........ccoccoeeeveeeneneneseeennn. 215

13.3.4. The Power of Views in POStgreSQL........cccoorinnenniineeneeneeee 216

13.3.4.1. BENETILS. ..cieiicceer e e 217

13.3.5. What about updating @ VIEW?...........ccureirrinnirereseseseeseesee e 217

13.4. Rules on INSERT, UPDATE and DELETE.........ccccocoveiinsinnesees e 217
13.4.1. Differences from View RUIES.........ccccooiiriniiinie e, 217

13.4.2. How These RUIES WOTK ...t 217

13.4.2.1. AFirst Rule Step by Step......ccocviiirirenerenee e 219

13.4.3. Cooperation With VIBWS..........cccceirererieienene e 222

13.5. Rules and PermiSSIQNS........cccereireririerierieeeese st s sne s 227
13.6. Rules and Command STAtUS........ccooereririirieerene e e 228
13.7. RUIES VEISUS THOOEIS .. ccceeiieiteeiesteeeeste e este e eae e sreeaesteeeesre e entesresnaetesneenns 228

14. Interfacing EXteNsions TO INAEXES........ccciveeiiei e e 232
I R 1 Vi o o 1B ox 1 o o PP U USSR 232
14.2. Access Methods and Operator ClasSEesS.......cccccevvveeveneeceeseseeree e 232
14.3. Access Method SIrategieS........ccveeeiieiirieeeee s ene s 232
14.4. Access Method SUuppPOrt ROULINES.........ccceveerieniesesieseseee s 234
14.5. Creating the Operators and Support ROULINES.........ccceeveeveerierenirereeieeeeeens 235
14.6. Creating the Operator CIaSS.......cccvvvvieriereeieeie s e e sressee e enens 236
14.7. Special Features of Operator ClasSEes........ccccvvvvvvrierieriereeieeesiesesesesseeseseenens 237

15. Index Cost EStimation FUNCHONS.........ccoeirrinrii e 238
LG T oo =T TSSOSO 241

Vii

16.1. Trigger DefiNition........ccceorieirieirieiretee s 241

16.2. Interaction with the Trigger Manager.........coccveereinninnenseeserese e 242
16.3. Visibility of Data Changes...........cccueriireirieirieeseeee e 244
16.4. EXAMPIES ...t 245
17. Server Programming INtEITACE. ..o 248
17.1. INtErface FUNCHIONS.......cci ettt et e teesbe e sbe e e beesneesbee e 248
] o o0 1 = o TR 248
SPLAINISN. .. e b et 250

0] = G o RS S 251

Y I 0 (=] 0 1= 11 = OO UT P PPTURRPRPRPI 254

] TS (ST o UV PRSPPI 256
SPI_CUISOI_OPEIN.... .ottt ettt ee b b sae e e e saeeeeseesanens 258

]l T VT =T 1 T TSRS 260

]l T VT £=To] (] (SRS 261
SPI_CUISOI_IMOVE ... ittt sttt bbb sba et eebe e e 262

]l I VT =0 [1 = RSP 263

] TS T= V= o] = T RS 264
17.2. Interface SUPPOIt FUNCLONS.........ccciiiiiiiiceees e ene 266
S o R 10 T a] o= T 266

S o I 7= 101 268

] o TR0 L= A 1 (0TS 269
SPL_gethinual.......ooooeeeeeee e s 270

] T 1] 1 o = RS 272

I o T o =1 137 =1 o S 273

] o B0 =1 (=11 = U = S 274
17.3. MemOry ManagemeEDt.......ccccuieeiereriene e see e st seee st eee e s see e sneessesseenes 275
S o I o0)77 1] o 1= S 275

S o I o0)Y 18] 0110 [=] oS 277
SPI_COPYLUPIEINTOSIOL......ccvi it s 278

] o I LYo 1137 (T o] 1= S 279

] o T o - 11 [oSSR 281

] o T (=] 0= U oSS R 282

] o T o 1= TP 283
SPL_fTEEIUPIE e e 284
SPI_freetuptable.... ... e 285
SPL_fTEEPIAN. ...t e 286
17.4. Visibility of Data Changes........cccoeeririiiiieerese e 287
BRI b= 1y] o] [SO TSSO 287
[I. Procedural LANQUAGOEScoeoiiireiieiie ettt sttt sb e b b e e eae e e 290
18. Procedural LANQUAGES.........cccvecuiiieieeieeiesiesteeteste e ste e ste e eaeeste e e ssesneenaesreenaesesneenns 292
RS 700 O 1o To [T 10 o FOS TSP 292
18.2. Installing Procedural LanQUAagES.........ccccvevererieereseeiesieeeesieseeseesessessesseenns 292
19. PL/pgSQL - SQL Procedural LangUAaQE.........ccceveeeerereeiesieeiesieseeseesreeseeseseessesneenns 294
F9. 1. OVEIVIEW.....veticeietecteeee ettt st e et et e st s aeeeaesaeeatesbesbeeateebeeasessssbeentesbesssenbenreenns 294
19.1.1. Advantages of Using PL/PGSQL.....cccceoveirieverereese s 295
19.1.1.1. Better PerformancCe..........ccceveieeereireeiecre et eve s 295

19.1.1.2. SQL SUPPOLL....oieeeecteeeee e s 295

19.1.1.3. POrtability......cceeeeeceesese e 295

19.1.2. Developing in PL/IPGSQL.......coooi e 295
19.2. Structure of PL/PGSQL......coviiiiiineirieenieeiee e e 296
19.2.1. LeXiCal DELAIIS.......ccoeeeeee ettt saee s 297

viii

e TR B I=To1 F= 1 = 11 TSR 297

19.3.1. Aliases for Function Parameters........cccoovvvvvreneeieniesesese e 298
19.3.2. ROW TYPBS .ottt sttt st 299

L TR TR T =T o o (o SR 299
19.3.4. AHITDULES. ..o e e e 299
19.3.5. RENAME......ociiiiit ettt 300
19,4, EXPIrESSIONS. c..ceieieeueeieeue et steste et eteetestesae st eee e et eaesbesbeseeseeneeneesessessesanseneeneanens 301
19.5. BASIC STAIEMENLS......cciiiieiitiiie ettt s e e ene s 302
19.5.0. ASSIGNMIENT... .ottt sttt st sae e 302
19.5.2. SELECT INTQ....cuiiiiniririririeeeriresie ettt 302
19.5.3. Executing an expression or query with no result............ccccooeeeene. 303
19.5.4. Executing dyNamiC QUEKIEScurerereeiererierieseeseeesesie e seeneas 304
19.5.5. Obtaining result StatUS.........ccccveeeve s 305
19.6. CONLIOl SIIUCTUIES.......coiiieietiriereere e 306
19.6.1. Returning from a funCHON.......ccoccvevi e 306
19.6.2. CONAItIONAIS......c.eovieeieric e 307
19.6.2. LIF-THEN ..ottt 307
19.6.2.21F-THEN-ELSEiiiiiitierietiieesee et 307
19.6.2.3IF-THEN-ELSE IF ..ooioiiriiiieeieenies e 308
19.6.2.41F-THEN-ELSIF-ELSE ...eivctiveeriee e 308

19.6.3. SIMPIE LOOPS..c.eceeririirieiiiieieesestesesteseeeeses e seesaesesee e ssesressesaesaeneesenes 309
19.6.3. 1. LOORP.....co ittt 309

19.6.3.2. EXIT oo 309

19.6.3.3. WHILE ..ottt 310

19.6.3.4. FOR (integer for-loop)......cccoeoreinninnenrerreese e 310

19.6.4. Looping Through QUery RESUILS.........cceiririririnnenreere e 310
S A O £ TS 311
19.7.1. Declaring Cursor Variables..........cccceininnineseese e 312
19.7.2. OPENING CUISOIS...c.couiireiuirieirieierietsieies et re s 312
19.7.2.1. OPEN FOR SELECT.......cccsitiririrenereeseese e 312

19.7.2.2. OPEN FOR EXECUTE.......cceoiiiiirerereese e 312

19.7.2.3. Opening a bound CUISOr.........cccoviiininreee e 313

19.7.3. USING CUISOIS.....ccuieriiireiirieiesieiesie et 313
19.7.3. 1 FETCH. ettt 313

19.7.3.2. CLOSE ...ttt s 314

19.7.3.3. ReturNiNg CUISOIS........ciirieerirenieniese e ses e e snens 314

19.8. EITOrS @Nd MESSAJES. ... ccverveieeeieiertesierieseees et s st see e e saesbeseessessenesesnesnens 315
19.8.1. EXCEPLIONS . ..ceeeeieetirte ettt sttt st st ene e 315
19.9. Trigger PrOCEAUIES........cooiiiieeeeeeete ettt e sn 315
19.10. EXAMPIES. ..ottt b et b e se b e e e nne s 317
19.11. Porting from Oracle PLISQL.......cceoi et 318
19.11.1. Main DifferENCES......cceiviirieiric et 319
19.11.1.1. Quote Me on That: Escaping Single Quotes................... 319

19.11.2. Porting FUNCHONS.......ccceiceeeee ettt s 320
19.11.3. PrOCEAUIES.......covieeiertrereeer et 323
I I 0 B = Vo = Vo = S 325
19.11.5. Other Things to Watch For........ccccoceveiecivie e 326
19.11.5.1. EXECUTE ...ttt 326

19.11.5.2. Optimizing PL/pgSQL Functians........cccceevvevvvvenieveeceniennnns 326

I T I O ST Y o] o 1= o 327
19.11.6.1. Code for mipstr fUNCLIONS.......cocvveverececece e 327

20. PL/Tcl - Tcl Procedural LANQUAGE..........covueereerieerieenieesisiees et 330

B O T O LYY /1= R 330

20.2. DESCIIPLION....cviteeete ettt sttt sttt sttt st e bbbttt s nbns 330
20.2.1. PL/Tcl Functions and ArgUMENLS.ccceeerieirieeneeenese e 330

20.2.2. Data Values in PLITCl...ccoiiieececeee e 331

20.2.3. Global Data in PLITCL.....c.coi e 331

20.2.4. Database Access from PL/TCL......coooieiii e 332

20.2.5. Trigger Procedures in PL/TCL......ccoiioiiiiiee e 334

20.2.6. Modules and thknown COMMANG..........ccccceeveierienieeese e 336

20.2.7. TCI Procedure NAmMES......cccccceierieeieee ettt e see e sae s enaens 336

21. PL/Perl - Perl Procedural LANQUAGE.cccoeirerieneeirere e e 337
21.1. PL/Perl Functions and ArgUMENLS.......cccoerrerereriesiereeesese e seeesae e 337
21.2. Data Values iN PL/IPEIL........ooi ettt s 338
21.3. Database AcCess from PL/IPEIL........oo e 338
21.4. Trusted and Untrusted PL/PEIL.........ccov e 339
21.5. MISSING FEALUIES.......ccciecieceee ettt enae e e aesreennens 339

22. PL/Python - Python Procedural Language.........ccocevveeerieiieesesesesieseeseese e seesnnens 341
22.1. PL/PYthON FUNCHONS.......cciee ettt 341
b2 N o [o 1= T g 0T (o g SRS 341
22.3. DAtabase ACCESS.....ccccvviiiie ettt st s re st nennenns 342
22.4. Restricted ENVIFONMENL ..ottt sne s 343

1211][0T T ir= o 0)Y/ 344
VX ettt ettt ettt s b b et e e b e e ae e bt eae e tesheeabeabeehe e beebeeaeeabeeaeebesheeabebeeaeenteeneennas 346

List of Tables

3-1.pgICl COMMANGSciitiitieiiete e et see et teste e e eresbeeeesbesaeebesbeessessesaeessesbeessesbesseensesseensessesnees 39
5-1. ConnectionPoolDataSource Implementations..........occoeveeeeierieniesieneereerese s seeseseeseseenens 103
5-2. ConnectionPoolDataSource Configuration Proparties........ccceovvvriereereeeriesieseeseneesessennens 103
5-3. DataSource IMplemMeNntationS....... ..ot 104
5-4. DataSource Configuration ProPerties.........cuoverieireirieieneeseesse e 104
5-5. Additional Pooling DataSource Configuration Properties..........ccovoevverrennennencseennes 105
8-1. POStgreSQL SyStem CatalOgS.......ccuovevererieririiirieerieesieesie ettt 166
9-1. Equivalent C Types for Bulilt-In POStgreSQL TYPES......ccoeirriririnirinireresesie e 177
14-1. B-1rEE SIALEQIES. . ..cuiieetirietereeteeet ettt b et b ettt bbbt e bt ss b e b sb e nnenes 233
14-2. HASH SITALEQIES.....ecuireetireetereeteesie sttt e bbb 233
14-3. R-IrEE STAIETIES. ... v eeetiietereeteeet ettt bbbttt b bt b b sb e enes 233
14-4. B-tree SUPPOIT FUNCHIOMS........coeiuiirieirieiiriei ettt 234
14-5. Hash SUPPOIt FUNCHIONS.coiuiiriiirieiiriei ettt 234
14-6. R-tree SUPPOIt FUNCHOMS ..ottt 234
14-7. GiST SUPPOIT FUNCHOMS .. .ccuiiti ittt se st eeae b b see e e e enesneees 234
19-1. Single Quotes ESCaping CharL ... e 319

List of Figures

7-1. How a connection is €StabliSNE...........couviciiiei et 162
8-1. The major PostgreSQL System Catalags.........cooeereirieirieinieieeseses e 166

List of Examples

1-1. [ibpg EXamMPle Program.L.........c ettt sttt e sne s 22
1-2. [Ibpg EXAMPIE PrOogram.2 ...ttt et s e sne s 24
1-3. libpg EXamPle Program.3..........ccciiieeie ettt sre e ste et st enaesneennesnenneas 26
2-1. Large Objects with Libpg Example Programy..........ccccceeeeiesiccieseseeseseecie e seesee e esee e 34
3-1. pgLCl EXaMPIE PrOQIam.......ccoccveieieeiesieeeste st ete st s sae e te e sseesaesreesaesneesaestesneensesneeneesnesnnes 39
5-1. Processing a Simple Query in IDBC........ooi oot see s 77
5-2. Simple Delete EXAMPIE.......cc oottt sttt sne e nnennnen 78
5-3. Drop Table EXAMPLE........ccviiiiecee ettt sttt ae st nesnenean 78
5-4. Binary Data EXAMPIES.........ccoiiieieiee et s ettt sne s 79
5-5. ConnectionPoolDataSource Configuration EXample........ccccvivvivvinereienieseseseseeseeeeeens 104
5-6.DataSource Code EXAMPIE.....cciieeeeeieise e sttt sa et e aenae e enennens 105
5-7.DataSource JNDI COdE EXAMPIE......ccccveiiereeeeeire s steteee e e e s enens 106
18-1. Manual Installation of PL/PGSQL......ccccoiiiiirereeeesi et 293
19-1. A PL/pgSQL Trigger Procedure EXample.......ocoiinininereeeecseeseeseeeeens 317
19-2. A Simple PL/pgSQL Function to Increment an INteger.........coovevreenceneensenneenens 318
19-3. A Simple PL/pgSQL Function to Concatenate TeXL.......ccccovevrvrerereereereneseseeneeeeseseenes 318
19-4. A PL/pgSQL Function on COMPOSItE TYIE.....coueiririireriierieerieesie e seens 318
19-5. A SIMPIE FUNCHIOM ..ottt b e b sb e e 320
19-6. A Function that Creates ANother FUNCHION..........cccooviiireirire e 321
19-7. A Procedure with a lot of String Manipulation and OUT Parameters...........c.ccccvveereene 322

Xi

Preface

1. What is PostgreSQL?

PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES,
Version 4.2, developed at the University of California at Berkeley Computer Science Department.
The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Ad-
vanced Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science
Foundation (NSF), and ESL, Inc.

PostgreSQL is an open-source descendant of this original Berkeley code. It provides SQL92/SQL99
language support and other modern features.

POSTGRES pioneered many of the object-relational concepts now becoming available in some com-
mercial databases. Traditional relational database management systems (RDBMS) support a data
model consisting of a collection of named relations, containing attributes of a specific type. In current
commercial systems, possible types include floating point numbers, integers, character strings, money,
and dates. It is commonly recognized that this model is inadequate for future data-processing appli-
cations. The relational model successfully replaced previous models in part because of its “Spartan
simplicity”. However, this simplicity makes the implementation of certain applications very difficult.
PostgreSQL offers substantial additional power by incorporating the following additional concepts in
such a way that users can easily extend the system:

« inheritance
- data types
. functions

Other features provide additional power and flexibility:

« constraints

. triggers

- rules

- transactional integrity

These features put PostgreSQL into the category of databases referreabjecigelational Note

that this is distinct from those referred to @lsject-orientedwhich in general are not as well suited

to supporting traditional relational database languages. So, although PostgreSQL has some object-
oriented features, it is firmly in the relational database world. In fact, some commercial databases
have recently incorporated features pioneered by PostgreSQL.

2. A Short History of PostgreSQL

The object-relational database management system now known as PostgreSQL (and briefly called
Postgres95) is derived from the POSTGRES package written at the University of California at Berke-
ley. With over a decade of development behind it, PostgreSQL is the most advanced open-source
database available anywhere, offering multiversion concurrency control, supporting almost all SQL

1. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/postgres.html

Preface

constructs (including subselects, transactions, and user-defined types and functions), and having a
wide range of language bindings available (including C, C++, Java, Perl, Tcl, and Python).

2.1. The Berkeley POSTGRES Project

Implementation of the POSTGRES DBMS began in 1986. The initial concepts for the system were
presented irrhe design of POSTGRE®d the definition of the initial data model appearedire
POSTGRES data moddlhe design of the rule system at that time was describ&téndesign of the
POSTGRES rules systeirhe rationale and architecture of the storage manager were detailed in
design of the POSTGRES storage system

Postgres has undergone several major releases since then. The first “demoware” system became op-
erational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in
The implementation of POSTGRES released to a few external users in June 1989. In response

to a critique of the first rule systend (commentary on the POSTGRES rules sykttra rule system

was redesigneddn Rules, Procedures, Caching and Views in Database Systems/ersion 2 was
released in June 1990 with the new rule system. Version 3 appeared in 1991 and added support for
multiple storage managers, an improved query executor, and a rewritten rewrite rule system. For the
most part, subsequent releases until Postgres95 (see below) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These
include: a financial data analysis system, a jet engine performance monitoring package, an aster-
oid tracking database, a medical information database, and several geographic information systems.
POSTGRES has also been used as an educational tool at several universities. Finally, lllustra Infor-
mation Technologies (later merged into Inforfiwhich is now owned by IBM) picked up the code

and commercialized it. POSTGRES became the primary data manager for the Sequbsz20dific
computing project in late 1992.

The size of the external user community nearly doubled during 1993. It became increasingly obvious
that maintenance of the prototype code and support was taking up large amounts of time that should
have been devoted to database research. In an effort to reduce this support burden, the Berkeley
POSTGRES project officially ended with Version 4.2.

2.2. Postgres95

In 1994, Andrew Yu and Jolly Chen added a SQL language interpreter to POSTGRES. Postgres95
was subsequently released to the Web to find its own way in the world as an open-source descendant
of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes im-
proved performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the
Wisconsin Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following
were the major enhancements:

« The query language PostQUEL was replaced with SQL (implemented in the server). Subqueries
were not supported until PostgreSQL (see below), but they could be imitated in Postgres95 with
user-defined SQL functions. Aggregates were re-implemented. Support for the GROUP BY query
clause was also added. Thtgpq interface remained available for C programs.

- In addition to the monitor program, a new program (psql) was provided for interactive SQL queries
using GNU Readline.

2. http://www.informix.com/
3. http://www.ibm.com/
4. http://meteora.ucsd.edu/s2k/s2k_home.html

Preface

« A new front-end libraryjibpgtcl , supported Tcl-based clients. A sample shadtclsh , pro-
vided new Tcl commands to interface Tcl programs with the Postgres95 backend.

« The large-object interface was overhauled. The Inversion large objects were the only mechanism
for storing large objects. (The Inversion file system was removed.)

- The instance-level rule system was removed. Rules were still available as rewrite rules.

« A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed
with the source code

+ GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled
with an unpatched GCC (data alignment of doubles was fixed).

2.3. PostgreSQL

By 1996, it became clear that the name “Postgres95” would not stand the test of time. We chose a new
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent
versions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting
the numbers back into the sequence originally begun by the Berkeley POSTGRES project.

The emphasis during development of Postgres95 was on identifying and understanding existing prob-
lems in the backend code. With PostgreSQL, the emphasis has shifted to augmenting features and
capabilities, although work continues in all areas.

Major enhancements in PostgreSQL include:

- Table-level locking has been replaced by multiversion concurrency control, which allows readers
to continue reading consistent data during writer activity and enables hot backups from pg_dump
while the database stays available for queries.

- Important backend features, including subselects, defaults, constraints, and triggers, have been im-
plemented.

« Additional SQL92-compliant language features have been added, including primary keys, quoted
identifiers, literal string type coercion, type casting, and binary and hexadecimal integer input.

- Built-in types have been improved, including new wide-range date/time types and additional geo-
metric type support.

« Overall backend code speed has been increased by approximately 20-40%, and backend start-up
time has decreased by 80% since version 6.0 was released.

3. What's In This Book

This book is for PostgreSQL application programmers. It is divided into three parts.

The first part of this book describes the client programming interfaces distributed with PostgreSQL.
Each of these chapters can be read independently. Note that there are many other programming inter-
faces for client programs that are distributed separately and contain their own documentation. Readers
of the first part should be familiar with using SQL commands to manipulate and query the database
(see thePostgreSQL User’s Guideand of course with the programming language that the interface
uses.

Preface

The second part of this book is about extending the server functionality with user-defined functions,
data types, triggers, etc. These are advanced topics which should probably be approached only after
all the other user documentation about PostgreSQL has been understood.

The third part of this book described the available server-side programming languages. This infor-
mation is related to the second part and is only useful to readers that have read at least the first few
chapters thereof.

This book covers PostgreSQL 7.3.2 only. For information on other versions, please read the docu-
mentation that accompanies that release.

4. Qverview of Documentation Resources

The PostgreSQL documentation is organized into several books:

PostgreSQL Tutorial
An informal introduction for new users.
PostgreSQL User’s Guide

Documents the SQL query language environment, including data types and functions, as well as
user-level performance tuning. Every PostgreSQL user should read this.

PostgreSQL Administrator's Guide

Installation and server management information. Everyone who runs a PostgreSQL server, either
for personal use or for other users, needs to read this.

PostgreSQL Programmer’s Guide

Advanced information for application programmers. Topics include type and function extensi-
bility, library interfaces, and application design issues.

PostgreSQL Reference Manual

Reference pages for SQL command syntax, and client and server programs. This book is auxil-
iary to the User’s, Administrator’s, and Programmer’s Guides.

PostgreSQL Developer’'s Guide

Information for PostgreSQL developers. This is intended for those who are contributing to the
PostgreSQL project; application development information appears irdggammer’s Guide

In addition to this manual set, there are other resources to help you with PostgreSQL installation and
use:
man pages

The Reference Manual pages in the traditional Unix man format. There is no difference in
content.

FAQs

Frequently Asked Questions (FAQ) lists document both general issues and some
platform-specific issues.

READMEs

README files are available for some contributed packages.

Preface

Web Site

The PostgreSQL web sitearries details on the latest release, upcoming features, and other
information to make your work or play with PostgreSQL more productive.

Mailing Lists

The mailing lists are a good place to have your questions answered, to share experiences with
other users, and to contact the developers. Consult the User’s L'aewi®n of the PostgreSQL
web site for details.

Yourself!

PostgreSQL is an open-source effort. As such, it depends on the user community for ongoing
support. As you begin to use PostgreSQL, you will rely on others for help, either through the
documentation or through the mailing lists. Consider contributing your knowledge back. If you
learn something which is not in the documentation, write it up and contribute it. If you add
features to the code, contribute them.

Even those without a lot of experience can provide corrections and minor changes in the docu-
mentation, and that is a good way to start. Tipgsgl-docs@postgresgl.org > mailing list
is the place to get going.

5. Terminology and Notation

An administratoris generally a person who is in charge of installing and running the serueseA

could be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms should
not be interpreted too narrowly; this documentation set does not have fixed presumptions about system
administration procedures.

We use /usr/local/pgsql/ as the root directory of the installation and
{usr/local/pgsgl/data as the directory with the database files. These directories may vary on
your site, details can be derived in tAdministrator's Guide

In a command synopsis, brackdtsand]) indicate an optional phrase or keyword. Anything in braces
({ and}) and containing vertical bars) indicates that you must choose one alternative.

Examples will show commands executed from various accounts and programs. Commands executed
from a Unix shell may be preceded with a dollar sigs”f* Commands executed from particular

user accounts such as root or postgres are specially flagged and explained. SQL commands may be
preceded with £>" or will have no leading prompt, depending on the context.

Note: The notation for flagging commands is not universally consistent throughout
the documentation set. Please report problems to the documentation mailing list
<pgsql-docs@postgresql.org >,

5. http://www.postgresql.org
6. http://lwww.postgresql.org/users-lounge/

Preface

6. Bug Reporting Guidelines

When you find a bug in PostgreSQL we want to hear about it. Your bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part
of PostgreSQL will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No one is required to follow them but it tends to be to everyone’s advantage.

We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a lot of users,
chances are good that someone will look into it. It could also happen that we tell you to update to a
newer version to see if the bug happens there. Or we might decide that the bug cannot be fixed before
some major rewrite we might be planning is done. Or perhaps it is simply too hard and there are
more important things on the agenda. If you need help immediately, consider obtaining a commercial
support contract.

6.1. Identifying Bugs

Before you report a bug, please read and re-read the documentation to verify that you can really do
whatever it is you are trying. If it is not clear from the documentation whether you can do something
or not, please report that too; it is a bug in the documentation. If it turns out that the program does
something different from what the documentation says, that is a bug. That might include, but is not
limited to, the following circumstances:

- A program terminates with a fatal signal or an operating system error message that would point to
a problem in the program. (A counterexample might be a “disk full” message, since you have to fix
that yourself.)

- A program produces the wrong output for any given input.
- A program refuses to accept valid input (as defined in the documentation).

- A program accepts invalid input without a notice or error message. But keep in mind that your idea
of invalid input might be our idea of an extension or compatibility with traditional practice.

« PostgreSQL fails to compile, build, or install according to the instructions on supported platforms.
Here “program” refers to any executable, not only the backend server.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of
the mailing lists for help in tuning your applications. Failing to comply to the SQL standard is not
necessarily a bug either, unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to see if your bug is already known.
If you cannot decode the information on the TODO list, report your problem. The least we can do is
make the TODO list clearer.

6.2. What to report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do
not speculate what you think went wrong, what “it seemed to do”, or which part of the program has a
fault. If you are not familiar with the implementation you would probably guess wrong and not help
us a bit. And even if you are, educated explanations are a great supplement to but no substitute for
facts. If we are going to fix the bug we still have to see it happen for ourselves first. Reporting the bare
facts is relatively straightforward (you can probably copy and paste them from the screen) but all too

Vi

Preface

often important details are left out because someone thought it does not matter or the report would be
understood anyway.

The following items should be contained in every bug report:

« The exact sequence of stdfpam program start-umecessary to reproduce the problem. This should
be self-contained; it is not enough to send in a bare select statement without the preceding create
table and insert statements, if the output should depend on the data in the tables. We do not have the
time to reverse-engineer your database schema, and if we are supposed to make up our own data
we would probably miss the problem. The best format for a test case for query-language related
problems is a file that can be run through the psql frontend that shows the problem. (Be sure to
not have anything in yout/.psglrc start-up file.) An easy start at this file is to use pg_dump to
dump out the table declarations and data needed to set the scene, then add the problem query. You
are encouraged to minimize the size of your example, but this is not absolutely necessary. If the
bug is reproducible, we will find it either way.

If your application uses some other client interface, such as PHP, then please try to isolate the
offending queries. We will probably not set up a web server to reproduce your problem. In any case
remember to provide the exact input files, do not guess that the problem happens for “large files”
or “mid-size databases”, etc. since this information is too inexact to be of use.

« The output you got. Please do not say that it “didn’t work” or “crashed”. If there is an error message,
show it, even if you do not understand it. If the program terminates with an operating system error,
say which. If nothing at all happens, say so. Even if the result of your test case is a program crash
or otherwise obvious it might not happen on our platform. The easiest thing is to copy the output
from the terminal, if possible.

Note: In case of fatal errors, the error message reported by the client might not contain all the
information available. Please also look at the log output of the database server. If you do not
keep your server’s log output, this would be a good time to start doing so.

- The output you expected is very important to state. If you just write “This command gives me that
output.” or “This is not what | expected.”, we might run it ourselves, scan the output, and think it
looks OK and is exactly what we expected. We should not have to spend the time to decode the
exact semantics behind your commands. Especially refrain from merely saying that “This is not
what SQL says/Oracle does.” Digging out the correct behavior from SQL is not a fun undertaking,
nor do we all know how all the other relational databases out there behave. (If your problem is a
program crash, you can obviously omit this item.)

- Any command line options and other start-up options, including concerned environment variables
or configuration files that you changed from the default. Again, be exact. If you are using a prepack-
aged distribution that starts the database server at boot time, you should try to find out how that is
done.

- Anything you did at all differently from the installation instructions.

« The PostgreSQL version. You can run the comm8&BHECT version(); to find out the version
of the server you are connected to. Most executable programs also suppertian option; at
leastpostmaster --version andpsgl --version should work. If the function or the options
do not exist then your version is more than old enough to warrant an upgrade. You can also look
into theREADMHile in the source directory or at the name of your distribution file or package name.

Vii

Preface

If you run a prepackaged version, such as RPMs, say so, including any subversion the package may
have. If you are talking about a CVS snapshot, mention that, including its date and time.

If your version is older than 7.3.2 we will almost certainly tell you to upgrade. There are tons of
bug fixes in each new release, that is why we make new releases.

- Platform information. This includes the kernel name and version, C library, processor, memory
information. In most cases it is sufficient to report the vendor and version, but do not assume
everyone knows what exactly “Debian” contains or that everyone runs on Pentiums. If you have
installation problems then information about compilers, make, etc. is also necessary.

Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your
input files are huge, it is fair to ask first whether somebody is interested in looking into it.

Do not spend all your time to figure out which changes in the input make the problem go away. This
will probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still
have time to find and share your work-around. Also, once again, do not waste your time guessing why
the bug exists. We will find that out soon enough.

When writing a bug report, please choose non-confusing terminology. The software package in to-
tal is called “PostgreSQL”, sometimes “Postgres” for short. If you are specifically talking about the
backend server, mention that, do not just say “PostgreSQL crashes”. A crash of a single backend
server process is quite different from crash of the parent “postmaster” process; please don't say “the
postmaster crashed” when you mean a single backend went down, nor vice versa. Also, client pro-
grams such as the interactive frontend “psql” are completely separate from the backend. Please try to
be specific about whether the problem is on the client or server side.

6.3. Where to report bugs

In general, send bug reports to the bug report mailing lispgt&l-bugs@postgresgl.org >. You
are requested to use a descriptive subject for your email message, perhaps parts of the error message.

Another method is to fill in the bug report web-form available at the project's web site
http://www.postgresql.org/. Entering a bug report this way causes it to be mailed to the
<pgsql-bugs@postgresgl.org > mailing list.

Do not send bug reports to any of the user mailing lists, suchpasqksql@postgresgl.org >

or <pgsql-general@postgresgl.org >. These mailing lists are for answering user questions and
their subscribers normally do not wish to receive bug reports. More importantly, they are unlikely to
fix them.

Also, please do not send reports to the developers’ mailing list pgsqgl-
hackers@postgresqgl.org >. This list is for discussing the development of PostgreSQL and it
would be nice if we could keep the bug reports separate. We might choose to take up a discussion
about your bug report opgsgl-hackers , if the problem needs more review.

If you have a problem with the documentation, the best place to report it is the documentation mailing
list <pgsgl-docs@postgresql.org >, Please be specific about what part of the documentation you
are unhappy with.

If your bug is a portability problem on a non-supported platform, send mail to
<pgsql-ports@postgresql.org >, so we (and you) can work on porting PostgreSQL to your
platform.

viii

Preface

Note: Due to the unfortunate amount of spam going around, all of the above email addresses
are closed mailing lists. That is, you need to be subscribed to a list to be allowed to post on it.
(You need not be subscribed to use the bug report web-form, however.) If you would like to send
mail but do not want to receive list traffic, you can subscribe and set your subscription option to
nomail . For more information send mail to <majordomo@postgresgl.org > with the single word
help in the body of the message.

|. Client Interfaces

This part of the manual is the description of the client-side programming interfaces and support li-
braries for various languages.

Chapter 1. libpq - C Library

1.1. Introduction

libpq is the C application programmer’s interface to PostgreSQL. libpq is a set of library routines that
allow client programs to pass queries to the PostgreSQL backend server and to receive the results of
these queries. libpq is also the underlying engine for several other PostgreSQL application interfaces,
including libpg++ (C++) libpgtcl (Tcl), Perl, ancecpg . So some aspects of libpqg’s behavior will

be important to you if you use one of those packages.

Three short programs are included at the end of this section to show how to write programs that use
libpg . There are several complete examplesbply applications in the following directories:

src/test/examples
src/bin/psql

Frontend programs that ulepqg must include the header filibpg-fe.h and must link with the
libpg library.

1.2. Database Connection Functions

The following routines deal with making a connection to a PostgreSQL backend server. The appli-
cation program can have several backend connections open at one time. (One reason to do that is to
access more than one database.) Each connection is represent@dayaobject which is obtained

from PQconnectdb orPQsetdbLogin . Note that these functions will always return a non-null object
pointer, unless perhaps there is too little memory even to allocaeGbenn object. ThePQstatus

function should be called to check whether a connection was successfully made before queries are
sent via the connection object.

« PQconnectdb Makes a new connection to the database server.

PGconn *PQconnectdb(const char *conninfo)

This routine opens a new database connection using the parameters taken from theostring

ninfo . Unlike PQsetdbLogin below, the parameter set can be extended without changing the
function signature, so use either of this routine or the nonblocking anal@@snectStart
andPQconnectPoll is preferred for application programming. The passed string can be empty to
use all default parameters, or it can contain one or more parameter settings separated by whitespace.

Each parameter setting is in the fokmyword = value . (To write an empty value or a value
containing spaces, surround it with single quotes, &ayword = ’a value’ . Single quotes

and backslashes within the value must be escaped with a backslash, @g\, .) Spaces around
the equal sign are optional. The currently recognized parameter keywords are:

host

Name of host to connect to. If this begins with a slash, it specifies Unix-domain communica-
tion rather than TCP/IP communication; the value is the name of the directory in which the
socket file is stored. The default is to connect to a Unix-domain sockepn.

Chapter 1. libpq - C Library

hostaddr

IP address of host to connect to. This should be in standard numbers-and-dots form, as used
by the BSD functionsnet_aton et al. If a nonzero-length string is specified, TCP/IP com-
munication is used.

Usinghostaddr instead of host allows the application to avoid a host name look-up, which
may be important in applications with time constraints. However, Kerberos authentication
requires the host name. The following therefore applies. If host is specified witbstatidr

a host name lookup is forced.Hbstaddr is specified without host, the value fosstaddr

gives the remote address; if Kerberos is used, this causes a reverse name query. If both host
and hostaddr are specified, the value fdostaddr gives the remote address; the value

for host is ignored, unless Kerberos is used, in which case that value is used for Kerberos
authentication. Note that authentication is likely to fail if libpg is passed a host name that is
not the name of the machinetatstaddr

Without either a host name or host address, libpg will connect using a local Unix domain
socket.

port

Port number to connect to at the server host, or socket file name extension for Unix-domain
connections.

dbname
The database name.
user
User name to connect as.
password
Password to be used if the server demands password authentication.
connect_timeout
Time space in seconds given to connect routine. Zero or not set means infinite.
options
Trace/debug options to be sent to the server.
tty
A file or tty for optional debug output from the backend.
requiressl

Set to 1 to require SSL connection to the server. Libpq will then refuse to connect if the server
does not accept an SSL connection. Set to 0 (default) to negotiate with server. This option is
only available if PostgreSQL is compiled with SSL support.

If any parameter is unspecified, then the corresponding environment variabfe(gém 1.1Dis
checked. If the environment variable is not set either, then hardwired defaults are used. The return
value is a pointer to an abstrattuct representing the connection to the backend.

- PQsetdbLogin Makes a new connection to the database server.

PGconn *PQsetdbLogin(const char *pghost,
const char *pgport,
const char *pgoptions,

Chapter 1. libpq - C Library

const char *pgtty,
const char *dbName,
const char *login,
const char *pwd)

This is the predecessor Bfconnectdb with a fixed number of parameters but the same function-
ality.

PQsetdb Makes a new connection to the database server.

PGconn *PQsetdb(char *pghost,
char *pgport,
char *pgoptions,
char *pgtty,
char *dbName)

This is a macro that callBQsetdbLogin with null pointers for thdogin andpwd parameters.
It is provided primarily for backward compatibility with old programs.

PQconnectStart , PQconnectPoll Make a connection to the database server in a nonblocking
manner.

PGconn *PQconnectStart(const char *conninfo)

PostgresPollingStatusType PQconnectPoll(PGconn *conn)

These two routines are used to open a connection to a database server such that your application’s
thread of execution is not blocked on remote 1/0O whilst doing so.

The database connection is made using the parameters taken from theastninégp , passed to
PQconnectStart . This string is in the same format as described abovedmonnectdb .

NeitherPQconnectStart norPQconnectPoll will block, as long as a number of restrictions are
met:

. Thehostaddr andhost parameters are used appropriately to ensure that name and reverse
name queries are not made. See the documentation of these parameterBQuutierctdb
above for details.

If you call PQtrace , ensure that the stream object into which you trace will not block.

- You ensure for yourself that the socket is in the appropriate state before ¢afloagnectPoll
as described below.

To begin, calconn=PQconnectStart(" connection_info_string ") . If conn is NULL, then
libpg has been unable to allocate a ne@conn structure. Otherwise, a valilGconn pointer is
returned (though not yet representing a valid connection to the database). On retuRAQktoimm
nectStart , call status=PQstatus(conn) . If status equal€ONNECTION_BADPQconnect-
Start has failed.

If PQconnectStart succeeds, the next stage is to poll libpg so that it may proceed with the con-
nection sequence. Loop thus: Consider a connection “inactive” by defaBctnnectPoll last
returnedPGRES_POLLING_ACTIVEconsider it “active” instead. IPQconnectPoll(conn) last
returnedPGRES_POLLING_READINGerform aselect() for reading orPQsocket(conn) . If it

last returnedPGRES_POLLING_WRITINGperform aselect() for writing on PQsocket(conn)

If you have yet to calPQconnectPoll , i.e. after the call te°QconnectStart , behave as if it last
returnedPGRES_POLLING_WRITINGIf the select() = shows that the socket is ready, consider

it “active”. If it has been decided that this connection is “active”, ¢&iconnectPoll(conn)

again. If this call return®GRES_POLLING_FAILED the connection procedure has failed. If this
call returnsPGRES_POLLING_ORKhe connection has been successfully made.

Chapter 1. libpq - C Library

Note that the use afelect() to ensure that the socket is ready is merely a (likely) example; those
with other facilities available, such agall() call, may of course use that instead.

At any time during connection, the status of the connection may be checked, by e&jkrgus .
If this is CONNECTION_BADhen the connection procedure has failed; if thiS@GNNECTION_QK
then the connection is ready. Either of these states should be equally detectable from the return
value ofPQconnectPoll , as above. Other states may be shown during (and only during) an asyn-
chronous connection procedure. These indicate the current stage of the connection procedure, and
may be useful to provide feedback to the user for example. These statuses may include:
CONNECTION_STARTED

Waiting for connection to be made.
CONNECTION_MADE

Connection OK; waiting to send.
CONNECTION_AWAITING_RESPONSE

Waiting for a response from the server.
CONNECTION_AUTH_OK

Received authentication; waiting for connection start-up to continue.
CONNECTION_SETENV

Negotiating environment (part of the connection start-up).

Note that, although these constants will remain (in order to maintain compatibility), an application
should never rely upon these appearing in a particular order, or at all, or on the status always being
one of these documented values. An application may do something like this:

switch(PQstatus(conn))

{
case CONNECTION_STARTED:
feedback = "Connecting...";
break;
case CONNECTION_MADE:
feedback = "Connected to server...";
break;
default:
feedback = "Connecting...";
}

Note that ifPQconnectStart ~ returns a non-NULL pointer, you must c@Dfinish when you
are finished with it, in order to dispose of the structure and any associated memory blocks. This
must be done even if a call @QconnectStart or PQconnectPoll failed.

PQconnectPoll will currently block if libpg is compiled withUSE_SSLdefined. This restriction
may be removed in the future.

These functions leave the socket in a nonblocking stateRi3siétnonblocking had been called.

PQconndefaults ~ Returns the default connection options.

Chapter 1. libpq - C Library
PQconninfoOption *PQconndefaults(void)

struct PQconninfoOption

{
char *keyword; /* The keyword of the option */
char *envvar; /* Fallback environment variable name */
char *compiled; /* Fallback compiled in default value */
char *val; [* Option’s current value, or NULL */
char *label; /* Label for field in connect dialog */
char *dispchar; /* Character to display for this field
in a connect dialog. Values are:
Display entered value as is
o Password field - hide value
"D" Debug option - don't show by default */
int dispsize; /* Field size in characters for dialog */
}

Returns a connection options array. This may be used to determine all paaSidenectdb
options and their current default values. The return value points to an arR@ohninfoOp-

tion struct s, which ends with an entry having a NULL keyword pointer. Note that the default
values (al fields) will depend on environment variables and other context. Callers must treat the
connection options data as read-only.

After processing the options array, free it by passing R@zonninfoFree . If this is not done, a
small amount of memory is leaked for each calPt@conndefaults

In PostgreSQL versions before 7@Qconndefaults returned a pointer to a static array, rather
than a dynamically allocated array. That was not thread-safe, so the behavior has been changed.

PQfinish Close the connection to the backend. Also frees memory used RGtwnn object.
void PQfinish(PGconn *conn)

Note that even if the backend connection attempt fails (as indicatedbtatus), the application
should callPQfinish to free the memory used by tiR&Sconn object. ThePGceonn pointer should
not be used afteéPQfinish has been called.

PQreset Reset the communication port with the backend.
void PQreset(PGconn *conn)

This function will close the connection to the backend and attempt to reestablish a new connection
to the same server, using all the same parameters previously used. This may be useful for error
recovery if a working connection is lost.

PQresetStart PQresetPoll Reset the communication port with the backend, in a nonblocking
manner.

int PQresetStart(PGconn *conn);
PostgresPollingStatusType PQresetPoll(PGconn *conn);

These functions will close the connection to the backend and attempt to reestablish a new connec-
tion to the same server, using all the same parameters previously used. This may be useful for error
recovery if a working connection is lost. They differ fraP@reset (above) in that they act in a
nonblocking manner. These functions suffer from the same restrictiorQ@snectStart and
PQconnectPoll

Call PQresetStart . If it returns 0, the reset has failed. If it returns 1, poll the reset uBDg:-
setPoll in exactly the same way as you would create the connection @singnnectPoll

Chapter 1. libpq - C Library

libpg application programmers should be careful to maintaifthenn abstraction. Use the accessor
functions below to get at the contentsRibconn. Avoid directly referencing the fields of tieGconn
structure because they are subject to change in the future. (Beginning in PostgreSQL release 6.4,
the definition ofstruct PGconn is not even provided ifibpg-fe.h . If you have old code that
accessefGconn fields directly, you can keep using it by includifigpg-int.h too, but you are
encouraged to fix the code soon.)

- PQdbReturns the database name of the connection.
char *PQdb(const PGconn *conn)

PQdb and the next several functions return the values established at connection. These values are
fixed for the life of thePGconn object.

- PQuser Returns the user name of the connection.

char *PQuser(const PGconn *conn)

« PQpass Returns the password of the connection.

char *PQpass(const PGconn *conn)

« PQhost Returns the server host name of the connection.

char *PQhost(const PGconn *conn)

« PQport Returns the port of the connection.

char *PQport(const PGconn *conn)

« PQtty Returns the debug tty of the connection.

char *PQtty(const PGconn *conn)

« PQoptions Returns the backend options used in the connection.

char *PQoptions(const PGconn *conn)

. PQstatus Returns the status of the connection.

ConnStatusType PQstatus(const PGconn *conn)

The status can be one of a number of values. However, only two of these are seen outside of an
asynchronous connection procedu®@NNECTION_OKr CONNECTION_BADA good connection

to the database has the staGBNNECTION_QKA failed connection attempt is signaled by status
CONNECTION_BADOrdinarily, an OK status will remain so un#Qfinish , but a communica-

tions failure might result in the status changingC®NNECTION_BAPrematurely. In that case the
application could try to recover by callirRQreset .

See the entry foPQconnectStart andPQconnectPoll with regards to other status codes that
might be seen.

« PQerrorMessage Returns the error message most recently generated by an operation on the
connection.

char *PQerrorMessage(const PGconn* conn);

Chapter 1. libpq - C Library

Nearly all libpqg functions will sePQerrorMessage if they fail. Note that by libpg convention, a
non-emptyPQerrorMessage Wil include a trailing newline.

« PQbackendPID Returns the process ID of the backend server handling this connection.
int PQbackendPID(const PGconn *conn);

The backend PID is useful for debugging purposes and for comparison to NOTIFY messages
(which include the PID of the notifying backend). Note that the PID belongs to a process executing
on the database server host, not the local host!

« PQgetssl Returns the SSL structure used in the connection, or NULL if SSL is not in use.

SSL *PQgetssl(const PGconn *conn);

This structure can be used to verify encryption levels, check server certificate and more. Refer to
the SSL documentation for information about this structure.

You must defineUSE_SSLin order to get the prototype for this function. Doing this will also
automatically includasl.h from OpenSSL.

1.3. Command Execution Functions

Once a connection to a database server has been successfully established, the functions described here
are used to perform SQL queries and commands.

1.3.1. Main Routines

« PQexec Submit a command to the server and wait for the result.

PGresult *PQexec(PGconn *conn,
const char *query);

Returns aPGresult pointer or possibly a NULL pointer. A non-NULL pointer will generally

be returned except in out-of-memory conditions or serious errors such as inability to send the
command to the backend. If a NULL is returned, it should be treated IMG@RES_FATAL_ERROR
result. UsePQerrorMessage to get more information about the error.

ThePGresult structure encapsulates the result returned by the baclitgd. application program-
mers should be careful to maintain th@result abstraction. Use the accessor functions below to get
at the contents dfGresult . Avoid directly referencing the fields of ttGresult ~ structure because
they are subject to change in the future. (Beginning in PostgreSQL 6.4, the definitamiaf

PGresult is not even provided itibpg-fe.h . If you have old code that acces$&Gresult fields
directly, you can keep using it by includitigpg-int.h too, but you are encouraged to fix the code
soon.)

« PQresultStatus Returns the result status of the command.

ExecStatusType PQresultStatus(const PGresult *res)

PQresultStatus ~ can return one of the following values:

Chapter 1. libpq - C Library

PGRES_EMPTY_QUERYThe string sent to the backend was empty.
PGRES_COMMAND_eKuccessful completion of a command returning no data
PGRES_TUPLES_Ok The query successfully executed

- PGRES_COPY_OUT¥ Copy Out (from server) data transfer started
PGRES_COPY_IN- Copy In (to server) data transfer started
PGRES_BAD_RESPONSEThe server’s response was not understood
PGRES_NONFATAL_ERROR
PGRES_FATAL_ERROR

If the result status IBGRES_TUPLES_QKhen the routines described below can be used to retrieve
the rows returned by the query. Note that a SELECT command that happens to retrieve zero rows
still showsPGRES_TUPLES_QKGRES_COMMAND_@BKor commands that can never return rows
(INSERT, UPDATE, etc.). A response BIGRES_EMPTY_QUERten exposes a bug in the client
software.

- PQresStatus Converts the enumerated type returnedPlyesultStatus ~ into a string constant
describing the status code.

char *PQresStatus(ExecStatusType status);

+ PQresultErrorMessage returns the error message associated with the query, or an empty string
if there was no error.

char *PQresultErrorMessage(const PGresult *res);

Immediately following aPQexec or PQgetResult call, PQerrorMessage (on the connection)

will return the same string aBQresultErrorMessage (on the result). However, BGresult

will retain its error message until destroyed, whereas the connection’s error message will change
when subsequent operations are done. R{g@sultErrorMessage when you want to know the
status associated with a particuRBresult ; usePQerrorMessage when you want to know the
status from the latest operation on the connection.

« PQclear Frees the storage associated with B@esult . Every query result should be freed via
PQclear when it is no longer needed.

void PQclear(PQresult *res);

You can keep ®Gresult object around for as long as you need it; it does not go away when you
issue a new query, nor even if you close the connection. To get rid of it, you mustQadar .
Failure to do this will result in memory leaks in the frontend application.

« PQmakeEmptyPGresult Constructs an emptyGresult object with the given status.
PGresult* PQmakeEmptyPGresult(PGconn *conn, ExecStatusType status);

This is libpg’s internal routine to allocate and initialize an emPGresult object. It is exported
because some applications find it useful to generate result objects (particularly objects with error
status) themselves. tfonn is not NULL and status indicates an error, the connection’s current
error message is copied into tAeresult. Note thatPQclear should eventually be called on the
object, just as with ®Gresult returned by libpq itself.

1.3.2. Escaping strings for inclusion in SQL queries

PQescapeString Escapes a string for use within an SQL query.

size_t PQescapeString (char *to, const char *from, size_t length);

Chapter 1. libpq - C Library

If you want to include strings that have been received from a source that is not trustworthy (for
example, because a random user entered them), you cannot directly include them in SQL queries for
security reasons. Instead, you have to quote special characters that are otherwise interpreted by the
SQL parser.

PQescapeString performs this operation. THeom points to the first character of the string that is

to be escaped, and thength parameter counts the number of characters in this string (a terminating
zero byte is neither necessary nor counteédl).shall point to a buffer that is able to hold at least

one more character than twice the valudesfgth , otherwise the behavior is undefined. A call to
PQescapeString writes an escaped version of tfrem string to theto buffer, replacing special
characters so that they cannot cause any harm, and adding a terminating zero byte. The single quotes
that must surround PostgreSQL string literals are not part of the result string.

PQescapeString returns the number of characters writterida not including the terminating zero
byte. Behavior is undefined when thee andfrom strings overlap.

1.3.3. Escaping binary strings for inclusion in SQL queries

PQescapeBytea Escapes a binary stringytea type) for use within an SQL query.

unsigned char *PQescapeBytea(unsigned char *from,
size_t from_length,
size_t *to_length);

Certain ASCII charactensiustbe escaped (but all charactenslybe escaped) when used as part of
abytea string literal in an SQL statement. In general, to escape a character, it is converted into the
three digit octal number equal to the decimal ASCII value, and preceded by two backslashes. The
single quote (') and backslash (\) characters have special alternate escape sequenceslsges the
Guidefor more informationPQescapeBytea performs this operation, escaping only the minimally
required characters.

The from parameter points to the first character of the string that is to be escaped, and the
from_length parameter reflects the number of characters in this binary string (a terminating zero
byte is neither necessary nor counted). Thhdength parameter shall point to a buffer suitable to

hold the resultant escaped string length. The result string length includes the terminating zero byte of
the result.

PQescapeBytea returns an escaped version of frem parameter binary string, to a caller-provided
buffer. The return string has all special characters replaced so that they can be properly processed by
the PostgreSQL string literal parser, and Hyeea input function. A terminating zero byte is also
added. The single quotes that must surround PostgreSQL string literals are not part of the result
string.

PQunescapeBytea Converts an escaped string representation of binary data into binary data - the
reverse oPQescapeBytea .

unsigned char *PQunescapeBytea(unsigned char *from, size_t *to_length);

The from parameter points to an escaped string such as might be returneQdeyvalue of a
BYTEAcolumn.PQunescapeBytea converts this string representation into its binary representation,
filling the supplied buffer. It returns a pointer to the buffer which is NULL on error, and the size of
the buffer into_length . The pointer may subsequently be used as an argument to the function
free(3)

Chapter 1. libpq - C Library

1.3.4. Retrieving SELECT Result Information

PQntuples Returns the number of tuples (rows) in the query result.

int PQntuples(const PGresult *res);

PQnfields Returns the number of fields (columns) in each row of the query result.

int PQnfields(const PGresult *res);

PQfname Returns the field (column) name associated with the given field index. Field indices start
at 0.

char *PQfname(const PGresult *res,
int field_index);
PQfnumber Returns the field (column) index associated with the given field name.
int PQfnumber(const PGresult *res,

const char *field_name);

-1 is returned if the given name does not match any field.

PQftype Returns the field type associated with the given field index. The integer returned is an
internal coding of the type. Field indices start at 0.

Oid PQftype(const PGresult *res,
int field_index);

You can query the system tahbg_type to obtain the name and properties of the various data
types. The OIDs of the built-in data types are definesrifinclude/catalog/pg_type.h in
the source tree.

PQfmod Returns the type-specific modification data of the field associated with the given field
index. Field indices start at 0.

int PQfmod(const PGresult *res,
int field_index);
PQfsize Returns the size in bytes of the field associated with the given field index. Field indices
start at 0.

int PQfsize(const PGresult *res,
int field_index);

PQfsize returns the space allocated for this field in a database tuple, in other words the size of the
server’s binary representation of the data type. -1 is returned if the field is variable size.

PQbinaryTuples Returns 1 if thePGresult contains binary tuple data, O if it contains ASCII
data.

int PQbinaryTuples(const PGresult *res);

Currently, binary tuple data can only be returned by a query that extracts data from a binary cursor.

10

Chapter 1. libpq - C Library
1.3.5. Retrieving SELECT Result Values

« PQgetvalue Returns a single field (column) value of one tuple (row) &fGresult . Tuple and
field indices start at O.

char* PQgetvalue(const PGresult *res,
int tup_num,
int field_num);

For most queries, the value returneddsygetvalue is a null-terminated character string represen-
tation of the attribute value. But HQbinaryTuples() is 1, the value returned l3Qgetvalue is

the binary representation of the type in the internal format of the backend server (but not including
the size word, if the field is variable-length). It is then the programmer’s responsibility to cast and
convert the data to the correct C type. The pointer returnelidyetvalue points to storage that

is part of thePGresult structure. One should not modify it, and one must explicitly copy the value
into other storage if it is to be used past the lifetime offi@esult structure itself.

« PQgetisnull Tests a field for a NULL entry. Tuple and field indices start at O.

int PQgetisnull(const PGresult *res,
int tup_num,
int field_num);

This function returns 1 if the field contains a NULL, O if it contains a non-null value. (Note that
PQgetvalue will return an empty string, not a null pointer, for a NULL field.)

« PQgetlength Returns the length of a field (attribute) value in bytes. Tuple and field indices start
at 0.

int PQgetlength(const PGresult *res,
int tup_num,
int field_num);

This is the actual data length for the particular data value, that is the size of the object pointed to by
PQgetvalue . Note that for character-represented values, this size has little to do with the binary
size reported byQfsize .

« PQprint Prints out all the tuples and, optionally, the attribute names to the specified output stream.

void PQprint(FILE* fout, [* output stream */
const PGresult *res,
const PQprintOpt *po);

struct {
pgbool header; /* print output field headings and row count */
pgbool align; /* fill align the fields */
pgbool standard; /* old brain dead format */
pgbool html3; [* output html tables */
pgbool expanded; /* expand tables */
pgbool pager; /* use pager for output if needed */
char *fieldSep; [* field separator */
char *tableOpt; /* insert to HTML table ... */
char *caption; [* HTML caption */
char **fieldName; /* null terminated array of replacement field names */

} PQprintOpt;

This function was formerly used by psql to print query results, but this is no longer the case and
this function is no longer actively supported.

11

Chapter 1. libpq - C Library

1.3.6. Retrieving Non-SELECT Result Information

+ PQcmdStatus Returns the command status string from the SQL command that generated the
PGresult

char * PQcmdStatus(PGresult *res);

« PQcmdTuples Returns the number of rows affected by the SQL command.
char * PQcmdTuples(PGresult *res);

If the SQL command that generated th@result was INSERT, UPDATE or DELETE, this re-
turns a string containing the number of rows affected. If the command was anything else, it returns
the empty string.
« PQoidvalue Returns the object ID of the inserted row, if the SQL command was an INSERT that
inserted exactly one row into a table that has OIDs. Otherwise, reuaglOid
Oid PQoidValue(const PGresult *res);

The typeOid and the constantwvalidOid will be defined if you include the libpg header file.
They will both be some integer type.

« PQoidStatus Returns a string with the object ID of the inserted row, if the SQL command was an
INSERT. (The string will bed if the INSERT did not insert exactly one row, or if the target table
does not have OIDs.) If the command was not an INSERT, returns an empty string.

char * PQoidStatus(const PGresult *res);

This function is deprecated in favor Boidvalue and is not thread-safe.

1.4. Asynchronous Query Processing

The PQexec function is adequate for submitting commands in simple synchronous applications. It
has a couple of major deficiencies however:

« PQexec waits for the command to be completed. The application may have other work to do (such
as maintaining a user interface), in which case it won’t want to block waiting for the response.

- Since control is buried insideQexec, it is hard for the frontend to decide it would like to try to
cancel the ongoing command. (It can be done from a signal handler, but not otherwise.)

« PQexec can return only on@Gresult structure. If the submitted command string contains multi-
ple SQL commands, all but the Ie®Gresult are discarded bpQexec.

Applications that do not like these limitations can instead use the underlying functiormQéedc
is built from: PQsendQuery andPQgetResult

Older programs that used this functionality as wellPa¥putline andPQputnbytes could block
waiting to send data to the backend. To address that issue, the fuRCE&tnonblocking was
added.

Old applications can neglect to us@setnonblocking and get the older potentially blocking behav-
ior. Newer programs can u$®setnonblocking to achieve a completely nonblocking connection
to the backend.

12

Chapter 1. libpq - C Library

« PQsetnonblocking Sets the nonblocking status of the connection.
int PQsetnonblocking(PGconn *conn, int arg)

Sets the state of the connection to nonblockinard is 1, blocking ifarg is 0. Returns 0 if OK,
-1 if error.

In the nonblocking state, calls BQputline , PQputnbytes , PQsendQuery andPQendcopy will
not block but instead return an error if they need to be called again.

When a database connection has been set to nonblocking mod®arek is called, it will tem-
porarily set the state of the connection to blocking untilrigexec completes.

More of libpq is expected to be made safef@setnonblocking functionality in the near future.

« PQisnonblocking Returns the blocking status of the database connection.
int PQisnonblocking(const PGconn *conn)
Returns 1 if the connection is set to nonblocking mode, O if blocking.

« PQsendQuery Submit a command to the server without waiting for the result(s). 1 is returned if
the command was successfully dispatched, 0 if not (in which case?@seorMessage to get
more information about the failure).

int PQsendQuery(PGconn *conn,
const char *query);

After successfully callingPQsendQuery , call PQgetResult one or more times to obtain the re-
sults.PQsendQuery may not be called again (on the same connection) B@idetResult has
returned NULL, indicating that the command is done.

« PQgetResult Wait for the next result from a prid*QsendQuery , and return it. NULL is returned
when the query is complete and there will be no more results.

PGresult *PQgetResult(PGconn *conn);

PQgetResult must be called repeatedly until it returns NULL, indicating that the command is
done. (If called when no command is actigetResult will just return NULL at once.) Each
non-NULL result fromPQgetResult should be processed using the saP@esult accessor
functions previously described. Don’t forget to free each result object Rgitiear when done
with it. Note thatPQgetResult will block only if a query is active and the necessary response data
has not yet been read ®Qconsumelnput .

Using PQsendQuery and PQgetResult solves one ofQexec’s problems: If a command string
contains multiple SQL commands, the results of those commands can be obtained individually. (This
allows a simple form of overlapped processing, by the way: the frontend can be handling the results of
one query while the backend is still working on later queries in the same command string.) However,
callingPQgetResult will still cause the frontend to block until the backend completes the next SQL
command. This can be avoided by proper use of three more functions:

+ PQconsumelnput If input is available from the backend, consume it.
int PQconsumelnput(PGconn *conn);

PQconsumelnput normally returns 1 indicating “no error”, but returns 0 if there was some kind of
trouble (in which caseQerrorMessage is set). Note that the result does not say whether any input
data was actually collected. After callif@consumelnput , the application may chedkQisBusy
and/orPQnotifies to see if their state has changed.

13

Chapter 1. libpq - C Library

PQconsumelnput may be called even if the application is not prepared to deal with a result or
notification just yet. The routine will read available data and save it in a buffer, thereby causing a
select() read-ready indication to go away. The application can thusP@®nsumelnput to

clear theselect() condition immediately, and then examine the results at leisure.

- PQisBusy Returns 1 if a query is busy, that BQgetResult would block waiting for input. A 0
return indicates tha®QgetResult can be called with assurance of not blocking.

int PQisBusy(PGconn *conn);

PQisBusy will not itself attempt to read data from the backend; thereR@®eonsumelnput must
be invoked first, or the busy state will never end.

« PQflush Attempt to flush any data queued to the backend, returns 0 if successful (or if the send
queue is empty) oEOFif it failed for some reason.

int PQflush(PGconn *conn);

PQflush needs to be called on a nonblocking connection before caltiegt() to determine if

a response has arrived. If 0 is returned it ensures that there is no data queued to the backend that

has not actually been sent. Only applications that have BQadtnonblocking have a need for
this.

« PQsocket Obtain the file descriptor number for the backend connection socket. A valid descriptor
will be >= 0; aresult of -1 indicates that no backend connection is currently open.

int PQsocket(const PGconn *conn);

PQsocket should be used to obtain the backend socket descriptor in preparation for executing
select() . This allows an application using a blocking connection to wait for either backend re-
sponses or other conditions. If the resultsefect() indicates that data can be read from the
backend socket, theéQconsumelnput should be called to read the data; after whieQjsBusy
PQgetResult , and/orPQnotifies can be used to process the response.

Nonblocking connections (that have uge@setnonblocking) should not useelect() until
PQflush has returned 0 indicating that there is no buffered data waiting to be sent to the backend.

A typical frontend using these functions will have a main loop that gsiest to wait for all the
conditions that it must respond to. One of the conditions will be input available from the backend,
which inselect ’'s terms is readable data on the file descriptor identifiedPQgocket . When the

main loop detects input ready, it should cafpconsumelnput to read the input. It can then call
PQisBusy , followed byPQgetResult if PQisBusy returns false (0). It can also ca&Qnotifies

to detect NOTIFY messages (s8ection 1.§.

A frontend that useBQsendQuery /PQgetResult can also attempt to cancel a command that is still
being processed by the backend.

« PQrequestCancel Request that PostgreSQL abandon processing of the current command.
int PQrequestCancel(PGconn *conn);

The return value is 1 if the cancel request was successfully dispatched, O if not. (FQuot,
rorMessage tells why not.) Successful dispatch is no guarantee that the request will have any
effect, however. Regardless of the return valu®QfequestCancel , the application must con-
tinue with the normal result-reading sequence ugiQgetResult . If the cancellation is effective,

the current command will terminate early and return an error result. If the cancellation fails (say,

14

Chapter 1. libpq - C Library

because the backend was already done processing the command), then there will be no visible result
at all.

Note that if the current command is part of a transaction, cancellation will abort the whole transaction.

PQrequestCancel can safely be invoked from a signal handler. So, it is also possible to use it
in conjunction with plainPQexec, if the decision to cancel can be made in a signal handler. For
example, psql invokeBQrequestCancel from a SIGINT signal handler, thus allowing interactive
cancellation of queries that it issues througfQexec. Note thatPQrequestCancel will have no
effect if the connection is not currently open or the backend is not currently processing a command.

1.5. The Fast-Path Interface

PostgreSQL provides a fast-path interface to send function calls to the backend. This is a trapdoor
into system internals and can be a potential security hole. Most users will not need this feature.

« PQfn Request execution of a backend function via the fast-path interface.

PGresult* PQfn(PGconn* conn,
int fnid,
int *result_buf,
int *result_len,
int result_is_int,
const PQArgBlock *args,
int nargs);

Thefnid argument is the object identifier of the function to be executesult buf is the
buffer in which to place the return value. The caller must have allocated sufficient space to store
the return value (there is no check!). The actual result length will be returned in the integer pointed

to byresult_len . If a 4-byte integer result is expected, sesult_is_int to 1; otherwise
set it to 0. (Settingesult_is_int to 1 tells libpq to byte-swap the value if necessary, so that
it is delivered as a proper int value for the client machine. Wiesalt_is_int is 0, the byte

string sent by the backend is returned unmodifiadgs andnargs specify the arguments to be
passed to the function.

typedef struct {
int len;
int isint;
union {
int *ptr;
int integer;
}ou;
} PQArgBlock;

PQfn always returns a vali®Gresult* . The result status should be checked before the result
is used. The caller is responsible for freeing H@&result with PQclear when it is no longer
needed.

15

Chapter 1. libpq - C Library

1.6. Asynchronous Notification

PostgreSQL supports asynchronous notification viaLtB€EN andNOTIFY commands. A backend
registers its interest in a particular notification condition with th&TEN command (and can stop
listening with theUNLISTEN command). All backends listening on a particular condition will be
notified asynchronously when MOTIFY of that condition name is executed by any backend. No
additional information is passed from the notifier to the listener. Thus, typically, any actual data that
needs to be communicated is transferred through a database relation. Commonly the condition name
is the same as the associated relation, but it is not necessary for there to be any associated relation.

libpg applications submitISTEN andUNLISTEN commands as ordinary SQL command. Subse-
quently, arrival ofNOTIFY messages can be detected by cali@otifies

« PQnotifies Returns the next notification from a list of unhandled notification messages received
from the backend. Returns NULL if there are no pending notifications. Once a notification is re-
turned fromPQnotifies , it is considered handled and will be removed from the list of notifica-
tions.

PGnotify* PQnotifies(PGconn *conn);

typedef struct pgNotify {

char *relname; /* name of relation containing data */
int be_pid; [* process id of backend */
} PGnotify;

After processing @Gnotify object returned byQnotifies , be sure to free it witlree() to
avoid a memory leak.

Note: In PostgreSQL 6.4 and later, the be_pid is that of the notifying backend, whereas in
earlier versions it was always the PID of your own backend.

The second sample program gives an example of the use of asynchronous notification.

PQnotifies() does not actually read backend data; it just returns messages previously absorbed by
another libpq function. In prior releases of libpg, the only way to ensure timely receipt of NOTIFY
messages was to constantly submit queries, even empty ones, and the@hetifies() after
eachPQexec() . While this still works, it is deprecated as a waste of processing power.

A better way to check for NOTIFY messages when you have no useful queries to make is to call
PQconsumelnput() , then checkPQnotifies() . You can useselect() to wait for backend data

to arrive, thereby using no CPU power unless there is something to doP(Beeket() to obtain

the file descriptor number to use witklect() .) Note that this will work OK whether you submit
gueries withPQsendQuery /PQgetResult or simply usePQexec. You should, however, remember

to checkPQnotifies() after eachPQgetResult or PQexec, to see if any notifications came in
during the processing of the query.

1.7. Functions Associated with the COPY Command

The COPY command in PostgreSQL has options to read from or write to the network connection
used bylibpg . Therefore, functions are necessary to access this network connection directly so
applications may take advantage of this capability.

16

Chapter 1. libpq - C Library

These functions should be executed only after obtainifgsRES_COPY_OUdr PGRES_COPY_IN
result object fronPQexec or PQgetResult

+ PQgetline Reads a newline-terminated line of characters (transmitted by the backend server) into
a buffer string of size length.

int PQgetline(PGconn *conn,
char *string,
int length)

Like fgets , this routine copies up to length-1 characters into string. It isdis , however, in

that it converts the terminating newline into a zero bp@getline returnsEOFat the end of input,

0 if the entire line has been read, and 1 if the buffer is full but the terminating newline has not yet
been read.

Notice that the application must check to see if a new line consists of the two chakactessich
indicates that the backend server has finished sending the results of the copy command. If the
application might receive lines that are more than length-1 characters long, care is needed to be
sure one recognizes the line correctly (and does not, for example, mistake the end of a long data
line for a terminator line). The code Brc/bin/psql/copy.c contains example routines that
correctly handle the copy protocol.

+ PQgetlineAsync Reads a newline-terminated line of characters (transmitted by the backend
server) into a buffer without blocking.

int PQgetlineAsync(PGconn *conn,
char *buffer,
int bufsize)

This routine is similar taPQgetline , but it can be used by applications that must read COPY
data asynchronously, that is without blocking. Having issued the COPY command and gotten a
PGRES_COPY_OUg&sponse, the application should ¢aliconsumelnput andPQgetlineAsync

until the end-of-data signal is detected. Unlik@getline , this routine takes responsibility for
detecting end-of-data. On each ca&lgetlineAsync will return data if a complete newline-
terminated data line is available in libpg's input buffer, or if the incoming data line is too long to fit

in the buffer offered by the caller. Otherwise, no data is returned until the rest of the line arrives.

The routine returns -1 if the end-of-copy-data marker has been recognized, or 0 if no data is avail-
able, or a positive number giving the number of bytes of data returned. If -1 is returned, the caller
must next calPQendcopy , and then return to normal processing. The data returned will not extend
beyond a newline character. If possible a whole line will be returned at one time. But if the buffer
offered by the caller is too small to hold a line sent by the backend, then a partial data line will be
returned. This can be detected by testing whether the last returned hyt®isiot. The returned
string is not null-terminated. (If you want to add a terminating null, be sure to phefsae

one smaller than the room actually available.)

+ PQputline Sends a null-terminated string to the backend server. Returns 0 iEOKIif unable
to send the string.

int PQputline(PGconn *conn,
const char *string);

Note the application must explicitly send the two character®n a final line to indicate to the
backend that it has finished sending its data.

17

Chapter 1. libpq - C Library

« PQputnbytes Sends a non-null-terminated string to the backend server. Returns 0 EQKf
unable to send the string.
int PQputnbytes(PGconn *conn,

const char *buffer,
int nbytes);

This is exactly likePQputline , except that the data buffer need not be null-terminated since the
number of bytes to send is specified directly.

« PQendcopy Synchronizes with the backend. This function waits until the backend has finished the
copy. It should either be issued when the last string has been sent to the backerriusitige
or when the last string has been received from the backend BSigetline . It must be issued or
the backend may get “out of sync” with the frontend. Upon return from this function, the backend
is ready to receive the next SQL command. The return value is 0 on successful completion, nonzero
otherwise.

int PQendcopy(PGconn *conn);

As an example:

PQexec(conn, "CREATE TABLE foo (a int4, b char(16), d double precision)");
PQexec(conn, "COPY foo FROM STDIN");

PQputline(conn, "3\thello world\t4.5\n");

PQputline(conn,"4\tgoodbye world\t7.11\n");

PQputline(conn,"\.\n");
PQendcopy(conn);

When using®QgetResult , the application should respond t®&RES_COPY_OUesult by execut-

ing PQgetline repeatedly, followed b¥Qendcopy after the terminator line is seen. It should then
return to thePQgetResult loop until PQgetResult returns NULL. Similarly aPGRES_COPY_IN
result is processed by a seriesPgfputline calls followed byPQendcopy, then return to th@Qge-

tResult loop. This arrangement will ensure that a copy in or copy out command embedded in a
series of SQL commands will be executed correctly.

Older applications are likely to submit a copy in or copy outR@exec and assume that the trans-
action is done aftePQendcopy . This will work correctly only if the copy in/out is the only SQL
command in the command string.

1.8. libpg Tracing Functions

« PQtrace Enable tracing of the frontend/backend communication to a debugging file stream.

void PQtrace(PGconn *conn
FILE *debug_port)

« PQuntrace Disable tracing started BQtrace .

void PQuntrace(PGconn *conn)

18

Chapter 1. libpq - C Library

1.9. libpg Control Functions

« PQsetNoticeProcessor Control reporting of notice and warning messages generated by libpg.

typedef void (*PQnoticeProcessor) (void *arg, const char *message);

PQnoticeProcessor

PQsetNoticeProcessor(PGconn *conn,
PQnoticeProcessor proc,
void *arg);

By default, libpg prints notice messages from the backensdtdsrr , as well as a few error mes-

sages that it generates by itself. This behavior can be overridden by supplying a callback function that
does something else with the messages. The callback function is passed the text of the error message
(which includes a trailing newline), plus a void pointer that is the same one pasBexd¢tNoti-

ceProcessor . (This pointer can be used to access application-specific state if needed.) The default
notice processor is simply

static void
defaultNoticeProcessor(void * arg, const char * message)

{

fprintf(stderr, "%s", message);

}

To use a special notice processor, &lsetNoticeProcessor just after creation of a ne®Gconn
object.

The return value is the pointer to the previous notice processor. If you supply a callback function
pointer of NULL, no action is taken, but the current pointer is returned.

Once you have set a notice processor, you should expect that that function could be called as long as
either thePGconn object orPGresult objects made from it exist. At creation ofR&Gresult , the
PGconn’s current notice processor pointer is copied into B@esult for possible use by routines

like PQgetvalue .

1.10. Environment Variables

The following environment variables can be used to select default connection parameter values, which
will be used byPQconnectdb , PQsetdbLogin andPQsetdb if no value is directly specified by the
calling code. These are useful to avoid hard-coding database connection information into simple client
applications.

+ PGHOSTsets the default server name. If this begins with a slash, it specifies Unix-domain com-
munication rather than TCP/IP communication; the value is the name of the directory in which the
socket file is stored (defaultimp).

+ PGPORTBets the default TCP port number or Unix-domain socket file extension for communicating
with the PostgreSQL backend.

PGDATABASBets the default PostgreSQL database name.

PGUSERsets the user name used to connect to the database and for authentication.

19

Chapter 1. libpq - C Library
+ PGPASSWORdRts the password used if the backend demands password authentication. This func-
tionality is deprecated for security reasons; consider migrating to usgtbRIE/.pgpass file.

+ PGREALMets the Kerberos realm to use with PostgreSQL, if it is different from the local realm.
If PGREALNMs set, PostgreSQL applications will attempt authentication with servers for this realm
and use separate ticket files to avoid conflicts with local ticket files. This environment variable is
only used if Kerberos authentication is selected by the backend.

« PGOPTIONSsets additional run-time options for the PostgreSQL backend.
« PGTTYsets the file or tty on which debugging messages from the backend server are displayed.

+ PGREQUIRESSIsets whether or not the connection must be made over SSL. If setto “1”, libpqg will
refuse to connect if the server does not accept an SSL connection. This option is only available if
PostgreSQL is compiled with SSL support.

« PGCONNECT_TIMEOL$Ets the maximum number of seconds that libpg will wait when attempting
to connect to the PostgreSQL server. This option should be set to at least 2 seconds.

The following environment variables can be used to specify user-level default behavior for every
PostgreSQL session:

+ PGDATESTYLBets the default style of date/time representation.
« PGTZsets the default time zone.

« PGCLIENTENCODINGets the default client encoding (if multibyte support was selected when con-
figuring PostgreSQL).

The following environment variables can be used to specify default internal behavior for every Post-
greSQL session:

+ PGGEQGets the default mode for the genetic optimizer.

Refer to theSET SQL command for information on correct values for these environment variables.

1.11. Files

The file.pgpass inthe home directory is a file that can contain passwords to be used if the connection
requires a password. This file should have the format:

hostname : port : database : username : password

Any of these may be a literal name, 'orwhich matches anything. The first matching entry will be
used, so put more-specific entries first. When an entry contain$, it must be escaped with

The permissions ompgpass must disallow any access to world or group; achieve this by the com-
mandchmod 0600 .pgpass . If the permissions are less strict than this, the file will be ignored.

20

Chapter 1. libpq - C Library
1.12. Threading Behavior

libpg is thread-safe as of PostgreSQL 7.0, so long as no two threads attempt to manipulate the same
PGconn object at the same time. In particular, you cannot issue concurrent queries from different
threads through the same connection object. (If you need to run concurrent queries, start up multiple
connections.)

PGresult objects are read-only after creation, and so can be passed around freely between threads.

The deprecated functior®QoidStatus andfe_setauthsvc are not thread-safe and should not
be used in multithread progran®QoidStatus can be replaced byQoidvalue . There is no good
reason to calle_setauthsvc atall.

Libpg clients using therypt encryption method rely on the@ypt() operating system function,
which is often not thread-safe. It is better to i@5encryption, which is thread-safe on all platforms.

1.13. Building Libpg Programs

To build (i.e., compile and link) your libpg programs you need to do all of the following things:

« Include thdibpg-fe.h header file:

#include <libpg-fe.h >
If you failed to do that then you will normally get error messages from your compiler similar to

foo.c: In function ‘main’:

foo.c:34: ‘PGconn’ undeclared (first use in this function)

foo.c:35: ‘PGresult’ undeclared (first use in this function)

foo.c:54: ‘CONNECTION_BAD’ undeclared (first use in this function)
foo.c:68: ‘PGRES_COMMAND_OK'’ undeclared (first use in this function)
foo.c:95: ‘PGRES_TUPLES_OK’ undeclared (first use in this function)

« Pointyour compiler to the directory where the PostgreSQL header files were installed, by supplying
the-1 directory option to your compiler. (In some cases the compiler will look into the directory
in question by default, so you can omit this option.) For instance, your compile command line could
look like:

cc -c -l/usr/local/pgsql/include testprog.c
If you are using makefiles then add the option to@meFLAGS/ariable:
CPPFLAGS += -llusr/local/pgsgl/include
If there is any chance that your program might be compiled by other users then you should not

hardcode the directory location like that. Instead, you can run the utiitgonfig to find out
where the header files are on the local system:

$ pg_config --includedir
lusr/locall/include

Failure to specify the correct option to the compiler will result in an error message such as
testlibpqg.c:8:22: libpg-fe.h: No such file or directory

21

If

Chapter 1. libpq - C Library

When linking the final program, specify the optidpg so that the libpq library gets pulled in, as
well as the optionL directory to point it to the directory where the libpq library resides. (Again,
the compiler will search some directories by default.) For maximum portability, put tlegtion
before thelpg option. For example:

cc -0 testprog testprogl.o testprog2.o -L/usr/local/pgsql/lib -Ipq

You can find out the library directory usimg_config as well:

$ pg_config --libdir
lusr/local/pgsgl/lib

Error messages that point to problems in this area could look like the following.

testlibpg.o: In function ‘main’:

testlibpg.o(.text+0x60): undefined reference to ‘PQsetdbLogin’
testlibpg.o(.text+0x71): undefined reference to ‘PQstatus’
testlibpg.o(.text+0xa4): undefined reference to ‘PQerrorMessage’

This means you forgotpqg .
lusr/bin/ld: cannot find -Ipq
This means you forgot thé or did not specify the right path.

your codes references the header fildbpg-int.h and you refuse to fix

your code to not use it, starting in PostgreSQL 7.2, this file will be found in
includedir /postgresgl/internal/libpg-int.h , SO you need to add the appropriate
option to your compiler command line.

1.14. Example Programs

Example 1-1. libpg Example Program 1

/*

* testlibpg.c

*

* Test the C version of libpg, the PostgreSQL frontend
* library.

*/

#include <stdio.h >

#include <libpg-fe.h >

void
exit_nicely(PGconn *conn)
{
PQfinish(conn);
exit(1);
}
main()
{
char *pghost,
*pgport,

22

Chapter 1. libpq - C Library

*pgoptions,

*potty;
char *dbName;
int nFields;

int i
i

[* FILE *debug; */

PGconn *conn;
PGresult *res;

/*
* begin, by setting the parameters for a backend connection if the
* parameters are null, then the system will try to use reasonable
* defaults by looking up environment variables or, failing that,
* using hardwired constants

*/

pghost = NULL; /* host name of the backend server */

pgport = NULL; /* port of the backend server */

pgoptions = NULL; /* special options to start up the backend
* server */

pgtty = NULL; /* debugging tty for the backend server */

dbName = "templatel";

I* make a connection to the database */
conn = PQsetdb(pghost, pgport, pgoptions, pgtty, dbName);

/*

* check to see that the backend connection was successfully made
*/

if (PQstatus(conn) == CONNECTION_BAD)

{
fprintf(stderr, "Connection to database '%s’ failed.\n", dbName);
fprintf(stderr, "%s", PQerrorMessage(conn));
exit_nicely(conn);

}

/* debug = fopen("/tmpitrace.out","w"); */
[* PQtrace(conn, debug); */

/* start a transaction block */
res = PQexec(conn, "BEGIN");
if (Ires || PQresultStatus(res) '= PGRES_COMMAND_OK)

{
fprintf(stderr, "BEGIN command failed\n");
PQclear(res);
exit_nicely(conn);

}

/*

* should PQclear PGresult whenever it is no longer needed to avoid
* memory leaks

*/

PQclear(res);

/*

23

Chapter 1. libpq - C Library

* fetch rows from the pg_database, the system catalog of

* databases

*/
res = PQexec(conn, "DECLARE mycursor CURSOR FOR SELECT * FROM pg_database");
if (res || PQresultStatus(res) '= PGRES_COMMAND_OK)

{
fprintf(stderr, "DECLARE CURSOR command failed\n");
PQclear(res);
exit_nicely(conn);

}

PQclear(res);
res = PQexec(conn, "FETCH ALL in mycursor");
if (Ires || PQresultStatus(res) !'= PGRES_TUPLES_OK)

{
fprintf(stderr, "FETCH ALL command didn't return tuples properly\n");
PQclear(res);
exit_nicely(conn);

}

[* first, print out the attribute names */

nFields = PQnfields(res);

for i = 0O; i < nFields; i++)
printf("%-15s", PQfname(res, i));

printf("\n\n");

[* next, print out the rows */
for i = O; i < PQntuples(res); i++)
{
for j = 0; j < nFields; j++)
printf("%-15s", PQgetvalue(res, i, j));
printf("\n");
}

PQclear(res);

[* close the cursor */
res = PQexec(conn, "CLOSE mycursor");
PQclear(res);

/* commit the transaction */
res = PQexec(conn, "COMMIT");
PQclear(res);

[* close the connection to the database and cleanup */
PQfinish(conn);

[* fclose(debug); */
return O;

Example 1-2. libpg Example Program 2

testlibpg2.c
Test of the asynchronous notification interface

Start this program, then from psqgl in another window do

24

* NOTIFY TBL2;

Chapter 1. libpq - C Library

* Or, if you want to get fancy, try this:
* Populate a database with the following:

* CREATE TABLE TBL1 (i int4);

* CREATE TABLE TBL2 (i int4);

* CREATE RULE r1 AS ON INSERT TO TBL1 DO
* (INSERT INTO TBL2 values (new.i); NOTIFY TBL2);

* and do

* INSERT INTO TBL1 values (10);

*

#include <stdio.h >

#include "libpg-fe.h"

void
exit_nicely(PGconn *conn)
{
PQfinish(conn);
exit(1);
}
main()
{
char *pghost,
*pgport,
*pgoptions,
*potty;
char *dbName;
int nFields;
int i,
I
PGconn *conn;
PGresult *res;
PGnotify *notify;
/*

* begin, by setting the parameters for a backend connection if the
* parameters are null, then the system will try to use reasonable
* defaults by looking up environment variables or, failing that,

* using hardwired constants

*/

pghost = NULL;
pgport = NULL;

pgoptions = NULL;

potty = NULL;

dbName = getenv("USER");

/* host name of the backend server */
/* port of the backend server */
/* special options to start up the backend
* server */
/* debugging tty for the backend server */
/* change this to the name of your test
* database */

/* make a connection to the database */

25

Chapter 1. libpq - C Library

conn = PQsetdb(pghost, pgport, pgoptions, pgtty, dbName);

/*

* check to see that the backend connection was successfully made
*/

if (PQstatus(conn) == CONNECTION_BAD)

{
fprintf(stderr, "Connection to database '%s’ failed.\n", dbName);
fprintf(stderr, "%s", PQerrorMessage(conn));
exit_nicely(conn);

}

res = PQexec(conn, "LISTEN TBL2");
if (res || PQresultStatus(res) = PGRES_COMMAND_OK)

{
fprintf(stderr, "LISTEN command failed\n");
PQclear(res);
exit_nicely(conn);

}

/*

* should PQclear PGresult whenever it is no longer needed to avoid
* memory leaks

*/

PQclear(res);

while (1)
{

/*
* wait a little bit between checks; waiting with select()
* would be more efficient.
*/
sleep(1);
/* collect any asynchronous backend messages */
PQconsumelnput(conn);
/* check for asynchronous notify messages */
while ((notify = PQnotifies(conn)) != NULL)
{
fprintf(stderr,
"ASYNC NOTIFY of '%s’ from backend pid '%d’ received\n",
notify- >relname, notify- >be_pid);
free(notify);

}

[* close the connection to the database and cleanup */
PQfinish(conn);

return O;

26

Chapter 1. libpq - C Library

Example 1-3. libpg Example Program 3
/*

* testlibpg3.c Test the C version of Libpg, the PostgreSQL frontend
* library. tests the binary cursor interface

* populate a database by doing the following:

* CREATE TABLE testl (i int4, d real, p polygon);

* INSERT INTO testl values (1, 3.567, polygon '(3.0, 4.0, 1.0, 2.0));
* INSERT INTO testl values (2, 89.05, polygon '(4.0, 3.0, 2.0, 1.0));
* the expected output is:

* tuple 0: got i = (4 bytes) 1, d = (4 bytes) 3.567000, p = (4

* bytes) 2 points boundbox = (hi=3.000000/4.000000, lo =

* 1.000000,2.000000) tuple 1: got i = (4 bytes) 2, d = (4 bytes)

* 89.050003, p = (4 bytes) 2 points boundbox =
* (hi=4.000000/3.000000, lo = 2.000000,1.000000)

*/
#include <stdio.h >
#include "libpg-fe.h"

#include "utils/geo_decls.h" [* for the POLYGON type */
void
exit_nicely(PGconn *conn)
{
PQfinish(conn);
exit(1);
}
main()
{
char *pghost,
*pgport,
*pgoptions,
*potty;
char *dbName;
int nFields;
int i,
is
int i_fnum,
d_fnum,
p_fnum;
PGconn *conn;

PGresult *res;

/*

* begin, by setting the parameters for a backend connection if the
* parameters are null, then the system will try to use reasonable
* defaults by looking up environment variables or, failing that,

27

Chapter 1. libpq - C Library

* using hardwired constants

*/

pghost = NULL; /* host name of the backend server */

pgport = NULL; /* port of the backend server */

pgoptions = NULL; /* special options to start up the backend
* server */

potty = NULL; /* debugging tty for the backend server */

dbName = getenv("USER"); [* change this to the name of your test

* database */

I* make a connection to the database */
conn = PQsetdb(pghost, pgport, pgoptions, pgtty, dbName);

/*
* check to see that the backend connection was successfully made
*/
if (PQstatus(conn) == CONNECTION_BAD)
{
fprintf(stderr, "Connection to database '%s’ failed.\n", dbName);
fprintf(stderr, "%s", PQerrorMessage(conn));
exit_nicely(conn);
}

[* start a transaction block */
res = PQexec(conn, "BEGIN");
if (Ires || PQresultStatus(res) '= PGRES_COMMAND_OK)

{
fprintf(stderr, "BEGIN command failed\n");
PQclear(res);
exit_nicely(conn);

}

/*

* should PQclear PGresult whenever it is no longer needed to avoid
* memory leaks

*/

PQclear(res);

/*

* fetch rows from the pg_database, the system catalog of

* databases

*/

res = PQexec(conn, "DECLARE mycursor BINARY CURSOR FOR SELECT * FROM testl");
if (res || PQresultStatus(res) '= PGRES_COMMAND_OK)

{
fprintf(stderr, "DECLARE CURSOR command failed\n");
PQclear(res);
exit_nicely(conn);

}

PQclear(res);

res = PQexec(conn, "FETCH ALL in mycursor");

if ('res || PQresultStatus(res) !'= PGRES_TUPLES_OK)

{
fprintf(stderr, "FETCH ALL command didn’t return tuples properly\n™);
PQclear(res);

28

Chapter 1. libpq - C Library

exit_nicely(conn);

}

i_fnum = PQfnumber(res, "i');
d_fnum = PQfnumber(res, "d");
p_frum = PQfnumber(res, "p");

for i = 0O; i < 3; it++)
{
printf("type[%d] = %d, size[%d] = %d\n",
i, PQftype(res, i),
i, PQfsize(res, i));

}
for (i = 0; i < PQntuples(res); i++)
{
int *jval;
float *dval,
int plen;
POLYGON *pval;
/* we hard-wire this to the 3 fields we know about */
ival = (int *) PQgetvalue(res, i, i_fnum);
dval = (float *) PQgetvalue(res, i, d_fnum);
plen = PQgetlength(res, i, p_fnum);
/*
* plen doesn't include the length field so need to
* increment by VARHDSZ
*/
pval = (POLYGON *) malloc(plen + VARHDRSZ);
pval- >size = plen;
memmove((char *) &pval- >npts, PQgetvalue(res, i, p_fnum), plen);
printf("tuple %d: got\n", i);
printf(" i = (%d bytes) %d,\n",
PQgetlength(res, i, i_fnum), *ival);
printf(* d = (%d bytes) %f\n",
PQgetlength(res, i, d_fnum), *dval);
printf* p = (%d bytes) %d points \tboundbox = (hi=%f/%f, lo = %f,%f)\n",
PQgetlength(res, i, d_fnum),
pval- >npts,
pval- >boundbox.xh,
pval- >boundbox.yh,
pval- >boundbox.xl,
pval- >boundbox.yl);
}

PQclear(res);

[* close the cursor */
res = PQexec(conn, "CLOSE mycursor");
PQclear(res);

/* commit the transaction */
res = PQexec(conn, "COMMIT");
PQclear(res);

[* close the connection to the database and cleanup */
PQfinish(conn);

29

Chapter 1. libpq - C Library

return O;

30

Chapter 2. Large Objects

2.1. Introduction

In PostgreSQL releases prior to 7.1, the size of any row in the database could not exceed the size of a
data page. Since the size of a data page is 8192 bytes (the default, which can be raised up to 32768),
the upper limit on the size of a data value was relatively low. To support the storage of larger atomic
values, PostgreSQL provided and continues to provide a large object interface. This interface provides
file-oriented access to user data that has been declared to be a large object.

POSTGRES 4.2, the indirect predecessor of PostgreSQL, supported three standard implementations
of large objects: as files external to the POSTGRES server, as external files managed by the POST-
GRES server, and as data stored within the POSTGRES database. This caused considerable confusion
among users. As a result, only support for large objects as data stored within the database is retained
in PostgreSQL. Even though this is slower to access, it provides stricter data integrity. For historical
reasons, this storage scheme is referred towassion large objectyYou will see the term Inversion

used occasionally to mean the same thing as large object.) Since PostgreSQL 7.1, all large objects are
placed in one system table callpgl largeobject

PostgreSQL 7.1 introduced a mechanism (nicknamed “TOAST") that allows data rows to be much
larger than individual data pages. This makes the large object interface partially obsolete. One remain-
ing advantage of the large object interface is that it allows random access to the data, i.e., the ability
to read or write small chunks of a large value. It is planned to equip TOAST with such functionality

in the future.

This section describes the implementation and the programming and query language interfaces to
PostgreSQL large object data. We use the libpq C library for the examples in this section, but most

programming interfaces native to PostgreSQL support equivalent functionality. Other interfaces may

use the large object interface internally to provide generic support for large values. This is not de-

scribed here.

2.2. Implementation Features

The large object implementation breaks large objects up into “chunks” and stores the chunks in tuples
in the database. A B-tree index guarantees fast searches for the correct chunk number when doing
random access reads and writes.

2.3. Interfaces

The facilities PostgreSQL provides to access large objects, both in the backend as part of user-defined
functions or the front end as part of an application using the interface, are described below. For users
familiar with POSTGRES 4.2, PostgreSQL has a new set of functions providing a more coherent
interface.

Note: All large object manipulation must take place within an SQL transaction. This requirement
is strictly enforced as of PostgreSQL 6.5, though it has been an implicit requirement in previous
versions, resulting in misbehavior if ignored.

31

Chapter 2. Large Objects

The PostgreSQL large object interface is modeled after the Unix file-system interface, with analogues
of open(2) ,read(2) ,write(2) ,Iseek(2) , etc.User functions call these routines to retrieve only

the data of interest from a large object. For example, if a large object type caltgsthot existed that

stored photographs of faces, then a function calkld could be declared omugshot data.beard

could look at the lower third of a photograph, and determine the color of the beard that appeared there,
if any. The entire large-object value need not be buffered, or even examined, byathe function.

Large objects may be accessed from dynamically-loaded C functions or database client programs that
link the library. PostgreSQL provides a set of routines that support opening, reading, writing, closing,
and seeking on large objects.

2.3.1. Creating a Large Object

The routine
Oid lo_creat(PGconn * conn, int mode)

creates a new large objentodeis a bit mask describing several different attributes of the new object.
The symbolic constants listed here are defined in the headdibfitglibpg-fs.h . The access

type (read, write, or both) is controlled by or'ing together the bit¢ READ andINV_WRITE. The
low-order sixteen bits of the mask have historically been used at Berkeley to designate the storage
manager number on which the large object should reside. These bits should always be zero now. The
commands below create a large object:

inv_oid = lo_creat(INV_READ|INV_WRITE);

2.3.2. Importing a Large Object

To import an operating system file as a large object, call

Oid lo_import(PGconn * conn, const char * filename)

filename specifies the operating system name of the file to be imported as a large object.

2.3.3. Exporting a Large Object

To export a large object into an operating system file, call

int lo_export(PGconn * conn, Oid lobjld , const char * filename)

Thelobjld argument specifies the OID of the large object to export anfildreame argument
specifies the operating system name name of the file.

2.3.4. Opening an Existing Large Object

To open an existing large object, call
int lo_open(PGconn *conn, Oid lobjld, int mode)

Thelobjld argument specifies the OID of the large object to open.mbde bits control whether
the object is opened for readintN{/_READ), writing (INV_WRITE), or both. A large object cannot

32

Chapter 2. Large Objects

be opened before it is creatdd.open returns a large object descriptor for later uséoirread
lo_write ,lo_Iseek ,lo_tell ,andlo_close

2.3.5. Writing Data to a Large Object

The routine
int lo_write(PGconn *conn, int fd, const char *buf, size t len)

writes len bytes frombuf to large objectfd . Thefd argument must have been returned by a
previouslo_open . The number of bytes actually written is returned. In the event of an error, the
return value is negative.

2.3.6. Reading Data from a Large Object

The routine
int lo_read(PGconn *conn, int fd, char *buf, size_t len)

readslen bytes from large objedid into buf . Thefd argument must have been returned by a
previouslo_open . The number of bytes actually read is returned. In the event of an error, the return
value is negative.

2.3.7. Seeking on a Large Object

To change the current read or write location on a large object, call
int lo_Iseek(PGconn *conn, int fd, int offset, int whence)

This routine moves the current location pointer for the large object descrildeld toythe new location
specified byoffset . The valid values fowhence areSEEK_SET SEEK_CURandSEEK_END

2.3.8. Closing a Large Object Descriptor

A large object may be closed by calling

int lo_close(PGconn *conn, int fd)

wherefd is a large object descriptor returned lbyopen . On succesdp_close returns zero. On
error, the return value is negative.

2.3.9. Removing a Large Object

To remove a large object from the database, call
int lo_unlink(PGconn * conn, Oid lobjld)

Thelobjld argument specifies the OID of the large object to remove. In the event of an error, the
return value is negative.

33

Chapter 2. Large Objects

2.4. Server-side Built-in Functions

There are two built-in registered functioms,import andlo_export ~ which are convenient for use
in SQL queries. Here is an example of their use

CREATE TABLE image (
name text,
raster oid

);

INSERT INTO image (name, raster)
VALUES (‘beautiful image’, lo_import(’/etc/motd’));

SELECT lo_export(image.raster, ’'/tmp/motd’) FROM image
WHERE name = ’'beautiful image’;

2.5. Accessing Large Objects from Libpq

Example 2-1is a sample program which shows how the large object interface in libpg can be used.
Parts of the program are commented out but are left in the source for the reader’s benefit. This program
can be found irsrc/test/examplesi/testlo.c in the source distribution. Frontend applications
which use the large object interface in libpg should include the headdibfitglibpg-fs.h and

link with the libpq library.

Example 2-1. Large Objects with Libpg Example Program

/*
*
* testlo.c--
* test using large objects with libpqg

*

* Copyright (c) 1994, Regents of the University of California
*

*,

*/

#include <stdio.h >

#include "libpg-fe.h"

#include "libpg/libpg-fs.h"

#define BUFSIZE 1024
/*
* importFile
* import file "in_filename" into database as large object "lobjOid"
*
*/
Oid
importFile(PGconn *conn, char *filename)
{
Oid lobjld;
int lobj_fd;
char buf[BUFSIZE];
int nbytes,

34

Chapter 2. Large Objects

tmp;
int fd;
/*
* open the file to be read in
*/
fd = open(filename, O_RDONLY, 0666);
if (fd < 0)
{ [* error */
fprintf(stderr, "can't open unix file %s\n", filename);
}
/*
* create the large object
*/
lobjld = lo_creat(conn, INV_READ | INV_WRITE);
if (lobjld == 0)

fprintf(stderr, "can't create large object\n");

lobj_fd = lo_open(conn, lobjld, INV_WRITE);

/~k
* read in from the Unix file and write to the inversion file
*/
while ((nbytes = read(fd, buf, BUFSIZE)) > 0)
{
tmp = lo_write(conn, lobj_fd, buf, nbytes);
if (tmp < nbytes)
fprintf(stderr, "error while reading large object\n”);
}

(void) close(fd);
(void) lo_close(conn, lobj_fd);

return lobjld;

}
void
pickout(PGconn *conn, Oid lobjld, int start, int len)
{
int lobj_fd;
char *buf;
int nbytes;
int nread;

lobj_fd = lo_open(conn, lobjld, INV_READ);
if (lobj_fd < 0)
{
fprintf(stderr, "can't open large object %d\n",
lobjld);
}

lo_Iseek(conn, lobj_fd, start, SEEK_SET);
buf = malloc(len + 1);

nread = 0;
while (len - nread > 0)

35

Chapter 2. Large Objects

{
nbytes = lo_read(conn, lobj_fd, buf, len - nread);
buf[nbytes] = ' ’;
fprintf(stderr, " >>> %s", buf);
nread += nbytes;
}
free(buf);

fprintf(stderr, "\n");
lo_close(conn, lobj_fd);

}
void
overwrite(PGconn *conn, Oid lobjld, int start, int len)
{
int lobj_fd;
char *buf;
int nbytes;
int nwritten;
int i;
lobj_fd = lo_open(conn, lobjld, INV_READ);
if (lobj_fd < 0)
{
fprintf(stderr, "can't open large object %d\n",
lobjld);
}
lo_Iseek(conn, lobj_fd, start, SEEK_SET);
buf = malloc(len + 1);
for i = 0O; i < len; i++)
buf[i] = 'X’;
bufli] = ' 7
nwritten = 0;
while (len - nwritten > 0)
{
nbytes = lo_write(conn, lobj_fd, buf + nwritten, len - nwritten);
nwritten += nbytes;
}
free(buf);
fprintf(stderr, "\n");
lo_close(conn, lobj_fd);
}
/*
* exportFile * export large object "lobjOid" to file "out_filename"
*
*/
void
exportFile(PGconn *conn, Oid lobjld, char *filename)
{
int lobj_fd;
char buf[BUFSIZE];
int nbytes,
tmp;
int fd;

36

Chapter 2. Large Objects

/*

* create an inversion "object"

*

/
lobj_fd = lo_open(conn, lobjld, INV_READ);
if (lobj_fd < 0)
{

fprintf(stderr, "can't open large object %d\n",
lobjld);

}

/*

* open the file to be written to

*/

fd = open(filename, O_CREAT | O_WRONLY, 0666);

if (fd < 0)

{ [* error */
fprintf(stderr, "can't open unix file %s\n",

filename);

}

/~k
* read in from the Unix file and write to the inversion file
*/
while ((nbytes = lo_read(conn, lobj_fd, buf, BUFSIZE)) > 0)
{

tmp = write(fd, buf, nbytes);

if (tmp < nbytes)

{

fprintf(stderr, "error while writing %s\n",
filename);

}

(void) lo_close(conn, lobj_fd);
(void) close(fd);

return;

}

void

exit_nicely(PGconn *conn)

{
PQfinish(conn);
exit(1);

}

int

main(int argc, char **argv)

{
char *in_filename,

*out_filename;

char *database;
Oid lobjOid;
PGconn *conn;

PGresult *res;

37

*

~

/*

*/

/*

if (argc != 4)
{

fprintf(stderr, "Usage: %s database_name in_filename

argv[0]);
exit(1);
}

database = argv[l];
in_filename = argv[2];
out_filename = argv([3];

/*

* set up the connection

*/

conn = PQsetdb(NULL, NULL, NULL, NULL, database);

Chapter 2. Large Objects

out_filename\n",

/* check to see that the backend connection was successfully made */

if (PQstatus(conn) == CONNECTION_BAD)
{

fprintf(stderr, "Connection to database '%s’ failed.\n", database);

fprintf(stderr, "%s", PQerrorMessage(conn));
exit_nicely(conn);

res = PQexec(conn, "begin");
PQclear(res);

printf("importing file %s\n", in_filename);
lobjOid = importFile(conn, in_filename); */

lobjOid = lo_import(conn, in_filename);

printf("as large object %d.\n", lobjOid);

printf("picking out bytes 1000-2000 of the large object\n™);

pickout(conn, lobjOid, 1000, 1000);

printf("overwriting bytes 1000-2000 of the large object with X's\n");

overwrite(conn, lobjOid, 1000, 1000);

printf("exporting large object to file %s\n", out_filename);
exportFile(conn, lobjOid, out_filename); */
lo_export(conn, lobjOid, out_filename);

res = PQexec(conn, "end");
PQclear(res);
PQfinish(conn);

exit(0);

38

Chapter 3. pgtcl - Tcl Binding Library

3.1. Introduction

pgtcl is a Tcl package for client programs to interface with PostgreSQL servers. It makes most of the
functionality of libpqg available to Tcl scripts.

This package was originally written by Jolly Chen.

Table 3-1gives an overview over the commands available in pgtcl. These commands are described
further on subsequent pages.

Table 3-1.pgtcl Commands

Command Description

pg_connect opens a connection to the backend server

pg_disconnect closes a connection

pg_conndefaults get connection options and their defaults

pg_exec send a query to the backend

pg_result manipulate the results of a query

pg_select loop over the result of a SELECT statement

pg_execute send a query and optionally loop over the results

pg_listen establish a callback for NOTIFY messages

pg_on_connection_loss establish a callback for unexpected connection
loss

pg_lo_creat create a large object

pg_lo_open open a large object

pg_lo_close close a large object

pg_lo_read read a large object

pg_lo_write write a large object

pg_lo_lseek seek to a position in a large object

pg_lo_tell return the current seek position of a large object

pg_lo_unlink delete a large object

pg_lo_import import a Unix file into a large object

pg_lo_export export a large object into a Unix file

Thepg_lo_* routines are interfaces to the large object features of PostgreSQL. The functions are
designed to mimic the analogous file system functions in the standard Unix file system interface.
The pg_lo_* routines should be used withinBEGINNCOMMITtransaction block because the file
descriptor returned bpg_lo_open is only valid for the current transactiopg_lo_import and
pg_lo_export mustbe used in BEGINNCOMMITtransaction block.

Example 3-1shows a small example of how to use the routines.

Example 3-1. pgtcl Example Program

getDBs :
get the names of all the databases at a given host and port number
with the defaults being the localhost and port 5432

39

return them in alphabetical order

proc getDBs { {host "localhost"} {port "5432"} } {
datnames is the list to be result
set conn [pg_connect templatel -host $host -port $port]
set res [pg_exec $conn "SELECT datname FROM pg_database ORDER BY datname"]
set ntups [pg_result $res -numTuples]
for {set i O} {$i < $ntups} {incr i} {

lappend datnames [pg_result $res -getTuple $i]

}

pg_result $res -clear
pg_disconnect $conn
return $datnames

3.2. Loading pgtcl into your application

Before using pgtcl commands, you must Idiaggtcl into your Tcl application. This is normally
done with the Tcload command. Here is an example:

load libpgtclinfo sharedlibextension]

The use oinfo sharedlibextension is recommended in preference to hard-wirieg or sl
into the program.

The load command will fail unless the system’s dynamic loader knows where to look for the
libpgtcl shared library file. You may need to work witdconfig , or set the environment
variable LD_LIBRARY_PATH or use some equivalent facility for your platform to make it work.
Refer to the PostgreSQL installation instructions for more information.

libpgtcl in turn depends ofibpg , so the dynamic loader must also be able to findlithye
shared library. In practice this is seldom an issue, since both of these shared libraries are normally
stored in the same directory, but it can be a stumbling block in some configurations.

If you use a custom executable for your application, you might choose to staticallyitygid!
into the executable and thereby avoid thed command and the potential problems of dynamic
linking. See the source code for pgtclsh for an example.

3.3. pgtcl Command Reference Information

pg_connect
Name
pg_connect — open a connection to the backend server
Synopsis
pg_connect -conninfo connectOptions

pg_connect dbName [-host hostName]
[-port portNumber] [-tty patty]

40

pg_connect

[-options optionalBackendArgs]

Inputs (new style)

connectOptions

A string of connection options, each written in the form keyword = value. A list of valid options
can be found inibpg 's PQconnectdb() manual entry.

Inputs (old style)

dbName

Specifies a valid database name.
[-hosthostName]

Specifies the domain name of the backend servetiidlame
[-port portNumber]

Specifies the IP port number of the backend servediidtame
[-tty patty]

Specifies file or tty for optional debug output from backend.
[-optionsoptionalBackendArgs]

Specifies options for the backend serverdbName

Outputs

dbHandle

If successful, a handle for a database connection is returned. Handles start with thegsegfix

Description
pg_connect opens a connection to the PostgreSQL backend.

Two syntaxes are available. In the older one, each possible option has a separate option switch in the
pg_connect statement. In the newer form, a single option string is supplied that can contain multiple
option values. Sepg_conndefaults for info about the available options in the newer syntax.

Usage

41

pg_disconnect

Name

pg_disconnect

Synopsis

— close a connection to the backend server

pg_disconnect dbHandle

Inputs

dbHandle

Specifies a valid database handle.

Outputs

None

Description

pg_disconnect

closes a connection to the PostgreSQL backend.

42

pg_conndefaults

Name

pg_conndefaults — obtain information about default connection parameters

Synopsis

pg_conndefaults

Inputs

None.

Outputs

option list

The result is a list describing the possible connection options and their current default values.
Each entry in the list is a sublist of the format:

{optname label dispchar dispsize value}

where theoptname is usable as an option py_connect -conninfo

Description

pg_conndefaults returns info about the connection options availablggnconnect -conninfo
and the current default value for each option.

Usage

pg_conndefaults

43

Pg_exec

Name

pg_exec — send a command string to the server

Synopsis

pg_exec dbHandle queryString

Inputs

dbHandle

Specifies a valid database handle.
queryString

Specifies a valid SQL query.

Outputs

resultHandle

A Tcl error will be returned if pgtcl was unable to obtain a backend response. Otherwise, a query
result object is created and a handle for it is returned. This handle can be papgecsalt
to obtain the results of the query.

Description

pg_exec submits a query to the PostgreSQL backend and returns a result. Query result handles start
with the connection handle and add a period and a result number.

Note that lack of a Tcl error is not proof that the query succeeded! An error message returned by
the backend will be processed as a query result with failure status, not by generating a Tcl error in
pg_exec.

44

pg_result

Name

pg_result — getinformation about a query result

Synopsis

pg_result resultHandle resultOption

Inputs

resultHandle
The handle for a query result.
resultOption

Specifies one of several possible options.

Options

-status

the status of the result.
-error

the error message, if the status indicates error; otherwise an empty string.
-conn

the connection that produced the result.
-oid

if the command was an INSERT, the OID of the inserted tuple; otherwise 0.
-numTuples

the number of tuples returned by the query.
-numAttrs

the number of attributes in each tuple.
-assign arrayName

assign the results to an array, using subscripts of the fapno,attributeName)
-assignbyidx arrayName ?appendstr?

assign the results to an array using the first attribute’s value and the remaining attributes’
names as keys. Iappendstr is given then it is appended to each key. In short, all
but the first field of each tuple are stored into the array, using subscripts of the form
(firstFieldValue,fieldNameAppendStr)

-getTuple tupleNumber

returns the fields of the indicated tuple in a list. Tuple numbers start at zero.

45

pg_result

-tupleArray tupleNumber arrayName

stores the fields of the tuple in arragrayName , indexed by field names. Tuple numbers start
at zero.

-attributes

returns a list of the names of the tuple attributes.
-lAttributes

returns a list of sublist§name ftype fsize} for each tuple attribute.
-clear

clear the result query object.

Outputs

The result depends on the selected option, as described above.

Description
pg_result returns information about a query result created by a pgoexec .

You can keep a query result around for as long as you need it, but when you are done with it, be
sure to free it by executingg_result -clear . Otherwise, you have a memory leak, and Pgtcl will
eventually start complaining that you've created too many query result objects.

46

pg_select

Name

pg_select — loop over the result of a SELECT statement

Synopsis

pg_select dbHandle queryString arrayVar queryProcedure

Inputs

dbHandle

Specifies a valid database handle.
queryString

Specifies a valid SQL select query.
arrayVar

Array variable for tuples returned.
gueryProcedure

Procedure run on each tuple found.

Outputs

None.

Description

pg_select submits a SELECT query to the PostgreSQL backend, and executes a given chunk of
code for each tuple in the result. TheeryString must be a SELECT statement. Anything else
returns an error. TharrayVar variable is an array name used in the loop. For each taple,
rayVar is filled in with the tuple field values, using the field names as the array indexes. Then the
gueryProcedure is executed.

In addition to the field values, the following special entries are made in the array:

.headers

A list of the column names returned by the SELECT.
.numcols

The number of columns returned by the SELECT.
.tupno

The current tuple number, starting at zero and incrementing for each iteration of the loop body.

47

pg_select
Usage
This would work if tabletable has fieldscontrol ~ andname (and, perhaps, other fields):

pg_select $pgconn "SELECT * FROM table" array {
puts [format "%5d %s" $array(control) $array(name)]

}

48

pg_execute

Name
pg_execute — send a query and optionally loop over the results
Synopsis
pg_execute [-array arrayVar] [-oid oidvar] dbHandle queryString [queryProcedure]
Inputs

[-arrayarrayVar |

Specifies the name of an array variable where result tuples are stored, indexed by the field names.
This is ignored ifgueryString is not a SELECT statement. For SELECT statements, if this
option is not used, result tuples values are stored in individual variables named according to the
field names in the result.

[-oid oidVar]
Specifies the name of a variable into which the OID from an INSERT statement will be stored.
dbHandle
Specifies a valid database handle.
gueryString
Specifies a valid SQL query.
[queryProcedure]

Optional command to execute for each result tuple of a SELECT statement.

Outputs

ntuples

The number of tuples affected or returned by the query.

Description
pg_execute submits a query to the PostgreSQL backend.

If the query is not a SELECT statement, the query is executed and the number of tuples affected by
the query is returned. If the query is an INSERT and a single tuple is inserted, the OID of the inserted
tuple is stored in theidVar variable if the optionatoid argument is supplied.

If the query is a SELECT statement, the query is executed. For each tuple in the result, the tuple field
values are stored in trearayVar variable, if supplied, using the field names as the array indexes,
else in variables named by the field names, and then the optjoieayProcedure is executed

49

pg_execute
if supplied. (Omitting thequeryProcedure probably makes sense only if the query will return a
single tuple.) The number of tuples selected is returned.

The queryProcedure can use the Tdbreak , continue , andreturn commands, with the ex-
pected behavior. Note that if tiyqgieryProcedure executeseturn , pg_execute does not return
ntuples

pg_execute is a newer function which provides a superset of the featureg afelect , and can
replacepg_exec in many cases where access to the result handle is not needed.

For backend-handled errorgy_execute will throw a Tcl error and return two element list. The first
element is an error code suchRGRES_FATAL_ERRQRNd the second element is the backend error
text. For more serious errors, such as failure to communicate with the bagigersecute will
throw a Tcl error and return just the error message text.

Usage
In the following examples, error checking withtch has been omitted for clarity.

Insert a row and save the OID iasult_oid

pg_execute -oid result_oid $pgconn "insert into mytable values (1)"

Print the item and value fields from each row:

pg_execute -array d $pgconn "select item, value from mytable" {
puts "ltem=$d(item) Value=$d(value)"
}

Find the maximum and minimum values and store them in $s(max) and $s(min):

pg_execute -array s $pgconn "select max(value) as max,\
min(value) as min from mytable"

Find the maximum and minimum values and store them in $max and $min:

pg_execute $pgconn "select max(value) as max, min(value) as min from mytable"

50

pg_listen

Name

pg_listen — set or change a callback for asynchronous NOTIFY messages

Synopsis

pg_listen dbHandle notifyName callbackCommand

Inputs

dbHandle

Specifies a valid database handle.
notifyName

Specifies the notify condition name to start or stop listening to.
callbackCommand

If present, provides the command string to execute when a matching notification arrives.

Outputs

None

Description

pg_listen creates, changes, or cancels a request to listen for asynchronous NOTIFY messages from
the PostgreSQL backend. WithcallbackCommand parameter, the request is established, or the
command string of an already existing request is replaced. WittaltilackCommand parameter,

a prior request is canceled.

After apg_listen requestis established, the specified command string is executed whenever a NO-
TIFY message bearing the given name arrives from the backend. This occurs when any PostgreSQL
client application issues a NOTIFY command referencing that name. (Note that the name can be, but
does not have to be, that of an existing relation in the database.) The command string is executed from
the Tcl idle loop. That is the normal idle state of an application written with Tk. In non-Tk Tcl shells,
you can executepdate orvwait to cause the idle loop to be entered.

You should not invoke the SQL statementSTEN or UNLISTEN directly when usingg_listen
Pgtcl takes care of issuing those statements for you. But if you want to send a NOTIFY message
yourself, invoke the SQL NOTIFY statement usipg exec .

51

pg_on_connection_loss

Name

pg_on_connection_loss — set or change a callback for unexpected connection loss

Synopsis

pg_on_connection_loss dbHandle callbackCommand

Inputs

dbHandle
Specifies a valid database handle.
callbackCommand

If present, provides the command string to execute when connection loss is detected.

Outputs

None

Description

pg_on_connection_loss creates, changes, or cancels a request to execute a callback command if
an unexpected loss of connection to the database occurs. WiahbackCommand parameter,

the request is established, or the command string of an already existing request is replaced. With no
callbackCommand parameter, a prior request is canceled.

The callback command string is executed from the Tcl idle loop. That is the normal idle state of an
application written with Tk. In non-Tk Tcl shells, you can execudate orvwait to cause the idle
loop to be entered.

52

pg_lo creat

Name

pg_lo_creat — create a large object

Synopsis

pg_lo_creat conn mode

Inputs

conn
Specifies a valid database connection.
mode

Specifies the access mode for the large object

Outputs
objOid
The OID of the large object created.

Description

pg_lo_creat creates an Inversion Large Object.

Usage

mode can be any or’'ing togetheridfy_READandINV_WRITE. The “or” operator ig .

[pg_lo_creat $conn "INV_READ|INV_WRITE"]

53

pg_lo _open

Name

pg_lo_open — open a large object

Synopsis

pg_lo_open conn objOid mode

Inputs

conn
Specifies a valid database connection.
objOid
Specifies a valid large object OID.
mode

Specifies the access mode for the large object

Outputs

fd

A file descriptor for use in later pg_lo* routines.

Description

pg_lo_open open an Inversion Large Object.

Usage

Mode can be either, w, or rw.

54

pg_lo close

Name

pg_lo _close — close alarge object

Synopsis

pg_lo_close conn fd

Inputs

conn
Specifies a valid database connection.
fd

A file descriptor for use in later pg_lo* routines.

Outputs

None

Description

pg_lo_close closes an Inversion Large Object.

Usage

55

pg_lo read

Name

pg_lo read —read a large object

Synopsis

pg_lo_read conn fd bufvVar len

Inputs

conn
Specifies a valid database connection.
fd
File descriptor for the large object from pg_lo_open.
bufvar
Specifies a valid buffer variable to contain the large object segment.
len

Specifies the maximum allowable size of the large object segment.

Outputs

None

Description

pg_lo_read reads at moden bytes from a large object into a variable nantedvar .

Usage

bufVar must be a valid variable name.

56

pg_lo write

Name

pg_lo_write — write a large object

Synopsis

pg_lo_write conn fd buf len

Inputs

conn
Specifies a valid database connection.
fd
File descriptor for the large object from pg_lo_open.
buf
Specifies a valid string variable to write to the large object.
len

Specifies the maximum size of the string to write.

Outputs

None

Description

pg_lo_write writes at mosten bytes to a large object from a variatidaf .

Usage

buf must be the actual string to write, not a variable name.

57

pg_lo Iseek

Name

pg_lo Iseek — seek to a position in a large object

Synopsis

pg_lo_lseek conn fd offset whence

Inputs

conn
Specifies a valid database connection.
fd
File descriptor for the large object from pg_lo_open.
offset
Specifies a zero-based offset in bytes.
whence

whence can b6 EEK_CURSEEK_ENDor SEEK_SET

Outputs

None

Description

pg_lo_Iseek positions tooffset bytes from the beginning of the large object.

Usage
whence can beSEEK_CURSEEK_ENDor SEEK_SET

58

pg_lo tell

Name
pg_lo_tell — return the current seek position of a large object
Synopsis
pg_lo_tell conn fd
Inputs
conn

Specifies a valid database connection.
fd

File descriptor for the large object from pg_lo_open.

Outputs

offset

A zero-based offset in bytes suitable for inpuptp lo_Iseek

Description

pg_lo_tell returns the current toffset in bytes from the beginning of the large object.

Usage

pg_lo_unlink

Name

pg_lo_unlink — delete a large object

Synopsis

pg_lo_unlink conn lobjld

Inputs

conn
Specifies a valid database connection.
lobjld

Identifier for a large object.

Outputs

None

Description

pg_lo_unlink deletes the specified large object.

Usage

60

pg_lo _import

Name

pg_lo_import — import a large object from a file

Synopsis

pg_lo_import conn filename

Inputs

conn
Specifies a valid database connection.
filename

Unix file name.

Outputs

None

Description

pg_lo_import reads the specified file and places the contents into a large object.

Usage

pg_lo_import must be called within a BEGIN/END transaction block.

pg_lo_export

Name

pg_lo_export — export alarge object to a file

Synopsis

pg_lo_export conn lobjld filename

Inputs

conn
Specifies a valid database connection.
lobjld
Large object identifier.
filename

Unix file name.

Outputs

None

Description

pg_lo_export writes the specified large object into a Unix file.

Usage

pg_lo_export must be called within a BEGIN/END transaction block.

62

Chapter 4. ECPG - Embedded SQL in C

This chapter describes the embedded SQL package for PostgreSQL. It works with C
and C++. It was written by Linus Tolke [rus@epact.se >) and Michael Meskes
(<meskes@postgresgl.org >).

Admittedly, this documentation is quite incomplete. But since this interface is standardized, additional
information can be found in many resources about SQL.

4.1. The Concept

An embedded SQL program consists of code written in an ordinary programming language, in this

case C, mixed with SQL commands in specially marked sections. To build the program, the source
code is first passed to the embedded SQL preprocessor, which converts it to an ordinary C program,
and afterwards it can be processed by a C compilation tool chain.

Embedded SQL has advantages over other methods for handling SQL commands from C code. First,
it takes care of the tedious passing of information to and from variables in your C program. Secondly,
embedded SQL in C is defined in the SQL standard and supported by many other SQL databases. The
PostgreSQL implementation is designed to match this standard as much as possible, and it is usually
possible to port embedded SQL programs written for other RDBMS to PostgreSQL with relative ease.

As indicated, programs written for the embedded SQL interface are normal C programs with special
code inserted to perform database-related actions. This special code always has the form

EXEC SQL ..;

These statements syntactically take the place of a C statement. Depending on the particular statement,
they may appear in the global context or within a function. Embedded SQL statements follow the
case-sensitivity rules of normal SQL code, and not those of C.

The following sections explain all the embedded SQL statements.

4.2. Connecting to the Database Server
One connects to a database using the following statement:

EXEC SQL CONNECT Ttarget [AS connection-name] [USER user-name J;

Thetarget can be specified in the following ways:

« dbname[@hostname][: port]

- tcp:postgresql:// hostname [: port][/ dbname][? options]
» unix:postgresql:// hostname [: port][/ dbname][? options]
« character variable

- character string

 DEFAULT

There are also different ways to specify the user name:

63

« userid

Chapter 4. ECPG - Embedded SQL in C

- userid / password

« userid IDENTIFIED BY password

« userid USING password

Theuserid andpassword may be a constant text, a character variable, or a character string.

Theconnection-name is used to handle multiple connections in one program. It can be omitted
if a program uses only one connection.

4.3. Closing a Connection

To close a connection, use the following statement:

EXEC SQL

Theconnection

DISCONNECT cpnnection ;

can be specified in the following ways:

« connection-name

« DEFAULT
« CURRENT
+ ALL

4.4. Running SQL Commands

Any SQL command can be run from within an embedded SQL application. Below are some examples

of how to do that.

Creating a table:

EXEC SQL
EXEC SQL
EXEC SQL

Inserting rows:

EXEC SQL
EXEC SQL

Deleting rows:

EXEC SQL
EXEC SQL

Singleton Select:

CREATE TABLE foo (number integer, ascii char(16));
CREATE UNIQUE INDEX numl ON foo(number);
COMMIT;

INSERT INTO foo (number, ascii) VALUES (9999, 'doodad’);
COMMIT;

DELETE FROM foo WHERE number = 9999;
COMMIT;

64

Chapter 4. ECPG - Embedded SQL in C

EXEC SQL SELECT foo INTO :FooBar FROM tablel WHERE ascii = 'doodad’;

Select using Cursors:

EXEC SQL DECLARE foo_bar CURSOR FOR
SELECT number, ascii FROM foo
ORDER BY ascii;

EXEC SQL FETCH foo_bar INTO :FooBar, DooDad;

EXEC SQL CLOSE foo_bar;
EXEC SQL COMMIT;

Updates:

EXEC SQL UPDATE foo
SET ascii = 'foobar’
WHERE number = 9999;

EXEC SQL COMMIT;

The tokens of the formsomething arehost variablesthat is, they refer to variables in the C pro-
gram. They are explained in the next section.

In the default mode, statements are committed only WE¥EC SQL COMMIB issued. The em-
bedded SQL interface also supports autocommit of transactions (as known from other interfaces) via
the-t command-line option tecpg (see below) or via thEXEC SQL SET AUTOCOMMIT TO ON
statement. In autocommit mode, each query is automatically committed unless it is inside an explicit
transaction block. This mode can be explicitly turned off usEC SQL SET AUTOCOMMIT TO

OFF

4.5. Passing Data

To pass data from the program to the database, for example as parameters in a query, or to pass data
from the database back to the program, the C variables that are intended to contain this data need to
be declared in a specially marked section, so the embedded SQL preprocessor is made aware of them.

This section starts with
EXEC SQL BEGIN DECLARE SECTION;
and ends with
EXEC SQL END DECLARE SECTION;
Between those lines, there must be normal C variable declarations, such as

int X;
char foo[16], bar[16];

65

Chapter 4. ECPG - Embedded SQL in C

The declarations are also echoed to the output file as a normal C variables, so there’s no need to
declare them again. Variables that are not intended to be used with SQL commands can be declared
normally outside these special sections.

The definition of a structure or union also must be listed insidE@LAREsection. Otherwise the
preprocessor cannot handle these types since it does not know the definition.

The special typeSARCHARINdVARCHARZre converted into a namatduct for every variable. A
declaration like:

VARCHAR var[180];
is converted into:
struct varchar_var { int len; char arr[180]; } var;

This structure is suitable for interfacing with SQL datums of typ&RCHAR

To use a properly declared C variable in an SQL statement, writsname where an expression is
expected. See the previous section for some examples.

4.6. Error Handling

The embedded SQL interface provides a simplistic and a complex way to handle exceptional con-
ditions in a program. The first method causes a message to printed automatically when a certain
condition occurs. For example:

EXEC SQL WHENEVER sqglerror sqlprint;
or
EXEC SQL WHENEVER not found sqlprint;

This error handling remains enabled throughout the entire program.

Note: This is not an exhaustive example of usage for the EXEC SQL WHENEVERtement. Further
examples of usage may be found in SQL manuals (e.g., The LAN TIMES Guide to SQL by Groff
and Weinberg).

For a more powerful error handling, the embedded SQL interface provistesca and a variable
with the namesglca as follows:

struct sglca
{
char sqlcaid[8];
long sqlabc;
long sqlcode;
struct
{
int sqglerrml;
char sqlerrmc[70];
} sqlerrm;
char sqglerrp[8];

long sqglerrd[6];

66

Chapter 4. ECPG - Embedded SQL in C

/* 0: empty */
/* 1. OID of processed tuple if applicable */

/* 2: number of rows processed in an INSERT, UPDATE */

I* or DELETE statement */
[* 3. empty */
I* 4: empty */
/* 5. empty */

char sglwarn[8];

/* 0: set to 'W' if at least one other is "W’ */

[* 1. if "W at least one character string */

I* value was truncated when it was */

* stored into a host variable. */

[* 2: empty */
[* 3. empty */
[* 4: empty */
[* 5. empty */
[* 6: empty */
[* 7. empty */

char sqlext[8];
} sqlca;
(Many of the empty fields may be used in a future release.)

If no error occurred in the last SQL statemesdica.sglcode will be 0 (ECPG_NO_ERROQRIf
sglca.sqlcode is less that zero, this is a serious error, like the database definition does not match
the query. If it is greater than zero, it is a normal error like the table did not contain the requested row.

sglca.sglerrm.sglerrmc will contain a string that describes the error. The string ends with the
line number in the source file.

These are the errors that can occur:

-12, Out of memory in line %d.
Should not normally occur. This indicates your virtual memory is exhausted.
-200 (ECPG_UNSUPPORTED): Unsupported type %s on line %d.

Should not normally occur. This indicates the preprocessor has generated something that the
library does not know about. Perhaps you are running incompatible versions of the preprocessor
and the library.

-201 (ECPG_TOO_MANY_ARGUMENTS): Too many arguments line %d.

This means that the server has returned more arguments than we have matching variables. Per-
haps you have forgotten a couple of the host variables iiNh@ :varl,:var2 list.

-202 (ECPG_TOO_FEW_ARGUMENTS): Too few arguments line %d.

This means that the server has returned fewer arguments than we have host variables. Perhaps
you have too many host variables in th§O :vari,:var2 list.

-203 (ECPG_TOO_MANY_MATCHES): Too many matches line %d.

This means the query has returned several rows but the variables specified are not arrays. The
SELECTcommand was not unique.

67

Chapter 4. ECPG - Embedded SQL in C

-204 (ECPG_INT_FORMAT): Not correctly formatted int type: %s line %d.

This means the host variable is of tyipe and the field in the PostgreSQL database is of another
type and contains a value that cannot be interpreted &g anThe library usestrtol() for
this conversion.

-205 (ECPG_UINT_FORMAT): Not correctly formatted unsigned type: %s line
%d.

This means the host variable is of tyjesigned int and the field in the PostgreSQL database
is of another type and contains a value that cannot be interpreted asigned int . The
library usesstrtoul() for this conversion.

-206 (ECPG_FLOAT_FORMAT): Not correctly formatted floating-point type: %s
line %d.

This means the host variable is of tyfimat and the field in the PostgreSQL database is of an-
other type and contains a value that cannot be interpreteficas a. The library usestrtod()
for this conversion.

-207 (ECPG_CONVERT_BOOL): Unable to convert %s to bool on line %d.
This means the host variable is of typeol and the field in the PostgreSQL database is neither
't nor’f

-208 (ECPG_EMPTY): Empty query line %d.

The query was empty. (This cannot normally happen in an embedded SQL program, so it may
point to an internal error.)

-209 (ECPG_MISSING_INDICATOR): NULL value without indicator in line %d.
A null value was returned and no null indicator variable was supplied.
-210 (ECPG_NO_ARRAY): Variable is not an array in line %d.
An ordinary variable was used in a place that requires an array.

-211 (ECPG_DATA_NOT_ARRAY): Data read from backend is not an array in line
%d.

The database returned an ordinary variable in a place that requires array value.
-220 (ECPG_NO_CONN): No such connection %s in line %d.
The program tried to access a connection that does not exist.
-221 (ECPG_NOT_CONN): Not connected in line %d.
The program tried to access a connection that does exist but is not open.
-230 (ECPG_INVALID_STMT): Invalid statement name %s in line %:d.
The statement you are trying to use has not been prepared.
-240 (ECPG_UNKNOWN_DESCRIPTOR): Descriptor %s not found in line %d.

The descriptor specified was not found. The statement you are trying to use has not been pre-
pared.

-241 (ECPG_INVALID_DESCRIPTOR_INDEX): Descriptor index out of range in
line %d.

The descriptor index specified was out of range.

68

Chapter 4. ECPG - Embedded SQL in C

-242 (ECPG_UNKNOWN_DESCRIPTOR_ITEM): Descriptor %s not found in line %d.

The descriptor specified was not found. The statement you are trying to use has not been pre-
pared.

-243 (ECPG_VAR_NOT_NUMERIC): Variable is not a numeric type in line %od.

The database returned a numeric value and the variable was not numeric.
-244 (ECPG_VAR_NOT_CHAR): Variable is not a character type in line %d.

The database returned a non-numeric value and the variable was numeric.
-400 (ECPG_PGSQL): Postgres error: %s line %d.

Some PostgreSQL error. The message contains the error message from the PostgreSQL backend.
-401 (ECPG_TRANS): Error in transaction processing line %d.

PostgreSQL signaled that we cannot start, commit, or rollback the transaction.
-402 (ECPG_CONNECT): Could not connect to database %s in line %d.

The connect to the database did not work.
100 (ECPG_NOT_FOUND): Data not found line %d.

This is a “normal” error that tells you that what you are querying cannot be found or you are at
the end of the cursor.

4.7. Including Files
To include an external file into your embedded SQL program, use:

EXEC SQL INCLUDEfilename ;

The embedded SQL preprocessor will look for a file narfiiedame .h , preprocess it, and include
it in the resulting C output. Thus, embedded SQL statements in the included file are handled correctly.

Note that this isiotthe same as

#include <filename .h >

because the file would not be subject to SQL command preprocessing. Naturally, you can continue to
use the Gtinclude directive to include other header files.

Note: The include file name is case-sensitive, even though the rest of the EXEC SQL INCLUDE
command follows the normal SQL case-sensitivity rules.

4.8. Processing Embedded SQL Programs

Now that you have an idea how to form embedded SQL C programs, you probably want to know
how to compile them. Before compiling you run the file through the embedded SQL C preprocessor,
which converts the SQL statements you used to special function calls. After compiling, you must
link with a special library that contains the needed functions. These functions fetch information from

69

Chapter 4. ECPG - Embedded SQL in C
the arguments, perform the SQL query using the libpq interface, and put the result in the arguments
specified for output.

The preprocessor program is callechg and is included in a normal PostgreSQL installation. Em-
bedded SQL programs are typically named with an extensmn. If you have a program file called
progl.pgc , you can preprocess it by simply calling

ecpg progl.pgc

This will create a file callegrogl.c . If your input files do not follow the suggested naming pattern,
you can specify the output file explicitly using the option.

The preprocessed file can be compiled normally, for example
cc -c progl.c

The generated C source files include headers files from the PostgreSQL installation, so if you in-
stalled PostgreSQL in a location that is not searched by default, you have to add an option such as
-l/usr/local/pgsgl/include to the compilation command line.

To link an embedded SQL program, you need to includditteepg library, like so:
cc -0 myprog progl.o prog2.0 ... -lecpg

Again, you might have to add an option likgusr/local/pgsgl/lib to that command line.

If you manage the build process of a larger project using make, it may be convenient to include the
following implicit rule to your makefiles:

ECPG = ecpg

%.c: %.pgc
$(ECPG) $<

The complete syntax of theepg command is detailed in theostgreSQL Reference Manual

4.9. Library Functions

Thelibecpg library primarily contains “hidden” functions that are used to implement the function-
ality expressed by the embedded SQL commands. But there are some functions that can usefully be
called directly. Note that this makes your code unportable.

+ ECPGdebug(int on, FILE * stream) turns on debug logging if called with the first argument
non-zero. Debug logging is done stream . Most SQL statement log their arguments and results.

The most important functiolsCPGdg logs all SQL statements with both the expanded string, i.e.
the string with all the input variables inserted, and the result from the PostgreSQL server. This can
be very useful when searching for errors in your SQL statements.

- ECPGstatus() This method returns true if we are connected to a database and false if not.

70

Chapter 4. ECPG - Embedded SQL in C

4.10. Porting From Other RDBMS Packages

The design of ecpg follows the SQL standard. Porting from a standard RDBMS should not be a prob-
lem. Unfortunately there is no such thing as a standard RDBMS. Therefore ecpg tries to understand
syntax extensions as long as they do not create conflicts with the standard.

The following list shows all the known incompatibilities. If you find one not listed please notify the
developers. Note, however, that we list only incompatibilities from a preprocessor of another RDBMS
to ecpg and not ecpg features that these RDBMS do not support.
Syntax ofFETCH
The standard syntax f®#ETCHis:
FETCH [direction] [amount] INJFROM cursor

Oracle, however, does not use the keywdnlsor FROM This feature cannot be added since it
would create parsing conflicts.

4.11. For the Developer

This section explain how ecpg works internally. This information can occasionally be useful to help
users understand how to use ecpg.

4.11.1. The Preprocessor

The first four lines written byecpg to the output are fixed lines. Two are comments and two are
include lines necessary to interface to the library. Then the preprocessor reads through the file and
writes output. Normally it just echoes everything to the output.

When it sees aBEXEC SQLstatement, it intervenes and changes it. The command startexeith
sgl and ends with . Everything in between is treated as an SQL statement and parsed for variable
substitution.

Variable substitution occurs when a symbol starts with a colgnThe variable with that name is
looked up among the variables that were previously declared witBXEL SQL DECLARE&ection.
Depending on whether the variable is being use for input or output, a pointer to the variable is output
to allow access by the function.

For every variable that is part of the SQL query, the function gets other arguments:

« The type as a special symbol.

- A pointer to the value or a pointer to the pointer.

« The size of the variable if it is éhar orvarchar .

« The number of elements in the array (for array fetches).

- The offset to the next element in the array (for array fetches).

- The type of the indicator variable as a special symbol.

- A pointer to the value of the indicator variable or a pointer to the pointer of the indicator variable.
-0

- Number of elements in the indicator array (for array fetches).

- The offset to the next element in the indicator array (for array fetches).

71

Chapter 4. ECPG - Embedded SQL in C

Note that not all SQL commands are treated in this way. For instance, an open cursor statement like
EXEC SQL OPEMNursor ;

is not copied to the output. Instead, the curs@BCLARECcommand is used because it opens the

cursor as well.

Here is a complete example describing the output of the preprocessor ofoafilgc (details may

change with each particular version of the preprocessor):

EXEC SQL BEGIN DECLARE SECTION;
int index;

int result;

EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT res INTO :result FROM mytable WHERE index = :index;

is translated into:

/* Processed by ecpg (2.6.0) */

/* These two include files are added by the preprocessor */
#include <ecpgtype.h >;

#include <ecpglib.h >;

/* exec sgl begin declare section */
#line 1 "foo.pgc"

int index;
int result;
/* exec sgl end declare section */

ECPGdo(__LINE__, NULL, "SELECT res FROM mytable WHERE index = ?
ECPGt_int,&(index),1L,1L,sizeof(int),
ECPGt_NO_INDICATOR, NULL , OL, OL, OL, ECPGt_EOIT,
ECPGt_int,&(result),1L,1L,sizeof(int),
ECPGt_NO_INDICATOR, NULL , OL, OL, OL, ECPGt_EORT);

#line 147 "foo.pgc"

(The indentation in this manual is added for readability and not something the preprocessor does.)

4.11.2. The Library

The most important function in the library BBCPGdo It takes a variable number of arguments. Hope-
fully there are no computers that limit the number of variables that can be acceptedrdayga()
function. This can easily add up to 50 or so arguments.

The arguments are:

A line number

This is a line number of the original line; used in error messages only.

72

Chapter 4. ECPG - Embedded SQL in C

A string

This is the SQL query that is to be issued. It is modified by the input variables, i.e. the variables
that where not known at compile time but are to be entered in the query. Where the variables
should go the string contairrs

Input variables

As described in the section about the preprocessor, every input variable gets ten arguments.
ECPGt_EOIT

An enum telling that there are no more input variables.
Output variables

As described in the section about the preprocessor, every input variable gets ten arguments. These
variables are filled by the function.

ECPGt_EORT

An enum telling that there are no more variables.

73

Chapter 5. JDBC Interface

Author: Originally written by Peter T. Mount (<peter@retep.org.uk >), the original author of the
JDBC driver.

JDBC is a core API of Java 1.1 and later. It provides a standard set of interfaces to SQL-compliant
databases.

PostgreSQL providestgpe 4JDBC Driver. Type 4 indicates that the driver is written in Pure Java, and
communicates in the database system'’s own network protocol. Because of this, the driver is platform
independent; once compiled, the driver can be used on any system.

This chapter is not intended as a complete guide to JDBC programming, but should help to get you
started. For more information refer to the standard JDBC APl documentation. Also, take a look at the
examples included with the source. The basic example is used here.

5.1. Setting up the JDBC Driver

5.1.1. Getting the Driver
Precompiled versions of the driver can be downloaded from the PostgreSQL JDBC web site

Alternatively you can build the driver from source, but you should only need to do this if you are
making changes to the source code. For details, refer to the PostgreSQL installation instructions. After
installation, the driver should be found RREFIX/share/java/postgresqgl.jar . The resulting

driver will be built for the version of Java you are running. If you build with a 1.1 JDK you will build

a version that supports the JDBC 1 specification, if you build with a Java 2 JDK (e.g., JDK 1.2 or JDK
1.3) you will build a version that supports the JDBC 2 specification.

5.1.2. Setting up the Class Path

To use the driver, the JAR archive (namsabtgresgl.jar if you built from source, otherwise it
will likely be nameddbc7.2-1.1.jar orjdbc7.2-1.2 jar for the JDBC 1 and JDBC 2 versions
respectively) needs to be included in the class path, either by putting it CL&K&SPATHenvironment
variable, or by using flags on th@va command line.

For instance, | have an application that uses the JDBC driver to access a large database containing
astronomical objects. | have the application and the JDBC driver installed indtiecal/lib

directory, and the Java JDK installed /usr/local/jdk1.3.1 . To run the application, | would
use:
export CLASSPATH=/usr/local/lib/finder.jar O:/usr/local/pgsql/share/java/postgresql.jar:.
java Finder

O finder.jar contains the Finder application.

Loading the driver from within the application is coveredSaction 5.2

1. http://jdbc.postgresgl.org

74

Chapter 5. JDBC Interface

5.1.3. Preparing the Database for JDBC

Because Java only uses TCP/IP connections, the PostgreSQL server must be configured to accept
TCP/IP connections. This can be done by settipgp_socket = true in thepostgresgl.conf
file or by supplying thei option flag when startingostmaster

Also, the client authentication setup in the hba.conf file may need to be configured. Refer to
the Administrator’s Guiddor details. The JDBC Driver supports the trust, ident, password, md5, and
crypt authentication methods.

5.2. Using the Driver

5.2.1. Importing JDBC

Any source that uses JDBC needs to importjtiva.sql package, using:
import java.sql.;

Important: Do not import the org.postgresq| package. If you do, your source will not compile,
as javac will get confused.

5.2.2. Loading the Driver

Before you can connect to a database, you need to load the driver. There are two methods available,
and it depends on your code which is the best one to use.

In the first method, your code implicitly loads the driver using @hess.forName() method. For
PostgreSQL, you would use:

Class.forName("org.postgresqgl.Driver");

This will load the driver, and while loading, the driver will automatically register itself with JIDBC.

Note: The forName() method can throw a ClassNotFoundException if the driver is not available.

This is the most common method to use, but restricts your code to use just PostgreSQL. If your
code may access another database system in the future, and you do not use any PostgreSQL-specific
extensions, then the second method is advisable.

The second method passes the driver as a parameter to the JVM as it starts, ugingrinement.
Example:

java -Djdbc.drivers=org.postgresql.Driver example.ImageViewer

In this example, the JVM will attempt to load the driver as part of its initialization. Once done, the
ImageViewer is started.

75

Chapter 5. JDBC Interface

Now, this method is the better one to use because it allows your code to be used with other database
packages without recompiling the code. The only thing that would also change is the connection URL,
which is covered next.

One last thing: When your code then tries to opaToanection , and you get a No driver available
SQLException being thrown, this is probably caused by the driver not being in the class path, or the
value in the parameter not being correct.

5.2.3. Connecting to the Database

With JDBC, a database is represented by a URL (Uniform Resource Locator). With PostgreSQL, this
takes one of the following forms:

« jdbc:postgresql: database

« jdbc:postgresql:// host / database

« jdbc:postgresql:// host : port / database
where:

host

The host name of the server. Defaultddealhost
port

The port number the server is listening on. Defaults to the PostgreSQL standard port number
(5432).

database

The database name.

To connect, you need to getGonnection instance from JDBC. To do this, you would use the
DriverManager.getConnection() method:

Connection db = DriverManager.getConnection(url, username, password);

5.2.4. Closing the Connection

To close the database connection, simply callctbse() method to theConnection

db.close();

5.3. Issuing a Query and Processing the Result

Any time you want to issue SQL statements to the database, you reqSiegeament or Pre-
paredStatement instance. Once you haveSiatement oOr PreparedStatement , you can use

76

Chapter 5. JDBC Interface

issue a query. This will return ResultSet instance, which contains the entire resixample 5-1
illustrates this process.

Example 5-1. Processing a Simple Query in JDBC

This example will issue a simple query and print out the first column of each row uSitageanent

Statement st = db.createStatement();
ResultSet rs = st.executeQuery("SELECT * FROM mytable where columnfoo = 500");
while(rs.next()) {

System.out.print("Column 1 returned ");

System.out.printin(rs.getString(1));

}

rs.close();
st.close();

This example will issue the same query as before usiPgparedStatement and a bind value in
the query.
int foovalue = 500;
PreparedStatement st = db.prepareStatement("SELECT * FROM mytable where colum-
nfoo = ?");
st.setint(1, foovalue);
ResultSet rs = st.executeQuery();
while(rs.next()) {
System.out.print("Column 1 returned ");
System.out.printin(rs.getString(1));
}

rs.close();
st.close();

5.3.1. Using the Statement or PreparedStatement Interface

The following must be considered when using $i@tement or PreparedStatement interface:

» You can use a singlgtatement instance as many times as you want. You could create one as soon
as you open the connection and use it for the connection’s lifetime. But you have to remember that
only oneResultSet can exist peBtatement or PreparedStatement at a given time.

- If you need to perform a query while processin@ResultSet , you can simply create and use
anotherStatement

- Ifyou are using threads, and several are using the database, you must use a Separaiet for
each thread. Refer t8ection 5.8f you are thinking of using threads, as it covers some important
points.

« When you are done using tistatement or PreparedStatement you should close it.

77

Chapter 5. JDBC Interface

5.3.2. Using the ResultSet Interface

The following must be considered when using HesultSet interface:

- Before reading any values, you must aadkt() . This returns true if there is a result, but more
importantly, it prepares the row for processing.

- Under the JDBC specification, you should access a field only once. It is safest to stick to this rule,
although at the current time, the PostgreSQL driver will allow you to access a field as many times
as you want.

+ You must close &esultSet by callingclose() once you have finished using it.

« Once you make another query with thatement used to createResultSet , the currently open
ResultSet instance is closed automatically.

+ ResultSet is currently read only. You can not update data throughRimultSet . If you want
to update data you need to do it the old fashioned way by issuing a SQL update statement. This is
in conformance with the JDBC specification which does not require drivers to provide this func-
tionality.

5.4. Performing Updates

To change data (perform an insert, update, or delete) you usxdhateUpdate() method.exe-
cuteUpdate() is similar to theexecuteQuery() used to issue a select, however it doesn't return
aResultSet , instead it returns the number of records affected by the insert, update, or delete state-
ment.

Example 5-2. Simple Delete Example

This example will issue a simple delete and print out the number of rows deleted.

int foovalue = 500;

PreparedStatement st = db.prepareStatement("DELETE FROM mytable where colum-
nfoo = ?");

st.setint(1, foovalue);

int rowsDeleted = st.executeUpdate();

System.out.printin(rowsDeleted + " rows deleted");

st.close();

5.5. Creating and Modifying Database Objects

To create, modify or drop a database object like a table or view you usexthate() = method.
execute is similar to theexecuteQuery() used to issue a select, however it doesn’t return a result.

Example 5-3. Drop Table Example

This example will drop a table.

Statement st = db.createStatement();
ResultSet rs = st.executeQuery("DROP TABLE mytable");

78

Chapter 5. JDBC Interface

st.close();

5.6. Storing Binary Data

PostgreSQL provides two distinct ways to store binary data. Binary data can be stored in a table using
PostgreSQL’s binary data typgtea , or by using the_arge Objectfeature which stores the binary

data in a separate table in a special format, and refers to that table by storing a value@btype

your table.

In order to determine which method is appropriate you need to understand the limitations of each
method. Thevytea data type is not well suited for storing very large amounts of binary data. While a
column of typebytea can hold up to 1 GB of binary data, it would require a huge amount of memory
(RAM) to process such a large value. The Large Object method for storing binary data is better suited
to storing very large values, but it has its own limitations. Specifically deleting a row that contains

a Large Object does not delete the Large Object. Deleting the Large Object is a separate operation
that needs to be performed. Large Objects also have some security issues since anyone connected
to the database case view and/or modify any Large Object, even if they don’t have permissions to
view/update the row containing the Large Object.

7.2 is the first release of the JDBC Driver that supportsiiytea data type. The introduction of

this functionality in 7.2 has introduced a change in behavior as compared to previous releases. In 7.2
the methodgetBytes() |, setBytes() , getBinaryStream() , andsetBinaryStream() operate

on thebytea data type. In 7.1 these methods operated orQtimedata type associated with Large
Objects. It is possible to revert the driver back to the old 7.1 behavior by settirgpthpatible

property on theConnection to a value of7.1

To use thebytea data type you should simply use thetBytes() , setBytes() , getBinaryS-
tream() , or setBinaryStream() methods.

To use the Large Object functionality you can use eitherLiimgeObject APl provided by the
PostgreSQL JDBC Driver, or by using thetBLOB() andsetBLOB() methods.

Important: For PostgreSQL, you must access Large Objects within an SQL transaction. You
would open a transaction by using the setAutoCommit() method with an input parameter of
false .

Note: In a future release of the JDBC Driver, the getBLOB() and setBLOB() methods may no
longer interact with Large Objects and will instead work on bytea data types. So it is recom-
mended that you use the LargeObject APl if you intend to use Large Objects.

Example 5-4. Binary Data Examples

For example, suppose you have a table containing the file name of an image and you also want to
store the image in bytea column:

CREATE TABLE images (imgname text, img bytea);
To insert an image, you would use:

File file = new File("myimage.gif");

79

Chapter 5. JDBC Interface

FilelnputStream fis = new FilelnputStream(file);

PreparedStatement ps = conn.prepareStatement("INSERT INTO images VALUES (?, ?)");

ps.setString(1, file.getName());

ps.setBinaryStream(2, fis, file.length());

ps.executeUpdate();

ps.close();

fis.close();
Here, setBinaryStream() transfers a set number of bytes from a stream into the column of type
bytea . This also could have been done using ¢htBytes() method if the contents of the image
was already in ayte][]

Retrieving an image is even easier. (We @separedStatement here, but theStatement class
can equally be used.)

PreparedStatement ps = con.prepareStatement("SELECT img FROM images WHERE img-
name=2?");
ps.setString(1, "myimage.gif");
ResultSet rs = ps.executeQuery();
if (rs !'= null) {
while(rs.next()) {
byte[] imgBytes = rs.getBytes(1);
/I use the stream in some way here

}
rs.close();
}
ps.close();

Here the binary data was retrieved adgte[] . You could have usediaputStream object instead.

Alternatively you could be storing a very large file and want to use_thigeObject API to store
the file:

CREATE TABLE imagesLO (imgname text, imgOID OID);
To insert an image, you would use:

/I All LargeObject API calls must be within a transaction
conn.setAutoCommit(false);

/I Get the Large Object Manager to perform operations with
LargeObjectManager lobj = ((org.postgresqgl.PGConnection)conn).getLargeObjectAPI();

/lcreate a new large object
int oid = lobj.create(LargeObjectManager.READ | LargeObjectManager.WRITE);

/lopen the large object for write
LargeObject obj = lobj.open(oid, LargeObjectManager.WRITE);

/I Now open the file
File file = new File("myimage.qgif");
FileInputStream fis = new FilelnputStream(file);

/I copy the data from the file to the large object
byte buf[] = new byte[2048];
int' s, tt = 0;
while ((s = fis.read(buf, 0, 2048)) > 0)
{

obj.write(buf, 0, s);

tl += s;

}

80

Chapter 5. JDBC Interface

/I Close the large object
obj.close();

/INow insert the row into imagesLO

PreparedStatement ps = conn.prepareStatement("INSERT INTO imagesLO VAL-
UES (?, ?)");

ps.setString(1, file.getName());

ps.setint(2, oid);

ps.executeUpdate();

ps.close();

fis.close();

Retrieving the image from the Large Object:

/I All LargeObject API calls must be within a transaction
conn.setAutoCommit(false);

/I Get the Large Object Manager to perform operations with
LargeObjectManager lobj = ((org.postgresqgl.PGConnection)conn).getLargeObjectAPI();

PreparedStatement ps = con.prepareStatement("SELECT imgOID FROM imagesLO WHERE imgnhame="2?");
ps.setString(1, "myimage.gif");
ResultSet rs = ps.executeQuery();
if (rs != null) {
while(rs.next()) {
/lopen the large object for reading
int oid = rs.getint(1);
LargeObject obj = lobj.open(oid, LargeObjectManager.READ);

/lread the data

byte buf[] = new byte[obj.size()];
obj.read(buf, 0, obj.size());

//do something with the data read here

/I Close the object
obj.close();

}

rs.close();

}

ps.close();

5.7. PostgreSQL Extensions to the JDBC API

PostgreSQL is an extensible database system. You can add your own functions to the backend, which
can then be called from queries, or even add your own data types. As these are facilities unique to
PostgreSQL, we support them from Java, with a set of extension API's. Some features within the core

of the standard driver actually use these extensions to implement Large Objects, etc.

81

Chapter 5. JDBC Interface

5.7.1. Accessing the Extensions

To access some of the extensions, you need to use some extra methods in the
org.postgresql.PGConnection class. In this case, you would need to case the return value of
Driver.getConnection() . For example:

Connection db = Driver.getConnection(url, username, password);
..

/I later on

Fastpath fp = ((org.postgresql.PGConnection)db).getFastpathAPI();

5.7.1.1. Class org.postgresgl.PGConnection

public class PGConnection

These are the extra methods used to gain access to PostgreSQL's extensions.

5.7.1.1.1. Methods

- public Fastpath getFastpathAPI() throws SQLException

This returns the Fastpath API for the current connection. It is primarily used by the Large Object
API.

The best way to use this is as follows:

import org.postgresqgl.fastpath.*;

Fastpath fp = ((org.postgresql.PGConnection)myconn).getFastpathAPI();
wheremyconn is an operConnection to PostgreSQL.
Returns: Fastpath object allowing access to functions on the PostgreSQL backend.

Throws: SQLException by Fastpath when initializing for first time

public LargeObjectManager getLargeObjectAPI() throws SQLException
This returns the Large Object API for the current connection.

The best way to use this is as follows:

import org.postgresqgl.largeobject.*;

LargeObjectManager lo = ((org.postgresql.PGConnection)myconn).getLargeObjectAPI();
wheremyconn is an operConnection to PostgreSQL.
Returns: LargeObject object that implements the API

Throws: SQLException by LargeObject when initializing for first time

public void addDataType(String type, String name)

82

Chapter 5. JDBC Interface

This allows client code to add a handler for one of PostgreSQL's more unique data types. Normally,
a data type not known by the driver is returned RasultSet.getObject() as aPGobject

instance. This method allows you to write a class that ext@@ihject , and tell the driver the

type name, and class name to use. The down side to this, is that you must call this method each
time a connection is made.

The best way to use this is as follows:
((org.postgresgl.PGConnection)myconn).addDataType("mytype","my.class.name");

where myconn is an openConnection to PostgreSQL. The handling class must extend
org.postgresgl.util. PGobject

5.7.1.2. Class org.postgresgl.Fastpath

public class Fastpath extends Object

java.lang.Object

|
+----org.postgresql.fastpath.Fastpath

Fastpath is an API that exists within the libpq C interface, and allows a client machine to execute a
function on the database backend. Most client code will not need to use this method, but it is provided
because the Large Object API uses it.

To use, you need to import thueg.postgresgl.fastpath package, using the line:
import org.postgresqgl.fastpath.*;
Then, in your code, you need to gefFastPath object:

Fastpath fp = ((org.postgresql.PGConnection)conn).getFastpathAPI();

This will return an instance associated with the database connection that you can use to issue com-
mands. The casing @onnection to org.postgresql.PGConnection is required, as thget-
FastpathAPI() is an extension method, not part of JDBC. Once you haresgath instance,

you can use théastpath() methods to execute a backend function.

See Also: FastpathFastpathArg , LargeObject

5.7.1.2.1. Methods

« public Object fastpath(int fnid,
boolean resulttype,
FastpathArg args[]) throws SQLException

Send a function call to the PostgreSQL backend.

Parameters: fnid - Function idresulttype - True if the result is an integer, false for other
resultsargs - FastpathArguments to pass to fastpath

Returns: null if no data, Integer if an integer result, or byte[] otherwise

83

Chapter 5. JDBC Interface

» public Object fastpath(String name,
boolean resulttype,
FastpathArg args[]) throws SQLException

Send a function call to the PostgreSQL backend by name.

Note: The mapping for the procedure name to function id needs to exist, usually to an earlier
call to addfunction() . This is the preferred method to call, as function id’s can/may
change between versions of the backend. For an example of how this works, refer to
org.postgresql.LargeObject

Parameters: name - Function nameesulttype - True if the result is an integer, false for other
resultsargs - FastpathArguments to pass to fastpath

Returns: null if no data, Integer if an integer result, or byte[] otherwise

See Also:LargeObject

» public int getinteger(String name,
FastpathArg args[]) throws SQLException

This convenience method assumes that the return value is an Integer
Parameters: name - Function namergs - Function arguments
Returns: integer result

Throws: SQLException if a database-access error occurs or no result

- public byte[]] getData(String name,
FastpathArg args[]) throws SQLException

This convenience method assumes that the return value is binary data.
Parameters: name - Function nameargs - Function arguments
Returns: byte[] array containing result

Throws: SQLException if a database-access error occurs or no result

« public void addFunction(String name,
int fnid)

This adds a function to our look-up table. User code should usadtifunctions method, which
is based upon a query, rather than hard coding the OID. The OID for a function is not guaranteed
to remain static, even on different servers of the same version.

» public void addFunctions(ResultSet rs) throws SQLException

This takes &ResultSet containing two columns. Column 1 contains the function name, Column
2 the OID. It reads the entilResultSet , loading the values into the function table.

Important: Remember to close() the ResultSet after calling this!

84

Chapter 5. JDBC Interface

Implementation note about function name look-ups: PostgreSQL stores the function id’s
and their corresponding names in the pg_proc table. To speed things up locally, instead of
querying each function from that table when required, a Hashtable is used. Also, only the
function’s required are entered into this table, keeping connection times as fast as possible.

The org.postgresgl.LargeObject class performs a query upon its start-up, and passes the
returned ResultSet to the addFunctions() method here. Once this has been done, the Large
Object API refers to the functions by name.

Do not think that manually converting them to the OIDs will work. OK, they will for now, but
they can change during development (there was some discussion about this for V7.0), so this
is implemented to prevent any unwarranted headaches in the future.

See Also: LargeObjectManager

« public int getID(String name) throws SQLException

This returns the function id associated by its namadtfFunction() or addFunctions() have
not been called for this name, then SQLException is thrown.

5.7.1.3. Class org.postgresqgl.fastpath.FastpathArg

public class FastpathArg extends Object

java.lang.Object

|
+----org.postgresql.fastpath.FastpathArg

Each fastpath call requires an array of arguments, the number and type dependent on the function
being called. This class implements methods needed to provide this capability.
For an example on how to use this, refer to dhgpostgresgl.LargeObject package.

See Also: Fastpath , LargeObjectManager , LargeObject

5.7.1.3.1. Constructors

» public FastpathArg(int value)
Constructs an argument that consists of an integer value

Parameters: value - int value to set

« public FastpathArg(byte bytes[])
Constructs an argument that consists of an array of bytes

Parameters: bytes - array to store

» public FastpathArg(byte buf],
int off,
int len)

85

Chapter 5. JDBC Interface

Constructs an argument that consists of part of a byte array

Parameters:

buf

source array
off

offset within array
len

length of data to include

» public FastpathArg(String s)

Constructs an argument that consists of a String.

5.7.2. Geometric Data Types

PostgreSQL has a set of data types that can store geometric features into a table. These include single
points, lines, and polygons. We support these types in Java with the org.postgresql.geometric package.

It contains classes that extend the org.postgresql.util.PGobject class. Refer to that class for details on

how to implement your own data type handlers.

Class org.postgresgl.geometric.PGhox
java.lang.Object

I
+----org.postgresql.util. PGobject

+----org.postgresgl.geometric.PGbox

public class PGbox extends PGobject implements Serializable,
Cloneable

This represents the box data type within PostgreSQL.
Variables
public PGpoint point(]
These are the two corner points of the box.
Constructors
public PGbox(double x1,
double y1,

double x2,
double y2)

86

Chapter 5. JDBC Interface

Parameters:
x1 - first x coordinate
yl - first y coordinate
x2 - second x coordinate
y2 - second y coordinate

public PGbox(PGpoint p1,
PGpoint p2)

Parameters:
pl - first point
p2 - second point

public PGbox(String s) throws SQLException

Parameters:
s - Box definition in PostgreSQL syntax

Throws: SQLException
if definition is invalid

public PGbox()
Required constructor
Methods
public void setValue(String value) throws SQLException

This method sets the value of this object. It should be
overridden, but still called by subclasses.

Parameters:
value - a string representation of the value of the
object
Throws: SQLException
thrown if value is invalid for this type

Overrides:
setValue in class PGobject

public boolean equals(Object obj)

Parameters:
obj - Object to compare with

Returns:
true if the two boxes are identical

Overrides:
equals in class PGobject

public Object clone()
This must be overridden to allow the object to be cloned

Overrides:

87

Chapter 5. JDBC Interface
clone in class PGobject
public String getValue()

Returns:
the PGbox in the syntax expected by PostgreSQL

Overrides:
getValue in class PGobject

Class org.postgresgl.geometric.PGcircle
java.lang.Object

|
+----org.postgresql.util.PGobject

+----0rg.postgresql.geometric.PGcircle

public class PGcircle extends PGobject implements Serializable,
Cloneable

This represents PostgreSQL’s circle data type, consisting of a point
and a radius

Variables
public PGpoint center
This is the center point
double radius
This is the radius
Constructors
public PGcircle(double x,
double v,
double r)
Parameters:
X - coordinate of center
y - coordinate of center

r - radius of circle

public PGcircle(PGpoint c,
double r)

Parameters:
¢ - PGpoint describing the circle’'s center
r - radius of circle

public PGcircle(String s) throws SQLException

Parameters:
s - definition of the circle in PostgreSQL’s syntax.

88

Chapter 5. JDBC Interface

Throws: SQLException
on conversion failure

public PGcircle()

This constructor is used by the driver.
Methods
public void setValue(String s) throws SQLException

Parameters:
s - definition of the circle in PostgreSQL’s syntax.

Throws: SQLException
on conversion failure

Overrides:
setValue in class PGobject

public boolean equals(Object obj)

Parameters:
obj - Object to compare with

Returns:
true if the two circles are identical

Overrides:
equals in class PGobject

public Object clone()
This must be overridden to allow the object to be cloned

Overrides:
clone in class PGobject

public String getValue()

Returns:
the PGcircle in the syntax expected by PostgreSQL

Overrides:
getValue in class PGobject

Class org.postgresql.geometric.PGline

java.lang.Object

I
+----org.postgresql.util. PGobject

+----org.postgresgl.geometric.PGline

public class PGline extends PGobject implements Serializable,
Cloneable

89

Chapter 5. JDBC Interface
This implements a line consisting of two points. Currently line is
not yet implemented in the backend, but this class ensures that when
it's done were ready for it.
Variables
public PGpoint point[]
These are the two points.

Constructors
public PGline(double x1,

double y1,

double x2,

double y2)

Parameters:

x1 - coordinate for first point

yl - coordinate for first point

x2 - coordinate for second point

y2 - coordinate for second point

public PGline(PGpoint p1,
PGpoint p2)

Parameters:
pl - first point
p2 - second point

public PGline(String s) throws SQLException

Parameters:
s - definition of the line in PostgreSQL’s syntax.

Throws: SQLException
on conversion failure

public PGline()
required by the driver
Methods
public void setValue(String s) throws SQLException
Parameters:
s - Definition of the line segment in PostgreSQL’s

syntax

Throws: SQLEXxception
on conversion failure

Overrides:
setValue in class PGobject

public boolean equals(Object obj)

90

Chapter 5. JDBC Interface
Parameters:
obj - Object to compare with

Returns:
true if the two lines are identical

Overrides:
equals in class PGobject

public Object clone()
This must be overridden to allow the object to be cloned

Overrides:
clone in class PGobject

public String getValue()

Returns:
the PGline in the syntax expected by PostgreSQL

Overrides:
getValue in class PGobject

Class org.postgresgl.geometric.PGlseg
java.lang.Object

I
+----org.postgresql.util.PGobject

+----org.postgresgl.geometric.PGlseg

public class PGlseg extends PGobject implements Serializable,
Cloneable

This implements a Iseg (line segment) consisting of two points
Variables
public PGpoint point]]
These are the two points.

Constructors
public PGlseg(double x1,

double y1,

double x2,

double y2)

Parameters:
x1 - coordinate for first point
yl - coordinate for first point

x2 - coordinate for second point
y2 - coordinate for second point

91

Chapter 5. JDBC Interface
public PGlseg(PGpoint p1,
PGpoint p2)
Parameters:
pl - first point
p2 - second point

public PGlseg(String s) throws SQLException

Parameters:
s - Definition of the line segment in PostgreSQL’s syntax.

Throws: SQLException
on conversion failure

public PGlseg()
required by the driver
Methods
public void setValue(String s) throws SQLException
Parameters:
s - Definition of the line segment in PostgreSQL'’s

syntax

Throws: SQLException
on conversion failure

Overrides:
setValue in class PGobject

public boolean equals(Object obj)

Parameters:
obj - Object to compare with

Returns:
true if the two line segments are identical

Overrides:
equals in class PGobject

public Object clone()
This must be overridden to allow the object to be cloned

Overrides:
clone in class PGobject

public String getValue()

Returns:
the PGlseg in the syntax expected by PostgreSQL

92

Chapter 5. JDBC Interface

Overrides:
getValue in class PGobject

Class org.postgresgl.geometric.PGpath
java.lang.Object

|
+----org.postgresql.util.PGobject
I

+----0rg.postgresql.geometric.PGpath

public class PGpath extends PGobject implements Serializable,
Cloneable

This implements a path (a multiply segmented line, which may be
closed)

Variables
public boolean open

True if the path is open, false if closed
public PGpoint points]]

The points defining this path
Constructors

public PGpath(PGpoint points]],
boolean open)

Parameters:
points - the PGpoints that define the path
open - True if the path is open, false if closed

public PGpath()
Required by the driver
public PGpath(String s) throws SQLException

Parameters:
s - definition of the path in PostgreSQL's syntax.

Throws: SQLException
on conversion failure

Methods
public void setValue(String s) throws SQLException

Parameters:
s - Definition of the path in PostgreSQL's syntax

Throws: SQLException
on conversion failure

93

Chapter 5. JDBC Interface
Overrides:
setValue in class PGobject
public boolean equals(Object obj)

Parameters:
obj - Object to compare with

Returns:
true if the two pathes are identical

Overrides:
equals in class PGobject

public Object clone()
This must be overridden to allow the object to be cloned

Overrides:
clone in class PGobject

public String getValue()

This returns the path in the syntax expected by
PostgreSQL

Overrides:
getValue in class PGobject

public boolean isOpen()
This returns true if the path is open
public boolean isClosed()
This returns true if the path is closed
public void closePath()
Marks the path as closed
public void openPath()
Marks the path as open
Class org.postgresql.geometric.PGpoint
java.lang.Object

I
+----org.postgresql.util. PGobject

+----org.postgresgl.geometric.PGpoint

public class PGpoint extends PGobject implements Serializable,
Cloneable

94

Chapter 5. JDBC Interface

This implements a version of java.awt.Point, except it uses double
to represent the coordinates.

It maps to the point data type in PostgreSQL.
Variables
public double x
The X coordinate of the point
public double y
The Y coordinate of the point
Constructors

public PGpoint(double x,
double y)

Parameters:
X - coordinate
y - coordinate

public PGpoint(String value) throws SQLException

This is called mainly from the other geometric types, when a
point is embedded within their definition.

Parameters:
value - Definition of this point in PostgreSQL’s
syntax
public PGpoint()
Required by the driver
Methods

public void setValue(String s) throws SQLException

Parameters:
s - Definition of this point in PostgreSQL’s syntax

Throws: SQLException
on conversion failure

Overrides:
setValue in class PGobject

public boolean equals(Object obj)

Parameters:
obj - Object to compare with

Returns:
true if the two points are identical

95

Chapter 5. JDBC Interface

Overrides:
equals in class PGobject

public Object clone()
This must be overridden to allow the object to be cloned

Overrides:
clone in class PGobject

public String getValue()

Returns:
the PGpoint in the syntax expected by PostgreSQL

Overrides:
getValue in class PGobject

public void translate(int x,
int y)

Translate the point with the supplied amount.

Parameters:
X - integer amount to add on the x axis
y - integer amount to add on the y axis

public void translate(double X,
double y)

Translate the point with the supplied amount.
Parameters:

X - double amount to add on the x axis
y - double amount to add on the y axis

public void move(int X,
int y)

Moves the point to the supplied coordinates.
Parameters:
X - integer coordinate

y - integer coordinate

public void move(double X,
double)

Moves the point to the supplied coordinates.
Parameters:
X - double coordinate

y - double coordinate

public void setLocation(int X,
int y)

96

Chapter 5. JDBC Interface
Moves the point to the supplied coordinates. refer to
java.awt.Point for description of this
Parameters:
X - integer coordinate

y - integer coordinate

See Also:
Point

public void setlLocation(Point p)

Moves the point to the supplied java.awt.Point refer to
java.awt.Point for description of this

Parameters:
p - Point to move to

See Also:
Point

Class org.postgresgl.geometric.PGpolygon
java.lang.Object

I
+----org.postgresql.util.PGobject

+----org.postgresql.geometric. PGpolygon

public class PGpolygon extends PGobject implements Serializable,
Cloneable

This implements the polygon data type within PostgreSQL.
Variables
public PGpoint points]]
The points defining the polygon
Constructors
public PGpolygon(PGpoint points][])
Creates a polygon using an array of PGpoints

Parameters:
points - the points defining the polygon

public PGpolygon(String s) throws SQLException

Parameters:
s - definition of the polygon in PostgreSQL’'s syntax.

Throws: SQLException
on conversion failure

97

Chapter 5. JDBC Interface

public PGpolygon()
Required by the driver
Methods
public void setValue(String s) throws SQLException

Parameters:
s - Definition of the polygon in PostgreSQL’s syntax

Throws: SQLException
on conversion failure

Overrides:
setValue in class PGobject

public boolean equals(Object obj)

Parameters:
obj - Object to compare with

Returns:
true if the two polygons are identical

Overrides:
equals in class PGobject

public Object clone()
This must be overridden to allow the object to be cloned

Overrides:
clone in class PGobject

public String getValue()

Returns:
the PGpolygon in the syntax expected by PostgreSQL

Overrides:
getValue in class PGobject

5.7.3. Large Objects

Large objects are supported in the standard JDBC specification. However, that interface is limited,
and the API provided by PostgreSQL allows for random access to the objects contents, as if it was a
local file.

The org.postgresql.largeobject package provides to Java the libpg C interface’s large object API. It
consists of two classesargeObjectManager , which deals with creating, opening and deleting
large objects, antdargeObject which deals with an individual object.

98

Chapter 5. JDBC Interface

5.7.3.1. Class org.postgresgl.largeobject.LargeObject

public class LargeObject extends Object

java.lang.Object

+----org.postgresql.largeobject.LargeObject

This class implements the large object interface to PostgreSQL.

It provides the basic methods required to run the interface, plus a pair of methods that jmovide
putStream andOutputStream classes for this object.

Normally, client code would use the methodsBirOBto access large objects.

However, sometimes lower level access to Large Objects is required, that is not supported by the
JDBC specification.

Refer to org.postgresql.largeobject.LargeObjectManager on how to gain access to a Large Object, or
how to create one.

See Also:LargeObjectManager

5.7.3.1.1. Variables

public static final int SEEK_SET

Indicates a seek from the beginning of a file
public static final int SEEK_CUR

Indicates a seek from the current position
public static final int SEEK_END

Indicates a seek from the end of a file

5.7.3.1.2. Methods

« public int getOID()
Returns the OID of thisargeObject

» public void close() throws SQLException

This method closes the object. You must not call methods in this object after this is called.

« public byte[] read(int len) throws SQLException

Reads some data from the object, and return as a byte[] array

« public int read(byte buf[],
int off,
int len) throws SQLException

Reads some data from the object into an existing array

99

Chapter 5. JDBC Interface

Parameters:

buf

destination array
off

offset within array
len

number of bytes to read

« public void write(byte buff]) throws SQLException

Writes an array to the object

« public void write(byte buf],
int off,
int len) throws SQLException

Writes some data from an array to the object

Parameters:

buf

destination array
off

offset within array
len

number of bytes to write

5.7.3.2. Class org.postgresgl.largeobject.LargeObjectManager

public class LargeObjectManager extends Object

java.lang.Object

+----org.postgresql.largeobject.LargeObjectManager

This class implements the large object interface to PostgreSQL. It provides methods that allow client
code to create, open and delete large objects from the database. When opening an object, an instance
of org.postgresgl.largeobject.LargeObject is returned, and its methods then allow access

to the object.

This class can only be created by org.postgresgl.PGConnection. To get access to this class, use the
following segment of code:

100

Chapter 5. JDBC Interface

import org.postgresqgl.largeobject.*;

Connection conn;

LargeObjectManager lobj;

/I ... code that opens a connection ...

lobj = ((org.postgresql.PGConnection)myconn).getLargeObjectAPI();

Normally, client code would use tlBOBmethods to access large objects. However, sometimes lower
level access to Large Objects is required, that is not supported by the JDBC specification.

Refer to org.postgresql.largeobject.LargeObject on how to manipulate the contents of a Large Object.

5.7.3.2.1. Variables

public static final int WRITE

This mode indicates we want to write to an object.
public static final int READ

This mode indicates we want to read an object.
public static final int READWRITE

This mode is the default. It indicates we want read and write access to a large object.

5.7.3.2.2. Methods

» public LargeObject open(int oid) throws SQLException

This opens an existing large object, based on its OID. This method assumBgAtNdWRITE
access is required (the default).

- public LargeObject open(int oid,
int mode) throws SQLException

This opens an existing large object, based on its OID, and allows setting the access mode.

» public int create() throws SQLException

This creates a large object, returning its OID. It defaultREADWRITEor the new object’s at-
tributes.

« public int create(int mode) throws SQLException

This creates a large object, returning its OID, and sets the access mode.

e public void delete(int oid) throws SQLException

This deletes a large object.

« public void unlink(int oid) throws SQLException

101

Chapter 5. JDBC Interface

This deletes a large object. It is identical to the delete method, and is supplied as the C API uses
“unlink”.

5.8. Using the driver in a multithreaded or a servlet environment

A problem with many JDBC drivers is that only one thread can uSermection at any one time --
otherwise a thread could send a query while another one is receiving results, and this would be a bad
thing for the database engine.

The PostgreSQL JDBC Driver is thread safe. Consequently, if your application uses multiple threads
then you do not have to worry about complex algorithms to ensure that only one uses the database at
any time.

If a thread attempts to use the connection while another one is using it, it will wait until the other
thread has finished its current operation. If it is a regular SQL statement, then the operation consists
of sending the statement and retrieving &sgultSet (in full). If itis a Fastpath call (e.g., reading

a block from aLargeObject) then it is the time to send and retrieve that block.

This is fine for applications and applets but can cause a performance problem with servlets. With
servlets you can have a heavy load on the connection. If you have several threads performing queries
then each but one will pause, which may not be what you are after.

To solve this, you would be advised to create a pool of connections. When ever a thread needs to use
the database, it asks a manager class fosrmection . The manager hands a free connection to the
thread and marks it as busy. If a free connection is not available, it opens one. Once the thread has
finished with it, it returns it to the manager who can then either close it or add it to the pool. The
manager would also check that the connection is still alive and remove it from the pool if it is dead.

So, with servlets, it is up to you to use either a single connection, or a pool. The plus side for a pool is
that threads will not be hit by the bottle neck caused by a single network connection. The down side
is that it increases the load on the server, as a backend process is created tsreaction . Itis

up to you and your applications requirements.

5.9. Connection Pools And DataSources

5.9.1. JDBC, JDK Version Support

JDBC 2 introduced standard connection pooling features in an add-on API known as the JDBC 2.0
Optional Package (also known as the JDBC 2.0 Standard Extension). These features have since been
included in the core JDBC 3 API. The PostgreSQL JDBC drivers support these features with JDK
1.3.x in combination with the JDBC 2.0 Optional Package (JDBC 2), or with JDK 1.4+ (JDBC 3).
Most application servers include the JDBC 2.0 Optional Package, but it is also available separately
from the Sun JDBC download sfte

2. http:/fjava.sun.com/products/jdbc/download.html#spec

102

Chapter 5. JDBC Interface

5.9.2. JDBC Connection Pooling API

The JDBC API provides a client and a server interface for connection pooling. The client interface
is javax.sgl.DataSource , Which is what application code will typically use to acquire a pooled
database connection. The server interfagavisx.sql.ConnectionPoolDataSource , which is

how most application servers will interface with the PostgreSQL JDBC driver.

In an application server environment, the application server configuration will typically refer to the
PostgreSQIConnectionPoolDataSource implementation, while the application component code
will typically acquire aDataSource implementation provided by the application server (not by Post-
greSQL).

In an environment without an application server, PostgreSQL provides two implementatizats-of

Source which an application can use directly. One implementation performs connection pooling,
while the other simply provides access to database connections throubhtti$aurce interface
without any pooling. Again, these implementations should not be used in an application server envi-
ronment unless the application server does not suppo@dheectionPoolDataSource interface.

5.9.3. Application Servers: ConnectionPoolDataSource

PostgreSQL includes one implementationQaihnectionPoolDataSource for JDBC 2, and one
for JDBC 3:

Table 5-1. ConnectionPoolDataSource Implementations

JDBC Implementation Class
2 org.postgresgl.jdbc2.optional.ConnectionPool
3 org.postgresgl.jdbc3.Jdbc3ConnectionPool

Both implementations use the same configuration scheme. JDBC require<thatsationPool-
DataSource be configured via JavaBean properties, so there are get and set methods for each of
these properties:

Table 5-2. ConnectionPoolDataSource Configuration Properties

Property Type Description

serverName String PostgreSQL database server
hostname

databaseName String PostgreSQL database name

portNumber int TCP/IP port which the

PostgreSQL database server is
listening on (or O to use the

default port)

user String User used to make database
connections

password String Password used to make database
connections

103

Chapter 5. JDBC Interface

Property Type Description
defaultAutoCommit boolean \Whether connections should
have autoCommit enabled or
disabled when they are supplied
to the caller. The default is
false ,to disable autoCommit.

Many application servers use a properties-style syntax to configure these properties, so it would not
be unusual to enter properties as a block of text.

Example 5-5.ConnectionPoolDataSource Configuration Example

If the application server provides a single area to enter all the properties, they might be listed like this:

serverName=localhost
databaseName=test
user=testuser
password=testpassword

Or, separated by semicolons instead of newlines, like this:
serverName=localhost;databaseName=test;user=testuser;password=testpassword

5.9.4. Applications: DataSource

PostgreSQL includes two implementationsDzftaSource for JDBC 2, and two for JDBC 3. The
pooling implementations do not actually close connections when the client caliotsee method,

but instead return the connections to a pool of available connections for other clients to use. This
avoids any overhead of repeatedly opening and closing connections, and allows a large number of
clients to share a small number of database connections.

The pooling datasource implementation provided here is not the most feature-rich in the world.
Among other things, connections are never closed until the pool itself is closed; there is ho way
to shrink the pool. As well, connections requested for users other than the default configured user are
not pooled. Many application servers provide more advanced pooling features, and Qseriie
tionPoolDataSource implementation instead.

Table 5-3. DataSource Implementations

JDBC Pooling Implementation Class

2 No org.postgresql.jdbc2.optional.SimpleDataSource
2 Yes org.postgresql.jdbc2.optional.PoolingDataSource
3 No org.postgresgl.jdbc3.Jdbc3SimplgDataSource

3 Yes org.postgresgl.jdbc3.Jdbc3PoolingDataSource

All the implementations use the same configuration scheme. JDBC requiresOhgiSaurce be
configured via JavaBean properties, so there are get and set methods for each of these properties.

104

Chapter 5. JDBC Interface

Table 5-4. DataSource Configuration Properties

Property Type Description

serverName String PostgreSQL database server
hostname

databaseName String PostgreSQL database name

portNumber int TCP/IP port which the

PostgreSQL database server is
listening on (or O to use the

default port)

user String User used to make database
connections

password String Password used to make database
connections

The pooling implementations require some additional configuration properties:

Table 5-5. Additional Pooling DataSource Configuration Properties

Property Type Description

dataSourceName String Every poolingDataSource
must have a unique name

initialConnections int The number of database
connections to be created when
the pool is initialized.

maxConnections int The maximum number of open
database connections to allow,
When more connections are
requested, the caller will hang
until a connection is returned to
the pool.

Here’s an example of typical application code using a podiiagSource :

Example 5-6.DataSource Code Example

Code to initialize a pooling DataSource might look like this:

Jdbc3PoolingDataSource source = new Jdbc3PoolingDataSource();
source.setDataSourceName("A Data Source");
source.setServerName("localhost");
source.setDatabaseName("test");
source.setUser("testuser");
source.setPassword("testpassword");
source.setMaxConnections(10);
Then code to use a connection from the pool might look like this. Note that it is critical that the
connections are closed, or else the pool will "leak" connections, and eventually lock all the clients
out.
Connection con = null;
try {
con = source.getConnection();
/I use connection

105

Chapter 5. JDBC Interface

} catch(SQLException e) {
/I log error

} finally {
if(con = null) {
try {con.close();}catch(SQLException e) {}
}

5.9.5. DataSources and JNDI

All the ConnectionPoolDataSource andDataSource implementations can be stored in JNDI.
In the case of the non-pooling implementations, a new instance will be created every time the object
is retrieved from JNDI, with the same settings as the instance which was stored. For the pooling
implementations, the same instance will be retrieved as long as it is available (e.g. not a different
JVM retrieving the pool from JNDI), or a new instance with the same settings created otherwise.

In the application server environment, typically the application serettaSource instance will be
stored in JNDI, instead of the PostgreSQannectionPoolDataSource implementation.

In an application environment, the application may storeDhi@Source in JNDI so that it doesn’t
have to make a reference to thataSource available to all application components that may need
to use it:

Example 5-7.DataSource JNDI Code Example

Application code to initialize a pooling DataSource and add it to JNDI might look like this:

Jdbc3PoolingDataSource source = new Jdbc3PoolingDataSource();
source.setDataSourceName("A Data Source");
source.setServerName("localhost");
source.setDatabaseName("test");
source.setUser("testuser");
source.setPassword("testpassword");
source.setMaxConnections(10);
new InitialContext().rebind("DataSource”, source);
Then code to use a connection from the pool might look like this:

Connection con = null;
try {

DataSource source = (DataSource)new InitialContext().lookup("DataSource");

con = source.getConnection();

/I use connection
} catch(SQLException e) {

/I log error
} catch(NamingException e) {

/I DataSource wasn’'t found in JNDI
} finally {

if(con = null) {

try {con.close();}catch(SQLException e) {}
}

106

Chapter 5. JDBC Interface

5.9.6. Specific Application Server Configurations

Configuration examples for specific application servers will be included here.

5.10. Further Reading

If you have not yet read it, I'd advise you read the JDBC APl Documentation
(supplied with Sun’s JDK), and the JDBC Specification. Both are available from
http://java.sun.com/products/jdbc/index.html.

http://jdbc.postgresql.org contains updated information not included in this document, and also in-
cludes precompiled drivers.

107

Chapter 6. PyGreSQL - Python Interface

Author: Written by D’Arcy J.M. Cain (<darcy@druid.net >). Based heavily on code written by
Pascal Andre <andre@chimay.via.ecp.fr >, Copyright © 1995, Pascal Andre. Further modifica-
tions Copyright © 1997-2000 by D’Arcy J.M. Cain.

You may either choose to use the old mature interface provided bygtmeodule or otherwise the
newerpgdb interface compliant with the DB-API 2'@pecification developed by the Python DB-SIG.

Here we describe only the oldeg API. As long as PyGreSQL does not contain a description of
the DB-API you should read about the API at http://www.python.org/topics/database/DatabaseAPI-
2.0.html.

A tutorial-like introduction to the DB-API can be found at http://wwwz2.linuxjournal.com/lj-
issues/issue49/2605.html

6.1. The pg Module

Thepg module defines three objects:

« pgobject , which handles the connection and all the requests to the database,
- pglargeobject , which handles all the accesses to PostgreSQL large objects, and

« pgqueryobject that handles query results.

If you want to see a simple example of the use of some of these functions, see
http://www.druid.net/rides where you can find a link at the bottom to the actual Python code for the

page.

6.1.1. Constants

Some constants are defined in iemodule dictionary. They are intended to be used as a parameters
for methods calls. You should refer to the libpq descriptiGhdpter } for more information about
them. These constants are:

INV_READ
INV_WRITE

large objects access modes, useddoypbject.)locreate and(pglarge.)open

SEEK_SET
SEEK_CUR
SEEK_END

positional flags, used bipglarge.)seek

1. http://www.python.org/topics/database/DatabaseAPI-2.0.html

108

6.2. pg

version
__version__

constants that give the current version

Module Functions

pg module defines only a few methods that allow to connect to a database and to define “default
variables” that override the environment variables used by PostgreSQL.

These “default variables” were designed to allow you to handle general connection parameters without
heavy code in your programs. You can prompt the user for a value, put it in the default variable, and
forget it, without having to modify your environment. The support for default variables can be disabled
by setting theDNO_DEF_VARoption in the Pythorsetup file. Methods relative to this are specified

by the tag [DV].

All variables are set tdlone at module initialization, specifying that standard environment variables
should be used.

connect

Name

connect — open a connection to the database server

Synopsis

connect(dbname], [host], [port], [opt], [tty], [user], [passwd])

Parameters

dbname
Name of connected database (stringie).
host
Name of the server host (strimggne).
port
Port used by the database server (integer/-1).
opt
Options for the server (stringbne).

tty
File or tty for optional debug output from backend (striigre).

109

user
PostgreSQL user (stringédne).
passwd

Password for user (stringéne).

Return Type

pgobject

If successful, an object handling a database connection is returned.

Exceptions

TypeError

Bad argument type, or too many arguments.
SyntaxError

Duplicate argument definition.
pg.error

Some error occurred durin@ connection definition.

(plus all exceptions relative to object allocation)

Description

connect

This method opens a connection to a specified database on a given PostgreSQL server. You can use
key words here, as described in the Python tutorial. The names of the key words are the name of the
parameters given in the syntax line. For a precise description of the parameters, please refer to the

PostgreSQL user manual.

Examples

import pg

conl = pg.connect('testdb’, 'myhost’, 5432, None, None, 'bob’, None)

con2 pg.connect(dbname="testdb’, host="localhost’, user="bob’)

110

get_defhost

Name

get_defhost — get default host name [DV]

Synopsis

get_defhost()

Parameters

none

Return Type

string orNone

Default host specification

Exceptions

SyntaxError

Too many arguments.

Description

get_defhost() returns the current default host specificationNone if the environment variables
should be used. Environment variables will not be looked up.

111

set_defhost

Name

set_defhost — set default host name [DV]

Synopsis

set_defhost(host)

Parameters

host

New default host (stringfone).

Return Type

string orNone

Previous default host specification.

Exceptions

TypeError

Bad argument type, or too many arguments.

Description

set_defhost() sets the default host value for new connectionsidfie is supplied as parameter,
environment variables will be used in future connections. It returns the previous setting for default
host.

112

get_defport

Name
get_defport — get default port [DV]

Synopsis

get_defport()

Parameters

none

Return Type

integer oMNone

Default port specification

Exceptions

SyntaxError

Too many arguments.

Description

get_defport() returns the current default port specificationNone if the environment variables
should be used. Environment variables will not be looked up.

113

set defport

Name

set_defport — set default port [DV]

Synopsis

set_defport(port)

Parameters

port
New default host (integer/-1).

Return Type

integer oMone

Previous default port specification.

Exceptions

TypeError

Bad argument type, or too many arguments.

Description

set_defport() sets the default port value for new connections. If -1 is supplied as parameter, envi-
ronment variables will be used in future connections. It returns the previous setting for default port.

114

get_defopt

Name

get_defopt — get default options specification [DV]

Synopsis

get_defopt()

Parameters

none

Return Type

string orNone

Default options specification

Exceptions

SyntaxError

Too many arguments.

Description

get_defopt() returns the current default connection options specificationpae if the environ-
ment variables should be used. Environment variables will not be looked up.

115

set defopt

Name

set_defopt — set default options specification [DV]

Synopsis

set_defopt(options)

Parameters

options

New default connection options (strilne).

Return Type

string orNone

Previous default opt specification.

Exceptions

TypeError

Bad argument type, or too many arguments.

Description

set_defopt() sets the default connection options value for new connectionené is supplied as
parameter, environment variables will be used in future connections. It returns the previous setting for
default options.

116

get_defity

Name

get_deftty = — get default connection debug terminal specification [DV]

Synopsis

get_defity()

Parameters

none

Return Type

string orNone

Default debug terminal specification

Exceptions

SyntaxError

Too many arguments.

Description

get_deftty() returns the current default debug terminal specificatiomNare if the environment
variables should be used. Environment variables will not be looked up.

117

set deftty

Name

set_deftty =~ — set default connection debug terminal specification [DV]

Synopsis

set_deftty(terminal)

Parameters

terminal

New default debug terminal (strirgdne).

Return Type

string orNone

Previous default debug terminal specification.

Exceptions

TypeError

Bad argument type, or too many arguments.

Description

set_deftty() sets the default terminal value for new connectionBiolie is supplied as parameter,
environment variables will be used in future connections. It returns the previous setting for default
terminal.

118

get_defbase

Name

get_defbase — get default database name specification [DV]

Synopsis

get_defbase()

Parameters

none

Return Type

string orNone

Default debug database name specification

Exceptions

SyntaxError

Too many arguments.

Description

get _defbase() returns the current default database name specificatiovgrer if the environment
variables should be used. Environment variables will not be looked up.

119

set_defbase

Name

set_defbase — set default database name specification [DV]

Synopsis

set_defbase(database)

Parameters

database

New default database name (strikghe).

Return Type

string orNone

Previous default database name specification.

Exceptions

TypeError

Bad argument type, or too many arguments.

Description

set_defbase() sets the default database name for new connectioNsnH is supplied as parame-
ter, environment variables will be used in future connections. It returns the previous setting for default
database name.

120

6.3. Connection Object: pgobject

This object handles a connection to the PostgreSQL database. It embeds and hides all the parameters
that define this connection, leaving just really significant parameters in function calls.

Some methods give direct access to the connection socket. They are specified by the tdpo[DA].
not use them unless you really know what you are ddihgou prefer disabling them, set the
DNO_DIRECToption in the Pythorsetup file.

Some other methods give access to large objects. if you want to forbid access to these from the module,
set the DNO_LARGEHoption in the Pythorsetup file. These methods are specified by the tag [LO].

Everypgobject defines a set of read-only attributes that describe the connection and its status. These
attributes are:
host
the host name of the server (string)
port
the port of the server (integer)
db
the selected database (string)
options
the connection options (string)
tty
the connection debug terminal (string)
user
user name on the database system (string)
status
the status of the connection (integer: 1 - OK, 0 - bad)
error

the last warning/error message from the server (string)

query

Name

query — execute a SQL command

Synopsis

query(command)

121

query
Parameters

command

SQL command (string).

Return Type

pgqueryobject or None

Result values.

Exceptions

TypeError

Bad argument type, or too many arguments.
ValueError

Empty SQL query.
pg.error

Error during query processing, or invalid connection.

Description

query() method sends a SQL query to the database. If the query is an insert statement, the return
value is the OID of the newly inserted row. If it is otherwise a query that does not return a result (i.e.,
is not a some kind o8ELECTstatement), it returnSione. Otherwise, it returns pgqueryobject

that can be accessed via thresult() or dictresult() methods or simply printed.

122

reset

Name

reset — resetthe connection

Synopsis

reset()

Parameters

none

Return Type

none

Exceptions

TypeError

Too many (any) arguments.

Description

reset() method resets the current database.

123

close

Name

close — close the database connection

Synopsis

close()

Parameters

none

Return Type

none

Exceptions

TypeError

Too many (any) arguments.

Description

close() method closes the database connection. The connection will be closed in any case when the
connection is deleted but this allows you to explicitly close it. It is mainly here to allow the DB-SIG
API wrapper to implement a close function.

124

fileno

Name

fileno — return the socket used to connect to the database

Synopsis

fileno()

Parameters

none

Return Type

socket id

The underlying socket id used to connect to the database.

Exceptions

TypeError

Too many (any) arguments.

Description

fileno() method returns the underlying socket id used to connect to the database. This is useful for
use inselect calls, etc.

125

getnotify

Name

getnotify ~ — get the last notify from the server

Synopsis

getnotify()

Parameters

none

Return Type

tuple,None

Last notify from server

Exceptions

TypeError
Too many (any) arguments.
pg.error

Invalid connection.

Description

getnotify() method tries to get a notify from the server (from the SQL statememFy). If the
server returns no notify, the methods retuxiase. Otherwise, it returns a tuple (coupl@diname,

pid) , whererelname is the name of the notify ard the process id of the connection that triggered
the notify. Remember to do a listen query first othervgstotify will always returnNone.

126

inserttable

Name
inserttable —insert a list into a table
Synopsis

inserttable(table , values)
Parameters
table

The table name (string).
values

The list of rows values to insert (list).

Return Type

none

Exceptions

TypeError
Bad argument type or too many (any) arguments.
pg.error

Invalid connection.

Description

inserttable() method allows to quickly insert large blocks of data in a table: it inserts the whole
values list into the given table. The list is a list of tuples/lists that define the values for each inserted
row. The rows values may contain string, integer, long or double (real) vabeegery carefulthis
method does not type-check the fields according to the table definition; it just look whether or not it
knows how to handle such types.

127

putline

Name

putline — write a line to the server socket [DA]

Synopsis

putline(line)

Parameters

line

Line to be written (string).

Return Type

none

Exceptions

TypeError
Bad argument type or too many (any) arguments.
pg.error

Invalid connection.

Description

putline() method allows to directly write a string to the server socket.

128

getline

Name

getline — get a line from server socket [DA]

Synopsis

getline()

Parameters

none

Return Type

string

The line read.

Exceptions

TypeError
Bad argument type or too many (any) arguments.
pg.error

Invalid connection.

Description

getline() method allows to directly read a string from the server socket.

129

endcopy

Name

endcopy — synchronize client and server [DA]

Synopsis

endcopy()

Parameters

none

Return Type

none

Exceptions

TypeError
Bad argument type or too many (any) arguments.
pg.error

Invalid connection.

Description

The use of direct access methods may desynchronize client and server. This method ensure that client
and server will be synchronized.

130

locreate

Name

locreate — create a large object in the database [LO]

Synopsis

locreate(mode)

Parameters

mode

Large object create mode.

Return Type

pglarge
Object handling the PostgreSQL large object.

Exceptions

TypeError
Bad argument type or too many arguments.
pg.error

Invalid connection, or creation error.

Description

locreate() method creates a large object in the database. The mode can be defined by OR-ing the
constants defined in the pg moduld\{_READandINV_WRITE).

131

getlo

Name
getlo — build a large object from given OID [LO]

Synopsis

getlo(oid)

Parameters
oid
OID of the existing large object (integer).

Return Type

pglarge
Object handling the PostgreSQL large object.

Exceptions

TypeError
Bad argument type or too many arguments.
pg.error

Invalid connection.

Description

getlo() method allows to reuse a formerly created large object througlpdlagge interface,
providing the user has its OID.

132

loimport

Name
loimport — import a file to a PostgreSQL large object [LO]

Synopsis

loimport(filename)

Parameters

filename

The name of the file to be imported (string).

Return Type

pglarge
Object handling the PostgreSQL large object.

Exceptions

TypeError
Bad argument type or too many arguments.
pg.error

Invalid connection, or error during file import.

Description

loimport() method allows to create large objects in a very simple way. You just give the name of a
file containing the data to be use.

133

6.4. Database Wrapper Class: DB

pg module contains a class callbé All pgobject methods are included in this class also. A number
of additionalDBclass methods are described below. The preferred way to use this module is as follows
(See description of the initialization method below.):

import pg
db = pg.DB(...)
for r in db.query(
"SELECT foo,bar
FROM foo_bar_table
WHERE foo !~ bar"
).dictresult():

print '%(foo)s %(bar)s’ % r

The following describes the methods and variables of this class.

TheDBclass is initialized with the same arguments aspineonnect method. It also initializes a
few internal variables. The statemeiftit = DB() will open the local database with the name of the
user just likepg.connect() does.

pkey

Name

pkey — return the primary key of a table

Synopsis

pkey(table)

Parameters

table

name of table.

Return Type

string

Name of field which is the primary key of the table.

134

pkey

Description

pkey() method returns the primary key of a table. Note that this raises an exception if the table does
not have a primary key.

135

get_databases

Name

get databases — get list of databases in the system

Synopsis

get_databases()

Parameters

none
Return Type

list

List of databases in the system.

Description

Although you can do this with a simple select, it is added here for convenience

136

get_tables

Name

get tables — get list of tables in connected database

Synopsis

get_tables()

Parameters

none
Return Type

list

List of tables in connected database.

Description

Although you can do this with a simple select, it is added here for convenience

137

get_attnames

Name

get_atthames — return the attribute names of a table

Synopsis

get_attnames(table)

Parameters

table

name of table.

Return Type

dictionary

The dictionary’s keys are the attribute names, the values are the type names of the attributes.

Description

Given the name of a table, digs out the set of attribute names and types.

138

get

Name

get — get a tuple from a database table

Synopsis

get(table , arg, [keyname])

Parameters

table
Name of table.

arg

Either a dictionary or the value to be looked up.

[keyname]

Name of field to use as key (optional).

Return Type

dictionary

A dictionary mapping attribute names to row values.

Description

This method is the basic mechanism to get a single row. It assumes that the key specifies a unique row.
If keyname is not specified then the primary key for the table is usedrdf is a dictionary then

the value for the key is taken from it and it is modified to include the new values, replacing existing
values where necessary. The OID is also put into the dictionary but in order to allow the caller to work
with multiple tables, the attribute name is munged to make it unique. It consists of thedtring

followed by the name of the table.

139

insert

Name

insert — insert a tuple into a database table

Synopsis

insert(table , a)

Parameters

table

Name of table.

A dictionary of values.

Return Type

integer

The OID of the newly inserted row.

Description

This method inserts values into the table specified filling in the values from the dictionary. It then
reloads the dictionary with the values from the database. This causes the dictionary to be updated
with values that are modified by rules, triggers, etc.

Due to the way that this function works you will find inserts taking longer and longer as your table
gets bigger. To overcome this problem simply add an index onto the OID of any table that you think
may get large over time.

140

update

Name

update — update a database table

Synopsis

update(table , a)

Parameters

table

Name of table.

A dictionary of values.

Return Type

integer

The OID of the newly updated row.

Description

Similar to insert but updates an existing row. The update is based on the OID value as munged by
get. The array returned is the one sent modified to reflect any changes caused by the update due to
triggers, rules, defaults, etc.

141

clear

Name
clear — clear a database table
Synopsis

clear(table , [a])
Parameters
table

Name of table.

[a]

A dictionary of values.

Return Type

dictionary

A dictionary with an empty row.

Description

This method clears all the attributes to values determined by the types. Numeric types are set to 0,
dates are settmday’ and everything else is set to the empty string. If the array argument is present,

it is used as the array and any entries matching attribute names are cleared with everything else left
unchanged.

142

delete

Name

delete — delete a row from a table

Synopsis

delete(table , [a])

Parameters

table

Name of table.

[a]

A dictionary of values.

Return Type

none

Description

This method deletes the row from a table. It deletes based on the OID as munged as described above.

143

6.5. Query Result Object: pggueryobject

getresult

Name

getresult ~ — get the values returned by the query

Synopsis

getresult()

Parameters

none

Return Type

list

List of tuples.

Exceptions

SyntaxError
Too many arguments.
pg.error

Invalid previous result.

Description

getresult() method returns the list of the values returned by the query. More information about
this result may be accessed uslisgields , fieldname andfieldnum methods.

144

dictresult

Name

dictresult — get the values returned by the query as a list of dictionaries

Synopsis

dictresult()

Parameters

none

Return Type

list

List of dictionaries.

Exceptions

SyntaxError
Too many arguments.
pg.error

Invalid previous result.

Description

dictresult() method returns the list of the values returned by the query with each tuple returned
as a dictionary with the field names used as the dictionary index.

145

listfields

Name

listfields — list the fields names of the query result

Synopsis

listfields()

Parameters

none

Return Type

list

field names

Exceptions

SyntaxError
Too many arguments.
pg.error

Invalid query result, or invalid connection.

Description

listfields() method returns the list of field names defined for the query result. The fields are in
the same order as the result values.

146

fieldname

Name

fieldname — get field name by number

Synopsis

fieldname(i)

Parameters

field number (integer).

Return Type

string

field name.

Exceptions

TypeError

Bad parameter type, or too many arguments.
ValueError

Invalid field number.
pg.error

Invalid query result, or invalid connection.

Description

fieldname() method allows to find a field name from its rank number. It can be useful for displaying
a result. The fields are in the same order than the result values.

147

fieldnum

Name

fieldnum — get field number by name

Synopsis

fieldnum(name)

Parameters

name

field name (string).

Return Type

integer

field number (integer).

Exceptions

TypeError

Bad parameter type, or too many arguments.
ValueError

Unknown field name.
pg.error

Invalid query result, or invalid connection.

Description

fieldnum() method returns a field number from its name. It can be used to build a function that con-
verts result list strings to their correct type, using a hardcoded table definition. The number returned
is the field rank in the result values list.

148

ntuples

Name

ntuples — return the number of tuples in query object

Synopsis

ntuples()

Parameters

none

Return Type

integer

The number of tuples in query object.

Exceptions

SyntaxError

Too many arguments.

Description

ntuples() method returns the number of tuples found in a query.

149

6.6. Large Object: pglarge

open

This object handles all the request concerning a PostgreSQL large object. It embeds and hides all
the “recurrent” variables (object OID and connection), exactly in the samepuaiyect s do, thus

only keeping significant parameters in function calls. It keeps a reference pgdhject used for

its creation, sending requests though with its parameters. Any modification but dereferencing the
pgobject will thus affect thepglarge object. Dereferencing the initiabobject is not a problem

since Python will not deallocate it before the large object dereference it. All functions return a generic
error message on call error, whatever the exact error waseridre attribute of the object allows to

get the exact error message.

pglarge objects define a read-only set of attributes that allow to get some information about it. These
attributes are:

oid

the OID associated with the object
pgcnx

thepgobject associated with the object
error

the last warning/error message of the connection

Important: In multithreaded environments, error may be modified by another thread using the
same pgobject . Remember that these object are shared, not duplicated; you should provide
some locking if you want to check for the error message in this situation. The OID attribute is
very interesting because it allow you to reuse the OID later, creating the pglarge object with a
pgobiject getlo() method call.

See alscChapter Zor more information about the PostgreSQL large object interface.

Name

open — open a large object

Synopsis

open(mode)

Parameters

mode

open mode definition (integer).

150

Return Type

none

Exceptions

TypeError

Bad parameter type, or too many arguments.

IOError
Already opened object, or open error.
pg.error

Invalid connection.

Description

open

open() method opens a large object for reading/writing, in the same way than theopig func-
tion. The mode value can be obtained by OR-ing the constants defined in the pg mguREAD,

INV_WRITE).

151

close

Name

close — close the large object

Synopsis

close()

Parameters

none

Return Type

none

Exceptions

SyntaxError
Too many arguments.

IOError

Object is not opened, or close error.

pg.error

Invalid connection.

Description

close() method closes previously opened large object, in the same way than thelbb@g

function.

152

read

Name

read — read from the large object

Synopsis

read(size)

Parameters

size

Maximal size of the buffer to be read (integer).

Return Type

string
The read buffer.

Exceptions

TypeError

Bad parameter type, or too many arguments.
IOError

Object is not opened, or read error.
pg.error

Invalid connection or invalid object.

Description

read() method allows to read data from the large object, starting at current position.

153

write

Name

write — write to the large object

Synopsis

write(string)

Parameters

string

Buffer to be written (string).

Return Type

none

Exceptions

TypeError

Bad parameter type, or too many arguments.

IOError
Object is not opened, or write error.
pg.error

Invalid connection or invalid object.

Description

write() method allows to write data to the large object, starting at current position.

154

seek

Name

seek — change current position in the large object

Synopsis

seek(offset , whence)

Parameters

offset
Position offset (integer).
whence

Positional parameter (integer).

Return Type

integer

New current position in the object.

Exceptions

TypeError

Bad parameter type, or too many arguments.
IOError

Object is not opened, or seek error.
pg.error

Invalid connection or invalid object.

Description

seek() method allows to move the cursor position in the large object. The whence parameter can be
obtained by OR-ing the constants defined inghemodule SEEK_SET SEEK_CURSEEK_ENI.

155

tell

Name

tell — return current position in the large object

Synopsis

tell()

Parameters

none

Return Type

integer

Current position in the object.

Exceptions

SyntaxError
Too many arguments.

IOError

Object is not opened, or seek error.

pg.error

Invalid connection or invalid object.

Description

tel) method allows to get the current position in the large object.

156

unlink

Name

unlink — delete the large object

Synopsis

unlink()

Parameters

none

Return Type

none

Exceptions

SyntaxError

Too many arguments.
IOError

Object is not closed, or unlink error.
pg.error

Invalid connection or invalid object.

Description

unlink() method unlinks (deletes) the large object.

157

size

Name

size — return the large object size

Synopsis

size()

Parameters

none

Return Type

integer

The large object size.

Exceptions

SyntaxError

Too many arguments.
IOError

Object is not opened, or seeki/tell error.
pg.error

Invalid connection or invalid object.

Description

size() method allows to get the size of the large object. It was implemented because this function is
very useful for a WWWe-interfaced database. Currently, the large object needs to be opened first.

158

export

Name

export — save the large object to file

Synopsis

export(filename)

Parameters

filename

The file to be created.

Return Type

none

Exceptions

TypeError

Bad argument type, or too many arguments.
IOError

Object is not closed, or export error.
pg.error

Invalid connection or invalid object.

Description

export() method allows to dump the content of a large object in a very simple way. The exported
file is created on the host of the program, not the server host.

159

Il. Server Programming

This second part of the manual explains the PostgreSQL approach to extensibility and describe how
users can extend PostgreSQL by adding user-defined types, operators, aggregates, and both query

language and programming language functions. After a discussion of the PostgreSQL rule system,
we discuss the trigger and SPI interfaces.

Chapter 7. Architecture

7.1. PostgreSQL Architectural Concepts

Before we begin, you should understand the basic PostgreSQL system architecture. Understanding
how the parts of PostgreSQL interact will make the next chapter somewhat clearer. In database jargon,
PostgreSQL uses a simple "process per-user" client/server model. A PostgreSQL session consists of
the following cooperating Unix processes (programs):

« A supervisory daemon process (the postmaster),
- the user’s frontend application (e.g., the psqgl program), and

- one or more backend database servers (the postgres process itself).

A single postmaster manages a given collection of databases on a single host. Such a collection of
databases is called a cluster (of databases). A frontend application that wishes to access a given
database within a cluster makes calls to an interface library (e.g., libpq) that is linked into the ap-
plication. The library sends user requests over the network to the postntagter(7-1a)), which in

turn starts a new backend server proc&sgure 7-1b))

162

Chapter 7. Architecture

Figure 7-1. How a connection is established

L ser
App

client host

LIBPQ

POSTHWASTER

(@ frontend sends request © posonaser
viawell-known network socket

ser
App

client host

(b} posonaster creates backend server

POSTMAST ERJ

SERVER J

And multdple connections
can be established...

Ll zer
App

client host

o multple backerd servers

163

Chapter 7. Architecture

and connects the frontend process to the new seRiguie 7-1c)). From that point on, the fron-
tend process and the backend server communicate without intervention by the postmaster. Hence, the
postmaster is always running, waiting for connection requests, whereas frontend and backend pro-
cesses come and go. Thigpg library allows a single frontend to make multiple connections to
backend processes. However, each backend process is a single-threaded process that can only execute
one query at a time; so the communication over any one frontend-to-backend connection is single-
threaded.

One implication of this architecture is that the postmaster and the backend always run on the same
machine (the database server), while the frontend application may run anywhere. You should keep
this in mind, because the files that can be accessed on a client machine may not be accessible (or may
only be accessed using a different path name) on the database server machine.

You should also be aware that the postmaster and postgres servers run with the user ID of the Post-
greSQL “superuser”. Note that the PostgreSQL superuser does not have to be any particular user
(e.g., auser namagbstgres), although many systems are installed that way. Furthermore, the Post-
greSQL superuser should definitely not be the Unix superusar,! It is safest if the PostgreSQL
superuser is an ordinary, unprivileged user so far as the surrounding Unix system is concerned. In any
case, all files relating to a database should belong to this Postgres superuser.

164

Chapter 8. Extending SQL: An Overview

In the sections that follow, we will discuss how you can extend the PostgreSQL SQL query language
by adding:

- functions
- data types
- operators
- aggregates

8.1. How Extensibility Works

PostgreSQL is extensible because its operation is catalog-driven. If you are familiar with standard
relational systems, you know that they store information about databases, tables, columns, etc., in
what are commonly known as system catalogs. (Some systems call this the data dictionary). The
catalogs appear to the user as tables like any other, but the DBMS stores its internal bookkeeping
in them. One key difference between PostgreSQL and standard relational systems is that PostgreSQL
stores much more information in its catalogs -- not only information about tables and columns, but also
information about its types, functions, access methods, and so on. These tables can be modified by the
user, and since PostgreSQL bases its internal operation on these tables, this means that PostgreSQL
can be extended by users. By comparison, conventional database systems can only be extended by
changing hardcoded procedures within the DBMS or by loading modules specially written by the
DBMS vendor.

PostgreSQL is also unlike most other data managers in that the server can incorporate user-written
code into itself through dynamic loading. That is, the user can specify an object code file (e.g., a
shared library) that implements a new type or function and PostgreSQL will load it as required. Code
written in SQL is even more trivial to add to the server. This ability to modify its operation “on the fly”
makes PostgreSQL uniquely suited for rapid prototyping of new applications and storage structures.

8.2. The PostgreSQL Type System

The PostgreSQL type system can be broken down in several ways. Types are divided into base types
and composite types. Base types are those,itilde , that are implemented in a language such as

C. They generally correspond to what are often knowalesract data typesPostgreSQL can only

operate on such types through methods provided by the user and only understands the behavior of
such types to the extent that the user describes them. Composite types are created whenever the user
creates a table.

PostgreSQL stores these types in only one way (within the file that stores all rows of a table) but

the user can “look inside” at the attributes of these types from the query language and optimize their
retrieval by (for example) defining indexes on the attributes. PostgreSQL base types are further divided
into built-in types and user-defined types. Built-in types (liké) are those that are compiled into

the system. User-defined types are those created by the user in the manner to be described later.

165

Chapter 8. Extending SQL: An Overview

8.3. About the PostgreSQL System Catalogs

Having introduced the basic extensibility concepts, we can now take a look at how the catalogs are
actually laid out. You can skip this section for now, but some later sections will be incomprehen-
sible without the information given here, so mark this page for later reference. All system catalogs
have names that begin witly_. The following tables contain information that may be useful to the

end user. (There are many other system catalogs, but there should rarely be a reason to query them
directly.)

Table 8-1. PostgreSQL System Catalogs

Catalog Name Description

pg_database databases

pg_class tables

pg_attribute table columns

pg_index indexes

pg_proc procedures/functions

pg_type data types (both base and complex)
pg_operator operators

pg_aggregate aggregate functions

pg_am access methods

pg_amop access method operators
pg_amproc access method support functions
pg_opclass access method operator classes

166

Chapter 8. Extending SQL: An Overview

Figure 8-1. The major PostgreSQL system catalogs

pg_indcx
Cindrelid
mdkey[8
o | ikex 8] O:N

indprac 1-——----

0:N

0N indpred

Linq:lvf:}n;ruf:]i-cl)

pg_attribute
-
wttre lid
nitnum pe_type 1
 atttypid aid ——— -

13:N

typrelid

typinput
typoutput

|
typreceive 7
1

typsend .

pg_class I 1} 1
L — aid _

relam

0:N

pg_am 1] 1
1 aid —
amgettuple T

aminsert T
amdelete T
amgetattr T
ambeginscan —

KEY:

dITITESCAT T
167

DEPENDENT amendscan T
C{areign key a—‘ ammarkpos T

Chapter 8. Extending SQL: An Overview

TheDeveloper’s Guidgives a more detailed explanation of these catalogs and their columns. How-
ever,Figure 8-1shows the major entities and their relationships in the system catalogs. (Columns that
do not refer to other entities are not shown unless they are part of a primary key.) This diagram is
more or less incomprehensible until you actually start looking at the contents of the catalogs and see
how they relate to each other. For now, the main things to take away from this diagram are as follows:

- In several of the sections that follow, we will present various join queries on the system catalogs
that display information we need to extend the system. Looking at this diagram should make some
of these join queries (which are often three- or four-way joins) more understandable, because you
will be able to see that the columns used in the queries form foreign keys in other tables.

- Many different features (tables, columns, functions, types, access methods, etc.) are tightly inte-

grated in this schema. A simple create command may modify many of these catalogs.
- Types and procedures are central to the schema.

Note: We use the words procedure and function more or less interchangeably.

Nearly every catalog contains some reference to rows in one or both of these tables. For example,
PostgreSQL frequently uses type signatures (e.g., of functions and operators) to identify unique
rows of other catalogs.

- There are many columns and relationships that have obvious meanings, but there are many (partic-
ularly those that have to do with access methods) that do not.

168

Chapter 9. Extending SQL: Functions

9.1. Introduction

PostgreSQL provides four kinds of functions:

- query language functions (functions written in SQL)
« procedural language functions (functions written in, for example, PL/Tcl or PL/pgSQL)
- internal functions

- C language functions

Every kind of function can take a base type, a composite type, or some combination as arguments
(parameters). In addition, every kind of function can return a base type or a composite type. It's
easiest to define SQL functions, so we'll start with those. Examples in this section can also be found
in funcs.sgl andfuncs.c in the tutorial directory.

Throughout this chapter, it can be useful to look at the reference page GfRIBATE FUNCTION
command to understand the examples better.

9.2. Query Language (SQL) Functions

SQL functions execute an arbitrary list of SQL statements, returning the result of the last query in the
list, which must be &ELECT In the simple (non-set) case, the first row of the last query’s result will
be returned. (Bear in mind that “the first row” of a multirow result is not well-defined unless you use
ORDER BY If the last query happens to return no rows at all, NULL will be returned.

Alternatively, an SQL function may be declared to return a set, by specifying the function’s return
type asSETOFsometype . In this case all rows of the last query’s result are returned. Further details
appear below.

The body of an SQL function should be a list of one or more SQL statements separated by semicolons.
Note that because the syntax of ttREATE FUNCTIORommand requires the body of the function to

be enclosed in single quotes, single quote marksiged in the body of the function must be escaped,

by writing two single quotes’() or a backslash’() where each quote is desired.

Arguments to the SQL function may be referenced in the function body using the $yntdx refers
to the first argument, $2 to the second, and so on. If an argument is of a composite type, then the “dot
notation”, e.g.$1.emp , may be used to access attributes of the argument.

9.2.1. Examples

To illustrate a simple SQL function, consider the following, which might be used to debit a bank
account:

CREATE FUNCTION tpl (integer, numeric) RETURNS integer AS ’
UPDATE bank
SET balance = balance - $2
WHERE accountno = $1;
SELECT 1;
" LANGUAGE SQL;

169

Chapter 9. Extending SQL: Functions

A user could execute this function to debit account 17 by $100.00 as follows:

SELECT tp1(17, 100.0);

In practice one would probably like a more useful result from the function than a constant “1”, so a
more likely definition is

CREATE FUNCTION tpl (integer, numeric) RETURNS numeric AS '’
UPDATE bank
SET balance = balance - $2
WHERE accountno = $1;
SELECT balance FROM bank WHERE accountno = $1;
" LANGUAGE SQL;

which adjusts the balance and returns the new balance.

Any collection of commands in the SQL language can be packaged together and defined as a function.
The commands can include data modification (IMSERT, UPDATEandDELETH as well asSELECT
gueries. However, the final command must b8ELECT that returns whatever is specified as the
function’s return type. Alternatively, if you want to define a SQL function that performs actions but
has no useful value to return, you can define it as returmidy . In that case it must not end with a
SELECT For example:

CREATE FUNCTION clean_EMP () RETURNS void AS '’
DELETE FROM EMP
WHERE EMP.salary <= 0;
" LANGUAGE SQL;

SELECT clean_EMP();

clean_emp

9.2.2. SQL Functions on Base Types

The simplest possible SQL function has no arguments and simply returns a base type,istiech as
ger :

CREATE FUNCTION one() RETURNS integer AS
SELECT 1 as RESULT;
" LANGUAGE SQL;

SELECT one();

170

Chapter 9. Extending SQL: Functions

Notice that we defined a column alias within the function body for the result of the function (with the
nameRESULT, but this column alias is not visible outside the function. Hence, the result is labeled
one instead ofRESULT

It is almost as easy to define SQL functions that take base types as arguments. In the example below,
notice how we refer to the arguments within the functioshand$2:

CREATE FUNCTION add_em(integer, integer) RETURNS integer AS ’
SELECT $1 + $2;
" LANGUAGE SQL;

SELECT add_em(1, 2) AS answer;

answer

9.2.3. SQL Functions on Composite Types

When specifying functions with arguments of composite types, we must not only specify which argu-
ment we want (as we did above with and$2) but also the attributes of that argument. For example,
suppose thaEMPis a table containing employee data, and therefore also the name of the composite
type of each row of the table. Here is a functidsuble_salary ~ that computes what your salary
would be if it were doubled:

CREATE FUNCTION double_salary(EMP) RETURNS integer AS ’
SELECT $1l.salary * 2 AS salary;
" LANGUAGE SQL;

SELECT name, double_salary(EMP) AS dream
FROM EMP
WHERE EMP.cubicle ~= point '(2,1)’;

name | dream

Notice the use of the synteid.salary to select one field of the argument row value. Also notice
how the callingSELECTcommand uses a table name to denote the entire current row of that table as
a composite value.

It is also possible to build a function that returns a composite type. This is an example of a function
that returns a singlEMProw:

CREATE FUNCTION new_emp() RETURNS EMP AS "’
SELECT text "None” AS name,
1000 AS salary,
25 AS age,
point "(2,2)" AS cubicle;
" LANGUAGE SQL;

171

Chapter 9. Extending SQL: Functions

In this case we have specified each of the attributes with a constant value, but any computation or
expression could have been substituted for these constants. Note two important things about defining
the function:

« The target list order must be exactly the same as that in which the columns appear in the table
associated with the composite type. (Naming the columns, as we did above, is irrelevant to the
system.)

« You must typecast the expressions to match the definition of the composite type, or you will get
errors like this:

ERROR: function declared to return emp returns varchar instead of text at col-
umn 1

A function that returns a row (composite type) can be used as a table function, as described below. It
can also be called in the context of an SQL expression, but only when you extract a single attribute
out of the row or pass the entire row into another function that accepts the same composite type. For
example,

SELECT (new_emp()).name;

We need the extra parentheses to keep the parser from getting confused:

SELECT new_emp().name;
ERROR: parser: parse error at or near "."

Another option is to use functional notation for extracting an attribute. The simple way to explain this
is that we can use the notatioatsribute(table) andtable.attribute interchangeably:

SELECT name(new_emp());

-- this is the same as:
-- SELECT EMP.name AS youngster FROM EMP WHERE EMP.age< 30

SELECT name(EMP) AS youngster
FROM EMP
WHERE age(EMP) < 30;

youngster

Another way to use a function returning a row result is to declare a second function accepting a row
type parameter, and pass the function result to it:

172

Chapter 9. Extending SQL: Functions

CREATE FUNCTION getname(emp) RETURNS text AS
'SELECT $1.name;
LANGUAGE SQL;

SELECT getname(new_emp());
getname

9.2.4. SQL Table Functions

A table function is one that may be used in #ROM:lause of a query. All SQL language functions
may be used in this manner, but it is particularly useful for functions returning composite types. If
the function is defined to return a base type, the table function produces a one-column table. If the
function is defined to return a composite type, the table function produces a column for each column
of the composite type.

Here is an example:

CREATE TABLE foo (fooid int, foosubid int, fooname text);
INSERT INTO foo VALUES(1,1,'Joe’);

INSERT INTO foo VALUES(1,2,Ed’);

INSERT INTO foo VALUES(2,1,'Mary’);

CREATE FUNCTION getfoo(int) RETURNS foo AS ’
SELECT * FROM foo WHERE fooid = $1;
" LANGUAGE SQL;

SELECT *, upper(fooname) FROM getfoo(1) AS t1;

fooid | foosubid | fooname | upper
+ + +
1| 1 | Joe | JOE
(2 rows)

As the example shows, we can work with the columns of the function’s result just the same as if they
were columns of a regular table.

Note that we only got one row out of the function. This is because we did nGESEQF

9.2.5. SQL Functions Returning Sets

When an SQL function is declared as return8&rOFsometype , the function’s finaSELECTquery
is executed to completion, and each row it outputs is returned as an element of the set.

This feature is normally used by calling the function as a table function. In this case each row returned
by the function becomes a row of the table seen by the query. For example, assume tliad thisle
the same contents as above, and we say:

CREATE FUNCTION getfoo(int) RETURNS setof foo AS ’
SELECT * FROM foo WHERE fooid = $1;
" LANGUAGE SQL;

173

Chapter 9. Extending SQL: Functions

SELECT * FROM getfoo(1) AS t1;

fooid | foosubid | fooname

+ +
T T

1] 1| Joe
1] 2| Ed
(2 rows)

Currently, functions returning sets may also be called in the target liss&L&CTquery. For each

row that theSELECTgenerates by itself, the function returning set is invoked, and an output row is
generated for each element of the function’s result set. Note, however, that this capability is deprecated
and may be removed in future releases. The following is an example function returning a set from the
target list:

CREATE FUNCTION listchildren(text)y RETURNS SETOF text AS
'SELECT name FROM nodes WHERE parent = $1’
LANGUAGE SQL;

SELECT * FROM nodes;

name | parent
___________ N
Top |
Child1 | Top
Child2 | Top
Child3 | Top

SubChild1 | Childl
SubChild2 | Childl
(6 rows)

SELECT listchildren("Top");
listchildren

Child1

Child2

Child3
(3 rows)

SELECT name, listchildren(name) FROM nodes;

name | listchildren
________ N ——

Top | Childl
Top | Child2
Top | Child3

Child1 | SubChild1
Child1l | SubChild2
(5 rows)

In the lastSELECT, notice that no output row appears faiild2 , Child3 , etc. This happens because
listchildren returns an empty set for those inputs, so no output rows are generated.

174

Chapter 9. Extending SQL: Functions

9.3. Procedural Language Functions

Procedural languages aren'’t built into the PostgreSQL server; they are offered by loadable modules.
Please refer to the documentation of the procedural language in question for details about the syntax
and how the function body is interpreted for each language.

There are currently four procedural languages available in the standard PostgreSQL distribution:
PL/pgSQL, PL/Tcl, PL/Perl, and PL/Python. Other languages can be defined by users. Réf@pto

ter 18 for more information. The basics of developing a new procedural language are covered in
Section 9.8

9.4. Internal Functions

Internal functions are functions written in C that have been statically linked into the PostgreSQL
server. The “body” of the function definition specifies the C-language name of the function, which
need not be the same as the name being declared for SQL use. (For reasons of backwards compatibil-
ity, an empty body is accepted as meaning that the C-language function name is the same as the SQL
name.)

Normally, all internal functions present in the backend are declared during the initialization of the
database clustemn(tdb), but a user could uSBREATE FUNCTIONKD create additional alias names

for an internal function. Internal functions are declare€REATE FUNCTIONvith language name
internal . For instance, to create an alias for Hygt function:

CREATE FUNCTION square_root(double precision) RETURNS double precision
AS ’dsqrt’
LANGUAGE INTERNAL
WITH (isStrict);

(Most internal functions expect to be declared “strict”.)

Note: Not all “predefined” functions are “internal” in the above sense. Some predefined functions
are written in SQL.

9.5. C Language Functions

User-defined functions can be written in C (or a language that can be made compatible with C, such as
C++). Such functions are compiled into dynamically loadable objects (also called shared libraries) and
are loaded by the server on demand. The dynamic loading feature is what distinguishes “C language”
functions from “internal” functions --- the actual coding conventions are essentially the same for both.
(Hence, the standard internal function library is a rich source of coding examples for user-defined C
functions.)

Two different calling conventions are currently used for C functions. The newer “version 1” calling
convention is indicated by writingRG_FUNCTION_INFO_V1() macro call for the function, as illus-
trated below. Lack of such a macro indicates an old-style ("version 0") function. The language name
specified INCREATE FUNCTIONE Cin either case. Old-style functions are now deprecated because
of portability problems and lack of functionality, but they are still supported for compatibility reasons.

175

Chapter 9. Extending SQL: Functions

9.5.1. Dynamic Loading

The first time a user-defined function in a particular loadable object file is called in a backend session,
the dynamic loader loads that object file into memory so that the function can be calledREAGE
FUNCTIONfor a user-defined C function must therefore specify two pieces of information for the
function: the name of the loadable object file, and the C name (link symbol) of the specific function to
call within that object file. If the C name is not explicitly specified then it is assumed to be the same
as the SQL function name.

The following algorithm is used to locate the shared object file based on the name giveGRENEE
FUNCTIONcommand:

1.If the name is an absolute path, the given file is loaded.

2.1f the name starts with the stringjibdir , that part is replaced by the PostgreSQL package
library directory name, which is determined at build time.

3. If the name does not contain a directory part, the file is searched for in the path specified by the
configuration variablelynamic_library_path

4. Otherwise (the file was not found in the path, or it contains a nhon-absolute directory part), the
dynamic loader will try to take the name as given, which will most likely fail. (It is unreliable to
depend on the current working directory.)

If this sequence does not work, the platform-specific shared library file name extensionqofjés
appended to the given name and this sequence is tried again. If that fails as well, the load will fail.

Note: The user ID the PostgreSQL server runs as must be able to traverse the path to the file
you intend to load. Making the file or a higher-level directory not readable and/or not executable
by the postgres user is a common mistake.

In any case, the file name that is given in tREATE FUNCTIOKommand is recorded literally in
the system catalogs, so if the file needs to be loaded again the same procedure is applied.

Note: PostgreSQL will not compile a C function automatically. The object file must be compiled
before it is referenced in a CREATE FUNCTIORommand. See Section 9.5.8 for additional informa-
tion.

Note: After it is used for the first time, a dynamically loaded object file is retained in memory.
Future calls in the same session to the function(s) in that file will only incur the small overhead of
a symbol table lookup. If you need to force a reload of an object file, for example after recompiling
it, use the LOADcommand or begin a fresh session.

Itis recommended to locate shared libraries either relatiggiddir ~ or through the dynamic library
path. This simplifies version upgrades if the new installation is at a different location. The actual
directory thatsliodir ~ stands for can be found out with the commaigdconfig --pkglibdir

Note: Before PostgreSQL release 7.2, only exact absolute paths to object files could be specified
in CREATE FUNCTIONThis approach is now deprecated since it makes the function definition un-
necessarily unportable. It's best to specify just the shared library name with no path nor extension,
and let the search mechanism provide that information instead.

176

Chapter 9. Extending SQL: Functions

9.5.2. Base Types in C-Language Functions

Table 9-1gives the C type required for parameters in the C functions that will be loaded into Post-
greSQL. The “Defined In” column gives the header file that needs to be included to get the type
definition. (The actual definition may be in a different file that is included by the listed file. It is rec-
ommended that users stick to the defined interface.) Note that you should always puchgges.h

first in any source file, because it declares a number of things that you will need anyway.

Table 9-1. Equivalent C Types for Built-In PostgreSQL Types

SQL Type C Type Defined In

abstime IAbsoluteTime utils/nabstime.h

boolean bool postgres.h (maybe compiler
built-in)

box BOX* utils/geo_decls.h

bytea bytea* postgres.h

"char" char (compiler built-in)

character BpChar* postgres.h

cid Commandid postgres.h

date DateADT utils/date.h

smallint (int2) int2 orintl6 postgres.h

int2vector int2vector* postgres.h

integer (int4) int4 orint32 postgres.h

real (float4) floatd* postgres.h

double precision (float8) [float8* postgres.h

interval Interval* utils/timestamp.h

Iseg LSEG* utils/geo_decls.h

name Name postgres.h

oid Oid postgres.h

oidvector oidvector* postgres.h

path PATH* utils/geo_decls.h

point POINT* utils/geo_decls.h

regproc regproc postgres.h

reltime RelativeTime utils/nabstime.h

text text* postgres.h

tid ItemPointer storage/itemptr.h

time TimeADT utils/date.h

time with time zone TimeTzADT utils/date.h

timestamp Timestamp* utils/timestamp.h

tinterval Timelnterval utils/nabstime.h

\varchar \VarChar* postgres.h

xid Transactionld postgres.h

177

Chapter 9. Extending SQL: Functions

Internally, PostgreSQL regards a base type as a “blob of memory”. The user-defined functions that
you define over a type in turn define the way that PostgreSQL can operate on it. That is, PostgreSQL
will only store and retrieve the data from disk and use your user-defined functions to input, process,
and output the data. Base types can have one of three internal formats:

- pass by value, fixed-length
« pass by reference, fixed-length

« pass by reference, variable-length

By-value types can only be 1, 2 or 4 bytes in length (also 8 bytesizabf(Datum) is 8 on your
machine). You should be careful to define your types such that they will be the same size (in bytes) on
all architectures. For example, theg type is dangerous because it is 4 bytes on some machines and
8 bytes on others, wherems type is 4 bytes on most Unix machines. A reasonable implementation
of theint4 type on Unix machines might be:

/* 4-byte integer, passed by value */
typedef int int4;

PostgreSQL automatically figures things out so that the integer types really have the size they adver-
tise.

On the other hand, fixed-length types of any size may be passed by-reference. For example, here is a
sample implementation of a PostgreSQL type:

/* 16-byte structure, passed by reference */
typedef struct

{
double x, vy;

} Point;

Only pointers to such types can be used when passing them in and out of PostgreSQL functions. To
return a value of such a type, allocate the right amount of memorypailisc() |, fill in the allocated
memory, and return a pointer to it. (Alternatively, you can return an input value of the same type by
returning its pointeMNevermodify the contents of a pass-by-reference input value, however.)

Finally, all variable-length types must also be passed by reference. All variable-length types must
begin with a length field of exactly 4 bytes, and all data to be stored within that type must be located
in the memory immediately following that length field. The length field is the total length of the
structure (i.e., it includes the size of the length field itself). We can define the text type as follows:

typedef struct {
int4 length;
char data[l];
} text;

Obviously, the data field declared here is not long enough to hold all possible strings. Since it's
impossible to declare a variable-size structure in C, we rely on the knowledge that the C compiler
won’t range-check array subscripts. We just allocate the necessary amount of space and then access the
array as if it were declared the right length. (If this isn’t a familiar trick to you, you may wish to spend
some time with an introductory C programming textbook before delving deeper into PostgreSQL

178

Chapter 9. Extending SQL: Functions

server programming.) When manipulating variable-length types, we must be careful to allocate the
correct amount of memory and set the length field correctly. For example, if we wanted to store 40
bytes in a text structure, we might use a code fragment like this:

#include "postgres.h"
char buffer[40]; /* our source data */

text *destination = (text *) palloc(VARHDRSZ + 40);
destination- >length = VARHDRSZ + 40;
memcpy(destination- >data, buffer, 40);

VARHDRSZs the same asizeof(int4) , but it’'s considered good style to use the magsRHDRSZ
to refer to the size of the overhead for a variable-length type.

Now that we've gone over all of the possible structures for base types, we can show some examples
of real functions.

9.5.3. Version-0 Calling Conventions for C-Language Functions

We present the “old style” calling convention first --- although this approach is now deprecated, it's
easier to get a handle on initially. In the version-0 method, the arguments and result of the C function
are just declared in normal C style, but being careful to use the C representation of each SQL data
type as shown above.

Here are some examples:

#include "postgres.h"
#include <string.h >

/* By Value */

int
add_one(int arg)
{
return arg + 1;
}

/* By Reference, Fixed Length */

float8 *
add_one_float8(float8 *arg)
{
float8 *result = (float8 *) palloc(sizeof(float8));

*result = *arg + 1.0;

return result;

}

Point *

makepoint(Point *pointx, Point *pointy)
{

Point *new_point = (Point *) palloc(sizeof(Point));

new_point->x = pointx->x;

179

}

Chapter 9. Extending SQL
new_point->y = pointy->y;

return new_point;

/* By Reference, Variable Length */

text *
copytext(text *t)
{
/*
* VARSIZE is the total size of the struct in bytes.
*/
text *new_t = (text *) palloc(VARSIZE(t));
VARATT_SIZEP(new_t) = VARSIZE(t);
/*
* VARDATA is a pointer to the data region of the struct.
*/
memcpy((void *) VARDATA(new_t), /* destination */
(void *) VARDATA(t), [* source */
VARSIZE(t)-VARHDRSZ); /* how many bytes */
return new_t;
}
text *
concat_text(text *argl, text *arg2)
{
int32 new_text_size = VARSIZE(argl) + VARSIZE(arg2) - VARHDRSZ;
text *new_text = (text *) palloc(new_text_size);
VARATT_SIZEP(new_text) = new_text_size;
memcpy(VARDATA(new_text), VARDATA(argl), VARSIZE(argl)-VARHDRSZ);
memcpy(VARDATA(new_text) + (VARSIZE(argl)-VARHDRSZ),
VARDATA(arg2), VARSIZE(arg2)-VARHDRSZ);
return new_text;
}

Supposing that the above code has been prepared forfiec
we could define the functions to PostgreSQL with commands like this:

CREATE FUNCTION add_one(int4) RETURNS int4

AS 'PGROOfutorial/funcs’ LANGUAGE C
WITH (isStrict);

-- note overloading of SQL function name add_one()
CREATE FUNCTION add_one(float8) RETURNS float8

AS ' PGROOftutorial/funcs’,
'add_one_float8’
LANGUAGE C WITH (isStrict);

CREATE FUNCTION makepoint(point, point) RETURNS point

AS ' PGROOftutorial/funcs’ LANGUAGE C
WITH (isStrict);

CREATE FUNCTION copytext(text) RETURNS text

AS 'PGROOfutorial/funcs’ LANGUAGE C

: Functions

and compiled into a shared object,

180

Chapter 9. Extending SQL: Functions
WITH (isStrict);

CREATE FUNCTION concat_text(text, text) RETURNS text
AS ' PGROOfutorial/funcs’ LANGUAGE C
WITH (isStrict);

HerePGROOBtands for the full path to the PostgreSQL source tree. (Better style would be to use
just’funcs’ in the AS clause, after having adddRiIGROO/utorial to the search path. In any
case, we may omit the system-specific extension for a shared library, commmndy .sl .)

Notice that we have specified the functions as “strict”, meaning that the system should automatically
assume a NULL result if any input value is NULL. By doing this, we avoid having to check for NULL
inputs in the function code. Without this, we'd have to check for null values explicitly, for example by
checking for a null pointer for each pass-by-reference argument. (For pass-by-value arguments, we
don’t even have a way to check!)

Although this calling convention is simple to use, it is not very portable; on some architectures there
are problems with passing smaller-than-int data types this way. Also, there is no simple way to return
a NULL result, nor to cope with NULL arguments in any way other than making the function strict.
The version-1 convention, presented next, overcomes these objections.

9.5.4. Version-1 Calling Conventions for C-Language Functions

The version-1 calling convention relies on macros to suppress most of the complexity of passing
arguments and results. The C declaration of a version-1 function is always

Datum funcname(PG_FUNCTION_ARGS)
In addition, the macro call
PG_FUNCTION_INFO_V1(funcname);

must appear in the same source file (conventionally it's written just before the function itself). This
macro call is not needed famternal -language functions, since PostgreSQL currently assumes all
internal functions are version-1. However, iréguiredfor dynamically-loaded functions.

In a version-1 function, each actual argument is fetched usPg_&ETARGwxx () macro that cor-
responds to the argument’s data type, and the result is returned BBBIRETURNxxx () macro for
the return type.

Here we show the same functions as above, coded in version-1 style:
#include "postgres.h”

#include <string.h >
#include "fmgr.h"

/* By Value */
PG_FUNCTION_INFO_V1(add_one);

Datum
add_one(PG_FUNCTION_ARGS)

{
int32 arg = PG_GETARG_INT32(0);

181

Chapter 9. Extending SQL

PG_RETURN_INT32(arg + 1);
}

/* By Reference, Fixed Length */
PG_FUNCTION_INFO_V1(add_one_float8);

Datum
add_one_float8(PG_FUNCTION_ARGS)
{

[* The macros for FLOAT8 hide its pass-by-reference nature */
float8 arg = PG_GETARG_FLOATS8(0);

PG_RETURN_FLOAT8(arg + 1.0);
}

PG_FUNCTION_INFO_V1(makepoint);

Datum
makepoint(PG_FUNCTION_ARGS)
{
[* Here, the pass-by-reference nature of Point is not hidden */
Point *pointx = PG_GETARG_POINT_P(0);
Point *pointy = PG_GETARG_POINT_P(1);
Point *new_point = (Point *) palloc(sizeof(Point));

new_point->x = pointx->x;
new_point->y = pointy->y;

PG_RETURN_POINT_P(new_point);
}

/* By Reference, Variable Length */

PG_FUNCTION_INFO_V1(copytext);

Datum
copytext(PG_FUNCTION_ARGS)
{
text *t = PG_GETARG_TEXT_P(0);

/*
* VARSIZE is the total size of the struct in bytes.
*/
text *new_t = (text *) palloc(VARSIZE(t));
VARATT_SIZEP(new_t) = VARSIZE(t);
/*
* VARDATA is a pointer to the data region of the struct.
*/
memcpy((void *) VARDATA(new_t), /* destination */
(void *) VARDATA(t), [* source */
VARSIZE(t)-VARHDRSZ); /* how many bytes */
PG_RETURN_TEXT_P(new_t);
}

PG_FUNCTION_INFO_V1(concat_text);

Datum

: Functions

182

Chapter 9. Extending SQL: Functions

concat_text(PG_FUNCTION_ARGS)

{
text *argl = PG_GETARG_TEXT_P(0);
text *arg2 = PG_GETARG_TEXT_P(1);
int32 new_text_size = VARSIZE(argl) + VARSIZE(arg2) - VARHDRSZ;
text *new_text = (text *) palloc(new_text_size);

VARATT_SIZEP(new_text) = new_text_size;

memcpy(VARDATA(new_text), VARDATA(argl), VARSIZE(argl)-VARHDRSZ);

memcpy(VARDATA(new_text) + (VARSIZE(argl)-VARHDRSZ),
VARDATA(arg2), VARSIZE(arg2)-VARHDRSZ);

PG_RETURN_TEXT_P(new_text);

TheCREATE FUNCTIOMommands are the same as for the version-0 equivalents.

At first glance, the version-1 coding conventions may appear to be just pointless obscurantism. How-
ever, they do offer a number of improvements, because the macros can hide unnecessary detail. An
example is that in codingdd_one_float8 , we no longer need to be aware tfiatt8 is a pass-
by-reference type. Another example is that iETARGmMacros for variable-length types hide the

need to deal with fetching “toasted” (compressed or out-of-line) values. The oldespytext and
concat_text functions shown above are actually wrong in the presence of toasted values, because
they don't callpg_detoast_datum() on their inputs. (The handler for old-style dynamically-loaded
functions currently takes care of this detail, but it does so less efficiently than is possible for a version-
1 function.)

One big improvement in version-1 functions is better handling of NULL inputs and results. The
macroPG_ARGISNULL() allows a function to test whether each input is NULL (of course, doing
this is only necessary in functions not declared “strict”). As with B& GETARG«xx () macros,

the input arguments are counted beginning at zero. Note that one should refrain from executing
PG_GETARGwxx () until one has verified that the argument isn’t NULL. To return a NULL result,
executePG_RETURN_NULL() this works in both strict and nonstrict functions.

Other options provided in the new-style interface are two variants #Eh&ETARGxx () macros.

The first of thesePG_GETARGwxx _COPY() guarantees to return a copy of the specified parameter
which is safe for writing into. (The normal macros will sometimes return a pointer to a value that
is physically stored in a table, and so must not be written to. UsingP@eSETARG«xx _COPY()
macros guarantees a writable result.)

The second variant consists of th6_GETARGxx _SLICE() macros which take three parameters.

The first is the number of the parameter (as above). The second and third are the offset and length

of the segment to be returned. Offsets are counted from zero, and a negative length requests that the
remainder of the value be returned. These routines provide more efficient access to parts of large

values in the case where they have storage type "external". (The storage type of a column can be spec-
ified USINGALTER TABLE tablename ALTER COLUMMolname SET STORAGEstoragetype

Storage type is one @lain , external , extended , ormain.)

The version-1 function call conventions make it possible to return “set” results and implement trigger
functions and procedural-language call handlers. Version-1 code is also more portable than version-
0, because it does not break ANSI C restrictions on function call protocol. For more details see
src/backend/utils/fmgr/README in the source distribution.

183

Chapter 9. Extending SQL: Functions

9.5.5. Composite Types in C-Language Functions

Composite types do not have a fixed layout like C structures. Instances of a composite type may
contain null fields. In addition, composite types that are part of an inheritance hierarchy may have
different fields than other members of the same inheritance hierarchy. Therefore, PostgreSQL provides
a procedural interface for accessing fields of composite types from C. As PostgreSQL processes a set
of rows, each row will be passed into your function as an opaque structure oftyfieE Suppose

we want to write a function to answer the query

SELECT name, c_overpaid(emp, 1500) AS overpaid
FROM emp
WHERE name = 'Bill OR name = 'Sam’;

In the query above, we can defineoverpaid as:

#include "postgres.h"
#include "executor/executor.h" /* for GetAttributeByName() */

bool
c_overpaid(TupleTableSlot *t, /* the current row of EMP */
int32 limit)
{
bool isnull;
int32 salary;
salary = DatumGetInt32(GetAttributeByName(t, "salary", &isnull));
if (isnull)
return (false);
return salary > limit;
}

/* In version-1 coding, the above would look like this: */

PG_FUNCTION_INFO_V1(c_overpaid);

Datum
c_overpaid(PG_FUNCTION_ARGS)
{
TupleTableSlot *t = (TupleTableSlot *) PG_GETARG_POINTER(0);
int32 limit = PG_GETARG_INT32(1);
bool isnull;
int32 salary;

salary = DatumGetInt32(GetAttributeByName(t, "salary”, &isnull));
if (isnull)
PG_RETURN_BOOL(false);
[* Alternatively, we might prefer to do PG_RETURN_NULL() for null salary */

PG_RETURN_BOOL(salary > limit);

GetAttributeByName s the PostgreSQL system function that returns attributes out of the current
row. It has three arguments: the argument of typpleTableSlot* passed into the function, the

184

Chapter 9. Extending SQL: Functions

name of the desired attribute, and a return parameter that tells whether the attributeGeta.
tributeByName returns aDatum value that you can convert to the proper data type by using the
appropriateDatumGet XXX() macro.

The following command lets PostgreSQL know aboutdheverpaid function:

CREATE FUNCTION c_overpaid(emp, int4)
RETURNS bool

AS ' PGROOfutorial/funcs’

LANGUAGE C;

9.5.6. Table Function API

The Table Function API assists in the creation of user-defined C language table funSeatisr{

9.7). Table functions are functions that produce a set of rows, made up of either base (scalar) data
types, or composite (multi-column) data types. The API is split into two main components: support
for returning composite data types, and support for returning multiple rows (set returning functions or
SRFs).

The Table Function API relies on macros and functions to suppress most of the complexity of building
composite data types and returning multiple results. A table function must follow the version-1 calling
convention described above. In addition, the source file must include:

#include “funcapi.h”

9.5.6.1. Returning Rows (Composite Types)

The Table Function API support for returning composite data types (or rows) starts withithe
Metadata structure. This structure holds arrays of individual attribute information needed to create
a row from raw C strings. It also saves a pointer to ThpleDesc . The information carried here

is derived from theTupleDesc , but it is stored here to avoid redundant CPU cycles on each call to
a table function. In the case of a function returning a setAttleMetadata structure should be
computed once during the first call and saved for re-use in later calls.

typedef struct AttinMetadata

{
[* full TupleDesc */

TupleDesc tupdesc;

[* array of attribute type input function finfo */
Fmgrinfo *attinfuncs;

[* array of attribute type typelem */
Oid *attelems;

[* array of attribute typmod */
int32 *atttypmods;
} AttinMetadata;

To assist you in populating this structure, several functions and a macro are available. Use

185

Chapter 9. Extending SQL: Functions
TupleDesc RelationNameGetTupleDesc(const char *relname)

to get aTupleDesc based on a specified relation, or

TupleDesc TypeGetTupleDesc(Oid typeoid, List *colaliases)

to get aTupleDesc based on a type OID. This can be used to ged@eDesc for a base (scalar) or
composite (relation) type. Then

AttinMetadata *TupleDescGetAttinMetadata(TupleDesc tupdesc)

will return a pointer to aittinMetadata , initialized based on the giveFupleDesc . AttinMeta-
data can be used in conjunction with C strings to produce a properly formed tuple. The metadata is
stored here to avoid redundant work across multiple calls.

To return a tuple you must create a tuple slot based omuhieDesc . You can use
TupleTableSlot *TupleDescGetSlot(TupleDesc tupdesc)

to initialize this tuple slot, or obtain one through other (user provided) means. The tuple slot is needed
to create @atum for return by the function. The same slot can (and should) be re-used on each call.

After constructing amttinMetadata structure,

HeapTuple BuildTupleFromCStrings(AttinMetadata *attinmeta, char **values)

can be used to build deapTuple given user data in C string form. "values" is an array of C strings,
one for each attribute of the return tuple. Each C string should be in the form expected by the input
function of the attribute data type. In order to return a null value for one of the attributes, the corre-
sponding pointer in thealues array should be set tiULL This function will need to be called
again for each tuple you return.

Building a tuple viaTupleDescGetAttinMetadata andBuildTupleFromCStrings is only con-
venient if your function naturally computes the values to be returned as text strings. If your code natu-
rally computes the values as a set of Datums, you should instead use the undedginfigrmtuple

routine to convert thBatums directly into a tuple. You will still need theupleDesc and arupleTa-

bleSlot , but notAttinMetadata

Once you have built a tuple to return from your function, the tuple must be converted atiora.
Use

TupleGetDatum(TupleTableSlot *slot, HeapTuple tuple)
to get aDatum given a tuple and a slot. ThBatum can be returned directly if you intend to return
just a single row, or it can be used as the current return value in a set-returning function.

An example appears below.

9.5.6.2. Returning Sets

A set-returning function (SRF) is normally called once for each item it returns. The SRF must there-
fore save enough state to remember what it was doing and return the next item on each call. The
Table Function API provides thauncCallContext structure to help control this procegsnfo-

>flinfo- >fn_extra is used to hold a pointer teuncCallContext across calls.

typedef struct

{
/*

186

Chapter 9. Extending SQL: Functions

* Number of times we've been called before.

*

* call_cntr is initialized to 0 for you by SRF_FIRSTCALL_INIT(), and
* incremented for you every time SRF_RETURN_NEXT() is called.
*/

uint32 call_cntr;

* OPTIONAL maximum number of calls

* max_calls is here for convenience ONLY and setting it is OPTIONAL.
* If not set, you must provide alternative means to know when the

* function is done.

*/

uint32 max_calls;

* OPTIONAL pointer to result slot

* slot is for use when returning tuples (i.e. composite data types)
* and is not needed when returning base (i.e. scalar) data types.
*/

TupleTableSlot *slot;

* OPTIONAL pointer to misc user provided context info

* user_fctx is for use as a pointer to your own struct to retain
* arbitrary context information between calls for your function.
*/

void *user_fctx;

* OPTIONAL pointer to struct containing arrays of attribute type input
* metainfo

* attinmeta is for use when returning tuples (i.e. composite data types)

* and is not needed when returning base (i.e. scalar) data types. It

* is ONLY needed if you intend to use BuildTupleFromCStrings() to create
* the return tuple.

*/

AttinMetadata *attinmeta;

* memory context used for structures which must live for multiple calls

* multi_call_memory_ctx is set by SRF_FIRSTCALL_INIT() for you, and used
* by SRF_RETURN_DONE() for cleanup. It is the most appropriate memory
* context for any memory that is to be re-used across multiple calls
* of the SRF.
*/
MemoryContext multi_call_memory_ctx;
} FuncCallContext;

An SRF uses several functions and macros that automatically manipulakartb@allContext
structure (and expect to find it via_extra). Use

187

Chapter 9. Extending SQL: Functions
SRF_IS_FIRSTCALL()

to determine if your function is being called for the first or a subsequent time. On the first call (only)
use

SRF_FIRSTCALL_INIT()

to initialize theFuncCallContext . On every function call, including the first, use

SRF_PERCALL_SETUP()

to properly set up for using theuncCallContext ~ and clearing any previously returned data left
over from the previous pass.

If your function has data to return, use
SRF_RETURN_NEXT(funcctx, result)

to return it to the caller. (Theesult must be aDatum, either a single value or a tuple prepared as
described earlier.) Finally, when your function is finished returning data, use

SRF_RETURN_DONE(funcctx)

to clean up and end the SRF.

The memory context that is current when the SRF is called is a transient context that will be cleared
between calls. This means that you do not neepftee everything youpalloc ; it will go away
anyway. However, if you want to allocate any data structures to live across calls, you need to put
them somewhere else. The memory context referencedutiy call_memory_ctx is a suitable
location for any data that needs to survive until the SRF is finished running. In most cases, this means
that you should switch intoulti_call_memory_ctx while doing the first-call setup.

A complete pseudo-code example looks like the following:

Datum
my_Set_Returning_Function(PG_FUNCTION_ARGS)
{

FuncCallContext *funcctx;

Datum result;

MemoryContext oldcontext;

[user defined declarations]

if (SRF_IS_FIRSTCALLY())
{
funcctx = SRF_FIRSTCALL_INIT();
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
/* one-time setup code appears here: */
[user defined code]
[if returning composite]
[build TupleDesc, and perhaps AttinMetadata]
[obtain slot]
funcctx- >slot = slot;
[endif returning composite]
[user defined code]
MemoryContextSwitchTo(oldcontext);

}

[* each-time setup code appears here: */
[user defined code]

188

Chapter 9. Extending SQL: Functions

funcctx = SRF_PERCALL_SETUP();
[user defined code]

[* this is just one way we might test whether we are done: */
if (funcctx- >call_cntr < funcctx- >max_calls)
{

/* here we want to return another item: */

[user defined code]

[obtain result Datum]

SRF_RETURN_NEXT(funcctx, result);

}

else

{
/* here we are done returning items, and just need to clean up: */
[user defined code]
SRF_RETURN_DONE(funcctx);

}

A complete example of a simple SRF returning a composite type looks like:

PG_FUNCTION_INFO_V1(testpassbyval);

Datum

testpassbyval(PG_FUNCTION_ARGS)

{
FuncCallContext *funcctx;
int call_cntr;
int max_calls;
TupleDesc tupdesc;
TupleTableSlot *slot;
AttinMetadata *attinmeta;

/* stuff done only on the first call of the function */
if (SRF_IS_FIRSTCALL())

{

MemoryContext oldcontext;

/* create a function context for cross-call persistence */
funcctx = SRF_FIRSTCALL_INIT();

/* switch to memory context appropriate for multiple function calls */
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);

/* total number of tuples to be returned */
funcctx- >max_calls = PG_GETARG_UINT32(0);

/*
* Build a tuple description for a __testpassbyval tuple
*/
tupdesc = RelationNameGetTupleDesc("__testpassbyval");

/* allocate a slot for a tuple with this tupdesc */
slot = TupleDescGetSlot(tupdesc);

/* assign slot to function context */
funcctx- >slot = slot;

189

Chapter 9. Extending SQL: Functions

/*

* Generate attribute metadata needed later to produce tuples from raw
* C strings

*/

attinmeta = TupleDescGetAttinMetadata(tupdesc);

funcctx- >attinmeta = attinmeta;

MemoryContextSwitchTo(oldcontext);

}

[* stuff done on every call of the function */
funcctx = SRF_PERCALL_SETUP();

call_cntr = funcctx- >call_cntr;
max_calls = funcctx- >max_calls;
slot = funcctx- >slot;
attinmeta = funcctx- >attinmeta;
if (call_cntr < max_calls) /* do when there is more left to send */
{
char **values;
HeapTuple tuple;
Datum result;
/*

* Prepare a values array for storage in our slot.

* This should be an array of C strings which will

* be processed later by the appropriate "in" functions.
*/

values = (char **) palloc(3 * sizeof(char *));

values[0] = (char *) palloc(16 * sizeof(char));

values[1] (char *) palloc(16 * sizeof(char));

values|[2] (char *) palloc(16 * sizeof(char));

snprintf(values[0], 16, "%d", 1 * PG_GETARG_INT32(1));
snprintf(values[1], 16, "%d", 2 * PG_GETARG_INT32(1));
snprintf(values[2], 16, "%d", 3 * PG_GETARG_INT32(1));

/* build a tuple */
tuple = BuildTupleFromCStrings(attinmeta, values);

/* make the tuple into a datum */
result = TupleGetDatum(slot, tuple);

/* Clean up (this is not actually necessary) */
pfree(values[0]);

pfree(values[1]);

pfree(values[2]);

pfree(values);

SRF_RETURN_NEXT(funcctx, result);

}
else /* do when there is no more left */
{
SRF_RETURN_DONE(funcctx);
}

190

Chapter 9. Extending SQL: Functions

}
with supporting SQL code of

CREATE TYPE __testpassbyval AS (fl1 int4, f2 int4, f3 int4);

CREATE OR REPLACE FUNCTION testpasshyval(int4, int4) RETURNS setof __ testpassbyval
AS 'MODULE_PATHNAME’ 'testpassbyval’ LANGUAGE ’'c’ IMMUTABLE STRICT,;

Seecontrib/tablefunc for more examples of table functions.

9.5.7. Writing Code

We now turn to the more difficult task of writing programming language functions. Be warned: this
section of the manual will not make you a programmer. You must have a good understanding of C
(including the use of pointers) before trying to write C functions for use with PostgreSQL. While it
may be possible to load functions written in languages other than C into PostgreSQL, this is often
difficult (when it is possible at all) because other languages, such as FORTRAN and Pascal often do
not follow the samealling conventioras C. That is, other languages do not pass argument and return
values between functions in the same way. For this reason, we will assume that your programming
language functions are written in C.

The basic rules for building C functions are as follows:

« Usepg_config --includedir-server to find out where the PostgreSQL server header files
are installed on your system (or the system that your users will be running on). This option is new
with PostgreSQL 7.2. For PostgreSQL 7.1 you should use the ogpitioludedir . (pg_config
will exit with a non-zero status if it encounters an unknown option.) For releases prior to 7.1 you
will have to guess, but since that was before the current calling conventions were introduced, it is
unlikely that you want to support those releases.

« When allocating memory, use the PostgreSQL routpetiec andpfree instead of the corre-
sponding C library routinemalloc andfree . The memory allocated bpalloc will be freed
automatically at the end of each transaction, preventing memory leaks.

- Always zero the bytes of your structures usingmset or bzero . Several routines (such as the
hash access method, hash join and the sort algorithm) compute functions of the raw bits contained
in your structure. Even if you initialize all fields of your structure, there may be several bytes of
alignment padding (holes in the structure) that may contain garbage values.

+ Most of the internal PostgreSQL types are declaregostgres.h , while the function manager
interfaces PG_FUNCTION_ARG®tc.) are irffmgr.h , so you will need to include at least these two
files. For portability reasons it's best to inclupestgres.h first, before any other system or user
header files. Includingostgres.h will also includeelog.h andpalloc.h for you.

- Symbol names defined within object files must not conflict with each other or with symbols defined
in the PostgreSQL server executable. You will have to rename your functions or variables if you
get error messages to this effect.

« Compiling and linking your object code so that it can be dynamically loaded into PostgreSQL
always requires special flags. Sgection 9.5.8or a detailed explanation of how to do it for your
particular operating system.

191

Chapter 9. Extending SQL: Functions

9.5.8. Compiling and Linking Dynamically-Loaded Functions

Before you are able to use your PostgreSQL extension functions written in C, they must be compiled
and linked in a special way to produce a file that can be dynamically loaded by the server. To be
precise, ahared libraryneeds to be created.

For more information you should read the documentation of your operating system, in particular the
manual pages for the C compilet,, and the link editond . In addition, the PostgreSQL source code
contains several working examples in tleatrib directory. If you rely on these examples you will
make your modules dependent on the availability of the PostgreSQL source code, however.

Creating shared libraries is generally analogous to linking executables: first the source files are com-
piled into object files, then the object files are linked together. The object files need to be created as
position-independent cod®IC), which conceptually means that they can be placed at an arbitrary
location in memory when they are loaded by the executable. (Object files intended for executables
are usually not compiled that way.) The command to link a shared library contains special flags to
distinguish it from linking an executable. --- At least this is the theory. On some systems the practice
is much uglier.

In the following examples we assume that your source code is in fodile and we will create a
shared libraryfoo.so . The intermediate object file will be callddo.o unless otherwise noted. A
shared library can contain more than one object file, but we only use one here.

BSD/OS
The compiler flag to create PICfpic . The linker flag to create shared librariesdsared .

gcec -fpic -¢ foo.c
Id -shared -o foo.so foo.o

This is applicable as of version 4.0 of BSD/OS.
FreeBSD

The compiler flag to create PICHipic . To create shared libraries the compiler flagstsared

gcc -fpic -¢ foo.c
gcec -shared -0 foo.so foo.o

This is applicable as of version 3.0 of FreeBSD.
HP-UX

The compiler flag of the system compiler to create Pl€zisWhen using GCC it'sfpic . The
linker flag for shared libraries i& . So

cc +z -c foo.c
or
gce -fpic -¢ foo.c
and then
Id -b -0 foo.sl foo.o
HP-UX uses the extensiosl for shared libraries, unlike most other systems.
IRIX

PIC is the default, no special compiler options are necessary. The linker option to produce shared
libraries is-shared .

cc -c foo.c
Id -shared -o foo.so foo.o

192

Chapter 9. Extending SQL: Functions

Linux

The compiler flag to create PICifpic . On some platforms in some situatiofiRIC must be
used if-fpic does not work. Refer to the GCC manual for more information. The compiler flag
to create a shared libraryishared . A complete example looks like this:

cc -fpic -c foo.c
cc -shared -o foo.so foo.o

MacOS X

Here is a sample. It assumes the developer tools are installed.

cc -c foo.c
cc -bundle -flat_namespace -undefined suppress -o foo.so foo.o

NetBSD

The compiler flag to create PICfpic . For ELF systems, the compiler with the flafared
is used to link shared libraries. On the older non-ELF systéimsBshareable is used.

gec -fpic -¢ foo.c
gcc -shared -o foo.so foo.o

OpenBSD

The compiler flag to create PICfpic .Id -Bshareable is used to link shared libraries.

gcec -fpic -¢ foo.c
Id -Bshareable -0 foo.so foo.o

Solaris

The compiler flag to create PICiKPIC with the Sun compiler andpic with GCC. To link
shared libraries, the compiler option-i& with either compiler or alternativelyshared with
GCC.

cc -KPIC -c foo.c
cc -G -0 foo.so foo.o

or
gce -fpic -c foo.c
gcec -G -0 foo.so foo.o
Tru64 UNIX

PIC is the default, so the compilation command is the usuallonith special options is used
to do the linking:

cc -c foo.c
Id -shared -expect_unresolved ™ -o foo.so foo.o

The same procedure is used with GCC instead of the system compiler; no special options are
required.

193

Chapter 9. Extending SQL: Functions

UnixWare

The compiler flag to create PIC4& PIC with the SCO compiler andpic with GCC. To link
shared libraries, the compiler option-& with the SCO compiler angshared with GCC.

cc -K PIC -c foo.c
cc -G -0 foo.so foo.o

or

gcc -fpic -c¢ foo.c
gcc -shared -o foo.so foo.o

Tip: If you want to package your extension modules for wide distribution you should consider using
GNU Libtool* for building shared libraries. It encapsulates the platform differences into a general
and powerful interface. Serious packaging also requires considerations about library versioning,
symbol resolution methods, and other issues.

The resulting shared library file can then be loaded into PostgreSQL. When specifying the file name
to the CREATE FUNCTIONommand, one must give it the name of the shared library file, not the
intermediate object file. Note that the system’s standard shared-library extension (usualy

.sl) can be omitted from th€REATE FUNCTIONommand, and normally should be omitted for
best portability.

Refer back tdsection 9.5..about where the server expects to find the shared library files.

9.6. Function Overloading

More than one function may be defined with the same SQL name, so long as the arguments they take
are different. In other words, function names camberloadedWhen a query is executed, the server

will determine which function to call from the data types and the number of the provided arguments.
Overloading can also be used to simulate functions with a variable number of arguments, up to a finite
maximum number.

A function may also have the same name as an attribute. In the case that there is an ambiguity between
a function on a complex type and an attribute of the complex type, the attribute will always be used.

When creating a family of overloaded functions, one should be careful not to create ambiguities. For
instance, given the functions

CREATE FUNCTION test(int, real) RETURNS ...
CREATE FUNCTION test(smallint, double precision) RETURNS ...

it is not immediately clear which function would be called with some trivial input tids(1,
1.5) . The currently implemented resolution rules are described iV#ee’s Guide but it is unwise
to design a system that subtly relies on this behavior.

When overloading C language functions, there is an additional constraint: The C name of each func-
tion in the family of overloaded functions must be different from the C names of all other functions,

1. http://www.gnu.org/software/libtool/

194

Chapter 9. Extending SQL: Functions

either internal or dynamically loaded. If this rule is violated, the behavior is not portable. You might
get a run-time linker error, or one of the functions will get called (usually the internal one). The alter-
native form of theAS clause for the SQICREATE FUNCTIORommand decouples the SQL function
name from the function name in the C source code. E.g.,

CREATE FUNCTION test(int) RETURNS int

AS ’filename ', ’test_larg’
LANGUAGE C;
CREATE FUNCTION test(int, int) RETURNS int
AS ’filename ', 'test_2arg’
LANGUAGE C;

The names of the C functions here reflect one of many possible conventions.

Prior to PostgreSQL 7.0, this alternative syntax did not exist. There is a trick to get around the prob-
lem, by defining a set of C functions with different names and then define a set of identically-named
SQL function wrappers that take the appropriate argument types and call the matching C function.

9.7. Table Functions

Table functions are functions that produce a set of rows, made up of either base (scalar) data types, or
composite (multi-column) data types. They are used like a table, view, or subselecERahelause

of a query. Columns returned by table functions may be includs&ECT, JOIN, or WHERElauses

in the same manner as a table, view, or subselect column.

If a table function returns a base data type, the single result column is named for the function. If the
function returns a composite type, the result columns get the same names as the individual attributes
of the type.

A table function may be aliased in tf&®OMclause, but it also may be left unaliased. If a function is
used in the FROM clause with no alias, the function name is used as the relation name.

Table functions work wherever tables dodELECTstatements. For example

CREATE TABLE foo (fooid int, foosubid int, fooname text);

CREATE FUNCTION getfoo(int) RETURNS setof foo AS ’
SELECT * FROM foo WHERE fooid = $1;
" LANGUAGE SQL;

SELECT * FROM getfoo(1) AS t1;

SELECT * FROM foo
WHERE foosubid in (select foosubid from getfoo(foo.fooid) z
where z.fooid = foo.fooid);

CREATE VIEW vw_getfoo AS SELECT * FROM getfoo(1);
SELECT * FROM vw_getfoo;

are all valid statements.

In some cases it is useful to define table functions that can return different column sets depending on
how they are invoked. To support this, the table function can be declared as returning the pseudo-type
record . When such a function is used in a query, the expected row structure must be specified in the

query itself, so that the system can know how to parse and plan the query. Consider this example:

SELECT *

195

Chapter 9. Extending SQL: Functions

FROM dblink('dbname=templatel’, 'select proname, prosrc from pg_proc’)
AS tl(proname name, prosrc text)
WHERE proname LIKE 'bytea%’;

The dblink function executes a remote query (Ssmtrib/dblink). It is declared to return
record since it might be used for any kind of query. The actual column set must be specified in
the calling query so that the parser knows, for example, wisditould expand to.

9.8. Procedural Language Handlers

All calls to functions that are written in a language other than the current “version 1” interface for
compiled languages (this includes functions in user-defined procedural languages, functions written
in SQL, and functions using the version 0 compiled language interface), go throcehrendler
function for the specific language. It is the responsibility of the call handler to execute the function
in a meaningful way, such as by interpreting the supplied source text. This section describes how
a language call handler can be written. This is not a common task, in fact, it has only been done a
handful of times in the history of PostgreSQL, but the topic naturally belongs in this chapter, and the
material might give some insight into the extensible nature of the PostgreSQL system.

The call handler for a procedural language is a “normal” function, which must be written in a com-
piled language such as C and registered with PostgreSQL as taking no arguments and returning the
language_handler type. This special pseudo-type identifies the handler as a call handler and pre-
vents it from being called directly in queries.

Note: In PostgreSQL 7.1 and later, call handlers must adhere to the “version 1” function manager
interface, not the old-style interface.

The call handler is called in the same way as any other function: It receives a pointaurtctian-
CallinfoData struct containing argument values and information about the called function, and it

is expected to return Batum result (and possibly set thenull field of theFunctionCallinfo-

Data structure, if it wishes to return an SQL NULL result). The difference between a call handler
and an ordinary callee function is that thiefo- >fn_oid field of theFunctionCallinfoData

structure will contain the OID of the actual function to be called, not of the call handler itself. The
call handler must use this field to determine which function to execute. Also, the passed argument list
has been set up according to the declaration of the target function, not of the call handler.

It's up to the call handler to fetch they_proc entry and to analyze the argument and return types
of the called procedure. The AS clause from @REATE FUNCTIONT the procedure will be found

in the prosrc attribute of thepg _proc table entry. This may be the source text in the procedural
language itself (like for PL/Tcl), a path name to a file, or anything else that tells the call handler what
to do in detail.

Often, the same function is called many times per SQL statement. A call handler can avoid repeated
lookups of information about the called function by using flivéo- >fn_extra field. This will

initially be NULL, but can be set by the call handler to point at information about the PL function.
On subsequent calls, ifinfo- >fn_extra is already non-NULL then it can be used and the in-
formation lookup step skipped. The call handler must be carefufithiat ~ >fn_extra is made

to point at memory that will live at least until the end of the current query, sinderaninfo data
structure could be kept that long. One way to do this is to allocate the extra data in the memory context
specified byflinfo- >fn_mcxt ; such data will normally have the same lifespan asrtingrinfo

itself. But the handler could also choose to use a longer-lived context so that it can cache function
definition information across queries.

196

Chapter 9. Extending SQL: Functions

When a PL function is invoked as a trigger, no explicit arguments are passed, Butnthien-
CallinfoData 's context field points at alriggerData node, rather than being NULL as itis in
a plain function call. A language handler should provide mechanisms for PL functions to get at the

trigger information.

This is a template for a PL handler written in C:

#include "postgres.h"
#include "executor/spi.h"
#include "commandsi/trigger.h"
#include "utils/elog.h"
#include "fmgr.h"

#include "access/heapam.h"
#include "utils/syscache.h"
#include "catalog/pg_proc.h"
#include "catalog/pg_type.h"

PG_FUNCTION_INFO_V1(plsample_call_handler);

Datum
plsample_call_handler(PG_FUNCTION_ARGS)
{

Datum retval;

if (CALLED_AS_TRIGGER(fcinfo))

{
/*
* Called as a trigger procedure
*/
TriggerData *trigdata = (TriggerData *) fcinfo->context;
retval = ...
}
else {
/*
* Called as a function
*/
retval = ...
}

return retval;

Only a few thousand lines of code have to be added instead of the dots to complete the call handler.

SeeSection 9.5or information on how to compile it into a loadable module.

The following commands then register the sample procedural language:

CREATE FUNCTION plsample_call_handler () RETURNS language_handler
AS ‘’lusr/local/pgsql/lib/plsample’
LANGUAGE C;

CREATE LANGUAGE plsample
HANDLER plsample_call_handler;

197

Chapter 10. Extending SQL: Types

As previously mentioned, there are two kinds of types in PostgreSQL: base types (defined in a pro-
gramming language) and composite types. This chapter describes how to define new base types.

The examples in this section can be foundamplex.sql andcomplex.c in the tutorial directory.
Composite examples arefimcs.sq|

A user-defined type must always have input and output functions. These functions determine how the
type appears in strings (for input by the user and output to the user) and how the type is organized
in memory. The input function takes a null-terminated character string as its input and returns the
internal (in memory) representation of the type. The output function takes the internal representation
of the type and returns a null-terminated character string.

Suppose we want to define a complex type which represents complex numbers. Naturally, we would
choose to represent a complex in memory as the following C structure:

typedef struct Complex {

double X;
double y;
} Complex;

and a string of the fornx,y) as the external string representation.

The functions are usually not hard to write, especially the output function. However, there are a
number of points to remember:

- When defining your external (string) representation, remember that you must eventually write a
complete and robust parser for that representation as your input function!

For instance:

Complex *
complex_in(char *str)
{
double X, vy;
Complex *result;
if (sscanf(str, " (%lIf , %If)", &, &y) = 2) {
elog(ERROR, "complex_in: error in parsing %s", str);
return NULL;
}
result = (Complex *)palloc(sizeof(Complex));
result- >x = Xx;
result- >y =vy;
return (result);

The output function can simply be:

char *
complex_out(Complex *complex)
{

char *result;

if (complex == NULL)

return(NULL);
result = (char *) palloc(60);
sprintf(result, "(%g,%gQ)", complex- >X, complex- >vy);

198

Chapter 10. Extending SQL: Types

return(result);

« You should try to make the input and output functions inverses of each other. If you do not, you will
have severe problems when you need to dump your data into a file and then read it back in (say,
into someone else’s database on another computer). This is a particularly common problem when
floating-point numbers are involved.

To define thecomplex type, we need to create the two user-defined functmmsplex_in and
complex_out before creating the type:

CREATE FUNCTION complex_in(cstring)
RETURNS complex
AS ' PGROOfutorial/complex’
LANGUAGE C;

CREATE FUNCTION complex_out(complex)
RETURNS cstring
AS ' PGROO/tutorial/complex’
LANGUAGE C;

Finally, we can declare the data type:

CREATE TYPE complex (
internallength = 16,
input = complex_in,
output = complex_out

);

Notice that the declarations of the input and output functions must reference the not-yet-defined type.
This is allowed, but will draw warning messages that may be ignored.

As discussed earlier, PostgreSQL fully supports arrays of base types. Additionally, PostgreSQL sup-
ports arrays of user-defined types as well. When you define a type, PostgreSQL automatically pro-
vides support for arrays of that type. For historical reasons, the array type has the same name as the
user-defined type with the underscore charactgrepended.

Composite types do not need any function defined on them, since the system already understands
what they look like inside.

If the values of your data type might exceed a few hundred bytes in size (in internal form), you should
be careful to mark them TOAST-able. To do this, the internal representation must follow the standard
layout for variable-length data: the first four bytes must béng2 containing the total length in
bytes of the datum (including itself). Then, all your functions that accept values of the type must be
careful to callpg_detoast_datum() on the supplied values --- after checking that the value is not
NULL, if your function is not strict. Finally, select the appropriate storage option when giving the
CREATE TYPEommand.

199

Chapter 11. Extending SQL: Operators

11.1. Introduction

PostgreSQL supports left unary, right unary, and binary operators. Operators can be overloaded; that
is, the same operator name can be used for different operators that have different numbers and types
of operands. If there is an ambiguous situation and the system cannot determine the correct operator
to use, it will return an error. You may have to type-cast the left and/or right operands to help it
understand which operator you meant to use.

Every operator is “syntactic sugar” for a call to an underlying function that does the real work; so you
must first create the underlying function before you can create the operator. However, an operator is
not merelysyntactic sugar, because it carries additional information that helps the query planner opti-
mize queries that use the operator. Much of this chapter will be devoted to explaining that additional
information.

11.2. Example

Here is an example of creating an operator for adding two complex numbers. We assume we've
already created the definition of typemplex (seeChapter 1. First we need a function that does
the work, then we can define the operator:

CREATE FUNCTION complex_add(complex, complex)
RETURNS complex
AS ' PGROOitutorial/complex’
LANGUAGE C;

CREATE OPERATOR + (
leftarg = complex,
rightarg = complex,
procedure = complex_add,
commutator = +

Now we can do:

SELECT (a + b) AS ¢ FROM test_complex;

(5.2,6.05)
(133.42,144.95)

We've shown how to create a binary operator here. To create unary operators, just omitefine of
arg (for left unary) orrightarg (for right unary). Theprocedure clause and the argument clauses
are the only required items MREATE OPERATORhecommutator clause shown in the example is
an optional hint to the query optimizer. Further details almoutmutator and other optimizer hints
appear below.

200

Chapter 11. Extending SQL: Operators

11.3. Operator Optimization Information

Author: Written by Tom Lane.

A PostgreSQL operator definition can include several optional clauses that tell the system useful
things about how the operator behaves. These clauses should be provided whenever appropriate, be-
cause they can make for considerable speedups in execution of queries that use the operator. But if
you provide them, you must be sure that they are right! Incorrect use of an optimization clause can
result in backend crashes, subtly wrong output, or other Bad Things. You can always leave out an
optimization clause if you are not sure about it; the only consequence is that queries might run slower
than they need to.

Additional optimization clauses might be added in future versions of PostgreSQL. The ones described
here are all the ones that release 7.3.2 understands.

11.3.1. COMMUTATOR

The COMMUTATGRause, if provided, names an operator that is the commutator of the operator being
defined. We say that operator A is the commutator of operator B if (x A y) equals (y B x) for all
possible input values X, y. Notice that B is also the commutator of A. For example, opetands>

for a particular data type are usually each others’ commutators, and opeigtmually commutative

with itself. But operator is usually not commutative with anything.

The left operand type of a commuted operator is the same as the right operand type of its commutator,
and vice versa. So the name of the commutator operator is all that PostgreSQL needs to be given to
look up the commutator, and that’s all that needs to be provided iGENMUTATGHRause.

When you are defining a self-commutative operator, you just do it. When you are defining a pair of
commutative operators, things are a little trickier: how can the first one to be defined refer to the other
one, which you haven't defined yet? There are two solutions to this problem:

« One way is to omit th€OMMUTATQgtause in the first operator that you define, and then provide
one in the second operator’s definition. Since PostgreSQL knows that commutative operators come
in pairs, when it sees the second definition it will automatically go back and fill in the missing
COMMUTATGQfrause in the first definition.

« The other, more straightforward way is just to includ®@MMUTATO&auses in both definitions.
When PostgreSQL processes the first definition and realizeCEIMUTATORfers to a non-
existent operator, the system will make a dummy entry for that operator in the system catalog. This
dummy entry will have valid data only for the operator name, left and right operand types, and
result type, since that's all that PostgreSQL can deduce at this point. The first operator’s catalog
entry will link to this dummy entry. Later, when you define the second operator, the system updates
the dummy entry with the additional information from the second definition. If you try to use the
dummy operator before it's been filled in, you'll just get an error message. (Note: This procedure
did not work reliably in PostgreSQL versions before 6.5, but it is now the recommended way to do
things.)

201

Chapter 11. Extending SQL: Operators

11.3.2. NEGATOR

TheNEGATORIause, if provided, names an operator that is the negator of the operator being defined.
We say that operator A is the negator of operator B if both return Boolean results and (x A y) equals
NOT (x B y) for all possible inputs x, y. Notice that B is also the negator of A. For exampénd

>= are a negator pair for most data types. An operator can never validly be its own negator.

Unlike commutators, a pair of unary operators could validly be marked as each others’ negators; that
would mean (A x) equals NOT (B x) for all x, or the equivalent for right unary operators.

An operator’s negator must have the same left and/or right operand types as the operator itself, so just
as withCOMMUTATOQRBNIy the operator name need be given inMESATORIause.

Providing a negator is very helpful to the query optimizer since it allows expressionsdie (x
= y) to be simplified into x<> y. This comes up more often than you might think, because
operations can be inserted as a consequence of other rearrangements.

Pairs of negator operators can be defined using the same methods explained above for commutator
pairs.

11.3.3. RESTRICT

TheRESTRICTclause, if provided, names a restriction selectivity estimation function for the operator
(note that this is a function name, not an operator naREBTRICT clauses only make sense for
binary operators that retutsoolean . The idea behind a restriction selectivity estimator is to guess
what fraction of the rows in a table will satisfWdHERElause condition of the form

column OP constant

for the current operator and a particular constant value. This assists the optimizer by giving it some
idea of how many rows will be eliminated WHERElauses that have this form. (What happens if
the constant is on the left, you may be wondering? Well, that’s one of the thingSOMMUTATAR

for...)

Writing new restriction selectivity estimation functions is far beyond the scope of this chapter, but
fortunately you can usually just use one of the system'’s standard estimators for many of your own
operators. These are the standard restriction estimators:

egsel for=
negsel for <>
scalarltsel for < or<=

scalargtsel for > or >=

It might seem a little odd that these are the categories, but they make sense if you think about it.
= will typically accept only a small fraction of the rows in a tables will typically reject only a

small fraction.< will accept a fraction that depends on where the given constant falls in the range
of values for that table column (which, it just so happens, is information collecteédNbyYZEand

made available to the selectivity estimatot) will accept a slightly larger fraction thaa for the

same comparison constant, but they're close enough to not be worth distinguishing, especially since
we’re not likely to do better than a rough guess anyhow. Similar remarks applata >=.

You can frequently get away with using eithesel or negsel for operators that have very high or
very low selectivity, even if they aren’t really equality or inequality. For example, the approximate-
equality geometric operators usgsel on the assumption that they’ll usually only match a small
fraction of the entries in a table.

202

Chapter 11. Extending SQL: Operators

You can usescalarltsel and scalargtsel for comparisons on data types that have
some sensible means of being converted into numeric scalars for range comparisons. If
possible, add the data type to those understood by the rouatineert_to_scalar() in
src/backend/utils/adt/selfuncs.c . (Eventually, this routine should be replaced by
per-data-type functions identified through a column ofgbetype system catalog; but that hasn'’t
happened yet.) If you do not do this, things will still work, but the optimizer's estimates won't be as
good as they could be.

There are additional selectivity functions designed for geometric operators in
src/backend/utils/adt/geo_selfuncs.c : areasel , positionsel , andcontsel . At this
writing these are just stubs, but you may want to use them (or even better, improve them) anyway.

11.3.4. JOIN

TheJOIN clause, if provided, names a join selectivity estimation function for the operator (note that
this is a function name, not an operator nan3é&)IN clauses only make sense for binary operators
that returrboolean . The idea behind a join selectivity estimator is to guess what fraction of the rows
in a pair of tables will satisfy &/HERElause condition of the form

tablel.columnl OP table2.column2
for the current operator. As with ttRESTRICT clause, this helps the optimizer very substantially by
letting it figure out which of several possible join sequences is likely to take the least work.
As before, this chapter will make no attempt to explain how to write a join selectivity estimator
function, but will just suggest that you use one of the standard estimators if one is applicable:

egjoinsel for =
negjoinsel for <>

scalarltjoinsel for < or <=

scalargtjoinsel for > or >=

areajoinsel for 2D area-based comparisons
positionjoinsel for 2D position-based comparisons

contjoinsel for 2D containment-based comparisons

11.3.5. HASHES

TheHASHESlause, if present, tells the system that it is permissible to use the hash join method for a
join based on this operatd#ASHESnly makes sense for binary operators that rebwwiean , and
in practice the operator had better be equality for some data type.

The assumption underlying hash join is that the join operator can only return true for pairs of left and
right values that hash to the same hash code. If two values get put in different hash buckets, the join
will never compare them at all, implicitly assuming that the result of the join operator must be false.
So it never makes sense to spec¢iySHESor operators that do not represent equality.

In fact, logical equality is not good enough either; the operator had better represent pure bitwise
equality, because the hash function will be computed on the memory representation of the values
regardless of what the bits mean. For example, equality of time intervals is not bitwise equality; the

interval equality operator considers two time intervals equal if they have the same duration, whether or
not their endpoints are identical. What this means is that a join usbejween interval fields would

yield different results if implemented as a hash join than if implemented another way, because a large

203

Chapter 11. Extending SQL: Operators

fraction of the pairs that should match will hash to different values and will never be compared by
the hash join. But if the optimizer chose to use a different kind of join, all the pairs that the equality
operator says are equal will be found. We don’t want that kind of inconsistency, so we don’t mark
interval equality as hashable.

There are also machine-dependent ways in which a hash join might fail to do the right thing. For
example, if your data type is a structure in which there may be uninteresting pad bits, it's unsafe to
mark the equality operatttASHES(Unless, perhaps, you write your other operators to ensure that the
unused bits are always zero.) Another example is that the floating-point data types are unsafe for hash
joins. On machines that meet the IEEE floating-point standard, minus zero and plus zero are different
values (different bit patterns) but they are defined to compare equal. So, if the equality operator on
floating-point data types were markedhSHES a minus zero and a plus zero would probably not be
matched up by a hash join, but they would be matched up by any other join process.

The bottom line is that you should probably only useSHESor equality operators that are (or could
be) implemented bynemcmp().

11.3.6. MERGE$SORT1 SORT2 LTCMR GTCMP

The MERGESIlause, if present, tells the system that it is permissible to use the merge join method for
a join based on this operattdERGE®nly makes sense for binary operators that reboniean , and
in practice the operator must represent equality for some data type or pair of data types.

Merge join is based on the idea of sorting the left- and right-hand tables into order and then scanning
them in parallel. So, both data types must be capable of being fully ordered, and the join operator
must be one that can only succeed for pairs of values that fall at the “same place” in the sort order.
In practice this means that the join operator must behave like equality. But unlike hash join, where
the left and right data types had better be the same (or at least bitwise equivalent), it is possible to
merge-join two distinct data types so long as they are logically compatible. For exampilg2the
versusint4 equality operator is merge-joinable. We only need sorting operators that will bring both
data types into a logically compatible sequence.

Execution of a merge join requires that the system be able to identify four operators related to the
merge-join equality operator: less-than comparison for the left input data type, less-than comparison
for the right input data type, less-than comparison between the two data types, and greater-than com-
parison between the two data types. (These are actually four distinct operators if the merge-joinable
operator has two different input data types; but when the input types are the same the three less-than
operators are all the same operator.) It is possible to specify these operators individually by name, as
the SORT1 SORT2 LTCMP andGTCMPoptions respectively. The system will fill in the default names

<, <, <, > respectively if any of these are omitted whdBRGESs specified. AISOMERGESvill be
assumed to be implied if any of these four operator options appear, so it is possible to specify just
some of them and let the system fill in the rest.

The input data types of the four comparison operators can be deduced from the input types of the
merge-joinable operator, so just as wWitdoMMUTATQBNIy the operator names need be given in these
clauses. Unless you are using peculiar choices of operator names, it's sufficient tolBRGE&Nd

let the system fill in the details. (As wittOMMUTATO@&d NEGATORthe system is able to make
dummy operator entries if you happen to define the equality operator before the other ones.)

There are additional restrictions on operators that you mark merge-joinable. These restrictions are not
currently checked b REATE OPERATQRut errors may occur when the operator is used if any are
not true:

- A merge-joinable equality operator must have a merge-joinable commutator (itself if the two data
types are the same, or a related equality operator if they are different).

204

Chapter 11. Extending SQL: Operators

- If there is a merge-joinable operator relating any two data types A and B, and another merge-
joinable operator relating B to any third data type C, then A and C must also have a merge-joinable
operator; in other words, having a merge-joinable operator must be transitive.

« Bizarre results will ensue at runtime if the four comparison operators you name do not sort the data
values compatibly.

Note: In PostgreSQL versions before 7.3, the MERGEShorthand was not available: to make a
merge-joinable operator one had to write both SORT1and SORT2explicitly. Also, the LTCMPand
GTCMPptions did not exist; the names of those operators were hardwired as < and > respectively.

205

Chapter 12. Extending SQL: Aggregates

Aggregate functions in PostgreSQL are expressesiads valuesndstate transition functionsThat

is, an aggregate can be defined in terms of state that is modified whenever an input item is processed.
To define a new aggregate function, one selects a data type for the state value, an initial value for
the state, and a state transition function. The state transition function is just an ordinary function that
could also be used outside the context of the aggregafi@alfunctioncan also be specified, in case

the desired output of the aggregate is different from the data that needs to be kept in the running state
value.

Thus, in addition to the input and result data types seen by a user of the aggregate, there is an internal
state-value data type that may be different from both the input and result types.

If we define an aggregate that does not use a final function, we have an aggregate that computes a
running function of the column values from each r@umis an example of this kind of aggregate.
Sumstarts at zero and always adds the current row’s value to its running total. For example, if we
want to make aum aggregate to work on a data type for complex numbers, we only need the addition
function for that data type. The aggregate definition is:

CREATE AGGREGATE complex_sum (
sfunc = complex_add,
basetype = complex,
stype = complex,
initcond = ’(0,0)’
);

SELECT complex_sum(a) FROM test_complex;

complex_sum

(34,53.9)

(In practice, we'd just name the aggregaten, and rely on PostgreSQL to figure out which kind of
sum to apply to a column of typsmmplex .)

The above definition ofum will return zero (the initial state condition) if there are no non-null input
values. Perhaps we want to return NULL in that case instead --- the SQL standard expetdis
behave that way. We can do this simply by omitting thicond phrase, so that the initial state
condition is NULL. Ordinarily this would mean that tlefunc would need to check for a NULL
state-condition input, but faum and some other simple aggregates tikexandmin, it’s sufficient to

insert the first non-null input value into the state variable and then start applying the transition function
at the second non-null input value. PostgreSQL will do that automatically if the initial condition is
NULL and the transition function is marked “strict” (i.e., not to be called for NULL inputs).

Another bit of default behavior for a “strict” transition function is that the previous state value is
retained unchanged whenever a NULL input value is encountered. Thus, null values are ignored. If
you need some other behavior for NULL inputs, just define your transition function as non-strict, and
code it to test for NULL inputs and do whatever is needed.

Avg (average) is a more complex example of an aggregate. It requires two pieces of running state:
the sum of the inputs and the count of the number of inputs. The final result is obtained by dividing
these quantities. Average is typically implemented by using a two-element array as the transition state
value. For example, the built-in implementationaofy(float8) looks like:

CREATE AGGREGATE avg (
sfunc = float8_accum,

206

Chapter 12. Extending SQL: Aggregates

basetype = float8,
stype = float8][],
finalfunc = float8_avg,
initcond = '{0,0}

For further details see the description of CREATE AGGREGATEMMand in th&eference Manual

207

Chapter 13. The Rule System

Author: Written by Jan Wieck. Updates for 7.1 by Tom Lane.

13.1. Introduction

Production rule systems are conceptually simple, but there are many subtle points involved in actually
using them. Some of these points and the theoretical foundations of the PostgreSQL rule system can
be found inOn Rules, Procedures, Caching and Views in Database Systems

Some other database systems define active database rules. These are usually stored procedures and
triggers and are implemented in PostgreSQL as functions and triggers.

The query rewrite rule system (thele systenfrom now on) is totally different from stored procedures

and triggers. It modifies queries to take rules into consideration, and then passes the modified query
to the query planner for planning and execution. It is very powerful, and can be used for many things
such as query language procedures, views, and versions. The power of this rule system is discussed
in A Unified Framework for Version Modeling Using Production Rules in a Database Sgsterall

asOn Rules, Procedures, Caching and Views in Database Systems

13.2. What is a Query Tree?

To understand how the rule system works it is necessary to know when it is invoked and what its input
and results are.

The rule system is located between the query parser and the planner. It takes the output of the parser,
one query tree, and the rewrite rules from teerewrite catalog, which are query trees too with

some extra information, and creates zero or many query trees as result. So its input and output are
always things the parser itself could have produced and thus, anything it sees is basically representable
as an SQL statement.

Now what is a query tree? It is an internal representation of an SQL statement where the single parts
that built it are stored separately. These query trees are visible when starting the PostgreSQL backend
with debug level 4 and typing queries into the interactive backend interface. The rule actions in the
pg_rewrite system catalog are also stored as query trees. They are not formatted like the debug
output, but they contain exactly the same information.

Reading a query tree requires some experience and it was a hard time when | started to work on the
rule system. | can remember that | was standing at the coffee machine and | saw the cup in a target
list, water and coffee powder in a range table and all the buttons in a qualification expression. Since

SQL representations of query trees are sufficient to understand the rule system, this document will
not teach how to read them. It might help to learn it and the naming conventions are required in the

later following descriptions.

13.2.1. The Parts of a Query tree

When reading the SQL representations of the query trees in this document it is necessary to be able
to identify the parts the statement is broken into when it is in the query tree structure. The parts of a

208

Chapter 13. The Rule System
query tree are

the command type

This is a simple value telling which command (SELECT, INSERT, UPDATE, DELETE) pro-
duced the parse tree.

the range table

The range table is a list of relations that are used in the query. In a SELECT statement these are
the relations given after the FROM keyword.

Every range table entry identifies a table or view and tells by which name it is called in the other
parts of the query. In the query tree the range table entries are referenced by index rather than by
name, so here it doesn’t matter if there are duplicate names as it would in an SQL statement. This
can happen after the range tables of rules have been merged in. The examples in this document
will not have this situation.

the result relation
This is an index into the range table that identifies the relation where the results of the query go.

SELECT queries normally don’t have a result relation. The special case of a SELECT INTO
is mostly identical to a CREATE TABLE, INSERT ... SELECT sequence and is not discussed
separately here.

On INSERT, UPDATE and DELETE queries the result relation is the table (or view!) where the
changes take effect.

the target list

The target list is a list of expressions that define the result of the query. In the case of a SELECT,
the expressions are what builds the final output of the query. They are the expressions between
the SELECT and the FROM keywords. (* is just an abbreviation for all the attribute names of a
relation. It is expanded by the parser into the individual attributes, so the rule system never sees
it.)

DELETE queries don't need a target list because they don’t produce any result. In fact the planner
will add a special CTID entry to the empty target list. But this is after the rule system and will
be discussed later. For the rule system the target list is empty.

In INSERT queries the target list describes the new rows that should go into the result relation.
It is the expressions in the VALUES clause or the ones from the SELECT clause in INSERT ...

SELECT. The first step of the rewrite process adds target list entries for any columns that were
not assigned to by the original query and have defaults. Any remaining columns (with neither a
given value nor a default) will be filled in by the planner with a constant NULL expression.

In UPDATE queries, the target list describes the new rows that should replace the old ones. In
the rule system, it contains just the expressions from the SET attribute = expression part of the
qguery. The planner will handle missing columns by inserting expressions that copy the values
from the old row into the new one. And it will add the special CTID entry just as for DELETE
too.

Every entry in the target list contains an expression that can be a constant value, a variable
pointing to an attribute of one of the relations in the range table, a parameter, or an expression
tree made of function calls, constants, variables, operators etc.

the qualification

The query’s qualification is an expression much like one of those contained in the target list
entries. The result value of this expression is a Boolean that tells if the operation (INSERT,

209

Chapter 13. The Rule System

UPDATE, DELETE or SELECT) for the final result row should be executed or not. It is the
WHERE clause of an SQL statement.

the join tree

The query’s join tree shows the structure of the FROM clause. For a simple query like SELECT
FROM a, b, c the join tree is just a list of the FROM items, because we are allowed to join them
in any order. But when JOIN expressions --- particularly outer joins --- are used, we have to join
in the order shown by the joins. The join tree shows the structure of the JOIN expressions. The
restrictions associated with particular JOIN clauses (from ON or USING expressions) are stored
as qualification expressions attached to those join tree nodes. It turns out to be convenient to
store the top-level WHERE expression as a qualification attached to the top-level join tree item,
too. So really the join tree represents both the FROM and WHERE clauses of a SELECT.

the others

The other parts of the query tree like the ORDER BY clause aren't of interest here. The rule
system substitutes entries there while applying rules, but that doesn’t have much to do with the
fundamentals of the rule system.

13.3. Views and the Rule System

13.3.1. Implementation of Views in PostgreSQL

Views in PostgreSQL are implemented using the rule system. In fact there is essentially no difference
between

CREATE VIEW myview AS SELECT * FROM mytab;

compared against the two commands

CREATE TABLE myview (same attribute list as for mytab);
CREATE RULE " _RETURN" AS ON SELECT TO myview DO INSTEAD
SELECT * FROM mytab;

because this is exactly what the CREATE VIEW command does internally. This has some side effects.
One of them is that the information about a view in the PostgreSQL system catalogs is exactly the
same as it is for a table. So for the query parser, there is absolutely no difference between a table and
a view. They are the same thing - relations. That is the important one for now.

13.3.2. How SELECT Rules Work

Rules ON SELECT are applied to all queries as the last step, even if the command given is an INSERT,
UPDATE or DELETE. And they have different semantics from the others in that they modify the parse
tree in place instead of creating a new one. So SELECT rules are described first.

Currently, there can be only one action in an ON SELECT rule, and it must be an unconditional
SELECT action that is INSTEAD. This restriction was required to make rules safe enough to open
them for ordinary users and it restricts rules ON SELECT to real view rules.

210

Chapter 13. The Rule System

The examples for this document are two join views that do some calculations and some more views
using them in turn. One of the two first views is customized later by adding rules for INSERT, UP-
DATE and DELETE operations so that the final result will be a view that behaves like a real table with
some magic functionality. It is not such a simple example to start from and this makes things harder
to get into. But it's better to have one example that covers all the points discussed step by step rather
than having many different ones that might mix up in mind.

The database needed to play with the examples is naimeghdy . You'll see soon why this is the
database name. And it needs the procedural language PL/pgSQL installed, because we need a little
min() function returning the lower of 2 integer values. We create that as

CREATE FUNCTION min(integer, integer) RETURNS integer AS ’
BEGIN
IF $1 < $2 THEN
RETURN $1;
END IF;
RETURN $2;
END;
" LANGUAGE plpgsql;

The real tables we need in the first two rule system descriptions are these:

CREATE TABLE shoe_data (

shoename char(10), -- primary key
sh_avail integer, -- available # of pairs
slcolor char(10), -- preferred shoelace color
siminlen float, -- miminum shoelace length
simaxlen float, -- maximum shoelace length
slunit char(8) -- length unit

)i

CREATE TABLE shoelace_data (
sl_name char(10), -- primary key
sl_avail integer, -- available # of pairs
sl_color char(10), -- shoelace color
sl_len float, -- shoelace length
sl_unit char(8) -- length unit

);

CREATE TABLE unit (
un_name char(8), -- the primary key
un_fact float -- factor to transform to cm

);

| think most of us wear shoes and can realize that this is really useful data. Well there are shoes out in
the world that don't require shoelaces, but this doesn’t make Al's life easier and so we ignore it.

The views are created as

CREATE VIEW shoe AS
SELECT sh.shoename,
sh.sh_avail,
sh.slcolor,
sh.sIminlen,
sh.slminlen * un.un_fact AS slminlen_cm,
sh.sImaxlen,

211

Chapter 13. The Rule System

sh.simaxlen * un.un_fact AS slmaxlen_cm,
sh.slunit

FROM shoe_data sh, unit un

WHERE sh.slunit = un.un_name;

CREATE VIEW shoelace AS
SELECT s.sl_name,
s.sl_avalil,
s.sl_color,
s.sl_len,
s.sl_unit,
s.sl_len * u.un_fact AS sl _len_cm
FROM shoelace_data s, unit u
WHERE s.sl_unit = u.un_name;

CREATE VIEW shoe_ready AS
SELECT rsh.shoename,
rsh.sh_avall,
rsl.sl_name,
rsl.sl_avail,
min(rsh.sh_avail, rsl.sl_avail) AS total_avail
FROM shoe rsh, shoelace rsl
WHERE rsl.sl_color = rsh.slcolor
AND rsl.sl_len_cm >= rsh.sIminlen_cm
AND rsl.sl_len_cm <= rsh.simaxlen_cm;

The CREATE VIEW command for thehoelace view (which is the simplest one we have) will
create a relation shoelace and an entrggnrewrite that tells that there is a rewrite rule that must

be applied whenever the relation shoelace is referenced in a query’s range table. The rule has no rule
qualification (discussed later, with the non SELECT rules, since SELECT rules currently cannot have
them) and it is INSTEAD. Note that rule qualifications are not the same as query qualifications! The
rule’s action has a query qualification.

The rule’s action is one query tree that is a copy of the SELECT statement in the view creation
command.

Note: The two extra range table entries for NEW and OLD (named *NEW* and *CURRENT* for
historical reasons in the printed query tree) you can see in the pg_rewrite entry aren't of interest
for SELECT rules.

Now we populataunit , shoe_data andshoelace_data and Al types the first SELECT in his
life:

al_bundy=> INSERT INTO unit VALUES (cm’, 1.0);
al_bundy=> INSERT INTO unit VALUES ('m’, 100.0);
al_bundy=> INSERT INTO unit VALUES (inch’, 2.54);

al_bundy=>

al_bundy=> INSERT INTO shoe_data VALUES
al_bundy-> ('sh1’, 2, 'black’, 70.0, 90.0, 'cm’);
al_bundy=> INSERT INTO shoe_data VALUES
al_bundy-> ('sh2’, 0, 'black’, 30.0, 40.0, ’'inch’);
al_bundy=> INSERT INTO shoe_data VALUES
al_bundy-> ('sh3’, 4, 'brown’, 50.0, 65.0, 'cm’);
al_bundy=> INSERT INTO shoe_data VALUES
al_bundy-> ('sh4’, 3, 'brown’, 40.0, 50.0, 'inch’);
al_bundy=>

al_bundy=> INSERT INTO shoelace_data VALUES
al_bundy-> (’sl1’, 5, ’black’, 80.0, 'cm’);

212

Chapter 13. The Rule System

al_bundy=> INSERT INTO shoelace_data VALUES

al_bundy-> (’sl2’, 6, ’black’, 100.0, 'cm’);
al_bundy=> INSERT INTO shoelace_data VALUES
al_bundy-> (’sl3’, 0, ’black’, 35.0 , ’inch’;
al_bundy=> INSERT INTO shoelace_data VALUES
al_bundy-> ('sl4’, 8, ’'black’, 40.0 , ’'inch’);
al_bundy=> INSERT INTO shoelace_data VALUES
al_bundy-> ('sl5’, 4, ’brown’, 1.0 , 'm’);
al_bundy=> INSERT INTO shoelace_data VALUES
al_bundy-> ('slé’, 0, ’brown’, 0.9 , 'm’);
al_bundy=> INSERT INTO shoelace_data VALUES
al_bundy-> ('sl7’, 7, 'brown’, 60 , 'cm’);
al_bundy=> INSERT INTO shoelace_data VALUES
al_bundy-> ('sl8’, 1, 'brown’, 40 , ’inch’);
al_bundy=>

al_bundy=> SELECT * FROM shoelace;
sl_name [sl_avail|sl_color |sl_len|sl_unit |sl_len_cm

+ + + + +
T T T T T

sl1 | 5|black | 80|cm | 80
sl2 | 6|black | 100|cm | 100
sl7 | 7|brown | 60|cm [60
slI3 | O|black | 35|inch | 88.9
sl4 | 8|black | 40lJinch | 101.6
sl8 | 1|brown [40[inch [101.6
sI5 [4|brown [1lm | 100
sl6 | O|brown | 0.9Im | 90
(8 rows)

It's the simplest SELECT Al can do on our views, so we take this to explain the basics of view rules.
TheSELECT * FROM shoelace was interpreted by the parser and produced the parse tree

SELECT shoelace.sl_name, shoelace.sl_avail,
shoelace.sl_color, shoelace.sl_len,
shoelace.sl_unit, shoelace.sl_len_cm

FROM shoelace shoelace;

and this is given to the rule system. The rule system walks through the range table and checks if there
are rules img_rewrite for any relation. When processing the range table entrghoelace (the
only one up to now) it finds theRETURNule with the parse tree

SELECT s.sl_name, s.sl_avalil,
s.sl_color, s.sl_len, s.sl_unit,
float8mul(s.sl_len, u.un_fact) AS sl_len_cm
FROM shoelace *OLD*, shoelace *NEW*,
shoelace data s, unit u
WHERE bpchareq(s.sl_unit, u.un_name);

Note that the parser changed the calculation and qualification into calls to the appropriate functions.
But in fact this changes nothing.

To expand the view, the rewriter simply creates a subselect range-table entry containing the rule’s
action parse tree, and substitutes this range table entry for the original one that referenced the view.
The resulting rewritten parse tree is almost the same as if Al had typed

SELECT shoelace.sl_name, shoelace.sl_avalil,
shoelace.sl_color, shoelace.sl_len,
shoelace.sl_unit, shoelace.sl _len_cm

FROM (SELECT s.sl_name,

213

Chapter 13. The Rule System

s.sl_avail,

s.sl_color,

s.sl_len,

s.sl_unit,

s.sl_len * u.un_fact AS sl_len_cm
FROM shoelace_data s, unit u
WHERE s.sl_unit = u.un_name) shoelace;

There is one difference however: the sub-query’s range table has two extra entries shoelace *OLD*,
shoelace *NEW*. These entries don't participate directly in the query, since they aren't referenced by

the sub-query’s join tree or target list. The rewriter uses them to store the access permission check info
that was originally present in the range-table entry that referenced the view. In this way, the executor

will still check that the user has proper permissions to access the view, even though there’s no direct
use of the view in the rewritten query.

That was the first rule applied. The rule system will continue checking the remaining range-table
entries in the top query (in this example there are no more), and it will recursively check the range-
table entries in the added sub-query to see if any of them reference views. (But it won’t expand *OLD*
or *NEW?* --- otherwise we’d have infinite recursion!) In this example, there are no rewrite rules for

shoelace_data or unit, so rewriting is complete and the above is the final result given to the planner.

Now we face Al with the problem that the Blues Brothers appear in his shop and want to buy some
new shoes, and as the Blues Brothers are, they want to wear the same shoes. And they want to wear
them immediately, so they need shoelaces too.

Al needs to know for which shoes currently in the store he has the matching shoelaces (color and size)
and where the total number of exactly matching pairs is greater or equal to two. We teach him what
to do and he asks his database:

al_bundy=> SELECT * FROM shoe_ready WHERE total_avail >= 2;
shoename [sh_avail|sl_name |sl_avail|total_avail

+ + + +

shl | 2|sl1 | 5| 2
sh3 | 4|sl7 | 7 4
(2 rows)

Al is a shoe guru and so he knows that only shoes of type sh1 would fit (shoelace sl7 is brown and
shoes that need brown shoelaces aren’t shoes the Blues Brothers would ever wear).

The output of the parser this time is the parse tree

SELECT shoe_ready.shoename, shoe_ready.sh_avalil,
shoe_ready.sl_name, shoe_ready.sl_avail,
shoe_ready.total_avail

FROM shoe_ready shoe_ready

WHERE int4ge(shoe_ready.total_avail, 2);

The first rule applied will be the one for tlsaoe_ready view and it results in the parse tree

SELECT shoe_ready.shoename, shoe_ready.sh_avalil,
shoe_ready.sl_name, shoe_ready.sl_avall,
shoe_ready.total_avail

FROM (SELECT rsh.shoename,
rsh.sh_avail,
rsl.sl_name,
rsl.sl_avail,
min(rsh.sh_avail, rsl.sl_avail) AS total_avail
FROM shoe rsh, shoelace rsl

214

Chapter 13. The Rule System

WHERE rsl.sl_color = rsh.slcolor
AND rsl.sl_len_cm >= rsh.sIminlen_cm
AND rsl.sl_len_cm <= rsh.slmaxlen_cm) shoe_ready
WHERE int4ge(shoe_ready.total_avail, 2);

Similarly, the rules forshoe andshoelace are substituted into the range table of the sub-query,
leading to a three-level final query tree:

SELECT shoe_ready.shoename, shoe_ready.sh_avalil,
shoe_ready.sl_name, shoe_ready.sl_avail,
shoe_ready.total_avail

FROM (SELECT rsh.shoename,
rsh.sh_avalil,
rsl.sl_name,
rsl.sl_avail,
min(rsh.sh_avail, rsl.sl_avail) AS total_avail
FROM (SELECT sh.shoename,
sh.sh_avail,
sh.slcolor,
sh.sIminlen,
sh.sIminlen * un.un_fact AS siminlen_cm,
sh.sImaxlen,
sh.simaxlen * un.un_fact AS slmaxlen_cm,
sh.slunit
FROM shoe_data sh, unit un
WHERE sh.slunit = un.un_name) rsh,
(SELECT s.sl_name,
s.sl_avalil,
s.sl_color,
s.sl_len,
s.sl_unit,
s.sl_len * u.un_fact AS sl _len_cm
FROM shoelace_data s, unit u
WHERE s.sl_unit = u.un_name) rsl
WHERE rsl.sl_color = rsh.slcolor
AND rsl.sl_len_cm >= rsh.sIminlen_cm
AND rsl.sl_len_cm <= rsh.simaxlen_cm) shoe_ready
WHERE int4ge(shoe_ready.total_avail, 2);

It turns out that the planner will collapse this tree into a two-level query tree: the bottommost selects
will be “pulled up” into the middle select since there’s no need to process them separately. But the
middle select will remain separate from the top, because it contains aggregate functions. If we pulled
those up it would change the behavior of the topmost select, which we don’t want. However, col-

lapsing the query tree is an optimization that the rewrite system doesn’t have to concern itself with.

Note: There is currently no recursion stopping mechanism for view rules in the rule system (only
for the other kinds of rules). This doesn’t hurt much, because the only way to push this into an
endless loop (blowing up the backend until it reaches the memory limit) is to create tables and
then setup the view rules by hand with CREATE RULE in such a way, that one selects from the
other that selects from the one. This could never happen if CREATE VIEW is used because for
the first CREATE VIEW, the second relation does not exist and thus the first view cannot select
from the second.

215

Chapter 13. The Rule System

13.3.3. View Rules in Non-SELECT Statements

Two details of the parse tree aren't touched in the description of view rules above. These are the
command type and the result relation. In fact, view rules don't need this information.

There are only a few differences between a parse tree for a SELECT and one for any other command.
Obviously they have another command type and this time the result relation points to the range table
entry where the result should go. Everything else is absolutely the same. So having two tables t1 and
t2 with attributes a and b, the parse trees for the two statements

SELECT t2.b FROM t1, t2 WHERE tl.a = t2.a;
UPDATE t1 SET b = t2.b WHERE tl.a = t2.a;

are nearly identical.

« The range tables contain entries for the tables t1 and t2.

The target lists contain one variable that points to attribute b of the range table entry for table t2.
- The qualification expressions compare the attributes a of both ranges for equality.
« The join trees show a simple join between t1 and t2.

The consequence is, that both parse trees result in similar execution plans. They are both joins over the
two tables. For the UPDATE the missing columns from t1 are added to the target list by the planner
and the final parse tree will read as

UPDATE t1 SET a = tl.a, b = t2.b WHERE tl.a = t2.a;

and thus the executor run over the join will produce exactly the same result set as a

SELECT tl.a, t2.b FROM t1, t2 WHERE tl.a = t2.a;

will do. But there is a little problem in UPDATE. The executor does not care what the results from
the join it is doing are meant for. It just produces a result set of rows. The difference that one is a
SELECT command and the other is an UPDATE is handled in the caller of the executor. The caller
still knows (looking at the parse tree) that this is an UPDATE, and he knows that this result should go
into table t1. But which of the rows that are there has to be replaced by the new row?

To resolve this problem, another entry is added to the target list in UPDATE (and also in DELETE)
statements: the current tuple ID (CTID). This is a system attribute containing the file block number
and position in the block for the row. Knowing the table, the CTID can be used to retrieve the original
t1 row to be updated. After adding the CTID to the target list, the query actually looks like

SELECT tl.a, t2.b, tl.ctid FROM tl1, t2 WHERE tl.a = t2.a;

Now another detail of PostgreSQL enters the stage. At this moment, table rows aren’t overwritten and
this is why ABORT TRANSACTION is fast. In an UPDATE, the new result row is inserted into the
table (after stripping CTID) and in the tuple header of the row that CTID pointed tonte and

xmax entries are set to the current command counter and current transaction ID. Thus the old row is
hidden and after the transaction committed the vacuum cleaner can really move it out.

Knowing all that, we can simply apply view rules in absolutely the same way to any command. There
is no difference.

216

Chapter 13. The Rule System

13.3.4. The Power of Views in PostgreSQL

The above demonstrates how the rule system incorporates view definitions into the original parse tree.
In the second example a simple SELECT from one view created a final parse tree that is a join of 4
tables (unit is used twice with different names).

13.3.4.1. Benefits

The benefit of implementing views with the rule system is, that the planner has all the information
about which tables have to be scanned plus the relationships between these tables plus the restrictive
qualifications from the views plus the qualifications from the original query in one single parse tree.
And this is still the situation when the original query is already a join over views. Now the planner
has to decide which is the best path to execute the query. The more information the planner has, the
better this decision can be. And the rule system as implemented in PostgreSQL ensures, that this is
all information available about the query up to now.

13.3.5. What about updating a view?

What happens if a view is named as the target relation for an INSERT, UPDATE, or DELETE? After

doing the substitutions described above, we will have a query tree in which the result relation points
at a subquery range table entry. This will not work, so the rewriter throws an error if it sees it has
produced such a thing.

To change this we can define rules that modify the behavior of non-SELECT queries. This is the topic
of the next section.

13.4. Rules on INSERT, UPDATE and DELETE

13.4.1. Differences from View Rules

Rules that are defined ON INSERT, UPDATE and DELETE are totally different from the view rules
described in the previous section. First, their CREATE RULE command allows more:

« They can have no action.

« They can have multiple actions.

« The keyword INSTEAD is optional.

« The pseudo relations NEW and OLD become useful.
« They can have rule qualifications.

Second, they don’t modify the parse tree in place. Instead they create zero or many new parse trees
and can throw away the original one.

13.4.2. How These Rules Work

Keep the syntax

CREATE RULE rule_name AS ON event
TO object [WHERE rule_qualification]

217

Chapter 13. The Rule System

DO [INSTEAD] [action | (actions) | NOTHING];

in mind. In the following,update rulesmeans rules that are defined ON INSERT, UPDATE or
DELETE.

Update rules get applied by the rule system when the result relation and the command type of a parse
tree are equal to the object and event given in the CREATE RULE command. For update rules, the rule

system creates a list of parse trees. Initially the parse tree list is empty. There can be zero (NOTHING

keyword), one or multiple actions. To simplify, we look at a rule with one action. This rule can have

a qualification or not and it can be INSTEAD or not.

What is a rule qualification? It is a restriction that tells when the actions of the rule should be done
and when not. This qualification can only reference the NEW and/or OLD pseudo relations which are
basically the relation given as object (but with a special meaning).

So we have four cases that produce the following parse trees for a one-action rule.

- No qualification and not INSTEAD:

- The parse tree from the rule action where the original parse tree’s qualification has been added.

- No qualification but INSTEAD:

- The parse tree from the rule action where the original parse tree’s qualification has been added.

- Qualification given and not INSTEAD:

. The parse tree from the rule action where the rule qualification and the original parse tree’s
gualification have been added.

« Qualification given and INSTEAD:

. The parse tree from the rule action where the rule qualification and the original parse tree’s
qualification have been added.

- The original parse tree where the negated rule qualification has been added.

Finally, if the rule is not INSTEAD, the unchanged original parse tree is added to the list. Since only
qualified INSTEAD rules already add the original parse tree, we end up with either one or two output
parse trees for a rule with one action.

For ON INSERT rules, the original query (if not suppressed by INSTEAD) is done before any actions
added by rules. This allows the actions to see the inserted row(s). But for ON UPDATE and ON
DELETE rules, the original query is done after the actions added by rules. This ensures that the actions
can see the to-be-updated or to-be-deleted rows; otherwise, the actions might do nothing because they
find no rows matching their qualifications.

The parse trees generated from rule actions are thrown into the rewrite system again and maybe more
rules get applied resulting in more or less parse trees. So the parse trees in the rule actions must have
either another command type or another result relation. Otherwise this recursive process will end up
in a loop. There is a compiled-in recursion limit of currently 100 iterations. If after 100 iterations
there are still update rules to apply the rule system assumes a loop over multiple rule definitions and
reports an error.

The parse trees found in the actions of plgerewrite ~ system catalog are only templates. Since they
can reference the range-table entries for NEW and OLD, some substitutions have to be made before
they can be used. For any reference to NEW, the target list of the original query is searched for a

218

Chapter 13. The Rule System

corresponding entry. If found, that entry’s expression replaces the reference. Otherwise NEW means
the same as OLD (for an UPDATE) or is replaced by NULL (for an INSERT). Any reference to OLD
is replaced by a reference to the range-table entry which is the result relation.

After we are done applying update rules, we apply view rules to the produced parse tree(s). Views
cannot insert new update actions so there is no need to apply update rules to the output of view
rewriting.

13.4.2.1. A First Rule Step by Step

We want to trace changes to the sl_avail column ingheelace_data relation. So we setup a
log table and a rule that conditionally writes a log entry when an UPDATE is performed on
shoelace_data

CREATE TABLE shoelace_log (

sl_name char(10), -- shoelace changed
sl_avail integer, -- new available value
log_who text, -- who did it
log_when timestamp -- when

);

CREATE RULE log_shoelace AS ON UPDATE TO shoelace_data
WHERE NEW.s|_avail != OLD.sl_avalil
DO INSERT INTO shoelace_log VALUES (
NEW.sl_name,
NEW.s|_avail,
current_user,
current_timestamp

Now Al does

al_bundy=> UPDATE shoelace_data SET sl_avail = 6
al_bundy-> WHERE sl _name = ’'sI7’;

and we look at the log table.

al_bundy=> SELECT * FROM shoelace_log;
sl_name |sl_avail|log_who|log_when

sl7 | 6|Al |Tue Oct 20 16:14:45 1998 MET DST
(1 row)

That's what we expected. What happened in the background is the following. The parser created the
parse tree (this time the parts of the original parse tree are highlighted because the base of operations
is the rule action for update rules).

UPDATE shoelace_data SET sl_avail = 6
FROM shoelace_data shoelace data
WHERE bpchareq(shoelace_data.sl_name, ’'slI7’);
There is a ruléog_shoelace that is ON UPDATE with the rule qualification expression
int4Ane(NEW.sl_avail, OLD.sl_avail)

and one action

219

Chapter 13. The Rule System

INSERT INTO shoelace_log VALUES(
NEW.sl_name, *NEW*.sl_avalil,
current_user, current_timestamp)
FROM shoelace_data *NEW?*, shoelace_data *OLD*;

This is a little strange-looking since you can’t normally write INSERT ... VALUES ... FROM. The
FROM clause here is just to indicate that there are range-table entries in the parse tree for *NEW*
and *OLD*. These are needed so that they can be referenced by variables in the INSERT command’s
query tree.

The rule is a qualified non-INSTEAD rule, so the rule system has to return two parse trees: the
modified rule action and the original parse tree. In the first step the range table of the original query
is incorporated into the rule’s action parse tree. This results in

INSERT INTO shoelace_log VALUES(
NEW.sl_name, *NEW*.s|_avalil,
current_user, current_timestamp)
FROM shoelace_data *NEW?*, shoelace_data *OLD*,
shoelace_data shoelace_data ;
In step 2 the rule qualification is added to it, so the result set is restricted to rows where sl_avail
changes.

INSERT INTO shoelace_log VALUES(
NEW?.sl_name, *NEW?*.sl_avail,
current_user, current_timestamp)
FROM shoelace_data *NEW?*, shoelace_data *OLD*,
shoelace_data shoelace_data
WHERE int4ne(*NEW?*.sl_avail, *OLD*.sl_avail) ;
This is even stranger-looking, since INSERT ... VALUES doesn’t have a WHERE clause either, but
the planner and executor will have no difficulty with it. They need to support this same functionality
anyway for INSERT ... SELECT.

In step 3 the original parse tree’s qualification is added, restricting the result set further to only the
rows touched by the original parse tree.

INSERT INTO shoelace_log VALUES(
NEW?.sl_name, *NEW?*.sl_avail,
current_user, current_timestamp)
FROM shoelace_data *NEW?*, shoelace_data *OLD*,
shoelace_data shoelace_data
WHERE int4ne(*NEW?*.sl_avail, *OLD*.sl_avail)
AND bpchareq(shoelace_data.sl_name, 'sI7’) ;
Step 4 replaces NEW references by the target list entries from the original parse tree or by the match-
ing variable references from the result relation.

INSERT INTO shoelace_log VALUES(
shoelace_data.sl_name , 6,
current_user, current_timestamp)
FROM shoelace_data *NEW?*, shoelace_data *OLD*,
shoelace_data shoelace_data
WHERE int4dne(6, *OLD*.sl_avail)
AND bpchareq(shoelace_data.sl_name, 'sI7’);

Step 5 changes OLD references into result relation references.

220

Chapter 13. The Rule System

INSERT INTO shoelace_log VALUES(
shoelace_data.sl_name, 6,
current_user, current_timestamp)
FROM shoelace_data *NEW?*, shoelace_data *OLD*,
shoelace_data shoelace_data
WHERE int4ne(6, shoelace_data.sl_avall)
AND bpchareq(shoelace_data.sl_name, ’'sI7’);

That's it. Since the rule is not INSTEAD, we also output the original parse tree. In short, the output
from the rule system is a list of two parse trees that are the same as the statements:

INSERT INTO shoelace_log VALUES(
shoelace_data.sl_name, 6,
current_user, current_timestamp)

FROM shoelace_data

WHERE 6 != shoelace_data.sl_avail
AND shoelace_data.sl hame = 'sI7’;

UPDATE shoelace_data SET sl_avail = 6
WHERE sl_name = ’sI7’;

These are executed in this order and that is exactly what the rule defines. The substitutions and the
qualifications added ensure that if the original query would be, say,

UPDATE shoelace_data SET sl_color = 'green’
WHERE s|l_name = ’s|7’;

no log entry would get written. This time the original parse tree does not contain a target list entry for
sl_avail, so NEW.sl_avail will get replaced by shoelace_data.sl_avail resulting in the extra query

INSERT INTO shoelace_log VALUES(
shoelace_data.sl_name, shoelace_data.sl_avail
current_user, current_timestamp)

FROM shoelace_data
WHEREshoelace_data.sl_avail I= shoelace_data.sl_avail
AND shoelace_data.sl_name = ’sI7’;

and that qualification will never be true. It will also work if the original query modifies multiple rows.
So if Al would issue the command

UPDATE shoelace_data SET sl_avail = 0
WHERE sl_color = 'black’;

four rows in fact get updated (sl1, sl2, sI3 and sl4). But sI3 already has sl_avail = 0. This time, the
original parse trees qualification is different and that results in the extra parse tree

INSERT INTO shoelace_log SELECT
shoelace_data.sl_name, O,

current_user, current_timestamp
FROM shoelace_data

WHERE 0 != shoelace_data.sl_avail
AND shoelace_data.sl_color = 'black’

This parse tree will surely insert three new log entries. And that's absolutely correct.

Here we can see why it is important that the original parse tree is executed last. If the UPDATE would

have been executed first, all the rows are already set to zero, so the logging INSERT would not find
any row where 0 !'= shoelace_data.sl_avalil.

221

Chapter 13. The Rule System

13.4.3. Cooperation with Views

A simple way to protect view relations from the mentioned possibility that someone can try to IN-
SERT, UPDATE and DELETE on them is to let those parse trees get thrown away. We create the
rules

CREATE RULE shoe_ins_protect AS ON INSERT TO shoe
DO INSTEAD NOTHING;

CREATE RULE shoe_upd_protect AS ON UPDATE TO shoe
DO INSTEAD NOTHING;

CREATE RULE shoe_del_protect AS ON DELETE TO shoe
DO INSTEAD NOTHING;

If Al now tries to do any of these operations on the view relatiboe , the rule system will apply the

rules. Since the rules have no actions and are INSTEAD, the resulting list of parse trees will be empty
and the whole query will become nothing because there is nothing left to be optimized or executed
after the rule system is done with it.

A more sophisticated way to use the rule system is to create rules that rewrite the parse tree into
one that does the right operation on the real tables. To do that cindkbiace view, we create the
following rules:

CREATE RULE shoelace_ins AS ON INSERT TO shoelace
DO INSTEAD
INSERT INTO shoelace_data VALUES (
NEW.sl_name,
NEW.s|_avall,
NEW.sl_color,
NEW.sl_len,
NEW.s|_unit);

CREATE RULE shoelace_upd AS ON UPDATE TO shoelace
DO INSTEAD
UPDATE shoelace_data SET
sl_name = NEW.sl_name,
sl_avail = NEW.sl_avail,
sl_color = NEW.sl_color,
sl_len = NEW.sl_len,
sl_unit = NEW.s|_unit
WHERE sl _name = OLD.sl_name;

CREATE RULE shoelace_del AS ON DELETE TO shoelace
DO INSTEAD
DELETE FROM shoelace_data
WHERE sl_name = OLD.sl_name;

Now there is a pack of shoelaces arriving in Al's shop and it has a big part list. Al is not that good
in calculating and so we don’t want him to manually update the shoelace view. Instead we setup two
little tables, one where he can insert the items from the part list and one with a special trick. The create
commands for these are:

CREATE TABLE shoelace_arrive (
arr_name char(10),
arr_quant integer

):

CREATE TABLE shoelace_ok (

222

Chapter 13. The Rule System

ok_name char(10),
ok_quant integer

);

CREATE RULE shoelace_ok ins AS ON INSERT TO shoelace_ok
DO INSTEAD
UPDATE shoelace SET
sl_avail = sl_avail + NEW.ok_quant
WHERE sl _name = NEW.ok name;

Now Al can sit down and do whatever until

al_bundy=> SELECT * FROM shoelace_arrive;
arr_name |arr_quant

sl3 | 10
sl6 | 20
sl8 | 20
(3 rows)

is exactly what's on the part list. We take a quick look at the current data,

al_bundy=> SELECT * FROM shoelace;
sl_name |sl_avail|sl_color |sl_len|sl_unit |sl_len_cm

+ + B — [R
sl1 | 5|black | 80|cm | 80
sl2 | 6|black | 100|cm | 100
sl7 | 6|brown | 60|cm [60
sI3 | O|black | 35|inch | 88.9
sl4 | 8|black | 40|inch | 101.6
slI8 [1|brown [40linch | 101.6
sl5 | 4]|brown | 1lm | 100
sl6 | O|brown [0.9Im | 90
(8 rows)

move the arrived shoelaces in

al_bundy=> INSERT INTO shoelace_ok SELECT * FROM shoelace_arrive;

and check the results

al_bundy=> SELECT * FROM shoelace ORDER BY sl_name;
sl_name [sl_avail|sl_color |sI_len|sl_unit |sl_len_cm

+ + + + +
T T T T

5|black | 80|cm | 80

sl1 |

sl2 | 6|black | 100|cm | 100
sl7 | 6|brown | 60|cm | 60
sl4 | 8|black | 40]inch | 101.6
si3 | 10|black [35|inch | 88.9

sl8 | 21|brown | 40|inch | 101.6
sI5 | 4|brown [1lm | 100
sl6 | 20|brown | 0.9Im | 20
(8 rows)

al_bundy=> SELECT * FROM shoelace_log;
sl_name |sl_availllog_whollog_when
+ + +
sl7 | 6|Al [Tue Oct 20 19:14:45 1998 MET DST

223

Chapter 13. The Rule System

sl3 | 10]Al [Tue Oct 20 19:25:16 1998 MET DST
sl6 | 20]Al [Tue Oct 20 19:25:16 1998 MET DST
si8 | 21]Al [Tue Oct 20 19:25:16 1998 MET DST
(4 rows)

It's a long way from the one INSERT ... SELECT to these results. And its description will be the last
in this document (but not the last example :-). First there was the parser’s output

INSERT INTO shoelace_ok SELECT
shoelace_arrive.arr_name, shoelace_arrive.arr_quant
FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok;

Now the first ruleshoelace_ok_ins is applied and turns it into

UPDATE shoelace SET
sl_avail = int4pl(shoelace.sl_avail, shoelace_arrive.arr_quant)
FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok,
shoelace_ok *OLD*, shoelace ok *NEW?,
shoelace shoelace
WHERE bpchareq(shoelace.sl_name, showlace_arrive.arr_name);

and throws away the original INSERT a&hoelace_ok . This rewritten query is passed to the rule
system again and the second applied shleelace_upd produced

UPDATE shoelace_data SET
sl_name = shoelace.sl_name,
sl_avail = intdpl(shoelace.sl_avail, shoelace_arrive.arr_quant),
sl_color = shoelace.sl_color,
sl_len = shoelace.sl_len,
sl_unit = shoelace.sl_unit
FROM shoelace_arrive shoelace_arrive, shoelace ok shoelace ok,
shoelace_ok *OLD*, shoelace_ok *NEW*,
shoelace shoelace, shoelace *OLD?*,
shoelace *NEW?*, shoelace_data showlace_data
WHERE bpchareq(shoelace.sl_name, showlace_arrive.arr_name)
AND bpchareq(shoelace_data.sl_name, shoelace.sl_name);

Again it's an INSTEAD rule and the previous parse tree is trashed. Note that this query still uses
the viewshoelace . But the rule system isn't finished with this loop so it continues and applies the
_RETURNule on it and we get

UPDATE shoelace_data SET
sl_name = s.sl_name,
sl_avail = int4pl(s.sl_avail, shoelace_arrive.arr_quant),
sl_color = s.sl_color,
sl_len = s.sl_len,
sl_unit = s.sl_unit
FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace ok,
shoelace_ok *OLD*, shoelace_ok *NEW?*,
shoelace shoelace, shoelace *OLD*,
shoelace *NEW?*, shoelace_data showlace_data,
shoelace *OLD*, shoelace *NEW*,
shoelace_data s, unit u
WHERE bpchareq(s.sl_name, showlace_arrive.arr_name)
AND bpchareq(shoelace_data.sl_name, s.sl_name);

224

Chapter 13. The Rule System

Again an update rule has been applied and so the wheel turns on and we are in rewrite round 3. This
time rulelog_shoelace gets applied, producing the extra parse tree

INSERT INTO shoelace_log SELECT
s.sl_name,
int4pl(s.sl_avail, shoelace_arrive.arr_quant),
current_user,
current_timestamp
FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace ok,
shoelace_ok *OLD*, shoelace_ok *NEW?,
shoelace shoelace, shoelace *OLD*,
shoelace *NEW?*, shoelace data showlace_ data,
shoelace *OLD*, shoelace *NEW?*,
shoelace _data s, unit u,
shoelace_data *OLD*, shoelace_data *NEW*
shoelace_log shoelace_log
WHERE bpchareq(s.sl_name, showlace_arrive.arr_name)
AND bpchareq(shoelace_data.sl_name, s.sl_name);
AND int4ne(int4pl(s.sl_avail, shoelace_arrive.arr_quant), s.sl_avail);

After that the rule system runs out of rules and returns the generated parse trees. So we end up with
two final parse trees that are equal to the SQL statements

INSERT INTO shoelace_log SELECT
s.sl_name,
s.sl_avail + shoelace_arrive.arr_quant,
current_user,
current_timestamp
FROM shoelace_arrive shoelace_arrive, shoelace_data shoelace_data,
shoelace_data s
WHERE s.sl_name = shoelace_arrive.arr_name
AND shoelace_data.sl hame = s.sl_name
AND s.sl_avail + shoelace_arrive.arr_quant = s.sl_avalil;

UPDATE shoelace_data SET
sl_avail = shoelace_data.sl_avail + shoelace_arrive.arr_quant
FROM shoelace_arrive shoelace_arrive,
shoelace_data shoelace_data,
shoelace data s
WHERE s.sl_name = shoelace_arrive.sl_name
AND shoelace_data.sl hame = s.sl_name;

The result is that data coming from one relation inserted into another, changed into updates on a third,
changed into updating a fourth plus logging that final update in a fifth gets reduced into two queries.

There is a little detail that’s a bit ugly. Looking at the two queries turns out, thatideace_data
relation appears twice in the range table where it could definitely be reduced to one. The planner does
not handle it and so the execution plan for the rule systems output of the INSERT will be

Nested Loop
-> Merge Join
-> Seq Scan
-> Sort
-> Seq Scan on s
-> Seq Scan
-> Sort
-> Seq Scan on shoelace_arrive
-> Seq Scan on shoelace data

225

Chapter 13. The Rule System

while omitting the extra range table entry would result in a

Merge Join
-> Seq Scan
-> Sort
-> Seqg Scan on s
-> Seq Scan
-> Sort
-> Seq Scan on shoelace_arrive

that totally produces the same entries in the log relation. Thus, the rule system caused one extra scan
on theshoelace_data relation that is absolutely not necessary. And the same obsolete scan is done
once more in the UPDATE. But it was a really hard job to make that all possible at all.

A final demonstration of the PostgreSQL rule system and its power. There is a cute blonde that sells
shoelaces. And what Al could never realize, she’s not only cute, she’s smart too - a little too smart.
Thus, it happens from time to time that Al orders shoelaces that are absolutely not sellable. This time
he ordered 1000 pairs of magenta shoelaces and since another kind is currently not available but he
committed to buy some, he also prepared his database for pink ones.

al_bundy=> INSERT INTO shoelace VALUES

al_bundy-> ('sl9’, 0, ’'pink’, 35.0, 'inch’, 0.0);
al_bundy=> INSERT INTO shoelace VALUES
al_bundy-> ('sl10’, 1000, 'magenta’, 40.0, 'inch’, 0.0);

Since this happens often, we must lookup for shoelace entries, that fit for absolutely no shoe some-
times. We could do that in a complicated statement every time, or we can setup a view for it. The view
for this is

CREATE VIEW shoelace obsolete AS
SELECT * FROM shoelace WHERE NOT EXISTS
(SELECT shoename FROM shoe WHERE slcolor = sl_color);

Its output is

al_bundy=> SELECT * FROM shoelace_obsolete;

sl_name [sl_avail|sl_color |sl_len|sl_unit |sl_len_cm

sl9 | O|pink | 35|inch | 88.9
sl10 | 1000|magenta | 40]inch | 101.6

For the 1000 magenta shoelaces we must debit Al before we can throw 'em away, but that's another
problem. The pink entry we delete. To make it a little harder for PostgreSQL, we don'’t delete it
directly. Instead we create one more view

CREATE VIEW shoelace_candelete AS
SELECT * FROM shoelace_obsolete WHERE sl _avail = 0;

and do it this way:

DELETE FROM shoelace WHERE EXISTS
(SELECT * FROM shoelace_candelete
WHERE sl_name = shoelace.sl_name);

Voila:

al_bundy=> SELECT * FROM shoelace;
sl_name |sl_avail|sl_color |sl_len|sl_unit |sI_len_cm

226

Chapter 13. The Rule System

+ S — L B ——
sl1 [5|black | 80|cm | 80
sl2 | 6|black | 100|cm | 100
sl7 | 6|brown [60|cm [60
sl4 | 8|black | 40]inch | 101.6
slI3 | 10|black | 35]inch | 88.9
sI8 | 21|brown | 40lJinch | 101.6
sl10 | 1000|magenta | 40]inch | 101.6
sI5 [4|brown [1lm | 100
sl6 | 20|brown | 0.9Im | 20
(9 rows)

A DELETE on a view, with a subselect qualification that in total uses 4 nesting/joined views, where
one of them itself has a subselect qualification containing a view and where calculated view columns
are used, gets rewritten into one single parse tree that deletes the requested data from a real table.

| think there are only a few situations out in the real world, where such a construct is necessary. But it
makes me feel comfortable that it works.

The truth is: Doing this | found one more bug while writing this document. But after fixing that |
was a little amazed that it works at all.

13.5. Rules and Permissions

Due to rewriting of queries by the PostgreSQL rule system, other tables/views than those used in the
original query get accessed. Using update rules, this can include write access to tables.

Rewrite rules don’t have a separate owner. The owner of a relation (table or view) is automatically the
owner of the rewrite rules that are defined for it. The PostgreSQL rule system changes the behavior
of the default access control system. Relations that are used due to rules get checked against the
permissions of the rule owner, not the user invoking the rule. This means, that a user does only need
the required permissions for the tables/views he names in his queries.

For example: A user has a list of phone numbers where some of them are private, the others are of
interest for the secretary of the office. He can construct the following:

CREATE TABLE phone_data (person text, phone text, private bool);
CREATE VIEW phone_number AS

SELECT person, phone FROM phone_data WHERE NOT private;
GRANT SELECT ON phone_number TO secretary;

Nobody except him (and the database superusers) can access the phone_data table. But due to the
GRANT, the secretary can SELECT from the phone_number view. The rule system will rewrite the
SELECT from phone_number into a SELECT from phone_data and add the qualification that only
entries where private is false are wanted. Since the user is the owner of phone_number, the read access
to phone_data is now checked against his permissions and the query is considered granted. The check
for accessing phone_number is also performed, but this is done against the invoking user, so nobody
but the user and the secretary can use it.

The permissions are checked rule by rule. So the secretary is for now the only one who can see the
public phone numbers. But the secretary can setup another view and grant access to that to public.
Then, anyone can see the phone_number data through the secretaries view. What the secretary cannot
do is to create a view that directly accesses phone_data (actually he can, but it will not work since
every access aborts the transaction during the permission checks). And as soon as the user will notice,

227

Chapter 13. The Rule System

that the secretary opened his phone_number view, he can REVOKE his access. Immediately any
access to the secretaries view will fail.

Someone might think that this rule by rule checking is a security hole, but in fact it isn’t. If this would

not work, the secretary could setup a table with the same columns as phone_number and copy the
data to there once per day. Then it's his own data and he can grant access to everyone he wants. A
GRANT means “I trust you”. If someone you trust does the thing above, it's time to think it over and
then REVOKE.

This mechanism does also work for update rules. In the examples of the previous section, the owner of
the tables in Al's database could GRANT SELECT, INSERT, UPDATE and DELETE on the shoelace
view to al. But only SELECT on shoelace_log. The rule action to write log entries will still be exe-
cuted successfully. And Al could see the log entries. But he cannot create fake entries, nor could he
manipulate or remove existing ones.

Warning: GRANT ALL currently includes RULE permission. This means the granted user could
drop the rule, do the changes and reinstall it. | think this should get changed quickly.

13.6. Rules and Command Status

The PostgreSQL server returns a command status string, SISBERT 149592 1, for each query
it receives. This is simple enough when there are no rules involved, but what happens when the query
is rewritten by rules?

As of PostgreSQL 7.3, rules affect the command status as follows:

1. If there is no unconditional INSTEAD rule for the query, then the originally given query will
be executed, and its command status will be returned as usual. (But note that if there were any
conditional INSTEAD rules, the negation of their qualifications will have been added to the
original query. This may reduce the number of rows it processes, and if so the reported status will
be affected.)

2.1f there is any unconditional INSTEAD rule for the query, then the original query will not be
executed at all. In this case, the server will return the command status for the last query that was
inserted by an INSTEAD rule (conditional or unconditional) and is of the same type (INSERT,
UPDATE, or DELETE) as the original query. If no query meeting those requirements is added
by any rule, then the returned command status shows the original query type and zeroes for the
tuple-count and OID fields.

The programmer can ensure that any desired INSTEAD rule is the one that sets the command status
in the second case, by giving it the alphabetically last rule name among the active rules, so that it fires
last.

13.7. Rules versus Triggers

Many things that can be done using triggers can also be implemented using the PostgreSQL rule
system. What currently cannot be implemented by rules are some kinds of constraints. It is possible,
to place a qualified rule that rewrites a query to NOTHING if the value of a column does not appear
in another table. But then the data is silently thrown away and that’s not a good idea. If checks for

228

Chapter 13. The Rule System

valid values are required, and in the case of an invalid value an error message should be generated, it
must be done by a trigger for now.

On the other hand a trigger that is fired on INSERT on a view can do the same as a rule, put the data
somewhere else and suppress the insert in the view. But it cannot do the same thing on UPDATE or
DELETE, because there is no real data in the view relation that could be scanned and thus the trigger
would never get called. Only a rule will help.

For the things that can be implemented by both, it depends on the usage of the database, which is the
best. A trigger is fired for any row affected once. A rule manipulates the parse tree or generates an
additional one. So if many rows are affected in one statement, a rule issuing one extra query would
usually do a better job than a trigger that is called for any single row and must execute his operations
this many times.

For example: There are two tables

CREATE TABLE computer (
hostname text, -- indexed
manufacturer text -- indexed

);

CREATE TABLE software (
software text, -- indexed
hostname text -- indexed

);

Both tables have many thousands of rows and the indekostmame is unique. Thehostname

column contains the full qualified domain name of the computer. The rule/trigger should constraint
delete rows from software that reference the deleted host. Since the trigger is called for each individual
row deleted from computer, it can use the statement

DELETE FROM software WHERE hostname = $1;
in a prepared and saved plan and pas$itheame in the parameter. The rule would be written as

CREATE RULE computer_del AS ON DELETE TO computer
DO DELETE FROM software WHERE hostname = OLD.hostname;

Now we look at different types of deletes. In the case of a

DELETE FROM computer WHERE hostname = 'mypc.local.net’;

the table computer is scanned by index (fast) and the query issued by the trigger would also be an
index scan (fast too). The extra query from the rule would be a

DELETE FROM software WHERE computer.hostname = 'mypc.local.net’
AND software.hosthname = computer.hostname;

Since there are appropriate indexes setup, the planner will create a plan of

Nestloop
-> Index Scan using comp_hostidx on computer
-> Index Scan using soft_hostidx on software

So there would be not that much difference in speed between the trigger and the rule implementation.
With the next delete we want to get rid of all the 2000 computers wheredéteame starts with
'old’. There are two possible queries to do that. One is

229

Chapter 13. The Rule System

DELETE FROM computer WHERE hostname >= ’old’
AND hosthname < ‘ole’

Where the plan for the rule query will be a

Hash Join
-> Seq Scan on software
-> Hash

-> Index Scan using comp_hostidx on computer
The other possible query is a
DELETE FROM computer WHERE hostname ~ 'old’;
with the execution plan

Nestloop
-> Index Scan using comp_hostidx on computer
-> Index Scan using soft_hostidx on software

This shows, that the planner does not realize that the qualification fdrotheame on computer

could also be used for an index scan on software when there are multiple qualification expressions
combined with AND, what he does in the regexp version of the query. The trigger will get invoked
once for any of the 2000 old computers that have to be deleted and that will result in one index scan
over computer and 2000 index scans for the software. The rule implementation will do it with two
gueries over indexes. And it depends on the overall size of the software table if the rule will still be
faster in the sequential scan situation. 2000 query executions over the SPI manager take some time,
even if all the index blocks to look them up will soon appear in the cache.

The last query we look at is a

DELETE FROM computer WHERE manufacurer = ’bim’;

Again this could result in many rows to be deleted from computer. So the trigger will again fire many
gueries into the executor. But the rule plan will again be the nested loop over two index scans. Only
using another index on computer:

Nestloop
-> |Index Scan using comp_manufidx on computer
-> Index Scan using soft_hostidx on software

resulting from the rules query

DELETE FROM software WHERE computer.manufacurer = 'bim’
AND software.hosthname = computer.hostname;

In any of these cases, the extra queries from the rule system will be more or less independent from
the number of affected rows in a query.

Another situation is cases on UPDATE where it depends on the change of an attribute if an action
should be performed or not. In PostgreSQL version 6.4, the attribute specification for rule events is
disabled (it will have its comeback latest in 6.5, maybe earlier - stay tuned). So for now the only way
to create a rule as in the shoelace_log example is to do it with a rule qualification. That results in
an extra query that is performed always, even if the attribute of interest cannot change at all because
it does not appear in the target list of the initial query. When this is enabled again, it will be one
more advantage of rules over triggers. Optimization of a trigger must fail by definition in this case,
because the fact that its actions will only be done when a specific attribute is updated is hidden in its

230

Chapter 13. The Rule System

functionality. The definition of a trigger only allows to specify it on row level, so whenever a row is
touched, the trigger must be called to make its decision. The rule system will know it by looking up
the target list and will suppress the additional query completely if the attribute isn’'t touched. So the
rule, qualified or not, will only do its scans if there ever could be something to do.

Rules will only be significantly slower than triggers if their actions result in large and bad qualified
joins, a situation where the planner fails. They are a big hammer. Using a big hammer without caution
can cause big damage. But used with the right touch, they can hit any nail on the head.

231

Chapter 14. Interfacing Extensions To Indexes

14.1. Introduction

The procedures described thus far let you define new types, new functions, and new operators. How-
ever, we cannot yet define a secondary index (such as a B-tree, R-tree, or hash access method) over a
new type, nor associate operators of a new type with secondary indexes. To do these things, we must
define anoperator classor the new data type. We will describe operator classes in the context of

a running example: a new operator class for the B-tree access method that stores and sorts complex
numbers in ascending absolute value order.

Note: Prior to PostgreSQL release 7.3, it was necessary to make manual additions to pg_amop,
pg_amproc , and pg_opclass in order to create a user-defined operator class. That approach is
now deprecated in favor of using CREATE OPERATOR CLAS8hich is a much simpler and less
error-prone way of creating the necessary catalog entries.

14.2. Access Methods and Operator Classes

Thepg_am table contains one row for every index access method. Support for access to regular tables
is built into PostgreSQL, but all index access methods are descrilped am. It is possible to add a

new index access method by defining the required interface routines and then creating pg-awnin

--- but that is far beyond the scope of this chapter.

The routines for an index access method do not directly know anything about the data types the
access method will operate on. Instead,operator classidentifies the set of operations that the
access method needs to be able to use to work with a particular data type. Operator classes are so
called because one thing they specify is the set of WHERE-clause operators that can be used with an
index (ie, can be converted into an index scan qualification). An operator class may also specify some
support procedurethat are needed by the internal operations of the index access method, but do not
directly correspond to any WHERE-clause operator that can be used with the index.

Itis possible to define multiple operator classes for the same input data type and index access method.
By doing this, multiple sets of indexing semantics can be defined for a single data type. For example, a
B-tree index requires a sort ordering to be defined for each data type it works on. It might be useful for

a complex-number data type to have one B-tree operator class that sorts the data by complex absolute
value, another that sorts by real part, and so on. Typically one of the operator classes will be deemed
most commonly useful and will be marked as the default operator class for that data type and index
access method.

The same operator class name can be used for several different access methods (for example, both
B-tree and hash access methods have operator classes niangad), but each such class is an
independent entity and must be defined separately.

14.3. Access Method Strategies

The operators associated with an operator class are identified by “strategy numbers”, which serve to
identify the semantics of each operator within the context of its operator class. For example, B-trees
impose a strict ordering on keys, lesser to greater, and so operators like “less than” and “greater than

232

Chapter 14. Interfacing Extensions To Indexes

or equal to” are interesting with respect to a B-tree. Because PostgreSQL allows the user to define
operators, PostgreSQL cannot look at the name of an operator<€eog>=) and tell what kind of
comparison it is. Instead, the index access method defines a set of “strategies”, which can be thought
of as generalized operators. Each operator class shows which actual operator corresponds to each
strategy for a particular data type and interpretation of the index semantics.

B-tree indexes define 5 strategies, as showrainie 14-1

Table 14-1. B-tree Strategies

Operation Strategy Number

less than 1

less than or equal

equal

greater than or equal

[N EEDS

greater than

Hash indexes express only bitwise similarity, and so they define only 1 strategy, as shbabien
14-2

Table 14-2. Hash Strategies

Operation Strategy Number
equal 1

R-tree indexes express rectangle-containment relationships. They define 8 strategies, as shown in
Table 14-3

Table 14-3. R-tree Strategies

Operation Strategy Number
left of
left of or overlapping

overlapping

right of or overlapping

right of

same

contains

o [N[ofa|[h[wWN [P

contained by

GIST indexes are even more flexible: they do not have a fixed set of strategies at all. Instead, the “con-
sistency” support routine of a particular GiST operator class interprets the strategy numbers however
it likes.

By the way, theamorderstrategy ~ column inpg_am tells whether the access method supports or-
dered scan. Zero means it doesn't; if it do@sprderstrategy ~ is the strategy number that corre-
sponds to the ordering operator. For example, B-treeah@sderstrategy =1, which is its “less
than” strategy number.

In short, an operator class must specify a set of operators that express each of these semantic ideas for
the operator class’s data type.

233

Chapter 14. Interfacing Extensions To Indexes

14.4. Access Method Support Routines

Strategies aren’t usually enough information for the system to figure out how to use an index. In
practice, the access methods require additional support routines in order to work. For example, the B-
tree access method must be able to compare two keys and determine whether one is greater than, equal
to, or less than the other. Similarly, the R-tree access method must be able to compute intersections,
unions, and sizes of rectangles. These operations do not correspond to operators used in qualifications
in SQL queries; they are administrative routines used by the access methods, internally.

Just as with operators, the operator class identifies which specific functions should play each of these
roles for a given data type and semantic interpretation. The index access method specifies the set of
functions it needs, and the operator class identifies the correct functions to use by assigning “support
function numbers” to them.

B-trees require a single support function, as showraible 14-4

Table 14-4. B-tree Support Functions

Function Support Number

Compare two keys and return an integer less [1
than zero, zero, or greater than zero, indicating
whether the first key is less than, equal to, or
greater than the second.

Hash indexes likewise require one support function, as showabie 14-5

Table 14-5. Hash Support Functions

Function Support Number
Compute the hash value for a key 1

R-tree indexes require three support functions, as showabie 14-6

Table 14-6. R-tree Support Functions

Function Support Number
union 1
intersection 2
size 3

GIST indexes require seven support functions, as showalte 14-7

Table 14-7. GiST Support Functions

Function Support Number
consistent

union
compress
decompress
penalty
picksplit

o a[hdh[W[N][F

234

Chapter 14. Interfacing Extensions To Indexes

Function Support Number
equal 7

14.5. Creating the Operators and Support Routines

Now that we have seen the ideas, here is the promised example of creating a new operator class. First,
we need a set of operators. The procedure for defining operators was discuSkagter 11For the
complex_abs_ops operator class on B-trees, the operators we require are:

«+ absolute-value less-than (strategy 1)

« absolute-value less-than-or-equal (strategy 2)

« absolute-value equal (strategy 3)

. absolute-value greater-than-or-equal (strategy 4)
- absolute-value greater-than (strategy 5)

Suppose the code that implements these functions is stored in the file

PGROOJBrc/tutorial/complex.c , which we have compiled into
PGROO/Erc/tutorial/complex.so . Part of the C code looks like this:
#define Mag(c) ((c)- >x*(c)- >x + (c)- >y*(c)- >y)
bool
complex_abs_eq(Complex *a, Complex *b)
{

double amag = Mag(a), bmag = Mag(b);
return (amag==bmag);

}

(Note that we will only show the equality operator in this text. The other four operators are very
similar. Refer tacomplex.c or complex.source for the details.)

We make the function known to PostgreSQL like this:

CREATE FUNCTION complex_abs_eq(complex, complex) RETURNS boolean
AS ' PGROOFJErc/tutorial/complex’
LANGUAGE C;

There are some important things that are happening here:

- First, note that operators for less-than, less-than-or-equal, equal, greater-than-or-equal, and greater-
than forcomplex are being defined. We can only have one operator named, say, = and taking type
complex for both operands. In this case we don’t have any other operatorcergriex , but if we
were building a practical data type we’d probably want = to be the ordinary equality operation for
complex numbers. In that case, we'd need to use some other operator naoregiex_abs_eq

« Second, although PostgreSQL can cope with operators having the same name as long as they have
different input data types, C can only cope with one global routine having a given name, period.
So we shouldn’t name the C function something simple dike eq . Usually it's a good practice
to include the data type name in the C function name, so as not to conflict with functions for other
data types.

235

Chapter 14. Interfacing Extensions To Indexes

- Third, we could have made the PostgreSQL name of the funatisreq , relying on PostgreSQL
to distinguish it by input data types from any other PostgreSQL function of the same name. To keep
the example simple, we make the function have the same names at the C level and PostgreSQL level.

- Finally, note that these operator functions return Boolean values. In practice, all operators defined
as index access method strategies must returrbiygdean |, since they must appear at the top level
of aWHEREIlause to be used with an index. (On the other hand, support functions return whatever
the particular access method expects -- in the case of the comparison function for B-trees, a signed
integer.)

Now we are ready to define the operators:

CREATE OPERATOR = (
leftarg = complex, rightarg = complex,
procedure = complex_abs_eq,
restrict = eqsel, join = eqgjoinsel

);

The important things here are the procedure names (which are the C functions defined above) and
the restriction and join selectivity functions. You should just use the selectivity functions used in the
example (seeomplex.source). Note that there are different such functions for the less-than, equal,
and greater-than cases. These must be supplied or the optimizer will be unable to make effective use
of the index.

The next step is the registration of the comparison “support routine” required by B-trees. The C code
that implements this is in the same file that contains the operator procedures:

CREATE FUNCTION complex_abs_cmp(complex, complex)
RETURNS integer
AS ' PGROOJErc/tutorial/complex’
LANGUAGE C;

14.6. Creating the Operator Class

Now that we have the required operators and support routine, we can finally create the operator class:

CREATE OPERATOR CLASS complex_abs_ops
DEFAULT FOR TYPE complex USING btree AS

OPERATOR 1 <,
OPERATOR 2 <=,
OPERATOR 3 =,
OPERATOR 4 >=,
OPERATOR 5 >,
FUNCTION 1 complex_abs_cmp(complex, complex);

And we’re done! (Whew.) It should now be possible to create and use B-tree indexemplex
columns.

We could have written the operator entries more verbosely, as in

OPERATOR 1 < (complex, complex) ,

236

Chapter 14. Interfacing Extensions To Indexes

but there is no need to do so when the operators take the same data type we are defining the operator
class for.

The above example assumes that you want to make this new operator class the default B-tree operator
class for thecomplex data type. If you don't, just leave out the wadb&FAULT

14.7. Special Features of Operator Classes

There are two special features of operator classes that we have not discussed yet, mainly because they
are not very useful with the default B-tree index access method.

Normally, declaring an operator as a member of an operator class means that the index access method
can retrieve exactly the set of rows that satisfy a WHERE condition using the operator. For example,

SELECT * FROM table WHERE integer_column < 4;

can be satisfied exactly by a B-tree index on the integer column. But there are cases where an index is
useful as an inexact guide to the matching rows. For example, if an R-tree index stores only bounding
boxes for objects, then it cannot exactly satisfy a WHERE condition that tests overlap between non-
rectangular objects such as polygons. Yet we could use the index to find objects whose bounding box
overlaps the bounding box of the target object, and then do the exact overlap test only on the objects
found by the index. If this scenario applies, the index is said to be “lossy” for the operator, and we add
RECHECHKO theOPERATORIause in theeREATE OPERATOR CLASS8MmMandRECHECKs valid if

the index is guaranteed to return all the required tuples, plus perhaps some additional tuples, which
can be eliminated by performing the original operator comparison.

Consider again the situation where we are storing in the index only the bounding box of a complex
object such as a polygon. In this case there’s not much value in storing the whole polygon in the index
entry --- we may as well store just a simpler object of type . This situation is expressed by the
STORAGBption iInCREATE OPERATOR CLASge'd write something like

CREATE OPERATOR CLASS polygon_ops
DEFAULT FOR TYPE polygon USING gist AS

STORAGE box;

At present, only the GiST access method suppo83@RAGEype that’s different from the column
data type. The GiSTompress anddecompress support routines must deal with data-type conver-
sion whenSTORAGHS used.

237

Chapter 15. Index Cost Estimation Functions

Author: Written by Tom Lane (<tgl@sss.pgh.pa.us >) on 2000-01-24

Note: This must eventually become part of a much larger chapter about writing new index access
methods.

Every index access method must provide a cost estimation function for use by the planner/optimizer.
The procedure OID of this function is given in thencostestimate field of the access method’s
pg_am entry.

Note: Prior to PostgreSQL 7.0, a different scheme was used for registering index-specific cost
estimation functions.

The amcostestimate function is given a list of WHERE clauses that have been determined to be usable
with the index. It must return estimates of the cost of accessing the index and the selectivity of the
WHERE clauses (that is, the fraction of main-table tuples that will be retrieved during the index scan).
For simple cases, nearly all the work of the cost estimator can be done by calling standard routines
in the optimizer; the point of having an amcostestimate function is to allow index access methods to
provide index-type-specific knowledge, in case it is possible to improve on the standard estimates.
Each amcostestimate function must have the signature:
void
amcostestimate (Query *root,
RelOptinfo *rel,
IndexOptinfo *index,
List *indexQuals,
Cost *indexStartupCost,
Cost *indexTotalCost,

Selectivity *indexSelectivity,
double *indexCorrelation);

The first four parameters are inputs:

root

The query being processed.
rel

The relation the index is on.
index

The index itself.

238

Chapter 15. Index Cost Estimation Functions

indexQuals

List of index qual clauses (implicitly ANDed); a NIL list indicates no qualifiers are available.

The last four parameters are pass-by-reference outputs:

*indexStartupCost

Set to cost of index start-up processing
*indexTotalCost

Set to total cost of index processing
*indexSelectivity

Set to index selectivity
*indexCorrelation

Set to correlation coefficient between index scan order and underlying table’s order

Note that cost estimate functions must be written in C, not in SQL or any available procedural lan-
guage, because they must access internal data structures of the planner/optimizer.

The index access costs should be computed in the units wused by
src/backend/optimizer/path/costsize.c . a sequential disk block fetch has cost 1.0, a
nonsequential fetch has cost random_page_cost, and the cost of processing one index tuple should
usually be taken as cpu_index tuple_cost (which is a user-adjustable optimizer parameter).
In addition, an appropriate multiple of cpu_operator_cost should be charged for any comparison
operators invoked during index processing (especially evaluation of the indexQuals themselves).

The access costs should include all disk and CPU costs associated with scanning the index itself, but
NOT the costs of retrieving or processing the main-table tuples that are identified by the index.

The “start-up cost” is the part of the total scan cost that must be expended before we can begin to
fetch the first tuple. For most indexes this can be taken as zero, but an index type with a high start-up
cost might want to set it nonzero.

The indexSelectivity should be set to the estimated fraction of the main table tuples that will be
retrieved during the index scan. In the case of a lossy index, this will typically be higher than the
fraction of tuples that actually pass the given qual conditions.

The indexCorrelation should be set to the correlation (ranging between -1.0 and 1.0) between the
index order and the table order. This is used to adjust the estimate for the cost of fetching tuples from
the main table.

Cost Estimation

A typical cost estimator will proceed as follows:

1. Estimate and return the fraction of main-table tuples that will be visited based on the given
gual conditions. In the absence of any index-type-specific knowledge, use the standard optimizer
functionclauselist_selectivity()

*indexSelectivity = clauselist_selectivity(root, indexQuals,
Ifirsti(rel->relids));

239

Chapter 15. Index Cost Estimation Functions

2. Estimate the number of index tuples that will be visited during the scan. For many index types
this is the same as indexSelectivity times the number of tuples in the index, but it might be more.
(Note that the index’s size in pages and tuples is available from the IndexOptinfo struct.)

3. Estimate the number of index pages that will be retrieved during the scan. This might be just
indexSelectivity times the index’s size in pages.

4. Compute the index access cost. A generic estimator might do this:

/*
* Our generic assumption is that the index pages will be read
* sequentially, so they have cost 1.0 each, not random_page_cost.
* Also, we charge for evaluation of the indexquals at each index tuple.
* All the costs are assumed to be paid incrementally during the scan.
*/
*indexStartupCost = 0;
*indexTotalCost = numindexPages +
(cpu_index_tuple_cost + cost_qual_eval(indexQuals)) * numindexTuples;

5. Estimate the index correlation. For a simple ordered index on a single field, this can be retrieved
from pg_statistic. If the correlation is not known, the conservative estimate is zero (no correla-
tion).

Examples of cost estimator functions can be founstitbackend/utils/adt/selfuncs.c

By convention, theng_proc entry for anamcostestimate function should show eight arguments
all declared agternal ~ (since none of them have types that are known to SQL), and the return type
is void .

240

Chapter 16. Triggers

PostgreSQL has various server-side function interfaces. Server-side functions can be written in SQL,
C, or any defined procedural language. Trigger functions can be written in C and most procedural

languages, but not in SQL. Note that statement-level trigger events are not supported in the current
version. You can currently specify BEFORE or AFTER on INSERT, DELETE or UPDATE of a tuple

as a trigger event.

16.1. Trigger Definition

If a trigger event occurs, the trigger manager (called by the Executor) setSriggerData infor-
mation structure (described below) and calls the trigger function to handle the event.

The trigger function must be defined before the trigger itself can be created. The trigger function must
be declared as a function taking no arguments and returningttigger . (The trigger function
receives its input through®&iggerData structure, not in the form of ordinary function arguments.)

If the function is written in C, it must use the “version 1” function manager interface.

The syntax for creating triggers is:

CREATE TRIGGERtrigger [BEFORE | AFTER] [INSERT | DELETE | UPDATE [OR ...]]
ON relation FOR EACH [ROW | STATEMENT]
EXECUTE PROCEDUREocedure

(args);

where the arguments are:

trigger

The trigger must have a name distinct from all other triggers on the same table. The name is
needed if you ever have to delete the trigger.

BEFORE
AFTER

Determines whether the function is called before or after the event.

INSERT
DELETE
UPDATE

The next element of the command determines what event(s) will trigger the function. Multiple
events can be specified separated by OR.

relation
The relation name indicates which table the event applies to.

ROW
STATEMENT

The FOR EACH clause determines whether the trigger is fired for each affected row or before
(or after) the entire statement has completed. Currently only the ROW case is supported.

procedure

The procedure name is the function to be called.

241

Chapter 16. Triggers

args

The arguments passed to the function in ThiggerData structure. This is either empty or a
list of one or more simple literal constants (which will be passed to the function as strings).

The purpose of including arguments in the trigger definition is to allow different triggers with
similar requirements to call the same function. As an example, there could be a generalized
trigger function that takes as its arguments two field names and puts the current user in one and
the current time stamp in the other. Properly written, this trigger function would be independent
of the specific table it is triggering on. So the same function could be used for INSERT events
on any table with suitable fields, to automatically track creation of records in a transaction table
for example. It could also be used to track last-update events if defined as an UPDATE trigger.

Trigger functions return BeapTuple to the calling executor. The return value is ignored for triggers
fired AFTER an operation, but it allows BEFORE triggers to:

- Return aNULL pointer to skip the operation for the current tuple (and so the tuple will not be
inserted/updated/deleted).

- For INSERT and UPDATE triggers only, the returned tuple becomes the tuple which will be inserted
or will replace the tuple being updated. This allows the trigger function to modify the row being
inserted or updated.

A BEFORE trigger that does not intend to cause either of these behaviors must be careful to return
the same NEW tuple it is passed.

Note that there is no initialization performed by the CREATE TRIGGER handler. This may be
changed in the future.

If more than one trigger is defined for the same event on the same relation, the triggers will be fired in
alphabetical order by name. In the case of BEFORE triggers, the possibly-modified tuple returned by
each trigger becomes the input to the next trigger. If any BEFORE trigger reNuirls the operation

is abandoned and subsequent triggers are not fired.

If a trigger function executes SQL-queries (using SPI) then these queries may fire triggers again. This
is known as cascading triggers. There is no direct limitation on the number of cascade levels. It is
possible for cascades to cause recursive invocation of the same trigger --- for example, an INSERT
trigger might execute a query that inserts an additional tuple into the same table, causing the INSERT
trigger to be fired again. It is the trigger programmer’s responsibility to avoid infinite recursion in
such scenarios.

16.2. Interaction with the Trigger Manager

This section describes the low-level details of the interface to a trigger function. This information is
only needed when writing a trigger function in C. If you are using a higher-level function language
then these details are handled for you.

Note: The interface described here applies for PostgreSQL 7.1 and later. Earlier versions passed
the TriggerData pointer in a global variable CurrentTriggerData

242

Chapter 16. Triggers

When a function is called by the trigger manager, it is not passed any normal parameters, but it is
passed a “context” pointer pointing toreiggerData structure. C functions can check whether they
were called from the trigger manager or not by executing the m@&reED_AS_TRIGGER(fcinfo)

which expands to

((fcinfo)->context = NULL && IsA((fcinfo)->context, TriggerData))

If this returns true, then it is safe to cdsihfo->context to typeTriggerData * and make use
of the pointed-tdriggerData structure. The function musit alter theTriggerData structure or
any of the data it points to.

struct TriggerData is defined incommands/trigger.h

typedef struct TriggerData

{
NodeTag type;
TriggerEvent tg_event;
Relation tg_relation;
HeapTuple tg_trigtuple;
HeapTuple tg_newtuple;
Trigger *tg_trigger;

} TriggerData;

where the members are defined as follows:

type
AlwaysT_TriggerData if this is a trigger event.
tg_event
describes the event for which the function is called. You may use the following macros to exam-
inetg_event
TRIGGER_FIRED_BEFORE(tg_event)
returns TRUE if trigger fired BEFORE.
TRIGGER_FIRED_AFTER(tg_event)
Returns TRUE if trigger fired AFTER.
TRIGGER_FIRED_FOR_ROW(event)
Returns TRUE if trigger fired for a ROW-level event.
TRIGGER_FIRED_FOR_STATEMENT (event)
Returns TRUE if trigger fired for STATEMENT-level event.
TRIGGER_FIRED_BY_INSERT(event)
Returns TRUE if trigger fired by INSERT.
TRIGGER_FIRED_BY_DELETE(event)
Returns TRUE if trigger fired by DELETE.
TRIGGER_FIRED_BY_UPDATE(event)
Returns TRUE if trigger fired by UPDATE.

243

Chapter 16. Triggers

tg_relation
is a pointer to structure describing the triggered relation. Loalkilatrel.h for details about
this structure. The most interesting things &yeelation->rd_att (descriptor of the rela-
tion tuples) andg_relation->rd_rel->relname (relation’s name. This is nathar* , but
NameData. Use SPI_getrelname(tg_relation) to getchar* if you need a copy of the
name).

tg_trigtuple

is a pointer to the tuple for which the trigger is fired. This is the tuple being inserted (if INSERT),
deleted (if DELETE) or updated (if UPDATE). If INSERT/DELETE then this is what you are
to return to Executor if you don’t want to replace tuple with another one (INSERT) or skip the
operation.

tg_newtuple

is a pointer to the new version of tuple if UPDATE andLL if this is for an INSERT or a
DELETE. This is what you are to return to Executor if UPDATE and you don’t want to replace
this tuple with another one or skip the operation.

tg_trigger
is pointer to structur@rigger defined inutils/rel.h

typedef struct Trigger

{
Oid tgoid;
char *tgname;
Oid tgfoid;
intl6 tgtype;
bool tgenabled;
bool tgisconstraint;
Oid tgconstrrelid;
bool tgdeferrable;
bool tginitdeferred;
intl6 tgnargs;
intl6 tgattr[FUNC_MAX_ARGS];
char **tgargs;

} Trigger;

wheretgname is the trigger's nametgnargs is number of arguments ityargs , tgargs
is an array of pointers to the arguments specified in the CREATE TRIGGER statement. Other
members are for internal use only.

16.3. Visibility of Data Changes

PostgreSQL data changes visibility rule: during a query execution, data changes made by the query
itself (via SQL-function, SPI-function, triggers) are invisible to the query scan. For example, in query

INSERT INTO a SELECT * FROM a;

tuples inserted are invisible for SELECT scan. In effect, this duplicates the database table within itself
(subject to unique index rules, of course) without recursing.

But keep in mind this notice about visibility in the SPI documentation:

244

Chapter 16. Triggers

Changes made by query Q are visible by queries that are started after query Q, no matter whether they are
started inside Q (during the execution of Q) or after Q is done.

This is true for triggers as well so, though a tuple being insentedrigtuple) is not visible to
gueries in a BEFORE trigger, this tuple (just inserted) is visible to queries in an AFTER trigger, and
to queries in BEFORE/AFTER triggers fired after this!

16.4. Examples

There are more complex examplesit/test/regress/iregress.c and incontrib/spi

Here is a very simple example of trigger usage. Fundtigh reports the number of tuples in the
triggered relationtest and skips the operation if the query attempts to insert a null value into x (i.e
- it acts as a not-null constraint but doesn’t abort the transaction).

#include "executor/spi.h" [* this is what you need to work with SPI */
#include "commands/trigger.h" [* -"- and triggers */

extern Datum trigf(PG_FUNCTION_ARGS);
PG_FUNCTION_INFO_Vi(trigf);

Datum

trigf(PG_FUNCTION_ARGS)

{
TriggerData *trigdata = (TriggerData *) fcinfo->context;
TupleDesc tupdesc;
HeapTuple rettuple;

char *when;
bool checknull = false;
bool isnull;
int ret, i

[* Make sure trigdata is pointing at what | expect */
if (ICALLED_AS_TRIGGER(fcinfo))
elog(ERROR, "trigf: not fired by trigger manager");

[* tuple to return to Executor */

if (TRIGGER_FIRED_BY_UPDATE(trigdata->tg_event))
rettuple = trigdata->tg_newtuple;

else
rettuple = trigdata->tg_trigtuple;

/* check for null values */

if (TRIGGER_FIRED_BY_DELETE(trigdata->tg_event)
&& TRIGGER_FIRED_BEFORE(trigdata->tg_event))
checknull = true;

if (TRIGGER_FIRED_BEFORE(trigdata->tg_event))
when = "before";

else
when = "after ";

tupdesc = trigdata->tg_relation->rd_att;

245

Chapter 16. Triggers

[* Connect to SPI manager */
if ((ret = SPI_connect()) < 0)
elog(INFO, "trigf (fired %s): SPI_connect returned %d", when, ret);

[* Get number of tuples in relation */
ret = SPI_exec("SELECT count(*) FROM ttest", 0);

if (ret < 0)
elog(NOTICE, "trigf (fired %s): SPI_exec returned %d", when, ret);

[* count(*) returns int8 as of PG 7.2, so be careful to convert */

i = (int) DatumGetInt64(SPI_getbinval(SPI_tuptable->vals[0],
SPI_tuptable->tupdesc,
1,
&isnull));

elog (NOTICE, "trigf (fired %s): there are %d tuples in ttest", when, i);

SPI_finish();
if (checknull)
{
(void) SPI_getbinval(rettuple, tupdesc, 1, &isnull);
if (isnull)
rettuple = NULL;
}

return PointerGetDatum(rettuple);

Now, compile and create the trigger function:

CREATE FUNCTION trigf () RETURNS TRIGGER AS
"...path_to_so’ LANGUAGE C;

CREATE TABLE ttest (x int4);

vac=> CREATE TRIGGER tbefore BEFORE INSERT OR UPDATE OR DELETE ON ttest
FOR EACH ROW EXECUTE PROCEDURE trigf();

CREATE

vac=> CREATE TRIGGER tafter AFTER INSERT OR UPDATE OR DELETE ON ttest
FOR EACH ROW EXECUTE PROCEDURE trigf();

CREATE

vac=> INSERT INTO ttest VALUES (NULL);

WARNING: trigf (fired before): there are O tuples in ttest

INSERT 0 O

-- Insertion skipped and AFTER trigger is not fired

vac=> SELECT * FROM ttest;
X

(0 rows)

vac=> INSERT INTO ttest VALUES (1);
INFO: trigf (fired before): there are O tuples in ttest

246

Chapter 16. Triggers

INFO: trigf (fired after): there are 1 tuples in ttest
TAVAYAVAVAVAVAVAN
remember what we said about visibility.
INSERT 167793 1
vac=> SELECT * FROM ttest;

(1 row)

vac=> INSERT INTO ttest SELECT x * 2 FROM ttest;
INFO: trigf (fired before): there are 1 tuples in ttest
INFO: trigf (fired after): there are 2 tuples in ttest
NANNNNNNN
remember what we said about visibility.
INSERT 167794 1
vac=> SELECT * FROM ttest;

(2 rows)

vac=> UPDATE ttest SET x = NULL WHERE x = 2;
INFO: trigf (fired before): there are 2 tuples in ttest
UPDATE 0

vac=> UPDATE ttest SET x = 4 WHERE x = 2;
INFO: trigf (fired before): there are 2 tuples in ttest
INFO: trigf (fired after): there are 2 tuples in ttest
UPDATE 1

vac=> SELECT * FROM ttest;

(2 rows)

vac=> DELETE FROM ttest;
INFO: trigf (fired before): there are 2 tuples in ttest
INFO: trigf (fired after): there are 1 tuples in ttest
INFO: trigf (fired before): there are 1 tuples in ttest
INFO: trigf (fired after): there are 0 tuples in ttest
FAYAYAVAVAVAVAVAN

remember what we said about visibility.
DELETE 2
vac=> SELECT * FROM ttest;
X

(0 rows)

247

Chapter 17. Server Programming Interface

TheServer Programming Interfad&PI) gives users the ability to run SQL queries inside user-defined
C functions.

Note: The available Procedural Languages (PL) give an alternate means to build functions that
can execute queries.

In fact, SPI is just a set of native interface functions to simplify access to the Parser, Planner, Optimizer
and Executor. SPI also does some memory management.

To avoid misunderstanding we’ll usenctionto mean SPI interface functions apcedurefor user-
defined C-functions using SPI.

Procedures which use SPI are called by the Executor. The SPI calls recursively invoke the Executor
in turn to run queries. When the Executor is invoked recursively, it may itself call procedures which
may make SPI calls.

Note that if during execution of a query from a procedure the transaction is aborted, then control will
not be returned to your procedure. Rather, all work will be rolled back and the server will wait for the
next command from the client. This will probably be changed in future versions.

A related restriction is the inability to execute BEGIN, END and ABORT (transaction control state-
ments). This will also be changed in the future.

If successful, SPI functions return a non-negative result (either via a returned integer value or in
SPI_result global variable, as described below). On error, a negative or NULL result will be returned.

17.1. Interface Functions

SPI1_connect

Name

SPIl_connect — Connects your procedure to the SPI manager.

Synopsis

int SPI_connect(void)

Inputs

None

248

SPI_connect

Outputs
int
Return status
SPI_OK_CONNECT
if connected

SPI_ERROR_CONNECT

if not connected

Description

SPI_connect opens a connection from a procedure invocation to the SPI manager. You must call
this function if you will need to execute queries. Some utility SPI functions may be called from un-
connected procedures.

If your procedure is already connecte&3Rl_connect will return an SPI_ERROR_CONNECT er-
ror. Note that this may happen if a procedure which has c&kdconnect directly calls another
procedure which itself callSPI_connect . While recursive calls to the SPI manager are permitted
when an SPI query invokes another function which uses SPI, directly nested cailts tonnect
andSPI_finish are forbidden.

Usage

Algorithm

SPI_connect performs the following: Initializes the SPI internal structures for query execution and
memory management.

249

SPI_finish

Name

SPI_finish ~ — Disconnects your procedure from the SPI manager.

Synopsis

SPI_finish(void)

Inputs

None

Outputs
int

SPI_OK_FINISH if properly disconnected
SPI_ERROR_UNCONNECTED if called from an un-connected procedure

Description

SPI_finish closes an existing connection to the SPI manager. You must call this function after
completing the SPI operations needed during your procedure’s current invocation.

You may get the error return SPI_ ERROR_UNCONNECTEBH(_finish is called without hav-
ing a current valid connection. There is no fundamental problem with this; it means that nothing was
done by the SPI manager.

Usage

SPI_finish mustbe called as a final step by a connected procedure, or you may get unpredictable
results! However, you do not need to worry about making this happen if the transaction is aborted via
elog(ERROR). In that case SPI will clean itself up.

Algorithm

SPI_finish performs the following: Disconnects your procedure from the SPI manager and frees all
memory allocations made by your procedurepafioc since theSPI_connect . These allocations
can’t be used any more! See Memory management.

250

SPI_exec

Name

SP|_exec — Creates an execution plan (parser+planner+optimizer) and executes a query.

Synopsis

SPI_exec(query , tcount)

Inputs

char *query

String containing query plan

int tcount

Maximum number of tuples to return

Outputs

int

SPI_ERROR_UNCONNECTED if called from an un-connected procedure
SPI_ERROR_ARGUMENT if query is NULL aicount < 0.
SPI_ERROR_UNCONNECTED if procedure is unconnected.
SPI_ERROR_COPY if COPY TO/FROM stdin.

SPI_ERROR_CURSOR if DECLARE/CLOSE CURSOR, FETCH.
SPI_ERROR_TRANSACTION if BEGIN/ABORT/END.
SPI_ERROR_OPUNKNOWN if type of query is unknown (this shouldn’t occur).

If execution of your query was successful then one of the following (hon-negative) values will
be returned:

SPI_OK_UTILITY if some utility (e.g. CREATE TABLE ...) was executed
SPI_OK_SELECT if SELECT (but not SELECT ... INTO!) was executed
SPI_OK_SELINTO if SELECT ... INTO was executed
SPI_OK_INSERT if INSERT (or INSERT ... SELECT) was executed
SPI_OK_DELETE if DELETE was executed

SPI_OK_UPDATE if UPDATE was executed

251

SPI_exec

Description

SPI_exec creates an execution plan (parser+planner+optimizer) and executes the queoyfior
tuples.

Usage

This should only be called from a connected procedureoidint is zero then it executes the query
for all tuples returned by the query scan. Ustngunt > 0 you may restrict the number of tuples
for which the query will be executed (much like a LIMIT clause). For example,

SPI_exec ("INSERT INTO tab SELECT * FROM tab", 5);

will allow at most 5 tuples to be inserted into table. If execution of your query was successful then a
non-negative value will be returned.

Note: You may pass multiple queries in one string or query string may be re-written by RULES.
SPI_exec returns the result for the last query executed.

The actual number of tuples for which the (last) query was executed is returned in the global variable
SPI_processed (if not SPI_OK_UTILITY). If SPI_OK_SELECT is returned then you may use global
pointer SPITupleTable *SPI_tuptable to access the result tuples.

SPI_exec may return one of the following (negative) values:
SPI_ERROR_ARGUMENT if query is NULL aicount < O.
SPI_ERROR_UNCONNECTED if procedure is unconnected.
SPI_ERROR_COPY if COPY TO/FROM stdin.
SPI_ERROR_CURSOR if DECLARE/CLOSE CURSOR, FETCH.

SPI_ERROR_TRANSACTION if BEGIN/JABORT/END.
SPI_ERROR_OPUNKNOWN if type of query is unknown (this shouldn't occur).

Structures

If SPI_OK_SELECT is returned then you may use the global pointer SPITupleTable *SPI_tuptable
to access the selected tuples.

Structure SPITupleTable is defined in spi.h:

typedef struct

{
MemoryContext tuptabcxt; [* memory context of result table */
uint32 alloced; /* # of alloced vals */
uint32 free; I* # of free vals */
TupleDesc tupdesc; /* tuple descriptor */
HeapTuple *vals; [* tuples */

} SPITupleTable;

252

SPI_exec

vals is an array of pointers to tuples (the number of useful entries is given by SPI_processed).
tupdesc is a tuple descriptor which you may pass to SPI functions dealing with tupfesbcext
alloced , andfree are internal fields not intended for use by SPI callers.

Note: Functions SPI_exec , SPI_execp and SPI_prepare change both SPI_processed and
SPI_tuptable (just the pointer, not the contents of the structure). Save these two global variables
into local procedure variables if you need to access the result of one SPI_exec or SPI_execp
across later calls.

SPI_finish frees all SPITupleTables allocated during the current procedure. You can free a partic-
ular result table earlier, if you are done with it, by calli®gl_freetuptable

253

SPI_prepare

Name

SPI|_prepare — Prepares a plan for a query, without executing it yet

Synopsis

SPI_prepare(query , nargs , argtypes)

Inputs

query
Query string
nargs
Number of input parameters ($1 ... $nargs - as in SQL-functions)
argtypes

Pointer to array of type OIDs for input parameter types

Outputs
void *

Pointer to an execution plan (parser+planner+optimizer)

Description

SPI_prepare creates and returns an execution plan (parser+planner+optimizer) but doesn’t execute
the query. Should only be called from a connected procedure.

Usage

When the same or similar query is to be executed repeatedly, it may be advantageous to perform query
planning only onceSPI_prepare converts a query string into an execution plan that can be passed
repeatedly tsPI_execp .

A prepared guery can be generalized by writing parameters ($1, $2, etc) in place of what would be
constants in a normal query. The values of the parameters are then specifie$®mvhetecp is

called. This allows the prepared query to be used over a wider range of situations than would be
possible without parameters.

Note: However, there is a disadvantage: since the planner does not know the values that will be
supplied for the parameters, it may make worse query planning choices than it would make for a
simple query with all constants visible.

254

SPI_prepare

If the query uses parameters, their number and data types must be specified in the call to
SPI_prepare

The plan returned bgPI_prepare may be used only in current invocation of the procedure since
SPI_finish ~ frees memory allocated for a plan. But s&f/d_saveplan to save a plan for longer.

If successful, a non-null pointer will be returned. Otherwise, you'll get a NULL plan. In
both cases SPI_result will be set like the value returned by SPI_exec, except that it is set to
SPI_ERROR_ARGUMENT if query is NULL or nargs < 0 or nargs > 0 && argtypes is NULL.

255

SPI_execp

Name

SPI|_execp — Executes a plan fror8PI_prepare

Synopsis

SPI_execp(plan ,
values
nulls
tcount)

Inputs

void *plan
Execution plan
Datum *values
Actual parameter values
char *nulls
Array describing which parameters are NULLs

n indicates NULL (values[] entry ignored)
space indicates not NULL (values[] entry is valid)

int tcount

Number of tuples for which plan is to be executed

Outputs
int
Returns the same value @BI_exec as well as

SPI_ERROR_ARGUMENT iplan is NULL ortcount <O
SPI_ERROR_PARAM ifvalues is NULL andplan was prepared with some parameters.

SPI_tuptable
initialized as inSPI_exec if successful
SPI_processed

initialized as inSPI_exec if successful

256

SPI_execp

Description

SPI_execp executes a plan prepared BpI_prepare .tcount has the same interpretation as in
SPI_exec .

Usage
If nulls is NULL thenSPI_execp assumes that all parameters (if any) are NOT NULL.

Note: If one of the objects (a relation, function, etc.) referenced by the prepared plan is dropped
during your session (by your backend or another process) then the results of SPI_execp for this
plan will be unpredictable.

257

SPI_cursor_open

Name

SPI_cursor_open — Sets up a cursor using a plan created \@ith_prepare

Synopsis

SPI_cursor_open(name,
plan ,

values

nulls)

Inputs

char *name
Name for portal, or NULL to let the system select a name
void *plan
Execution plan
Datum *values
Actual parameter values
char *nulls
Array describing which parameters are NULLs

n indicates NULL (values[] entry ignored)
space indicates not NULL (values[] entry is valid)

Outputs

Portal

Pointer to Portal containing cursor, or NULL on error

Description

SPI_cursor_open sets up a cursor (internally, a Portal) that will execute a plan prepared by
SPI_prepare

Using a cursor instead of executing the plan directly has two benefits. First, the result rows can be
retrieved a few at a time, avoiding memory overrun for queries that return many rows. Second, a Portal
can outlive the current procedure (it can, in fact, live to the end of the current transaction). Returning
the portal name to the procedure’s caller provides a way of returning a rowset result.

258

SPI_cursor_open

Usage

If nulls is NULL thenSPI_cursor_open assumes that all parameters (if any) are NOT NULL.

259

SPI _cursor_find

Name

SPI_cursor_find — Finds an existing cursor (Portal) by name

Synopsis

SPI_cursor_find(name)

Inputs

char *name

Name of portal

Outputs

Portal

Pointer to Portal with given name, or NULL if not found

Description

SPI_cursor_find finds a pre-existing Portal by name. This is primarily useful to resolve a cursor
name returned as text by some other function.

260

SPI_cursor_fetch

Name

SPI_cursor_fetch — Fetches some rows from a cursor

Synopsis

SPI_cursor_fetch(portal ,
forward
count)

Inputs

Portalportal

Portal containing cursor
bool forward

True for fetch forward, false for fetch backward
int count

Maximum number of rows to fetch

Outputs

SPI_tuptable
initialized as inSPI_exec if successful
SPI_processed

initialized as inSPI_exec if successful

Description

SPI_cursor_fetch fetches some (more) rows from a cursor. This is equivalent to the SQL com-
mandFETCH

261

SPI1_cursor_move

Name

SPI_cursor_move — Moves a cursor

Synopsis

SPI_cursor_move(portal
forward
count)

Inputs

Portalportal

Portal containing cursor
bool forward

True for move forward, false for move backward
int count

Maximum number of rows to move

Outputs

None

Description

SPI_cursor_move skips over some number of rows in a cursor. This is equivalent to the SQL com-
mandMOVE

262

SPI _cursor_close

Name

SPI_cursor_close — Closes a cursor

Synopsis

SPI_cursor_close(portal)

Inputs

Portalportal

Portal containing cursor

Outputs

None

Description

SPI_cursor_close closes a previously created cursor and releases its Portal storage.

Usage

All open cursors are closed implicitly at transaction es@l._cursor_close need only be invoked
if it is desirable to release resources soonetr.

263

SPI_saveplan

Name

SP|_saveplan — Saves a passed plan

Synopsis

SPI_saveplan(plan)

Inputs

void *query

Passed plan

Outputs
void *

Execution plan location. NULL if unsuccessful.
SPI_result

SPI_ERROR_ARGUMENT if plan is NULL
SPI_ERROR_UNCONNECTED if procedure is un-connected

Description

SPI_saveplan stores a plan prepared I9P1_prepare in safe memory protected from freeing by
SPI_finish or the transaction manager.

In the current version of PostgreSQL there is no ability to store prepared plans in the system catalog
and fetch them from there for execution. This will be implemented in future versions. As an alterna-
tive, there is the ability to reuse prepared plans in the subsequent invocations of your procedure in the
current session. Us&PI_execp to execute this saved plan.

Usage

SPI_saveplan saves a passed plan (preparedsBy prepare) in memory protected from freeing

by SPI_finish and by the transaction manager and returns a pointer to the saved plan. You may
save the pointer returned in a local variable. Always check if this pointer is NULL or not either when
preparing a plan or using an already prepared plan in SP1_execp (see below).

Note: If one of the objects (a relation, function, etc.) referenced by the prepared plan is dropped
during your session (by your backend or another process) then the results of SPI_execp for this
plan will be unpredictable.

264

SP|_saveplan

265

17.2. Interface Support Functions

The functions described here provide convenient interfaces for extracting information from tuple sets
returned bySPI_exec and other SPI interface functions.

All functions described in this section may be used by both connected and unconnected procedures.

SPI_fnumber

Name

SPI_fnumber — Finds the attribute number for specified attribute name

Synopsis

SPI_fnumber(tupdesc , fname)

Inputs

TupleDesdupdesc
Input tuple description
char *fname

Field name

Outputs
int
Attribute number

Valid one-based index number of attribute
SPI_ERROR_NOATTRIBUTE if the named attribute is not found

Description

SPI_fnumber returns the attribute number for the attribute with name in fname.

Usage
Attribute numbers are 1 based.

If the given fname refers to a system attribute (edd) then the appropriate negative
attribute number will be returned. The caller should be careful to test for exact equality to

266

SPI_fnumber

SPI_ERROR_NOATTRIBUTE to detect error; testing for resuit 0 is not correct unless system
attributes should be rejected.

267

SPI_fname

Name

SPI_fname — Finds the attribute name for the specified attribute number

Synopsis

SPI_fname(tupdesc , fnumber)

Inputs

TupleDesdupdesc
Input tuple description
int fnumber

Attribute number

Outputs

char *
Attribute name

NULL if fnumber is out of range
SPI_result setto SPI_ ERROR_NOATTRIBUTE on error

Description

SPI_fname returns the attribute name for the specified attribute.

Usage

Attribute numbers are 1 based.

Algorithm

Returns a newly-allocated copy of the attribute name. (Use pfree() to release the copy when done with

it.)

268

SPI_getvalue

Name

SPI_getvalue — Returns the string value of the specified attribute

Synopsis

SPI_getvalue(tuple , tupdesc , fnumber)

Inputs

HeapTuplguple

Input tuple to be examined
TupleDesdupdesc

Input tuple description
int fnumber

Attribute number

Outputs

char *
Attribute value or NULL if

attribute is NULL
fnumber is out of range (SPI_result set to SPI_ERROR_NOATTRIBUTE)
no output function available (SPI_result set to SPI_ERROR_NOOUTFUNC)

Description

SPI_getvalue returns an external (string) representation of the value of the specified attribute.

Usage

Attribute numbers are 1 based.

Algorithm

The result is returned as a palloc’'d string. (Use pfree() to release the string when done with it.)

269

SPI_getbinval

Name

SPI_getbinval ~— Returns the binary value of the specified attribute

Synopsis

SPI_getbinval(tuple , tupdesc , fnumber , isnull)

Inputs

HeapTupleuple

Input tuple to be examined
TupleDesdupdesc

Input tuple description
int fnumber

Attribute number

Outputs

Datum

Attribute binary value
bool * isnull

flag for null value in attribute
SPI_result

SPI_ERROR_NOATTRIBUTE

Description

SPI_gethinval returns the specified attribute’s value in internal form (as a Datum).

Usage

Attribute numbers are 1 based.

270

SPI_getbinval

Algorithm

Does not allocate new space for the datum. In the case of a pass-by- reference data type, the Datum
will be a pointer into the given tuple.

271

SPI_gettype

Name

SPI_gettype — Returns the type name of the specified attribute

Synopsis

SPI_gettype(tupdesc , fnumber)

Inputs

TupleDesdupdesc
Input tuple description
int fnumber

Attribute number

Outputs

char *
The type name for the specified attribute number
SPI_result

SPI_ERROR_NOATTRIBUTE

Description

SPI_gettype returns a copy of the type name for the specified attribute, or NULL on error.

Usage

Attribute numbers are 1 based.

Algorithm

Returns a newly-allocated copy of the type name. (Use pfree() to release the copy when done with it.)

272

SPI_gettypeid

Name
SPI_gettypeid = — Returns the type OID of the specified attribute

Synopsis

SPI_gettypeid(tupdesc , fnumber)

Inputs

TupleDesdupdesc
Input tuple description
int fnumber

Attribute number

Outputs

OoID
The type OID for the specified attribute number
SPI_result

SPI_ERROR_NOATTRIBUTE

Description
SPI_gettypeid returns the type OID for the specified attribute.

Usage

Attribute numbers are 1 based.

273

SPI_getrelname

Name

SP|_getrelname — Returns the name of the specified relation

Synopsis

SPI_getrelname(rel)

Inputs

Relationrel

Input relation

Outputs

char *

The name of the specified relation

Description

SPI_getrelname returns the name of the specified relation.

Algorithm

Returns a newly-allocated copy of the rel name. (Use pfree() to release the copy when done with it.)

274

17.3. Memory Management

PostgreSQL allocates memory within memapntextswhich provide a convenient method of man-
aging allocations made in many different places that need to live for differing amounts of time. De-
stroying a context releases all the memory that was allocated in it. Thus, it is not necessary to keep
track of individual objects to avoid memory leaks --- only a relatively small number of contexts have
to be manageqalloc and related functions allocate memory from the “current” context.

SPI_connect creates a new memory context and makes it cur8fit.finish restores the previous
current memory context and destroys the context creat&Pbyonnect . These actions ensure that
transient memory allocations made inside your procedure are reclaimed at procedure exit, avoiding
memory leakage.

However, if your procedure needs to return an allocated memory object (such as a value of a pass-
by-reference data type), you can't allocate the return object ysitgy , at least not while you are
connected to SPI. If you try, the object will be deallocated dusRrg finish , and your procedure

will not work reliably!

To solve this problem, usePI_palloc to allocate your return objecsPI_palloc allocates space
from “upper Executor” memory --- that is, the memory context that was current @hemgonnect
was called, which is precisely the right context for return values of your procedure.

If called while not connected to SP3PI_palloc acts the same as plapalloc

Before a procedure connects to the SPI manager, the current memory context is the upper Executor
context, so all allocations made by the procedurepeiioc or by SPI utility functions are made in
this context.

After SPI_connect is called, the current context is the procedure’s private context made by
SPI_connect . All allocations made vigalloc /repalloc or by SPI utility functions (except for
SPI_copytuple , SPI_copytupledesc , SPI_copytupleintoslot , SPI_modifytuple , and
SPI_palloc) are made in this context.

When a procedure disconnects from the SPI managerS@iafinish) the current context is re-
stored to the upper Executor context, and all allocations made in the procedure memory context are
freed and can’t be used any more!

All functions described in this section may be used by both connected and unconnected procedures. In
an unconnected procedure, they act the same as the underlying ordinary backend fupedtaans (
etc).

SPI_copytuple

Name

SPI_copytuple — Makes copy of tuple in upper Executor context

Synopsis

SPI_copytuple(tuple)

275

SPI_copytuple

Inputs

HeapTuplguple
Input tuple to be copied

Outputs

HeapTuple
Copied tuple

non-NULL if tuple is not NULL and the copy was successful
NULL only if tuple is NULL

Description

SPI_copytuple makes a copy of tuple in upper Executor context.

Usage
TBD

276

SPI_copytupledesc

Name

SPI_copytupledesc — Makes copy of tuple descriptor in upper Executor context

Synopsis

SPI_copytupledesc(tupdesc)

Inputs

TupleDesdupdesc

Input tuple descriptor to be copied

Outputs

TupleDesc
Copied tuple descriptor

non-NULL if tupdesc is not NULL and the copy was successful
NULL only if tupdesc is NULL

Description

SPI_copytupledesc ~ makes a copy of tupdesc in upper Executor context.

Usage
TBD

277

SPI_copytupleintoslot

Name

SPI_copytupleintoslot — Makes copy of tuple and descriptor in upper Executor context

Synopsis

SPI_copytupleintoslot(tuple , tupdesc)

Inputs

HeapTupleuple
Input tuple to be copied
TupleDesdupdesc

Input tuple descriptor to be copied

Outputs

TupleTableSlot *
Tuple slot containing copied tuple and descriptor

non-NULL if tuple andtupdesc are not NULL and the copy was successful
NULL only if tuple ortupdesc is NULL

Description

SPI_copytupleintoslot makes a copy of tuple in upper Executor context, returning it in the form
of a filled-in TupleTableSlot.

Usage
TBD

278

SPI_modifytuple

Name

SPI_maodifytuple — Creates a tuple by replacing selected fields of a given tuple

Synopsis

SPI_modifytuple(rel , tuple , nattrs , atthum , Values , Nulls)

Inputs

Relationrel

Used only as source of tuple descriptor for tuple. (Passing a relation rather than a tuple descriptor
is a misfeature.)

HeapTupleuple
Input tuple to be modified
int nattrs
Number of attribute numbers in atthum array
int * atthum
Array of numbers of the attributes that are to be changed
Datum *Values
New values for the attributes specified
char *Nulls

Which new values are NULL, if any

Outputs

HeapTuple
New tuple with modifications

non-NULL if tuple is not NULL and the modify was successful
NULL only if tuple is NULL

SPI_result

SPI_ERROR_ARGUMENT if relis NULL or tuple is NULL or natts= 0 or attnum is NULL
or Values is NULL.

SPI_ERROR_NOATTRIBUTE if there is an invalid attribute number in atthum (attrun®
or > number of attributes in tuple)

279

SPI_modifytuple

Description

SPI_modifytuple creates a new tuple by substituting new values for selected attributes, copying
the original tuple’s attributes at other positions. The input tuple is not modified.

Usage

If successful, a pointer to the new tuple is returned. The new tuple is allocated in upper Executor
context.

280

SPI_palloc

Name

SP|_palloc — Allocates memory in upper Executor context

Synopsis

SPI_palloc(size)

Inputs

Sizesize

Octet size of storage to allocate

Outputs

void *

New storage space of specified size

Description

SPI_palloc allocates memory in upper Executor context.

Usage
TBD

281

SPI repalloc

Name
SPI_repalloc — Re-allocates memory in upper Executor context
Synopsis
SPI_repalloc(pointer , size)
Inputs

void * pointer
Pointer to existing storage
Sizesize

Octet size of storage to allocate

Outputs
void *

New storage space of specified size with contents copied from existing area

Description

SPI_repalloc re-allocates memory in upper Executor context.

Usage

This function is no longer different from plaiepalloc . It's kept just for backward compatibility of
existing code.

282

SPI_pfree

Name

SPI_pfree — Frees memory in upper Executor context

Synopsis

SPI_pfree(pointer)

Inputs

void * pointer

Pointer to existing storage

Outputs

None

Description

SPI_pfree frees memory in upper Executor context.

Usage

This function is no longer different from plaipfree . It's kept just for backward compatibility of
existing code.

283

SPI _freetuple

Name

SPI_freetuple — Frees a tuple allocated in upper Executor context

Synopsis

SPI_freetuple(pointer)

Inputs

HeapTuplepointer

Pointer to allocated tuple

Outputs

None

Description

SPI_freetuple frees a tuple previously allocated in upper Executor context.

Usage

This function is no longer different from plaimeap_freetuple . It's kept just for backward com-
patibility of existing code.

284

SPI freetuptable

Name

SPI_freetuptable — Frees a tuple set created 8pl_exec or similar function

Synopsis

SPI_freetuptable(tuptable)

Inputs

SPITupleTable tuptable

Pointer to tuple table

Outputs

None

Description

SPI_freetuptable frees a tuple set created by a prior SPI query function, sugPagxec .

Usage

This function is useful if a SPI procedure needs to execute multiple queries and does not want to keep
the results of earlier queries around until it ends. Note that any unfreed tuple sets will be freed anyway
atSPI_finish

285

SPI_freeplan

Name

SPI_freeplan — Releases a previously saved plan

Synopsis

SPI_freeplan(plan)

Inputs

void *plan

Passed plan

Outputs
int

SPI_ERROR_ARGUMENT if plan is NULL

Description

SPI_freeplan releases a query plan previously returned 8RI_prepare or saved by
SPI_saveplan

286

Chapter 17. Server Programming Interface

17.4. Visibility of Data Changes

PostgreSQL data changes visibility rule: during a query execution, data changes made by the query
itself (via SQL-function, SPI-function, triggers) are invisible to the query scan. For example, in query

INSERT INTO a SELECT * FROM a
tuples inserted are invisible for SELECT’s scan. In effect, this duplicates the database table within
itself (subject to unique index rules, of course) without recursing.

Changes made by query Q are visible to queries that are started after query Q, no matter whether they
are started inside Q (during the execution of Q) or after Q is done.

17.5. Examples

This example of SPI usage demonstrates the visibility rule. There are more complex examples in
src/test/regress/regress.c and in contrib/spi.

This is a very simple example of SPI usage. The procedure execq accepts an SQL-query in its first
argument and tcount in its second, executes the query using SPI_exec and returns the number of tuples
for which the query executed:

#include “"executor/spi.h" /* this is what you need to work with SPI */

int execq(text *sql, int cnt);

int
execq(text *sql, int cnt)
{

char *query;

int ret;

int proc;

[* Convert given TEXT object to a C string */
query = DatumGetCString(DirectFunctionCalll(textout,
PointerGetDatum(sql)));

SPI_connect();
ret = SPI_exec(query, cnt);

proc = SPI_processed;
/*
* If this is SELECT and some tuple(s) fetched -
* returns tuples to the caller via elog (INFO).
*/
if (ret == SPI_OK_SELECT && SPI_processed > 0)
{
TupleDesc tupdesc = SPI_tuptable->tupdesc;
SPITupleTable *tuptable = SPI_tuptable;
char buf[8192];
int ij;

for (= 0; j < proc; j++)

{
HeapTuple tuple = tuptable->vals[j];

287

Chapter 17. Server Programming Interface

for (i = 1, buf[0] = 0; i <= tupdesc->natts; i++)
snprintf(buf + strlen (buf), sizeof(buf) - strlen(buf)," %s%s",
SPI_getvalue(tuple, tupdesc, i),
(i == tupdesc->natts) ? " " : " |");
elog (INFO, "EXECQ: %s", buf);

}
SPI_finish();

pfree(query);

return (proc);

Now, compile and create the function:
CREATE FUNCTION execq (text, integer) RETURNS integer
AS '...path_to_so’
LANGUAGE C;

vac=> SELECT execq(CREATE TABLE a (x INTEGER)’, 0);
execq

vac=> INSERT INTO a VALUES (execq(INSERT INTO a VALUES (0),0));
INSERT 167631 1

vac=> SELECT execq('SELECT * FROM a’,0);

INFO: EXECQ: 0 <<< inserted by execq

INFO: EXECQ: 1 <<< value returned by execq and inserted by upper INSERT

execq

vac=> SELECT execq('SELECT * FROM a’, 10);
INFO: EXECQ: 0

INFO: EXECQ: 1

INFO: EXECQ: 2 <<< 0 + 2, only one tuple inserted - as specified

3 <<< 10 is max value only, 3 is real # of tuples

288

Chapter 17. Server Programming Interface

vac=> DELETE FROM a;

DELETE 3

vac=> INSERT INTO a VALUES (execq('SELECT * FROM a’, 0) + 1);
INSERT 167712 1

vac=> SELECT * FROM g;

X

1 <<< no tuples in a (0) + 1

1 row)

vac=> INSERT INTO a VALUES (execq('SELECT * FROM a’, 0) + 1);
INFO: EXECQ: O

INSERT 167713 1

vac=> SELECT * FROM a;

X

1

2 <<< there was single tuple in a + 1

(2 rows)

-- This demonstrates data changes visibility rule:

vac=> INSERT INTO a SELECT execq('SELECT * FROM a&’, 0) * x FROM a;
INFO: EXECQ: 1

INFO: EXECQ: 2
INFO: EXECQ: 1
INFO: EXECQ: 2
INFO: EXECQ: 2
INSERT 0 2

vac=> SELECT * FROM a;

x

<<< 2 tuples * 1 (x in first tuple)

<<< 3 tuples (2 + 1 just inserted) * 2 (x in second tuple)
(4 rOWS) FAVAVAVAVAVAVAVAN

tuples visible to execq() in different invocations

ONDN P!

289

lll. Procedural Languages

This part documents the procedural languages available in the PostgreSQL distribution as well as
general issues concerning procedural languages.

Chapter 18. Procedural Languages

18.1. Introduction

PostgreSQL allows users to add new programming languages to be available for writing functions and
procedures. These are call@dcedural languagePL). In the case of a function or trigger procedure
written in a procedural language, the database server has no built-in knowledge about how to interpret
the function’s source text. Instead, the task is passed to a special handler that knows the details of the
language. The handler could either do all the work of parsing, syntax analysis, execution, etc. itself,
or it could serve as “glue” between PostgreSQL and an existing implementation of a programming
language. The handler itself is a special programming language function compiled into a shared object
and loaded on demand.

Writing a handler for a new procedural language is describ&kution 9.8 Several procedural lan-
guages are available in the standard PostgreSQL distribution, which can serve as examples.

18.2. Installing Procedural Languages

A procedural language must be “installed” into each database where it is to be used. But procedural
languages installed in the templatel database are automatically available in all subsequently created
databases. So the database administrator can decide which languages are available in which databases,
and can make some languages available by default if he chooses.

For the languages supplied with the standard distribution, the shell saiptlang may be used
instead of carrying out the details by hand. For example, to install PL/pgSQL into the templatel
database, use

createlang plpgsql templatel

The manual procedure described below is only recommended for installing custom languages that
createlang does not know about.

Manual Procedural Language Installation
A procedural language is installed in the database in three steps, which must be carried out by a
database superuser.

1. The shared object for the language handler must be compiled and installed into an appropriate
library directory. This works in the same way as building and installing modules with regular
user-defined C functions does; sgection 9.5.8

2. The handler must be declared with the command

CREATE FUNCTIONandler_function_name 0
RETURNS LANGUAGE_HANDLER AS
' path-to-shared-object " LANGUAGE C;

The special return type dfANGUAGE_HANDLERIIs the database that this function does not
return one of the defined SQL data types and is not directly usable in SQL statements.

3. The PL must be declared with the command

CREATE [TRUSTED] [PROCEDURAL] LANGUAGENnhguage-name
HANDLERhandler_function_name ;

292

Chapter 18. Procedural Languages

The optional key word'RUSTEDtells whether ordinary database users that have no superuser
privileges should be allowed to use this language to create functions and trigger procedures. Since
PL functions are executed inside the database serverRUeTEDlag should only be given for
languages that do not allow access to database server internals or the file system. The languages
PL/pgSQL, PL/Tcl, PL/Perl, and PL/Python are known to be trusted; the languages PL/TclU and
PL/PerlU are designed to provide unlimited functionality shawdtlbe marked trusted.

In a default PostgreSQL installation, the handler for the PL/pgSQL language is built and installed into
the “library” directory. If Tcl/Tk support is configured in, the handlers for PL/Tcl and PL/TclU are
also built and installed in the same location. Likewise, the PL/Perl and PL/PerlU handlers are built
and installed if Perl support is configured, and PL/Python is installed if Python support is configured.
Thecreatelang script automatestep 2andstep 3described above.

Example 18-1. Manual Installation of PL/pgSQL

The following command tells the database server where to find the shared object for the PL/pgSQL
language’s call handler function.

CREATE FUNCTION plpgsql_call_handler () RETURNS LANGUAGE_HANDLER AS
'$libdir/plpgsql’ LANGUAGE C;
The command

CREATE TRUSTED PROCEDURAL LANGUAGE plpgsdl
HANDLER plpgsql_call_handler;
then defines that the previously declared call handler function should be invoked for functions and
trigger procedures where the language attribupgpigsql

293

Chapter 19. PL/pgSQL - SQL Procedural
Language

PL/pgSQL is a loadable procedural language for the PostgreSQL database system.

This package was originally written by Jan Wieck. This documentation was in part written by Roberto
Mello (<rmello@fslc.usu.edu >).

19.1. Overview

The design goals of PL/pgSQL were to create a loadable procedural language that

- can be used to create functions and trigger procedures,
- adds control structures to the SQL language,

« can perform complex computations,

- inherits all user defined types, functions and operators,
- can be defined to be trusted by the server,

«+ is easy to use.

The PL/pgSQL call handler parses the function’s source text and produces an internal binary instruc-
tion tree the first time the function is called (within any one backend process). The instruction tree

fully translates the PL/pgSQL statement structure, but individual SQL expressions and SQL queries
used in the function are not translated immediately.

As each expression and SQL query is first used in the function, the PL/pgSQL interpreter creates
a prepared execution plan (using the SPI mana@#lisprepare andSPI_saveplan functions).
Subsequent visits to that expression or query re-use the prepared plan. Thus, a function with con-
ditional code that contains many statements for which execution plans might be required will only
prepare and save those plans that are really used during the lifetime of the database connection. This
can substantially reduce the total amount of time required to parse, and generate query plans for the
statements in a procedural language function. A disadvantage is that errors in a specific expression or
guery may not be detected until that part of the function is reached in execution.

Once PL/pgSQL has made a query plan for a particular query in a function, it will re-use that plan
for the life of the database connection. This is usually a win for performance, but it can cause some
problems if you dynamically alter your database schema. For example:

CREATE FUNCTION populate() RETURNS INTEGER AS '’
DECLARE
-- Declarations
BEGIN
PERFORM my_function();
END;
" LANGUAGE 'plpgsql’;

If you execute the above function, it will reference the OID fioy_function() in the query plan
produced for the PERFORM statement. Later, if you drop and re-crgatienction() , thenpop-
ulate() will not be able to findny_function() anymore. You would then have to re-crepbe-
ulate() , or at least start a new database session so that it will be compiled afresh.

294

Chapter 19. PL/pgSQL - SQL Procedural Language

Because PL/pgSQL saves execution plans in this way, queries that appear directly in a PL/pgSQL
function must refer to the same tables and fields on every execution; that is, you cannot use a parameter
as the name of a table or field in a query. To get around this restriction, you can construct dynamic
queries using the PL/pgSQL EXECUTE statement --- at the price of constructing a new query plan
on every execution.

Note: The PL/pgSQL EXECUTE statement is not related to the EXECUTE statement supported
by the PostgreSQL backend. The backend EXECUTE statement cannot be used within PL/pgSQL
functions (and is not needed).

Except for input/output conversion and calculation functions for user defined types, anything that can
be defined in C language functions can also be done with PL/pgSQL. It is possible to create complex
conditional computation functions and later use them to define operators or use them in functional
indexes.

19.1.1. Advantages of Using PL/pgSQL

- Better performance (se&ection 19.1.1)1
« SQL support (se8ection 19.1.1p
- Portability (seeSection 19.1.13

19.1.1.1. Better Performance

SQL is the language PostgreSQL (and most other relational databases) use as query language. It's
portable and easy to learn. But every SQL statement must be executed individually by the database
server.

That means that your client application must send each query to the database server, wait for it to
process it, receive the results, do some computation, then send other queries to the server. All this in-
curs inter-process communication and may also incur network overhead if your client is on a different
machine than the database server.

With PL/pgSQL you can group a block of computation and a series of quiesatethe database
server, thus having the power of a procedural language and the ease of use of SQL, but saving lots of
time because you don’t have the whole client/server communication overhead. This can make for a
considerable performance increase.

19.1.1.2. SQL Support

PL/pgSQL adds the power of a procedural language to the flexibility and ease of SQL. With
PL/pgSQL you can use all the data types, columns, operators and functions of SQL.

19.1.1.3. Portability

Because PL/pgSQL functions run inside PostgreSQL, these functions will run on any platform where
PostgreSQL runs. Thus you can reuse code and reduce development costs.

295

Chapter 19. PL/pgSQL - SQL Procedural Language

19.1.2. Developing in PL/pgSQL

Developing in PL/pgSQL is pretty straight forward, especially if you have developed in other database
procedural languages, such as Oracle’s PL/SQL. Two good ways of developing in PL/pgSQL are:

- Using a text editor and reloading the file wiikg|

« Using PostgreSQL’s GUI Tool: PgAccess

One good way to develop in PL/pgSQL is to simply use the text editor of your choice to create
your functions, and in another window, ussgl (PostgreSQL'’s interactive monitor) to load those
functions. If you are doing it this way, it is a good idea to write the function uSIRGATE OR
REPLACE FUNCTIONIhat way you can reload the file to update the function definition. For example:

CREATE OR REPLACE FUNCTION testfunc(INTEGER) RETURNS INTEGER AS

end;
" LANGUAGE 'plpgsql’;

While runningpsgl , you can load or reload such a function definition file with
\i filename.sql

and then immediately issue SQL commands to test the function.

Another good way to develop in PL/pgSQL is using PostgreSQL’s GUI tool: PgAccess. It does some
nice things for you, like escaping single-quotes, and making it easy to recreate and debug functions.

19.2. Structure of PL/pgSQL

PL/pgSQL is alock structuredanguage. The complete text of a function definition must bmek
A block is defined as:

[<<label >>]
[DECLARE
declarations]
BEGIN

statements
END;

Any statemenin the statement section of a block can bsud-block Sub-blocks can be used for
logical grouping or to localize variables to a small group of statements.

The variables declared in the declarations section preceding a block are initialized to their default
values every time the block is entered, not only once per function call. For example:

CREATE FUNCTION somefunc() RETURNS INTEGER AS '’

DECLARE
quantity INTEGER := 30;

BEGIN
RAISE NOTICE "Quantity here is %",quantity; -- Quantity here is 30
quantity := 50;

296

Chapter 19. PL/pgSQL - SQL Procedural Language

-- Create a sub-block

DECLARE
quantity INTEGER := 80;
BEGIN
RAISE NOTICE "Quantity here is %”,quantity; -- Quantity here is 80
END;
RAISE NOTICE "Quantity here is %",quantity; -- Quantity here is 50

RETURN quantity;
END;
' LANGUAGE 'plpgsql’;

It is important not to confuse the use of BEGIN/END for grouping statements in PL/pgSQL with the
database commands for transaction control. PL/pgSQL’s BEGIN/END are only for grouping; they do
not start or end a transaction. Functions and trigger procedures are always executed within a trans-
action established by an outer query --- they cannot start or commit transactions, since PostgreSQL
does not have nested transactions.

19.2.1. Lexical Details
Each statement and declaration within a block is terminated by a semicolon.

All keywords and identifiers can be written in mixed upper- and lower-case. Identifiers are implicitly
converted to lower-case unless double-quoted.

There are two types of comments in PL/pgSQL. A double dashtarts a comment that extends to

the end of the line. A* starts a block comment that extends to the next occurrente.dBlock
comments cannot be nested, but double dash comments can be enclosed into a block comment and a
double dash can hide the block comment delimiterand*/ .

19.3. Declarations

All variables, rows and records used in a block must be declared in the declarations section of the
block. (The only exception is that the loop variable of a FOR loop iterating over a range of integer
values is automatically declared as an integer variable.)

PL/pgSQL variables can have any SQL data type, SURESGER VARCHARINACHAR

Here are some examples of variable declarations:

user_id INTEGER;

quantity NUMERIC(5);

url VARCHAR,;

myrow tablename%ROWTYPE;
myfield tablename.fieldname%TYPE;
arow RECORD:;

The general syntax of a variable declaration is:

297

Chapter 19. PL/pgSQL - SQL Procedural Language

name [CONSTANT] type [NOT NULL] [{ DEFAULT | =} expression];

The DEFAULT clause, if given, specifies the initial value assigned to the variable when the block is
entered. If the DEFAULT clause is not given then the variable is initialized to the SQL NULL value.

The CONSTANT option prevents the variable from being assigned to, so that its value remains con-
stant for the duration of the block. If NOT NULL is specified, an assignment of a NULL value results
in a run-time error. All variables declared as NOT NULL must have a hon-NULL default value spec-
ified.

The default value is evaluated every time the block is entered. So, for example, assigahp 'a
variable of typdgimestamp causes the variable to have the time of the current function call, not when
the function was precompiled.

Examples:

quantity INTEGER DEFAULT 32;
url varchar := "http://mysite.com”;
user_id CONSTANT INTEGER := 10;

19.3.1. Aliases for Function Parameters

name ALIAS FOR $n;

Parameters passed to functions are named with the identifies®, etc. Optionally, aliases can be
declared forsn parameter names for increased readability. Either the alias or the numeric identifier
can then be used to refer to the parameter value. Some examples:

CREATE FUNCTION sales_tax(REAL) RETURNS REAL AS '’
DECLARE
subtotal ALIAS FOR $1;
BEGIN
return subtotal * 0.06;
END;
" LANGUAGE ’plpgsql’;

CREATE FUNCTION instr(VARCHAR,INTEGER) RETURNS INTEGER AS '’
DECLARE
v_string ALIAS FOR $1;
index ALIAS FOR $2;
BEGIN
-- Some computations here
END;
" LANGUAGE 'plpgsql’;

CREATE FUNCTION use_many_fields(tablename) RETURNS TEXT AS ’
DECLARE

in_t ALIAS FOR $1;
BEGIN

RETURN in_t.f1 || in_tf3 || in_t.f5 || in_t.f7;

298

Chapter 19. PL/pgSQL - SQL Procedural Language

END;
" LANGUAGE 'plpgsql’;

19.3.2. Row Types

name tablename %ROWTYPE

A variable of a composite type is calledr@wv variable (orrow-typevariable). Such a variable can

hold a whole row of a SELECT or FOR query result, so long as that query’s column set matches the
declared type of the variable. The individual fields of the row value are accessed using the usual dot
notation, for exampleowvar field

Presently, a row variable can only be declared using4dROWTY Pibtation; although one might ex-
pect a bare table name to work as a type declaration, it won't be accepted within PL/pgSQL functions.

Parameters to a function can be composite types (complete table rows). In that case, the corresponding
identifier $n will be a row variable, and fields can be selected from it, for exatipleer_id

Only the user-defined attributes of a table row are accessible in a row-type variable, not OID or other
system attributes (because the row could be from a view). The fields of the row type inherit the table’s
field size or precision for data types suchcaar(n)

CREATE FUNCTION use_two_tables(tablename) RETURNS TEXT AS '’
DECLARE
in_t ALIAS FOR $1;
use_t table2name%ROWTYPE;
BEGIN
SELECT * INTO use_t FROM table2name WHERE ... ;
RETURN in_t.f1 || use_t.f3 || in_t.f5 || use_t.f7;
END;
" LANGUAGE 'plpgsql’;

19.3.3. Records

name RECORD;

Record variables are similar to row-type variables, but they have no predefined structure. They take
on the actual row structure of the row they are assigned during a SELECT or FOR command. The
substructure of a record variable can change each time it is assigned to. A consequence of this is that
until a record variable is first assigned ifhas nosubstructure, and any attempt to access a field in it

will draw a run-time error.

Note thatRECORIs not a true data type, only a placeholder.

299

Chapter 19. PL/pgSQL - SQL Procedural Language

19.3.4. Attributes

Using the%TYPEand %ROWTYP&ttributes, you can declare variables with the same data type or
structure as another database item (e.g: a table field).

variable %TYPE

%TYPEprovides the data type of a variable or database column. You can use this to declare vari-
ables that will hold database values. For example, let's say you have a column msemédi
inyourusers table. To declare a variable with the same data typsas .user_id you write:

user_id users.user_id%TYPE;

By using%TYPEyou don't need to know the data type of the structure you are referencing, and
most important, if the data type of the referenced item changes in the future (e.g: you change
your table definition of user_id from INTEGER to REAL), you may not need to change your
function definition.

table %ROWTYPE

%ROWTYR®ovides the composite data type corresponding to a whole row of the specified table.
table must be an existing table or view name of the database.

DECLARE
users_rec users%ROWTYPE;
user_id users.user_id%TYPE;
BEGIN
user_id := users_rec.user_id;

CREATE FUNCTION does_view_exist(INTEGER) RETURNS bool AS ’
DECLARE
key ALIAS FOR $1;
table_data cs_materialized_views%ROWTYPE;
BEGIN
SELECT INTO table_data * FROM cs_materialized_views
WHERE sort_key=key;

IF NOT FOUND THEN
RETURN false;
END IF;
RETURN true;
END;
" LANGUAGE 'plpgsql’;

19.3.5. RENAME

RENAMEoldname TO newname;

Using the RENAME declaration you can change the name of a variable, record or row. This is pri-
marily useful if NEW or OLD should be referenced by another name inside a trigger procedure. See
also ALIAS.

Examples:

300

Chapter 19. PL/pgSQL - SQL Procedural Language

RENAME id TO user_id;
RENAME this_var TO that var;

Note: RENAME appears to be broken as of PostgreSQL 7.3. Fixing this is of low priority, since
ALIAS covers most of the practical uses of RENAME.

19.4. Expressions

All expressions used in PL/pgSQL statements are processed using the server’s regular SQL executor.
Expressions that appear to contain constants may in fact require run-time evaluaticroge.gfor

the timestamp type) so it is impossible for the PL/pgSQL parser to identify real constant values
other than the NULL keyword. All expressions are evaluated internally by executing a query

SELECT expression

using the SPI manager. In the expression, occurrences of PL/pgSQL variable identifiers are replaced
by parameters and the actual values from the variables are passed to the executor in the parameter
array. This allows the query plan for the SELECT to be prepared just once and then re-used for
subsequent evaluations.

The evaluation done by the PostgreSQL main parser has some side effects on the interpretation of
constant values. In detail there is a difference between what these two functions do:

CREATE FUNCTION logfuncl (TEXT) RETURNS TIMESTAMP AS '’
DECLARE
logtxt ALIAS FOR $1,;
BEGIN
INSERT INTO logtable VALUES (logtxt, "now");
RETURN "now”;
END;
" LANGUAGE 'plpgsql’;

and

CREATE FUNCTION logfunc2 (TEXT) RETURNS TIMESTAMP AS '’
DECLARE
logtxt ALIAS FOR $1;
curtime timestamp;
BEGIN
curtime := "now”;
INSERT INTO logtable VALUES (logtxt, curtime);
RETURN curtime;
END;
" LANGUAGE 'plpgsql’;

In the case ofogfuncl() , the PostgreSQL main parser knows when preparing the plan for the IN-
SERT, that the stringpow’ should be interpreted @imestamp because the target field lofjtable

is of that type. Thus, it will make a constant from it at this time and this constant value is then used
in all invocations oflogfuncl() during the lifetime of the backend. Needless to say that this isn’t
what the programmer wanted.

301

Chapter 19. PL/pgSQL - SQL Procedural Language

In the case ofogfunc2() , the PostgreSQL main parser does not know what type’ should
become and therefore it returns a data value of tgpe containing the stringhow’ . During the
ensuing assignment to the local variabletime , the PL/pgSQL interpreter casts this string to the
timestamp type by calling theext_out() andtimestamp_in() functions for the conversion.
So, the computed time stamp is updated on each execution as the programmer expects.

The mutable nature of record variables presents a problem in this connection. When fields of a record
variable are used in expressions or statements, the data types of the fields must not change between
calls of one and the same expression, since the expression will be planned using the data type that
is present when the expression is first reached. Keep this in mind when writing trigger procedures
that handle events for more than one table. (EXECUTE can be used to get around this problem when
necessary.)

19.5. Basic Statements

In this section and the following ones, we describe all the statement types that are explicitly under-
stood by PL/pgSQL. Anything not recognized as one of these statement types is presumed to be an
SQL query, and is sent to the main database engine to execute (after substitution for any PL/pgSQL
variables used in the statement). Thus, for example, 8ERT, UPDATE andDELETEcommands

may be considered to be statements of PL/pgSQL. But they are not specifically listed here.

19.5.1. Assignment
An assignment of a value to a variable or row/record field is written as:
identifier ‘= expression ;
As explained above, the expression in such a statement is evaluated by means of 8BLEQL
command sent to the main database engine. The expression must yield a single value.

If the expression’s result data type doesn’t match the variable’s data type, or the variable has a spe-
cific size/precision (likehar(20)), the result value will be implicitly converted by the PL/pgSQL
interpreter using the result type’s output-function and the variable type’s input-function. Note that this
could potentially result in run-time errors generated by the input function, if the string form of the
result value is not acceptable to the input function.

Examples:

user_id := 20;
tax := subtotal * 0.06;

19.5.2. SELECT INTO

The result of a SELECT command yielding multiple columns (but only one row) can be assigned to
a record variable, row-type variable, or list of scalar variables. This is done by:

SELECT INTO target expressions FROM ...;

wheretarget can be arecord variable, a row variable, or a comma-separated list of simple variables
and record/row fields. Note that this is quite different from PostgreSQL's normal interpretation of
SELECT INTO, which is that the INTO target is a newly created table. (If you want to create a

302

Chapter 19. PL/pgSQL - SQL Procedural Language

table from a SELECT result inside a PL/pgSQL function, use the SYDREXATE TABLE ... AS
SELECT)

If a row or a variable list is used as target, the selected values must exactly match the structure of the
target(s), or a run-time error occurs. When a record variable is the target, it automatically configures
itself to the row type of the query result columns.

Except for the INTO clause, the SELECT statement is the same as a normal SQL SELECT query and
can use the full power of SELECT.

If the SELECT query returns zero rows, null values are assigned to the target(s). If the SELECT query
returns multiple rows, the first row is assigned to the target(s) and the rest are discarded. (Note that
“the first row” is not well-defined unless you've used ORDER BY.)

At present, the INTO clause can appear almost anywhere in the SELECT query, but it is recommended
to place it immediately after the SELECT keyword as depicted above. Future versions of PL/pgSQL
may be less forgiving about placement of the INTO clause.

You can useFOUNDmmediately after a SELECT INTO statement to determine whether the assign-
ment was successful (that is, at least one row was was returned by the SELECT statement). For
example:

SELECT INTO myrec * FROM EMP WHERE empname = myname;
IF NOT FOUND THEN

RAISE EXCEPTION "employee % not found”, myname;
END IF;

Alternatively, you can use th& NULL (orISNULL) conditional to test for whether a RECORD/ROW
result is null. Note that there is no way to tell whether any additional rows might have been discarded.

DECLARE
users_rec RECORD;
full_name varchar;
BEGIN
SELECT INTO users_rec * FROM users WHERE user_id=3;

IF users_rec.homepage IS NULL THEN
-- user entered no homepage, return "http://"

RETURN "http://";
END IF;
END;

19.5.3. Executing an expression or query with no result

Sometimes one wishes to evaluate an expression or query but discard the result (typically because one
is calling a function that has useful side-effects but no useful result value). To do this in PL/pgSQL,
use the PERFORM statement:

PERFORMyuery ;

This executes S8ELECTquery and discards the result. PL/pgSQL variables are substituted in the
query as usual. Also, the special variab@UNDs set to true if the query produced at least one row,
or false if it produced no rows.

303

Chapter 19. PL/pgSQL - SQL Procedural Language

Note: One might expect that SELECT with no INTO clause would accomplish this result, but at
present the only accepted way to do it is PERFORM.

An example:

PERFORM create_mv("cs_session_page_requests_mv”, my_query);

19.5.4. Executing dynamic queries

Oftentimes you will want to generate dynamic queries inside your PL/pgSQL functions, that is,
gueries that will involve different tables or different data types each time they are executed.
PL/pgSQL’s normal attempts to cache plans for queries will not work in such scenarios. To handle
this sort of problem, the EXECUTE statement is provided:

EXECUTEquery-string ;

wherequery-string is an expression yielding a string (of typext) containing thequery to
be executed. This string is fed literally to the SQL engine.

Note in particular that no substitution of PL/pgSQL variables is done on the query string. The values
of variables must be inserted in the query string as it is constructed.

When working with dynamic queries you will have to face escaping of single quotes in PL/pgSQL.
Please refer to the table 8ection 19.1%or a detailed explanation that will save you some effort.

Unlike all other queries in PL/pgSQL,query run by an EXECUTE statement is not prepared and
saved just once during the life of the server. Insteadgtiery is prepared each time the statement
is run. Thequery-string can be dynamically created within the procedure to perform actions on
variable tables and fields.

The results from SELECT queries are discarded by EXECUTE, and SELECT INTO is not currently
supported within EXECUTE. So, the only way to extract a result from a dynamically-created SELECT
is to use the FOR-IN-EXECUTE form described later.

An example:

EXECUTE "UPDATE thl SET ”
|| quote_ident(fieldname)

|| quote_literal(newvalue)
|| * WHERE ..;

This example shows use of the functiopste_ident (TEXT) andquote_literal (TEXT). Vari-

ables containing field and table identifiers should be passed to fungtioea ident() . Variables
containing literal elements of the dynamic query string should be passedtto literal() . Both

take the appropriate steps to return the input text enclosed in single or double quotes and with any
embedded special characters properly escaped.

Here is a much larger example of a dynamic query and EXECUTE:

CREATE FUNCTION cs_update_referrer_type_proc() RETURNS INTEGER AS ’
DECLARE

304

Chapter 19. PL/pgSQL - SQL Procedural Language

referrer_keys RECORD; -- Declare a generic record to be used in a FOR
a_output varchar(4000);
BEGIN
a_output := "CREATE FUNCTION cs_find_referrer_type(varchar,varchar,varchar)
RETURNS VARCHAR AS ™
DECLARE
v_host ALIAS FOR $1,
v_domain ALIAS FOR $2;
v_url ALIAS FOR $3;
BEGIN ~

-- Notice how we scan through the results of a query in a FOR loop
-- using the FOR <record > construct.

FOR referrer_keys IN SELECT * FROM cs_referrer_keys ORDER BY try_order LOOP

a_output := a_output || " IF v_" || referrer_keys.kind || ” LIKE ™
|| referrer_keys.key_string || ™™ THEN RETURN ™
|| referrer_keys.referrer_type || ™; END IF;";
END LOOP;

a_output := a_output || 7 RETURN NULL; END; ™ LANGUAGE ™plpgsql™;”;

-- This works because we are not substituting any variables
-- Otherwise it would fail. Look at PERFORM for another way to run functions

EXECUTE a_output;
END;
" LANGUAGE 'plpgsql’;

19.5.5. Obtaining result status

There are several ways to determine the effect of a command. The first method is to G&Tthe
DIAGNOSTICS which has the form:

GET DIAGNOSTICSvariable =item [, ..]

This command allows retrieval of system status indicators. Haoh is a keyword identifying a

state value to be assigned to the specified variable (which should be of the right data type to receive
it). The currently available status items &®W_COUNThe number of rows processed by the last
SQL query sent down to the SQL engine; &@ESULT_0OIQ the OID of the last row inserted by the

most recent SQL query. Note trRESULT_OIDis only useful after an INSERT query.

GET DIAGNOSTICS var_integer = ROW_COUNT;

There is a special variable nam&®bUNDof type boolean . FOUNDstarts out false within each
PL/pgSQL function. It is set by each of the following types of statements:

« A SELECT INTO statement seEOUNDOrue if it returns a row, false if no row is returned.

« A PERFORM statement sef©UNDOrue if it produces (discards) a row, false if no row is produced.

305

Chapter 19. PL/pgSQL - SQL Procedural Language

- UPDATE, INSERT, and DELETE statements §€tUNLCirue if at least one row is affected, false if
no row is affected.

- A FETCH statement seiOUNDOrue if it returns a row, false if no row is returned.

- AFOR statement seOUNDrue if it iterates one or more times, else false. This applies to all three
variants of the FOR statement (integer FOR loops, record-set FOR loops, and dynamic record-
set FOR loops)FOUNDIs only set when the FOR loop exits: inside the execution of the loop,
FOUNDSs not modified by the FOR statement, although it may be changed by the execution of other
statements within the loop body.

FOUNDSs a local variable; any changes to it affect only the current PL/pgSQL function.

19.6. Control Structures

Control structures are probably the most useful (and important) part of PL/pgSQL. With PL/pgSQL'’s
control structures, you can manipulate PostgreSQL data in a very flexible and powerful way.

19.6.1. Returning from a function

RETURNexpression ;

RETURN with an expression is used to return from a PL/pgSQL function that does not return a set.
The function terminates and the valueexfpression s returned to the caller.

To return a composite (row) value, you must write a record or row variable asxgression

When returning a scalar type, any expression can be used. The expression’s result will be automat-
ically cast into the function’s return type as described for assignments. (If you have declared the
function to returnvoid , then the expression can be omitted, and will be ignored in any case.)

The return value of a function cannot be left undefined. If control reaches the end of the top-level
block of the function without hitting a RETURN statement, a run-time error will occur.

When a PL/pgSQL function is declared to rett 8BETOFsometype , the procedure to follow is
slightly different. In that case, the individual items to return are specified in RETURN NEXT com-
mands, and then a final RETURN command with no arguments is used to indicate that the function
has finished executing. RETURN NEXT can be used with both scalar and composite data types; in
the later case, an entire "table" of results will be returned. Functions that use RETURN NEXT should
be called in the following fashion:

SELECT * FROM some_func();
That is, the function is used as a table source in a FROM clause.
RETURN NEXTexpression ;

RETURN NEXT does not actually return from the function; it simply saves away the value of the
expression (or record or row variable, as appropriate for the data type being returned). Execution
then continues with the next statement in the PL/pgSQL function. As successive RETURN NEXT
commands are executed, the result set is built up. A final RETURN, which need have no argument,
causes control to exit the function.

Note: The current implementation of RETURN NEXT for PL/pgSQL stores the entire result set
before returning from the function, as discussed above. That means that if a PL/pgSQL func-

306

Chapter 19. PL/pgSQL - SQL Procedural Language

tion produces a very large result set, performance may be poor: data will be written to disk to
avoid memory exhaustion, but the function itself will not return until the entire result set has been
generated. A future version of PL/pgSQL may allow users to allow users to define set-returning
functions that do not have this limitation. Currently, the point at which data begins being written
to disk is controlled by the SORT_MEMonfiguration variable. Administrators who have sufficient
memory to store larger result sets in memory should consider increasing this parameter.

19.6.2. Conditionals

IF statements let you execute commands based on certain conditions. PL/pgSQL has four forms of

« IF ... THEN

- IF ... THEN ... ELSE

« IF ... THEN ... ELSE IF and

« IF ... THEN ... ELSIF ... THEN ... ELSE

19.6.2.1. IF-THEN

IF boolean-expression THEN
statements
END IF;

IF-THEN statements are the simplest form of IF. The statements between THEN and END IF will be
executed if the condition is true. Otherwise, they are skipped.

IF v_user_id <> 0 THEN
UPDATE users SET email = v_email WHERE user_id = v_user_id;
END IF;

19.6.2.2. IF-THEN-ELSE

IF boolean-expression THEN
statements

ELSE
statements

END IF;

IF-THEN-ELSE statements add to IF-THEN by letting you specify an alternative set of statements
that should be executed if the condition evaluates to FALSE.

IF parentid IS NULL or parentid = ™
THEN
return fullname;
ELSE
return hp_true_filename(parentid) || "/* || fullname;

307

Chapter 19. PL/pgSQL - SQL Procedural Language

END IF;

IF v_count > 0 THEN
INSERT INTO users_count(count) VALUES(v_count);
return "t”;

ELSE
return "f”;

END IF;

19.6.2.3. IF-THEN-ELSE IF

IF statements can be nested, as in the following example:

IF demo_row.sex = "m” THEN
pretty_sex := "man”;
ELSE
IF demo_row.sex = "f* THEN
pretty_sex := "woman”;
END IF;
END IF;

When you use this form, you are actually nesting an IF statement inside the ELSE part of an outer IF
statement. Thus you need one END IF statement for each nested IF and one for the parent IF-ELSE.
This is workable but grows tedious when there are many alternatives to be checked.

19.6.2.4. IF-THEN-ELSIF-ELSE

IF boolean-expression THEN
statements
[ELSIF boolean-expression THEN
statements
[ELSIF boolean-expression THEN
statements

-l
[ELSE

statements]
END IF;

IF-THEN-ELSIF-ELSE provides a more convenient method of checking many alternatives in one
statement. Formally it is equivalent to nest€dTHEN-ELSE-IF-THEN commands, but only one
END IF is needed.

Here is an example:

IF number = 0 THEN

result := "zero”;
ELSIF number > 0 THEN

result := "positive”;
ELSIF number < 0 THEN

result := "negative”;
ELSE

308

Chapter 19. PL/pgSQL - SQL Procedural Language

-- hmm, the only other possibility is that number IS NULL
result := "NULL";
END IF,;

The final ELSE section is optional.

19.6.3. Simple Loops

With the LOOP, EXIT, WHILE and FOR statements, you can arrange for your PL/pgSQL function to
repeat a series of commands.

19.6.3.1. LOOP

[<<label >>]

LOOP
statements

END LOOP;

LOOP defines an unconditional loop that is repeated indefinitely until terminated by an EXIT or
RETURN statement. The optional label can be used by EXIT statements in nested loops to specify
which level of nesting should be terminated.

19.6.3.2. EXIT

EXIT [label][WHEN expression J;

If no label is given, the innermost loop is terminated and the statement following END LOOP is
executed next. lfabel is given, it must be the label of the current or some outer level of nested loop
or block. Then the named loop or block is terminated and control continues with the statement after
the loop’s/block’s corresponding END.

If WHEN is present, loop exit occurs only if the specified condition is true, otherwise control passes
to the statement after EXIT.

Examples:

LOOP
-- some computations
IF count > 0 THEN
EXIT; -- exit loop
END IF;
END LOOP;

LOOP
-- some computations
EXIT WHEN count > 0;
END LOOP;

BEGIN
-- some computations
IF stocks > 100000 THEN
EXIT; -- illegal. Can't use EXIT outside of a LOOP

309

Chapter 19. PL/pgSQL - SQL Procedural Language

END IF;
END;

19.6.3.3. WHILE

[<<label >>]

WHILE expression LOOP
statements

END LOOP;

The WHILE statement repeats a sequence of statements so long as the condition expression evaluates
to true. The condition is checked just before each entry to the loop body.

For example:

WHILE amount_owed > 0 AND gift_certificate_balance > 0 LOOP
-- some computations here
END LOOP;

WHILE NOT boolean_expression LOOP
-- some computations here
END LOOP;

19.6.3.4. FOR (integer for-loop)

[<<label >>]

FOR name IN [REVERSE] expression .. expression LOOP
statements

END LOOP;

This form of FOR creates a loop that iterates over a range of integer values. The vadatdes
automatically defined as type integer and exists only inside the loop. The two expressions giving the
lower and upper bound of the range are evaluated once when entering the loop. The iteration step is
normally 1, but is -1 when REVERSE is specified.

Some examples of integer FOR loops:

FOR i IN 1..10 LOOP
-- some expressions here

RAISE NOTICE "i is %”;i;
END LOOP;

FOR i IN REVERSE 10..1 LOOP

-- some expressions here
END LOOP;

310

Chapter 19. PL/pgSQL - SQL Procedural Language

19.6.4. Looping Through Query Results

Using a different type of FOR loop, you can iterate through the results of a query and manipulate that
data accordingly. The syntax is:

[<<label >>]

FOR record | row IN select_query LOOP
statements

END LOOP;

The record or row variable is successively assigned all the rows resulting from the SELECT query
and the loop body is executed for each row. Here is an example:

CREATE FUNCTION cs_refresh_mviews () RETURNS INTEGER AS '’
DECLARE

mviews RECORD;
BEGIN

PERFORM cs_log("Refreshing materialized views...”);

FOR mviews IN SELECT * FROM cs_materialized_views ORDER BY sort_key LOOP

-- Now "mviews" has one record from cs_materialized_views

PERFORM cs_log("Refreshing materialized view ” || quote_ident(mviews.mv_name) || "...”);

EXECUTE "TRUNCATE TABLE " || quote_ident(mviews.mv_name);

EXECUTE "INSERT INTO ” || quote_ident(mviews.mv_name) || " ” || mviews.mv_query;
END LOOP;

PERFORM cs_log("Done refreshing materialized views.”);
RETURN 1;

end;

" LANGUAGE ’plpgsql’;

If the loop is terminated by an EXIT statement, the last assigned row value is still accessible after the
loop.

The FOR-IN-EXECUTE statement is another way to iterate over records:

[<<label >>]

FOR record | row IN EXECUTE text_expression LOOP
statements

END LOOP;

This is like the previous form, except that the source SELECT statement is specified as a string expres-
sion, which is evaluated and re-planned on each entry to the FOR loop. This allows the programmer
to choose the speed of a pre-planned query or the flexibility of a dynamic query, just as with a plain
EXECUTE statement.

Note: The PL/pgSQL parser presently distinguishes the two kinds of FOR loops (integer or record-
returning) by checking whether the target variable mentioned just after FOR has been declared
as a record/row variable. If not, it's presumed to be an integer FOR loop. This can cause rather
nonintuitive error messages when the true problem is, say, that one has misspelled the FOR
variable name.

311

Chapter 19. PL/pgSQL - SQL Procedural Language

19.7. Cursors

Rather than executing a whole query at once, it is possible to setcupsar that encapsulates the
guery, and then read the query result a few rows at a time. One reason for doing this is to avoid memory
overrun when the result contains a large number of rows. (However, PL/pgSQL users don’t normally
need to worry about that, since FOR loops automatically use a cursor internally to avoid memory
problems.) A more interesting usage is to return a reference to a cursor that it has created, allowing
the caller to read the rows. This provides an efficient way to return large row sets from functions.

19.7.1. Declaring Cursor Variables

All access to cursors in PL/pgSQL goes through cursor variables, which are always of the special
data typerefcursor . One way to create a cursor variable is just to declare it as a variable of type
refcursor . Another way is to use the cursor declaration syntax, which in general is:

name CURSOR [(arguments)] FOR select_query

(FORmay be replaced bys for Oracle compatibility.arguments , if any, are a comma-separated
list of name datatype pairs that define names to be replaced by parameter values in the given query.
The actual values to substitute for these names will be specified later, when the cursor is opened.

Some examples:

DECLARE
cursl refcursor;
curs2 CURSOR FOR SELECT * from tenkl;
curs3 CURSOR (key int) IS SELECT * from tenkl where uniquel = key;

All three of these variables have the data tygfeursor |, but the first may be used with any query,
while the second has a fully specified query alreadyndto it, and the last has a parameterized
qguery bound to it.Key will be replaced by an integer parameter value when the cursor is opened.)
The variablecursl is said to beunboundsince it is not bound to any particular query.

19.7.2. Opening Cursors

Before a cursor can be used to retrieve rows, it mugifgeEned (This is the equivalent action to the
SQL comman®ECLARE CURSORPL/pgSQL has four forms of the OPEN statement, two of which
use unbound cursor variables and the other two use bound cursor variables.

19.7.2.1. OPEN FOR SELECT

OPEN unbound-cursor FOR SELECT ..;

The cursor variable is opened and given the specified query to execute. The cursor cannot be open al-
ready, and it must have been declared as an unbound cursor (that is, as asfituper ~ variable).

The SELECT query is treated in the same way as other SELECT statements in PL/pgSQL: PL/pgSQL
variable names are substituted, and the query plan is cached for possible re-use.

OPEN cursl FOR SELECT * FROM foo WHERE key = mykey;

312

Chapter 19. PL/pgSQL - SQL Procedural Language
19.7.2.2. OPEN FOR EXECUTE

OPEN unbound-cursor FOR EXECUTHjuery-string ;

The cursor variable is opened and given the specified query to execute. The cursor cannot be open
already, and it must have been declared as an unbound cursor (that is, as aeftogler vari-

able). The query is specified as a string expression in the same way as in the EXECUTE command.
As usual, this gives flexibility so the query can vary from one run to the next.

OPEN cursl FOR EXECUTE "SELECT * FROM " || quote_ident($1);

19.7.2.3. Opening a bound cursor

OPEN bound-cursor [(argument_values) 1

This form of OPEN is used to open a cursor variable whose query was bound to it when it was
declared. The cursor cannot be open already. A list of actual argument value expressions must appear
if and only if the cursor was declared to take arguments. These values will be substituted in the
guery. The query plan for a bound cursor is always considered cacheable --- there is no equivalent of
EXECUTE in this case.

OPEN curs2;
OPEN curs3(42);

19.7.3. Using Cursors
Once a cursor has been opened, it can be manipulated with the statements described here.

These manipulations need not occur in the same function that opened the cursor to begin with. You
can return aefcursor ~ value out of a function and let the caller operate on the cursor. (Internally, a
refcursor value is simply the string name of a Portal containing the active query for the cursor. This
name can be passed around, assigned to otfeirsor variables, and so on, without disturbing

the Portal.)

All Portals are implicitly closed at transaction end. Thereforefeursor ~ value is useful to refer-
ence an open cursor only until the end of the transaction.

19.7.3.1. FETCH

FETCH cursor INTO target

FETCH retrieves the next row from the cursor into a target, which may be a row variable, a record
variable, or a comma-separated list of simple variables, just like SELECT INTO. As with SELECT
INTO, the special variablEOUNDMay be checked to see whether a row was obtained or not.

FETCH cursl INTO rowvar;
FETCH curs2 INTO foo,bar,baz;

313

Chapter 19. PL/pgSQL - SQL Procedural Language

19.7.3.2. CLOSE

CLOSE cursor ;

CLOSE closes the Portal underlying an open cursor. This can be used to release resources earlier than
end of transaction, or to free up the cursor variable to be opened again.

CLOSE cursl;

19.7.3.3. Returning Cursors

PL/pgSQL functions can return cursors to the caller. This is used to return multiple rows or columns
from the function. The function opens the cursor and returns the cursor name to the caller. The caller
can then FETCH rows from the cursor. The cursor can be closed by the caller, or it will be closed
automatically when the transaction closes.

The cursor name returned by the function can be specified by the caller or automatically generated.
The following example shows how a cursor name can be supplied by the caller:

CREATE TABLE test (col text);
INSERT INTO test VALUES ('123");

CREATE FUNCTION reffunc(refcursor) RETURNS refcursor AS '’
BEGIN
OPEN $1 FOR SELECT col FROM test;
RETURN $1;
END;
" LANGUAGE 'plpgsql’;

BEGIN;

SELECT reffunc(‘funccursor’);
FETCH ALL IN funccursor;
COMMIT;

The following example uses automatic cursor name generation:

CREATE FUNCTION reffunc2() RETURNS refcursor AS ’
DECLARE
ref refcursor;
BEGIN
OPEN ref FOR SELECT col FROM test;
RETURN ref;
END;
" LANGUAGE 'plpgsql’;

BEGIN;
SELECT reffunc2();

reffunc2

<unnamed cursor 1 >
(1 row)

314

Chapter 19. PL/pgSQL - SQL Procedural Language

FETCH ALL IN "<unnamed cursor 1 >";
COMMIT;

19.8. Errors and Messages

Use the RAISE statement to report messages and raise errors.
RAISE level ’'format ' [, variable [...0;

Possible levels arBEBUQwrite the message to the server logG(write the message to the server

log with a higher priority),INFO, NOTICE and WARNINGwrite the message to the server log and
send it to the client, with respectively higher priorities), &CEPTION(raise an error and abort the
current transaction). Whether error messages of a particular priority are reported to the client, written
to the server log, or both is controlled by tRERVER_MIN_MESSAGESIdCLIENT_MIN_MESSAGES
configuration variables. See tRestgreSQL Administrator’'s Guider more information.

Inside the format stringpis replaced by the next optional argument’s external representation. Write
%90 emit a literake Note that the optional arguments must presently be simple variables, not expres-
sions, and the format must be a simple string literal.

Examples:
RAISE NOTICE "Calling cs_create_job(%)”,v_job_id,;

In this example, the value of v_job_id will replace tn the string.

RAISE EXCEPTION "Inexistent ID --> %”",user_id;

This will abort the transaction with the given error message.

19.8.1. Exceptions

PostgreSQL does not have a very smart exception handling model. Whenever the parser,
planner/optimizer or executor decide that a statement cannot be processed any longer, the whole
transaction gets aborted and the system jumps back into the main loop to get the next query from the
client application.

It is possible to hook into the error mechanism to notice that this happens. But currently it is im-
possible to tell what really caused the abort (input/output conversion error, floating-point error, parse
error). And it is possible that the database backend is in an inconsistent state at this point so returning
to the upper executor or issuing more commands might corrupt the whole database.

Thus, the only thing PL/pgSQL currently does when it encounters an abort during execution of a
function or trigger procedure is to write some additioR@TICE level log messages telling in which
function and where (line number and type of statement) this happened. The error always stops execu-
tion of the function.

315

Chapter 19. PL/pgSQL - SQL Procedural Language

19.9. Trigger Procedures

PL/pgSQL can be used to define trigger procedures. A trigger procedure is created WifENEE
FUNCTIONcommand as a function with no arguments and a return ty®REBGER Note that the
function must be declared with no arguments even if it expects to receive arguments specified in
CREATE TRIGGER-- trigger arguments are passed Via_ARGYas described below.

When a PL/pgSQL function is called as a trigger, several special variables are created automatically
in the top-level block. They are:
NEW

Data typeRECORDvariable holding the new database row for INSERT/UPDATE operations in
ROW level triggers.

OLD

Data typeRECORDvariable holding the old database row for UPDATE/DELETE operations in
ROW level triggers.

TG_NAME

Data typename; variable that contains the name of the trigger actually fired.
TG_WHEN

Data typetext ; a string of eitheBEFOREor AFTERdepending on the trigger’s definition.
TG_LEVEL

Data typetext ; a string of eitheROWr STATEMENTIepending on the trigger’s definition.
TG_OP

Data typetext ; a string ofINSERT, UPDATEor DELETEtelling for which operation the trigger
is fired.

TG_RELID

Data typeoid ; the object ID of the table that caused the trigger invocation.
TG_RELNAME

Data typename; the name of the table that caused the trigger invocation.
TG_NARGS

Data typeinteger ; the number of arguments given to the trigger procedure inClREATE
TRIGGERstatement.

TG_ARGV]]

Data type array ofext ; the arguments from theREATE TRIGGERtatement. The index counts
from 0 and can be given as an expression. Invalid indiee@ ¢r >=tg_nargs) resultin a null
value.

A trigger function must return either NULL or a record/row value having exactly the structure of
the table the trigger was fired for. Triggers fired BEFORE may return NULL to signal the trigger
manager to skip the rest of the operation for this row (ie, subsequent triggers are not fired, and the
INSERT/UPDATE/DELETE does not occur for this row). If a non-NULL value is returned then the
operation proceeds with that row value. Note that returning a row value different from the original

316

Chapter 19. PL/pgSQL - SQL Procedural Language

value of NEW alters the row that will be inserted or updated. It is possible to replace single values
directly in NEW and return that, or to build a complete new record/row to return.

The return value of a trigger fired AFTER is ignored; it may as well always return a NULL value. But
an AFTER trigger can still abort the operation by raising an error.

Example 19-1. A PL/pgSQL Trigger Procedure Example

This example trigger ensures that any time a row is inserted or updated in the table, the current user
name and time are stamped into the row. And it ensures that an employee’s name is given and that the
salary is a positive value.

CREATE TABLE emp (
empname text,
salary integer,
last_date timestamp,
last_user text

):

CREATE FUNCTION emp_stamp () RETURNS TRIGGER AS '’
BEGIN
-- Check that empname and salary are given
IF NEW.empname ISNULL THEN
RAISE EXCEPTION "empname cannot be NULL value”;
END IF;
IF NEW.salary ISNULL THEN
RAISE EXCEPTION "% cannot have NULL salary”, NEW.empname;
END IF;

-- Who works for us when she must pay for?
IF NEW.salary < 0 THEN

RAISE EXCEPTION "% cannot have a negative salary”, NEW.empname;
END IF;

-- Remember who changed the payroll when
NEW.last_date := "now”;
NEW.last_user := current_user;
RETURN NEW;
END;
" LANGUAGE ’plpgsql’;

CREATE TRIGGER emp_stamp BEFORE INSERT OR UPDATE ON emp
FOR EACH ROW EXECUTE PROCEDURE emp_stamp();

19.10. Examples

Here are only a few functions to demonstrate how easy it is to write PL/pgSQL functions. For more
complex examples the programmer might look at the regression test for PL/pgSQL.

One painful detail in writing functions in PL/pgSQL is the handling of single quotes. The function’s
source text iCREATE FUNCTIOMuSst be a literal string. Single quotes inside of literal strings must

be either doubled or quoted with a backslash. We are still looking for an elegant alternative. In the
meantime, doubling the single quotes as in the examples below should be used. Any solution for this
in future versions of PostgreSQL will be forward compatible.

317

Chapter 19. PL/pgSQL - SQL Procedural Language

For a detailed explanation and examples of how to escape single quotes in different situations, please
seeSection 19.11.1.1

Example 19-2. A Simple PL/pgSQL Function to Increment an Integer

The following two PL/pgSQL functions are identical to their counterparts from the C language func-
tion discussion. This function receives mteger and increments it by one, returning the incre-
mented value.

CREATE FUNCTION add_one (integer) RETURNS INTEGER AS '’
BEGIN
RETURN $1 + 1;
END;
" LANGUAGE ’plpgsql’;

Example 19-3. A Simple PL/pgSQL Function to Concatenate Text

This function receives twiext parameters and returns the result of concatenating them.

CREATE FUNCTION concat_text (TEXT, TEXT) RETURNS TEXT AS '’
BEGIN
RETURN $1 || $2;
END;
" LANGUAGE '’plpgsql’;

Example 19-4. A PL/pgSQL Function on Composite Type

In this example, we takEMP(a table) and aimteger as arguments to our function, which returns a
boolean . Ifthesalary field of theEMPtable iSNULL, we returnf . Otherwise we compare with that
field with theinteger passed to the function and return thwlean result of the comparison (t or
f). This is the PL/pgSQL equivalent to the example from the C functions.

CREATE FUNCTION c_overpaid (EMP, INTEGER) RETURNS BOOLEAN AS '’
DECLARE
emprec ALIAS FOR $1;
sallim ALIAS FOR $2;
BEGIN
IF emprec.salary ISNULL THEN
RETURN "f";
END IF;
RETURN emprec.salary > sallim;
END,;
" LANGUAGE 'plpgsql’;

19.11. Porting from Oracle PL/SQL

Author: Roberto Mello (<rmello@fslc.usu.edu >)

This section explains differences between Oracle’s PL/SQL and PostgreSQL’s PL/pgSQL languages
in the hopes of helping developers port applications from Oracle to PostgreSQL. Most of the code here

318

is from the ArsDigita Clickstream modufethat | ported to PostgreSQL when | took an internship

Chapter 19. PL/pgSQL - SQL Procedural Language

with OpenForce Iné.in the Summer of 2000.

PL/pgSQL is similar to PL/SQL in many aspects. It is a block structured, imperative language (all

variables have to be declared). PL/SQL has many more features than its PostgreSQL counterpart, but
PL/pgSQL allows for a great deal of functionality and it is being improved constantly.

19.11.1. Main Differences

Some things you should keep in mind when porting from Oracle to PostgreSQL.:

« No default parameters in PostgreSQL.

« You can overload functions in PostgreSQL. This is often used to work around the lack of default

parameters.

- Assignments, loops and conditionals are similar.

« No need for cursors in PostgreSQL, just put the query in the FOR statement (see example below)

« In PostgreSQL yomeedto escape single quotes. Seection 19.11.1.1

19.11.1.1. Quote Me on That: Escaping Single Quotes

In PostgreSQL you need to escape single quotes inside your function definition. This can lead to quite
amusing code at times, especially if you are creating a function that generates other function(s), as in

Example 19-60ne thing to keep in mind when escaping lots of single quotes is that, except for the

beginning/ending quotes, all the others will come in even quantity.

Table 19-1gives the scoop. (You'll love this little chart.)

Table 19-1. Single Quotes Escaping Chart

No. of Quotes Usage Example Result

1 To begin/terminate CREATE FUNC- |asis
function bodies TION foo() RE-

TURNS INTE-
GER AS ..
LAN-

GUAGE 'plpgsql’;

2 In assignments, a_output := "Blah”;]SELECT * FROM
SELECT statements, t(SE- users WHERE
delimit strings, etc. LECT * FROM users WHERE=fowyae:"foobar’,

4 When you need two a_output := a_outpN[} haaNDLhéEe
single quotes in your |par™ AND ..” 'foobar AND ...
resulting string without
terminating that string.

1. http://www.arsdigita.com

2. http://www.arsdigita.com/asj/clickstream

3. http://www.openforce.net

319

LIKE ™

"fo

Chapter 19. PL/pgSQL - SQL Procedural Language

No. of Quotes Usage Example Result

6 When you want double a_output := a_outpiNP "n&ND LiKiBe LIKE ™
quotes in your resultingoar™” "foobar’
stringandterminate
that string.

10 When you want two a_output := a_outpift | <..if iKe || re-
single quotes in the ffer- "<...>" then
resulting string (which [rer_keys.kind || ” like "f&turn "<..>"; || re-
accounts for 8 quotes) fer- end if;
andterminate that rer_keys.key string || "7 then re-
string (2 more). You furn ™™ || re-
will probably only needfer-
that if you were using arer_keys.referrer_type [| ™ end if;"
function to generate
other functions (like in
Example 19-§.

19.11.2. Porting Functions

Example 19-5. A Simple Function

Here is an Oracle function:
CREATE OR REPLACE FUNCTION cs_fmt_browser_version(v_name IN varchar, v_version IN var-

char)
RETURN varchar IS
BEGIN
IF v_version IS NULL THEN
RETURN v_name;
END IF;
RETURN v_name || /" || v_version;
END;

/
SHOW ERRORS;

Let’s go through this function and see the differences to PL/pgSQL.:

« PostgreSQL does not have named parameters. You have to explicitly alias them inside your func-
tion.

« Oracle can havéN, OUT, andINOUT parameters passed to functions. TROUT, for example,
means that the parameter will receive a value and return another. PostgreSQL only has “IN” pa-
rameters and functions can return only a single value.

« The RETURNkey word in the function prototype (not the function body) becoREIURNSN
PostgreSQL.

« On PostgreSQL functions are created using single quotes as delimiters, so you have to escape single
quotes inside your functions (which can be quite annoying at timesSeaeton 19.11.1)1

« The/show errors command does not exist in PostgreSQL.

So let’s see how this function would look when ported to PostgreSQL:

320

k(o

Chapter 19. PL/pgSQL - SQL Procedural Language

CREATE OR REPLACE FUNCTION cs_fmt_browser_version(VARCHAR, VARCHAR)
RETURNS VARCHAR AS '’
DECLARE

v_name ALIAS FOR $1;

v_version ALIAS FOR $2;
BEGIN

IF v_version IS NULL THEN

return v_name;

END IF;

RETURN v_name || "/" || v_version;
END;
" LANGUAGE 'plpgsql’;

Example 19-6. A Function that Creates Another Function

The following procedure grabs rows fromS&LECTstatement and builds a large function with the
results inlF statements, for the sake of efficiency. Notice particularly the differences in CUFSIRS,
loops, and the need to escape single quotes in PostgreSQL.

CREATE OR REPLACE PROCEDURE cs_update_referrer_type_proc IS
CURSOR referrer_keys IS
SELECT * FROM cs_referrer_keys
ORDER BY try_order;

a_output VARCHAR(4000);
BEGIN
a_output := 'CREATE OR REPLACE FUNCTION cs_find_referrer_type(v_host IN VAR-
CHAR, v_domain IN VARCHAR,
v_url IN VARCHAR) RETURN VARCHAR IS BEGIN’;

FOR referrer_key IN referrer_keys LOOP

a_output := a_output || ' IF v_’ || referrer_key.kind || = LIKE ™ ||
referrer_key.key_string || ” THEN RETURN ™ || referrer_key.referrer_type ||
" END IF;;
END LOOP;

a_output := a_output || * RETURN NULL; END;’;
EXECUTE IMMEDIATE a_output;

END;

/

show errors

Here is how this function would end up in PostgreSQL.:

CREATE FUNCTION cs_update_referrer_type_proc() RETURNS INTEGER AS ’
DECLARE
referrer_keys RECORD; -- Declare a generic record to be used in a FOR
a_output varchar(4000);
BEGIN
a_output := "CREATE FUNCTION cs_find_referrer_type(VARCHAR,VARCHAR,VARCHAR)
RETURNS VARCHAR AS ™
DECLARE
v_host ALIAS FOR $1;
v_domain ALIAS FOR $2;
v_url ALIAS FOR $3;
BEGIN 7

321

Chapter 19. PL/pgSQL - SQL Procedural Language

-- Notice how we scan through the results of a query in a FOR loop
-- using the FOR <record > construct.

FOR referrer_keys IN SELECT * FROM cs_referrer_keys ORDER BY try_order LOOP

a_output := a_output || " IF v_" || referrer_keys.kind || * LIKE ™
|| referrer_keys.key_string || ™ THEN RETURN ™
|| referrer_keys.referrer_type || ™; END IF;";
END LOOP;

a_output := a_output || " RETURN NULL; END; ™ LANGUAGE ™plpgsqgl™;”;

-- This works because we are not substituting any variables
-- Otherwise it would fail. Look at PERFORM for another way to run functions

EXECUTE a_output;
END;
" LANGUAGE 'plpgsql’;

Example 19-7. A Procedure with a lot of String Manipulation and OUT Parameters

The following Oracle PL/SQL procedure is used to parse a URL and return several elements (host,
path and query). It is an procedure because in PL/pgSQL functions only one value can be returned
(seeSection 19.11.8 In PostgreSQL, one way to work around this is to split the procedure in three
different functions: one to return the host, another for the path and another for the query.

CREATE OR REPLACE PROCEDURE cs_parse_url(
v_url IN VARCHAR,
v_host OUT VARCHAR, This will be passed back
v_path OUT VARCHAR, -- This one too
v_query OUT VARCHAR) And this one

a_posl INTEGER;
a_pos2 INTEGER,;

begin
v_host := NULL;
v_path := NULL;
v_query := NULL;
a_posl := instr(v_url, '/I");

PostgreSQL doesn’'t have an instr function

IF a_posl = 0 THEN
RETURN;
END IF;
a_pos2 := instr(v_url, /', a_posl + 2);
IF a_pos2 = 0 THEN
v_host := substr(v_url, a_posl + 2),
v_path = 1
RETURN;
END IF;

v_host := substr(v_url, a_posl + 2, a_pos2 - a_posl - 2);
a_posl := instr(v_url, '?", a_pos2 + 1);

322

Chapter 19. PL/pgSQL - SQL Procedural Language

IF a_posl = 0 THEN
v_path := substr(v_url, a_pos2);
RETURN;

END IF;

v_path := substr(v_url, a_pos2, a_posl - a_pos2);
v_query := substr(v_url, a_posl + 1);

END;

/

show errors;

Here is how this procedure could be translated for PostgreSQL:
CREATE OR REPLACE FUNCTION cs_parse_url_host(VARCHAR) RETURNS VARCHAR AS '’
DECLARE
v_url ALIAS FOR $1;
v_host VARCHAR;
v_path VARCHAR,;
a_posl INTEGER;
a_pos2 INTEGER;
a_pos3 INTEGER;

BEGIN
v_host := NULL;
a_posl := instr(v_url,"//");

IF a_posl = 0 THEN

RETURN ™; -- Return a blank
END IF;
a_pos2 := instr(v_url,”/",a_posl + 2);

IF a_pos2 = 0 THEN
v_host := substr(v_url, a_posl + 2);
v_path = "/,
RETURN v_host;

END IF;

v_host := substr(v_url, a_posl + 2, a_pos2 - a_posl - 2),
RETURN v_host;

END;

" LANGUAGE ’plpgsql’;

Note: PostgreSQL does not have aninstr ~ function, so you can work around it using a combina-
tion of other functions. | got tired of doing this and created my own instr functions that behave
exactly like Oracle’s (it makes life easier). See the Section 19.11.6 for the code.

19.11.3. Procedures

Oracle procedures give a little more flexibility to the developer because nothing needs to be explicitly
returned, but it can be through the useNdUT or OUTparameters.

An example:

CREATE OR REPLACE PROCEDURE cs_create_job(v_job_id IN INTEGER) IS
a_running_job_count INTEGER,;

323

Chapter 19. PL/pgSQL - SQL Procedural Language

PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
LOCK TABLE cs_jobs IN EXCLUSIVE MODE;O

SELECT count(*) INTO a_running_job_count
FROM cs_jobs
WHERE end_stamp IS NULL;

IF a_running_job_count > 0 THEN
COMMIT; -- free lock O
raise_application_error(-20000, 'Unable to create a new job: a job is cur-
rently running.’);
END IF;

DELETE FROM cs_active_job;
INSERT INTO cs_active_job(job_id) VALUES (v_job_id);

BEGIN
INSERT INTO cs_jobs (job_id, start_stamp) VALUES (v_job_id, sysdate);
EXCEPTION WHEN dup_val_on_index THEN NULL; -- don’t worry if it al-
ready exists 0
END;
COMMIT;
END;
/
show errors

Procedures like this can be easily converted into PostgreSQL functions returniNGeGER This
procedure in particular is interesting because it can teach us some things:

O There is ngpragma statement in PostgreSQL.

O IfyoudoalOCK TABLHEN PL/pgSQL, the lock will not be released until the calling transaction
is finished.

0 You also cannot have transactions in PL/pgSQL procedures. The entire function (and other func-
tions called from therein) is executed in a transaction and PostgreSQL rolls back the results if
something goes wrong. Therefore only ®&GIN statement is allowed.

0 The exception when would have to be replaced byFastatement.

So let’s see one of the ways we could port this procedure to PL/pgSQL:

CREATE OR REPLACE FUNCTION cs_create_job(INTEGER) RETURNS INTEGER AS '’
DECLARE

v_job_id ALIAS FOR $1;

a_running_job_count INTEGER;

a_num INTEGER;

-- PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN

LOCK TABLE cs_jobs IN EXCLUSIVE MODE;

SELECT count(*) INTO a_running_job_count

FROM cs_jobs

WHERE end_stamp IS NULL;

IF a_running_job_count > 0

324

Chapter 19. PL/pgSQL - SQL Procedural Language

THEN

-- COMMIT; -- free lock

RAISE EXCEPTION "Unable to create a new job: a job is currently running.”;
END IF;

DELETE FROM cs_active_job;
INSERT INTO cs_active_job(job_id) VALUES (v_job_id);

SELECT count(*) into a_num
FROM cs_jobs
WHERE job_id=v_job_id;
IF NOT FOUND THEN -- If nothing was returned in the last query
-- This job is not in the table so lets insert it.
INSERT INTO cs_jobs(job_id, start_stamp) VALUES (v_job_id, sysdate());
RETURN 1;
ELSE
RAISE NOTICE "Job already running.”; O
END IF;

RETURN O;

END;
" LANGUAGE 'plpgsql’;

O Notice how you can raise notices (or errors) in PL/pgSQL.

19.11.4. Packages

Note: | haven't done much with packages myself, so if there are mistakes here, please let me
know.

Packages are a way Oracle gives you to encapsulate PL/SQL statements and functions into one entity,
like Java classes, where you define methods and objects. You can access these objects/methods with a
“.” (dot). Here is an example of an Oracle package from ACS 4 (the ArsDigita Community System

CREATE OR REPLACE PACKAGE BODY acs

AS
FUNCTION add_user (
user_id IN users.user_id%TYPE DEFAULT NULL,
object_type IN acs_objects.object_type%TYPE DEFAULT 'user’,

creation_date IN acs_objects.creation_date%TYPE DEFAULT sysdate,
creation_user IN acs_objects.creation_user%TYPE DEFAULT NULL,
creation_ip IN acs_objects.creation_ip%TYPE DEFAULT NULL,

) RETURN users.user_id%TYPE

IS

v_user_id users.user_id%TYPE;

v_rel_id membership_rels.rel_id%TYPE;
BEGIN

v_user_id := acs_user.new (user_id, object_type, creation_date,
creation_user, creation_ip, email, ...

4. http://lwww.arsdigita.com/doc/

325

Chapter 19. PL/pgSQL - SQL Procedural Language

RETURN v_user_id;
END;
END acs;
/
show errors

We port this to PostgreSQL by creating the different objects of the Oracle package as functions with
a standard naming convention. We have to pay attention to some other details, like the lack of default
parameters in PostgreSQL functions. The above package would become something like this:

CREATE FUNCTION acs__add_user(INTEGER,INTEGER,VARCHAR, TIMESTAMP,INTEGER,INTEGER,...)
RETURNS INTEGER AS ’
DECLARE

user_id ALIAS FOR $1;

object_type ALIAS FOR $2;

creation_date ALIAS FOR $3;

creation_user ALIAS FOR $4;

creation_ip ALIAS FOR $5;

v_user_id users.user_id%TYPE;
v_rel_id membership_rels.rel_id%TYPE;
BEGIN
v_user_id := acs_user__new(user_id,object_type,creation_date,creation_user,creation_ip, ...);

RETURN v_user_id;
END;
" LANGUAGE ’plpgsql’;

19.11.5. Other Things to Watch For

19.11.5.1. EXECUTE

The PostgreSQL version oEXECUTE works nicely, but you have to remember to use
quote_literal(TEXT) andquote_string(TEXT) as described isection 19.5.4Constructs of
the typeEXECUTE "SELECT * from $1”; will not work unless you use these functions.

19.11.5.2. Optimizing PL/pgSQL Functions

PostgreSQL gives you two function creation modifiers to optimize execusicathable (function
always returns the same result when given the same argument®saiut (function returns
NULL if any argument is NULL). Consult theREATE FUNCTIONKeference for details.

To make use of these optimization attributes, you have to us&vthig modifier in yourCREATE
FUNCTIONstatement. Something like:

CREATE FUNCTION foo(...) RETURNS INTEGER AS ’

" LANGUAGE '’plpgsql’
WITH (isstrict, iscachable);

326

Chapter 19. PL/pgSQL - SQL Procedural Language

19.11.6. Appendix

19.11.6.1. Code for my instr functions

-- instr functions that mimic Oracle’s counterpart
-- Syntax: instr(string1,string2,[n],[m]) where [] denotes optional params.

-- Searches stringl beginning at the nth character for the mth
-- occurrence of string2. If n is negative, search backwards. If m is
-- not passed, assume 1 (search starts at first character).

-- by Roberto Mello (rmello@fslc.usu.edu)
-- modified by Robert Gaszewski (graszew@poland.com)
-- Licensed under the GPL v2 or later.

CREATE FUNCTION instr(VARCHAR,VARCHAR) RETURNS INTEGER AS '’
DECLARE
pos integer;
BEGIN
pos:= instr($1,%$2,1);
RETURN pos;
END;
" LANGUAGE ’plpgsql’;

CREATE FUNCTION instr(VARCHAR,VARCHAR,INTEGER) RETURNS INTEGER AS '’
DECLARE
string ALIAS FOR $1;
string_to_search ALIAS FOR $2;
beg_index ALIAS FOR $3;
pos integer NOT NULL DEFAULT O0;
temp_str VARCHAR;
beg INTEGER,;
length INTEGER,;
ss_length INTEGER;
BEGIN
IF beg_index > 0 THEN

temp_str := substring(string FROM beg_index);
pos := position(string_to_search IN temp_str);

IF pos = 0 THEN
RETURN 0;
ELSE
RETURN pos + beg_index - 1;
END IF;
ELSE
ss_length := char_length(string_to_search);
length := char_length(string);
beg := length + beg_index - ss_length + 2;

327

Chapter 19. PL/pgSQL - SQL Procedural Language

WHILE beg > 0 LOOP
temp_str := substring(string FROM beg FOR ss_length);
pos := position(string_to_search IN temp_str);

IF pos > 0 THEN

RETURN beg;
END IF;
beg := beg - 1;
END LOOP;
RETURN 0;
END IF;
END;

" LANGUAGE ’plpgsql’;

-- Written by Robert Gaszewski (graszew@poland.com)
-- Licensed under the GPL v2 or later.

CREATE FUNCTION instr(VARCHAR,VARCHAR,INTEGER,INTEGER) RETURNS INTEGER AS ’
DECLARE
string ALIAS FOR $1;
string_to_search ALIAS FOR $2;
beg_index ALIAS FOR $3;
occur_index ALIAS FOR $4;
pos integer NOT NULL DEFAULT O0;
occur_number INTEGER NOT NULL DEFAULT O;
temp_str VARCHAR;
beg INTEGER;
i INTEGER;
length INTEGER,;
ss_length INTEGER;
BEGIN
IF beg_index > 0 THEN
beg := beg_index;
temp_str := substring(string FROM beg_index);

FOR i IN 1..occur_index LOOP
pos := position(string_to_search IN temp_str);

IF i =1 THEN

beg := beg + pos - 1;
ELSE

beg := beg + pos;
END IF;

temp_str := substring(string FROM beg + 1);
END LOOP;

IF pos = 0 THEN
RETURN 0;
ELSE
RETURN beg;
END IF;
ELSE
ss_length := char_length(string_to_search);

328

Chapter 19. PL/pgSQL - SQL Procedural Language

length := char_length(string);
beg := length + beg_index - ss_length + 2;

WHILE beg > 0 LOOP
temp_str := substring(string FROM beg FOR ss_length);
pos := position(string_to_search IN temp_str);

IF pos > 0 THEN
occur_number := occur_number + 1;

IF occur_number = occur_index THEN
RETURN beg;
END IF;
END IF;

beg := beg - 1,
END LOOP;

RETURN 0;
END IF;
END;
" LANGUAGE ’plpgsql’;

329

Chapter 20. PL/Tcl - Tcl Procedural Language

PL/Tcl is a loadable procedural language for the PostgreSQL database system that enables the Tcl
language to be used to write functions and trigger procedures.

This package was originally written by Jan Wieck.

20.1. Overview

PL/Tcl offers most of the capabilities a function writer has in the C language, except for some restric-
tions.

The good restriction is that everything is executed in a safe Tcl interpreter. In addition to the limited
command set of safe Tcl, only a few commands are available to access the database via SPI and to
raise messages vidog() . There is no way to access internals of the database backend or to gain
OS-level access under the permissions of the PostgreSQL user ID, as a C function can do. Thus, any
unprivileged database user may be permitted to use this language.

The other, implementation restriction is that Tcl procedures cannot be used to create input/output
functions for new data types.

Sometimes it is desirable to write Tcl functions that are not restricted to safe Tcl --- for example,
one might want a Tcl function that sends mail. To handle these cases, there is a variant of PL/Tcl
calledPL/Tclu (for untrusted Tcl). This is the exact same language except that a full Tcl interpreter
is used.If PL/TclU is used, it must be installed as an untrusted procedural langsagiat only
database superusers can create functions in it. The writer of a PL/TclU function must take care that
the function cannot be used to do anything unwanted, since it will be able to do anything that could
be done by a user logged in as the database administrator.

The shared object for the PL/Tcl and PL/TclU call handlers is automatically built and installed in the
PostgreSQL library directory if Tcl/Tk support is specified in the configuration step of the installation
procedure. To install PL/Tcl and/or PL/TclU in a particular database, usadhelang script, for
examplecreatelang pltcl dbname or createlang pltclu dbname.

20.2. Description

20.2.1. PL/Tcl Functions and Arguments

To create a function in the PL/Tcl language, use the standard syntax

CREATE FUNCTIONuncname (argument-types) RETURNS return-type AS ’
PL/Tcl function body
" LANGUAGE ‘pltcl’;

PL/TclU is the same, except that the language should be specifigidias .

The body of the function is simply a piece of Tcl script. When the function is called, the argument
values are passed as varialfas... $n to the Tcl script. The result is returned from the Tcl code in
the usual way, with @eturn statement. For example, a function returning the greater of two integer
values could be defined as:

CREATE FUNCTION tcl_max (integer, integer) RETURNS integer AS ’
if {$1 > $2} {return $1}

330

Chapter 20. PL/Tcl - Tcl Procedural Language

return $2
" LANGUAGE ’pltcI WITH (isStrict);

Note the claus&VITH (isStrict) , which saves us from having to think about NULL input val-
ues: if a NULL is passed, the function will not be called at all, but will just return a NULL result
automatically.

In a non-strict function, if the actual value of an argument is NULL, the corresporstingriable

will be set to an empty string. To detect whether a particular argument is NULL, use the function
argisnull . For example, suppose that we wantgdmax with one null and one non-null argument

to return the non-null argument, rather than NULL:

CREATE FUNCTION tcl_max (integer, integer) RETURNS integer AS ’
if {[argisnull 1]} {
if {[argisnull 2]} { return_null }
return $2

}
if {[argisnull 2]} { return $1 }
if {$1 > $2} {return $1}
return $2

" LANGUAGE ’pltcl’;

As shown above, to return a NULL value from a PL/Tcl function, exeeetign_null . This can
be done whether the function is strict or not.

Composite-type arguments are passed to the procedure as Tcl arrays. The element names of the array
are the attribute names of the composite type. If an attribute in the passed row has the NULL value, it
will not appear in the array! Here is an example that defines the overpaid_2 function (as found in the
older PostgreSQL documentation) in PL/Tcl:

CREATE FUNCTION overpaid_2 (EMP) RETURNS bool AS
if {200000.0 < $i(salary)} {
return "t

}
if {$1(age) < 30 && 100000.0 < $i(salary)} {
return "t

}

return "f"
" LANGUAGE 'pltcl’;

There is not currently any support for returning a composite-type result value.

20.2.2. Data Values in PL/Tcl

The argument values supplied to a PL/Tcl function’s script are simply the input arguments converted
to text form (just as if they had been displayed by a SELECT statement). Conversaltuthe
command will accept any string that is acceptable input format for the function’s declared return type.
So, the PL/Tcl programmer can manipulate data values as if they were just text.

331

Chapter 20. PL/Tcl - Tcl Procedural Language

20.2.3. Global Data in PL/Tcl

Sometimes it is useful to have some global status data that is held between two calls to a procedure
or is shared between different procedures. This is easily done since all PL/Tcl procedures executed
in one backend share the same safe Tcl interpreter. So, any global Tcl variable is accessible to all
PL/Tcl procedure calls, and will persist for the duration of the SQL client connection. (Note that
PL/TclU functions likewise share global data, but they are in a different Tcl interpreter and cannot
communicate with PL/Tcl functions.)

To help protect PL/Tcl procedures from unintentionally interfering with each other, a global array is
made available to each procedure via tipgar command. The global name of this variable is the
procedure’s internal name and the local namelslt is recommended thatDbe used for private
status data of a procedure. Use regular Tcl global variables only for values that you specifically intend
to be shared among multiple procedures.

An example of usingsDappears in thepi_execp example below.

20.2.4. Database Access from PL/Tcl

The following commands are available to access the database from the body of a PL/Tcl procedure:

spi_exec ?-count n? ?-array name? query ?loop-body ?

Execute an SQL query given as a string. An error in the query causes an error to be raised.
Otherwise, the command’s return value is the number of rows processed (selected, inserted,
updated, or deleted) by the query, or zero if the query is a utility statement. In addition, if the
query is a SELECT statement, the values of the selected columns are placed in Tcl variables as
described below.

The optional-count value tellsspi_exec the maximum number of rows to process in the
query. The effect of this is comparable to setting up the query as a cursor and thenFEOhY
n.

If the query is aSELECTstatement, the values of the statement’s result columns are placed into
Tcl variables named after the columns. If teeray option is given, the column values are
instead stored into the named associative array, with the SELECT column names used as array
indexes.

If the query is a SELECT statement andloop-body script is given, then only the first row

of results are stored into Tcl variables; remaining rows, if any, are ignored. No store occurs if the
SELECT returns no rows (this case can be detected by checking the respilteofec). For
example,

spi_exec "SELECT count(*) AS cnt FROM pg_proc"

will set the Tcl variablesent to the number of rows in thgg_proc system catalog.

If the optionalloop-body argument is given, it is a piece of Tcl script that is executed once
for each row in the SELECT result (notkop-body is ignored if the given query is not
a SELECT). The values of the current row’s fields are stored into Tcl variables before each
iteration. For example,
spi_exec -array C "SELECT * FROM pg_class" {
elog DEBUG "have table $C(relname)"
}

332

Chapter 20. PL/Tcl - Tcl Procedural Language

will print a DEBUG log message for every row of pg_class. This feature works similarly to other
Tcl looping constructs; in particulapntinue andbreak work in the usual way inside the loop
body.

If a field of a SELECT result is NULL, the target variable for it is “unset” rather than being set.
spi_prepare query typelist

Prepares and saves a query plan for later execution. The saved plan will be retained for the life
of the current backend.

The query may usargumentswhich are placeholders for values to be supplied whenever the
plan is actually executed. In the query string, refer to arguments by the sysbols$n. If

the query uses arguments, the names of the argument types must be given as a Tcl list. (Write
an empty list fortypelist if no arguments are used.) Presently, the argument types must be
identified by the internal type names shown in pg_type; for exaimfle notinteger

The return value fromapi_prepare is a query ID to be used in subsequent callspioexecp
Seespi_execp for an example.

Spi_execp ?-count n? ?-array name? ?-nulls string ? queryid ?value-list ?
?loop-body ?

Execute a query previously prepared withi_prepare . queryid is the ID returned by
spi_prepare . If the query references argumentsyaue-list must be supplied: this is

a Tcl list of actual values for the arguments. This must be the same length as the argument type
list previously given tepi_prepare . Omit value-list if the query has no arguments.

The optional value fomulls is a string of spaces and characters tellingpi_execp which
of the arguments are null values. If given, it must have exactly the same lengthadube
list . Ifitis not given, all the argument values are non-NULL.

Except for the way in which the query and its arguments are specifiedixecp works just
like spi_exec . The-count , -array , andloop-body options are the same, and so is the
result value.

Here’s an example of a PL/Tcl function using a prepared plan:

CREATE FUNCTION t1_count(integer, integer) RETURNS integer AS '’
if {I[info exists GD(plan)]} {
prepare the saved plan on the first call
set GD(plan) [spi_prepare \\
"SELECT count(*) AS cnt FROM t1 WHERE num >= \\$1 AND num <= \$2
[list int4 int4]]

}
spi_execp -count 1 $GD(plan) [list $1 $2]
return $cnt

" LANGUAGE ’pltcl’;

Note that each backslash that Tcl should see must be doubled when we type in the function, since
the main parser processes backslashes too in CREATE FUNCTION. We need backslashes inside
the query string given tepi_prepare to ensure that thén markers will be passed through to
spi_prepare as-is, and not replaced by Tcl variable substitution.

spi_lastoid

Returns the OID of the row inserted by the Iggit exec 'd or spi_execp 'd query, if that query
was a single-row INSERT. (If not, you get zero.)

333

Chapter 20. PL/Tcl - Tcl Procedural Language

quote string

Duplicates all occurrences of single quote and backslash characters in the given string. This may
be used to safely quote strings that are to be inserted into SQL queries gisgineicec or
spi_prepare . For example, think about a query string like

"SELECT ’$val’ AS ret"
where the Tcl variable val actually contaitdgesn’t . This would result in the final query string
SELECT 'doesn’'t’ AS ret

which would cause a parse error duriggi_exec or spi_prepare . The submitted query
should contain

SELECT ’'doesn™t’ AS ret
which can be formed in PL/Tcl as
"SELECT [quote $val ' AS ret"

One advantage abi_execp is that you don't have to quote argument values like this, since the
arguments are never parsed as part of an SQL query string.

elog level msg

Emit a log or error message. Possible levelsEEBUGLOG INFO, NOTICE, WARNINGERROR

and FATAL. Most simply emit the given message just like tieg backend C functionER-
RORraises an error condition: further execution of the function is abandoned, and the current
transaction is aborte@ATAL aborts the transaction and causes the current backend to shut down
(there is probably no good reason to use this error level in PL/Tcl functions, but it's provided for
completeness).

20.2.5. Trigger Procedures in PL/Tcl

Trigger procedures can be written in PL/Tcl. As is customary in PostgreSQL, a procedure that's to be
called as a trigger must be declared as a function with no arguments and a returnttigeernof .

The information from the trigger manager is passed to the procedure body in the following variables:

$TG_name

The name of the trigger from the CREATE TRIGGER statement.
$TG_relid

The object ID of the table that caused the trigger procedure to be invoked.
$TG_relatts

A Tcl list of the table field names, prefixed with an empty list element. So looking up an element
name in the list with Tcl'dsearch command returns the element’'s number starting with 1 for
the first column, the same way the fields are customarily numbered in PostgreSQL.

$TG_when

The stringBEFOREDr AFTERdepending on the type of trigger call.
$TG_level

The stringROVWr STATEMENTlepending on the type of trigger call.

334

Chapter 20. PL/Tcl - Tcl Procedural Language

$TG_op
The stringINSERT, UPDATEor DELETEdepending on the type of trigger call.
SNEW

An associative array containing the values of the new table row for INSERT/UPDATE actions,
or empty for DELETE. The array is indexed by field name. Fields that are NULL will not appear
in the array!

$OLD

An associative array containing the values of the old table row for UPDATE/DELETE actions,
or empty for INSERT. The array is indexed by field name. Fields that are NULL will not appear
in the array!

$args

A Tcllist of the arguments to the procedure as given in the CREATE TRIGGER statement. These
arguments are also accessibleas.. $n in the procedure body.

The return value from a trigger procedure can be one of the sttikgs SKIP, or a list as returned by
thearray get Tcl command. If the return value @K the operation (INSERT/UPDATE/DELETE)
that fired the trigger will proceed normallgKIP tells the trigger manager to silently suppress the
operation for this row. If a list is returned, it tells PL/Tcl to return a modified row to the trigger
manager that will be inserted instead of the one given in $NEW (this works for INSERT/UPDATE
only). Needless to say that all this is only meaningful when the trigger is BEFORE and FOR EACH
ROW; otherwise the return value is ignored.

Here’s a little example trigger procedure that forces an integer value in a table to keep track of the
number of updates that are performed on the row. For new rows inserted, the value is initialized to O
and then incremented on every update operation:

CREATE FUNCTION trigfunc_modcount() RETURNS TRIGGER AS ’
switch $TG_op {
INSERT {
set NEW($1) O
}
UPDATE {
set NEW($1) $OLD($1)
incr NEW($1)
}
default {
return OK
}
}

return [array get NEW]

" LANGUAGE ’pltcl’;

CREATE TABLE mytab (num integer, description text, modcnt integer);

CREATE TRIGGER trig_mytab_modcount BEFORE INSERT OR UPDATE ON mytab
FOR EACH ROW EXECUTE PROCEDURE trigfunc_modcount('modcnt’);

Notice that the trigger procedure itself does not know the column name; that's supplied from the
trigger arguments. This lets the trigger procedure be re-used with different tables.

335

Chapter 20. PL/Tcl - Tcl Procedural Language

20.2.6. Modules and the unknown command

PL/Tcl has support for auto-loading Tcl code when used. It recognizes a special table,
pltcl_modules , which is presumed to contain modules of Tcl code. If this table exists, the module
unknown is fetched from the table and loaded into the Tcl interpreter immediately after creating the
interpreter.

While theunknown module could actually contain any initialization script you need, it normally de-
fines a Tcl “unknown” procedure that is invoked whenever Tcl does not recognize an invoked proce-
dure name. PL/Tcl's standard version of this procedure tries to find a modultelimodules that

will define the required procedure. If one is found, it is loaded into the interpreter, and then execution is
allowed to proceed with the originally attempted procedure call. A secondaryptatblenodfuncs

provides an index of which functions are defined by which modules, so that the lookup is reasonably
quick.

The PostgreSQL distribution includes support scripts to maintain these tahtédoadmod
pltcl_listmod , pltcl_delmod , as well as source for the standard unknown module
share/unknown.pltcl . This module must be loaded into each database initially to support the
autoloading mechanism.

The tablesltcl_modules andpltcl_modfuncs must be readable by all, but it is wise to make
them owned and writable only by the database administrator.

20.2.7. Tcl Procedure Names

In PostgreSQL, one and the same function hame can be used for different functions as long as the
number of arguments or their types differ. Tcl, however, requires all procedure names to be distinct.
PL/Tcl deals with this by making the internal Tcl procedure names contain the object ID of the
procedure’pg_proc row as part of their name. Thus, PostgreSQL functions with the same name and
different argument types will be different Tcl procedures too. This is not normally a concern for a
PL/Tcl programmer, but it might be visible when debugging.

336

Chapter 21. PL/Perl - Perl Procedural
Language

PL/Perlis a loadable procedural language that enables you to write PostgreSQL functions in‘the Perl
programming language.

To install PL/Perl in a particular database, assatelang plperl dbname.

Tip: If a language is installed into templatel , all subsequently created databases will have the
language installed automatically.

Note: Users of source packages must specially enable the build of PL/Perl during the installation
process (refer to the installation instructions for more information). Users of binary packages might
find PL/Perl in a separate subpackage.

21.1. PL/Perl Functions and Arguments

To create a function in the PL/Perl language, use the standard syntax:

CREATE FUNCTIONuncname (argument-types) RETURNS return-type AS
PL/Perl function body
" LANGUAGE plperl;

The body of the function is ordinary Perl code.

Arguments and results are handled as in any other Perl subroutine: Arguments are p@ssaddra
result value is returned witfeturn or as the last expression evaluated in the function. For example,
a function returning the greater of two integer values could be defined as:

CREATE FUNCTION perl_max (integer, integer) RETURNS integer AS ’
if ($_[0] > $ [1]) { return $_[O]; }
return $_[1];

" LANGUAGE npilperl;

If an SQL null value is passed to a function, the argument value will appear as “undefined” in Perl.
The above function definition will not behave very nicely with null inputs (in fact, it will act as though
they are zeroes). We could a8a@RICT to the function definition to make PostgreSQL do something
more reasonable: if a null value is passed, the function will not be called at all, but will just return a
null result automatically. Alternatively, we could check for undefined inputs in the function body. For
example, suppose that we wantetl_max with one null and one non-null argument to return the
non-null argument, rather than a null value:

CREATE FUNCTION perl_max (integer, integer) RETURNS integer AS '’
my ($a,$h) = @_;
if (! defined $a) {
if (! defined $b) { return undef; }
return $b;

1. http://www.perl.com

337

Chapter 21. PL/Perl - Perl Procedural Language

}
if (! defined $b) { return $a; }
if ($a > $b) { return $a; }
return $b;

" LANGUAGE npilperl;

As shown above, to return an SQL null value from a PL/Perl function, return an undefined value. This
can be done whether the function is strict or not.

Composite-type arguments are passed to the function as references to hashes. The keys of the hash
are the attribute names of the composite type. Here is an example:

CREATE TABLE employee (
name text,
basesalary integer,
bonus integer

);

CREATE FUNCTION empcomp(employee) RETURNS integer AS '’
my ($emp) = @_;
return $emp->{"basesalary”} + $emp->{"bonus};

" LANGUAGE pilperl;

SELECT name, empcomp(employee) FROM employee;

There is currently no support for returning a composite-type result value.

Tip: Because the function body is passed as an SQL string literal to CREATE FUNCTIONyou have
to escape single quotes and backslashes within your Perl source, typically by doubling them as
shown in the above example. Another possible approach is to avoid writing single quotes by using
Perl's extended quoting operators (q[] , qall , qw[])-

21.2. Data Values in PL/Perl

The argument values supplied to a PL/Perl function’s script are simply the input arguments converted
to text form (just as if they had been displayed bgBLECT statement). Conversely, theturn
command will accept any string that is acceptable input format for the function’s declared return type.
So, the PL/Perl programmer can manipulate data values as if they were just text.

21.3. Database Access from PL/Perl

Access to the database itself from your Perl function can be done via an experimental module
DBD::PgSPI 2 (also available at CPAN mirror sit§s This module makes available a DBI-compliant
database-handle namgply_dbh that can be used to perform queries with normal DBI syntax.

PL/Perl itself presently provides only one additional Perl command:

2. http://lwww.cpan.org/modules/by-module/DBD/APILOS/
3. http://www.cpan.org/SITES.html

338

Chapter 21. PL/Perl - Perl Procedural Language

elog level ,msg

Emit a log or error message. Possible levels BEBUG LOG INFO, NOTICE, WARNINGand
ERRORERRORaises an error condition: further execution of the function is abandoned, and the
current transaction is aborted.

21.4. Trusted and Untrusted PL/Perl

Normally, PL/Perl is installed as a “trusted” programming language nastped . In this setup,

certain Perl operations are disabled to preserve security. In general, the operations that are restricted
are those that interact with the environment. This includes file handle operatiguise , anduse

(for external modules). There is no way to access internals of the database backend process or to gain
OS-level access with the permissions of the PostgreSQL user ID, as a C function can do. Thus, any

unprivileged database user may be permitted to use this language.

Here is an example of a function that will not work because file system operations are not allowed for
security reasons:

CREATE FUNCTION badfunc() RETURNS integer AS '’
open(TEMP, ">/tmp/badfile");
print TEMP "Gotchal\n";
return 1;

" LANGUAGE plperl;

The creation of the function will succeed, but executing it will not.

Sometimes it is desirable to write Perl functions that are not restricted --- for example, one might want
a Perl function that sends mail. To handle these cases, PL/Perl can also be installed as an “untrusted”
language (usually called PL/PerlU). In this case the full Perl language is availableciétitedang

program is used to install the language, the language paradu will select the untrusted PL/Perl
variant.

The writer of a PL/PerlU function must take care that the function cannot be used to do anything
unwanted, since it will be able to do anything that could be done by a user logged in as the database
administrator. Note that the database system allows only database superusers to create functions in
untrusted languages.

If the above function was created by a superuser using the langusgea , execution would suc-
ceed.

21.5. Missing Features

The following features are currently missing from PL/Perl, but they would make welcome contribu-
tions:

- PL/Perl functions cannot call each other directly (because they are anonymous subroutines inside
Perl). There’s presently no way for them to share global variables, either.

- PL/Perl cannot be used to write trigger functions.

- DBD::PgSPI or similar capability should be integrated into the standard PostgreSQL distribution.

339

Chapter 21. PL/Perl - Perl Procedural Language

340

Chapter 22. PL/Python - Python Procedural
Language

The PL/Python procedural language allows PostgreSQL functions to be written in the Pyifon
guage.

To install PL/Python in a particular database, asatelang plpython dbname.

Note: Users of source packages must specially enable the build of PL/Python during the installa-
tion process (refer to the installation instructions for more information). Users of binary packages
might find PL/Python in a separate subpackage.

22.1. PL/Python Functions
The Python code you write gets transformed into a function. E.g.,

CREATE FUNCTION myfunc(text) RETURNS text
AS ‘'return args[0]’
LANGUAGE ’plpython’;

gets transformed into

def __ plpython_procedure_myfunc_23456():
return args[0]

where 23456 is the OID of the function.

If you do not provide a return value, Python returns the defaodie which may or may not be what
you want. The language module translates Pythinise into the SQL null value.

The PostgreSQL function parameters are available in the ghobsl list. In themyfunc example,
args[0] contains whatever was passed in as the text argumentnyfonc2(text, integer) ,
args[0] would contain theext variable andargs[1l] theinteger variable.

The global dictionarysD is available to store data between function calls. This variable is private
static data. The global dictiona@Dis public data, available to all Python functions within a session.
Use with care.

Each function gets its own restricted execution object in the Python interpreter, so that global data and
function arguments frormyfunc are not available tenyfunc2 . The exception is the data in ti@&D
dictionary, as mentioned above.

22.2. Trigger Functions

When a function is used in a trigger, the dictionaiy contains trigger-related values. The trigger
rows are inTD["'new"] and/orTD["old"] depending on the trigger evemD["event"] contains
the event as a stringSERT, UPDATEDELETE or UNKNOWNTD['when”] ~ contains one o0BEFORE
AFTER andUNKNOWND["level"] contains one oROWSTATEMENTandUNKNOWND["'name"]
contains the trigger name, ar["relid"] contains the relation ID of the table on which the

1. http://www.python.org

341

Chapter 22. PL/Python - Python Procedural Language

trigger occurred. If the trigger was called with arguments they are availalilB[itargs"][0] to
TD["args"]|[(n-1)]

If the TD['when"] is BEFOREYou may returNone or "OK" from the Python function to indicate
the row is unmodified;SKIP" to abort the event, dMODIFY" to indicate you've modified the row.

22.3. Database Access

The PL/Python language module automatically imports a Python module cplitgyd. The
functions and constants in this module are available to you in the Python coplipyasfoo .

At present plpy implements the functionsplpy.debug("msg") , plpy.log("msg") ,
plpy.info("msg") , plpy.notice("msg") , plpy.warning("msg") , plpy.error("msg") ,

and plpy.fatal("msg") . They are mostly equivalent to callirdjog(LEVEL, "msg”) from C
code.plpy.error and plpy.fatal actually raise a Python exception which, if uncaught, causes
the PL/Python module to calllog(ERROR, msg) when the function handler returns from the
Python interpreter. Long-jumping out of the Python interpreter is probably not gad.
plpy.ERROR("msg") andraise plpy.FATAL("msg") are equivalent to callinglpy.error
andplpy.fatal , respectively.

Additionally, the plpy module provides two functions callegkecute and prepare . Calling
plpy.execute with a query string and an optional limit argument causes that query to be run and
the result to be returned in a result object. The result object emulates a list or dictionary object.
The result object can be accessed by row nhumber and field name. It has these additional methods:
nrows() which returns the number of rows returned by the query, stathis which is the
SPI_exec return variable. The result object can be modified.

For example,
rv = plpy.execute("SELECT * FROM my_table", 5)
returns up to 5 rows frommy_table . If my_table has a colummny_field , it would be accessed as

foo = rv[i]['my_field"]

The second functioplpy.prepare is called with a query string and a list of argument types if you
have bind variables in the query. For example:

plan = plpy.prepare("SELECT last_name FROM my_users WHERE first_name = $1", ["text"])

text is the type of the variable you will be passing$ds After preparing a statement, you use the
functionplpy.execute torunit;

rv = plpy.execute(plan, ["name"], 5)

The limit argument is optional in the call tipy.execute

In the current version, any database error encountered while running a PL/Python function will result
in the immediate termination of that function by the server; it is not possible to trap error conditions

using Pythonry ... catch constructs. For example, a syntax error in an SQL statement passed
to theplpy.execute() call will terminate the function. This behavior may be changed in a future
release.

When you prepare a plan using the PL/Python module it is automatically saved. Read the SPI docu-
mentation Chapter 1Y for a description of what this means.

342

Chapter 22. PL/Python - Python Procedural Language

In order to make effective use of this across function calls one needs to use one of the persistent
storage dictionarieSDor GO seeSection 22.1For example:

CREATE FUNCTION usesavedplan () RETURNS TRIGGER AS '’
if SD.has_key("plan™):
plan = SD["plan"]
else:
plan = plpy.prepare("SELECT 1")
SD["plan"] = plan
rest of function
" LANGUAGE ’plpython’;

22.4. Restricted Environment

The current version of PL/Python functions as a trusted language only; access to the file system
and other local resources is disabled. Specifically, PL/Python uses the Python restricted execution
environment, further restricts it to prevent the use of theofiken call, and allows only modules from

a specific list to be imported. Presently, that list includesay , bisect , binascii , calendar

cmath , codecs , errno , marshal , math, md5 mpz, operator , pcre , pickle ,random,re ,regex ,

sre , sha, string , StringlO , struct , time , whrandom, andzlib

343

Bibliography

Selected references and readings for SQL and PostgreSQL.

Some white papers and technical reports from the original POSTGRES development team are avail-
able at the University of California, Berkeley, Computer Science Department wéb site

SQL Reference Books

Judith Bowman, Sandra Emerson, and Marcy DarnovERg,Practical SQL Handbook: Using Struc-
tured Query Languagérhird Edition, Addison-Wesley, ISBN 0-201-44787-8, 1996.

C. J. Date and Hugh DarweA,Guide to the SQL Standard: A user’s guide to the standard database
language SQLFourth Edition, Addison-Wesley, ISBN 0-201-96426-0, 1997.

C. J. DateAn Introduction to Database Systeriwslume 1, Sixth Edition, Addison-Wesley, 1994.

Ramez Elmasri and Shamkant NavatRandamentals of Database Syste®sl Edition, Addison-
Wesley, ISBN 0-805-31755-4, August 1999.

Jim Melton and Alan R. Simon)nderstanding the New SQL: A complete guidergan Kaufmann,
ISBN 1-55860-245-3, 1993.

Jeffrey D. Ullman Principles of Database and Knowledge: Base Syst&@isime 1, Computer Sci-
ence Press, 1988.

PostgreSQL-Specific Documentation

Stefan SimkovicsEnhancement of the ANSI SQL Implementation of Postgre®@partment of
Information Systems, Vienna University of Technology, November 29, 1998.

Discusses SQL history and syntax, and describes the additibNTBRSECTandEXCEPTcon-
structs into PostgreSQL. Prepared as a Master’s Thesis with the support of O. Univ. Prof. Dr.
Georg Gottlob and Univ. Ass. Mag. Katrin Seyr at Vienna University of Technology.

A. Yu and J. Chen, The POSTGRES Grolipe Postgres95 User Manydlniversity of California,
Sept. 5, 1995.

Zelaine Fong,The design and implementation of the POSTGRES query optfmizeiversity of
California, Berkeley, Computer Science Department.

1. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/
2. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/UCB-MS-zfong.pdf

344

Bibliography

Proceedings and Articles

Nels Olson Partial indexing in POSTGRES: research projedniversity of California, UCB Engin
T7.49.1993 0676, 1993.

L. Ong and J. Goh, “A Unified Framework for Version Modeling Using Production Rules in a
Database SystemERL Technical Memorandum M90/33niversity of California, April, 1990.

L. Rowe and M. Stonebraker, “The POSTGRES data nitdetoc. VLDB Conference, Sept. 1987.

P. Seshadri and A. Swami, “Generalized Partial Inde%eBroc. Eleventh International Conference
on Data Engineering, 6-10 March 1995, IEEE Computer Society Press, Cat. N0.95CH35724,
1995, p. 420-7.

M. Stonebraker and L. Rowe, “The design of POSTGREBroc. ACM-SIGMOD Conference on
Management of Data, May 1986.

M. Stonebraker, E. Hanson, and C. H. Hong, “The design of the POSTGRES rules system”, Proc.
IEEE Conference on Data Engineering, Feb. 1987.

M. Stonebraker, “The design of the POSTGRES storage syst@moc. VLDB Conference, Sept.
1987.

M. Stonebraker, M. Hearst, and S. Potamianos, “A commentary on the POSTGRES ruleg"system
SIGMOD Record 18(3)Sept. 1989.

M. Stonebraker, “The case for partial indeXe$SIGMOD Record 18(4)Dec. 1989, p. 4-11.

M. Stonebraker, L. A. Rowe, and M. Hirohama, “The implementation of POSTEREGnsactions
on Knowledge and Data Engineering 2(1BEE, March 1990.

M. Stonebraker, A. Jhingran, J. Goh, and S. Potamianos, “On Rules, Procedures, Caching and Views
in Database Systeri¥s Proc. ACM-SIGMOD Conference on Management of Data, June 1990.

"@@N@S”PF*’

http://s2k-ftp.CS.Berkeley. EDU:8000/postgres/papers/ERL-M87-13.pdf
http://simon.cs.cornell.edu/home/praveen/papers/partindex.de95.ps.Z

http://s2k-ftp.CS.Berkeley. EDU:8000/postgres/papers/ERL-M85-95. pdf
http://s2k-ftp.CS.Berkeley. EDU:8000/postgres/papers/ERL-M87-06.pdf
http://s2k-ftp.CS.Berkeley. EDU:8000/postgres/papers/ERL-M89-82.pdf
http://s2k-ftp.CS.Berkeley. EDU:8000/postgres/papers/ERL-M89-17.pdf
http://s2k-ftp.CS.Berkeley. EDU:8000/postgres/papers/ERL-M90-34.pdf
0. http://s2k-ftp.CS.Berkeley. EDU:8000/postgres/papers/ERL-M90-36.pdf

345

Index

Symbols

$libdir, ?

aggregate, ?
aggregate functions, ?

extending 206
alias

(See label)

for table name in query, ?
all, ?
and

operator, ?
any, ?,?
anyarray, ?
arrays, ?, ?

constants, ?
Australian time zones, ?
auto-increment

(See serial)
autocommit, ?
average, ?

function, ?

B-tree
(See indexes)
backup, ?
between, ?
bigint, ?
bigserial, ?
binary strings
concatenation, ?
length, ?
bison, ?
bit strings
constants, ?
data type, ?
BLOB
(See large object)
Boolean
data type, ?
operators

(See operators, logical)

box (data type), ?
BSD/OS, ?, ?

case, ?
case sensitivity
SQL commands, ?
catalogs,165
character set encoding, ?
character strings
concatenation, ?
constants, ?
data types, ?
length, ?
cid, ?
cidr, ?
circle, ?
client authentication, ?
cluster, ?
column, ?
columns
system columns, ?
col_description, ?
comments
in SQL, ?
comparison
operators, ?
concurrency, ?
conditionals, ?
configuration
server, ?
configure, ?
connection loss2
constants, ?
COPY, ?
with libpg, 16
count, ?
CREATE TABLE, ?
createdb, ?
crypt, ?
cstring, ?

currval, ?

346

data area
(See database cluster)
data types, 2165
constants, ?
extending, 198
numeric, ?
type casts, ?
database, ?
creating, ?
database cluster, ?
date
constants, ?
current, ?
data type, ?
output format, ?
(See Also Formatting)
date style, ?
deadlock
timeout, ?
decimal
(See numeric)
DELETE, ?
Digital UNIX
(See Tru64 UNIX) G
dirty read, ?
disk space, ?
disk usage, ?
DISTINCT, 2, ?
double precision, ?
DROP TABLE, ?
duplicate, ?
dynamic loading, ?
dynamic_library_path, ?, ?

elog, ?
PL/Perl, ?
embedded SQL
inC, 63
environment variabled,9
error message, ?
escaping binary string$,
escaping strings
except, ?
exists, ?
extending SQL165
types,165

Index

false, ?
FETCH

embedded SQL, ?
files, 20
flex, ?
float4

(See real)
float8

(See double precision)
floating point, ?
foreign key, ?
formatting, ?
FreeBSD, ?,?,?
fsync, ?
function, 169, 195

internal, 175

SQL, 169
functions, ?

genetic query optimization, ?
GEQO

(See genetic query optimization)
get_bit, ?
get_byte, ?
group, ?
GROUP BY, ?

hash

(See indexes)
has_database_privilege, ?
has_function_privilege, ?
has_language_privilege, ?
has_schema_privilege, ?
has_table_privilege, ?
HAVING, ?
hierarchical database, ?
HP-UX, ?, ?

347

ident, ?
identifiers, ?
in, ?
index scan, ?
indexes, ?
B-tree, ?
hash, ?
multicolumn, ?
on functions, ?
partial, ?
R-tree, ?
unique, ?
inet (data type), ?
inheritance, ?, ?
initlocation, ?
input function, ?
INSERT, ?
installation, ?
on Windows, ?, ?
int2
(See smallint)
int4
(See integer)
int8
(See bigint)
integer, ?
internal, ?
intersection, ?
interval, ?
IRIX, ?
IS NULL, ?
isolation levels, ?
read committed, ?
read serializable, ?

join, ?
outer, ?
self, ?

joins, ?
cross, ?
left, ?
natural, ?
outer, ?

Index

Kerberos, ?

key words
list of, ?
syntax, ?

label
column, ?
table, ?
language_handler, ?
large object31
LC_COLLATE, ?
Idconfig, ?
length
binary strings
(See binary strings, length)
character strings
(See character strings, length)
libperl, ?
libpgtcl, 39
libpg, 1
libpg-fe.h, ?
libpg-int.h, ?, ?
libpython, ?
like, ?
limit, ?
line, ?
Linux, ?,?, ?
locale, ?, ?
locking, ?
log files, ?

MAC address

(See macaddr)
macaddr (data type), ?
MacOS X, ?, ?
make, ?
MANPATH, ?

(See Also man pages)
max, ?
MDS5, ?
min, ?
multibyte, ?

348

names
qualified, ?
unqualified, ?
namespaces, ?, ?
NetBSD, ?,?, ?
network
addresses, ?
nextval, ?
nonblocking connection, 22
nonrepeatable read, ?
not
operator, ?
notin, ?
notice processor, ?
NOTIFY, 15,51
nullif, ?
numeric
constants, ?
numeric (data type), ?

object identifier
data type, ?
object-oriented database, ?
obj_description, ?
offset
with query results, ?
oID, ?,?
opaque, ?
OpenBSD, ?,?,?
OpenSSL, ?
(See Also SSL)
operators, ?
logical, ?
precedence, ?
syntax, ?
or
operator, ?
Oracle, 7318
ORDER BY, ?,?
output function, ?
overlay, ?
overloading194

Index

password, ?

.pgpass, ?
PATH, ?
path (data type), ?
Perl,337
PGDATA, ?
PGDATABASE, ?
PGHOST, ?
PGPASSWORD, ?
PGPORT, ?
pgtcl

closing,55

connecting40, 42, 43, 44, 45, 47

connection lossH2

creating,53

delete 60

export,62

import,61

notify, 51

opening 54

positioning,58, 59

query,49

reading 56

writing, 57
PGUSER, ?
pg_config, ?, ?
pg_conndefaults}3
pg_connect40, 42, 44, 45, 47
pg_ctl, ?
pg_dumpall, ?
pg_execute49
pg_function_is_visible, ?
pg_get_constraintdef, ?
pg_get_indexdef, ?
pg_get_ruledef, ?
pg_get_userbyid, ?
pg_get_viewdef, ?
pg_hba.conf, ?
pg_ident.conf, ?
pg_lo_close55
pg_lo_creat53
pg_lo_exports2
pg_lo_import61
pg_lo_lseek58
pg_lo_open54
pg_lo_read56
pg_lo_tell,59
pg_lo_unlink,60
pg_lo_write,57
pg_opclass_is_visible, ?

349

pg_operator_is_visible, ?
pg_table_is_visible, ?
pg_type_is_visible, ?
phantom read, ?
PIC, ?
PL/Perl,337
PL/pgSQL,294
PL/Python341
PL/SQL,318
PL/Tcl, 330
point, ?
polygon, ?
port, ?
postgres user, ?
postmaster, ?, ?
ps

to monitor activity, ?
psql, ?
Python,341

qualified names, ?
query, ?
quotes
and identifiers, ?
escaping, ?

R-tree
(See indexes)
range table, ?
readline, ?
real, ?
record, ?
referential integrity, ?
regclass, ?
regoper, ?
regoperator, ?
regproc, ?
regprocedure, ?
regression test, ?
regtype, ?
regular expressions, ?, ?
(See Also pattern matching)
reindex, ?
relation, ?
relational database, ?
row, ?

Index

rules,208
and views210

schema
current, ?
schemas, ?
current schema, ?
SCO OpenServer, ?
search path, ?
changing at runtime, ?
current, ?
search_path, ?
SELECT, ?
select list, ?
semaphores, ?
sequences, ?
and serial type, ?
sequential scan, ?
serial, ?
serial4, ?
serial8, ?
SETOF, ?
(See Also function)
setting
current, ?
set, ?
setval, ?
set_bit, ?
set_byte, ?
shared libraries, ?
shared memory, ?
SHMMAX, ?
SIGHUP, ?,?, ?
similar to, ?
sliced bread
(See TOAST)
smallint, ?
Solaris, ?,?,?
some, ?
sorting
query results, ?
SPI
allocating space281, 282 283 284, 285,
286
connecting248 254, 256, 264
copying tuple descriptor&77
copying tuples275, 278
cursors258 260, 261, 262 263

350

decoding tuples266, 268, 269, 270, 272,

273 274

disconnecting250

executing251

modifying tuples279
SPI_connect248
SPI_copytuple275
SPI_copytupledes®77
SPI_copytupleintoslo78
SPI_cursor_clos€63
SPI_cursor_fetc261
SPI_cursor_find260
SPI_cursor_move62
SPI_cursor_oper258
SPI_exec251
SPI_execp256
SPI_finish,250
SPI_fname268
SPI_fhnumber266
SPI_freeplan286
SPI_freetuple284
SPI_freetuptable285
SPI_getbinval270
SPI_getrelname74
SPI_gettype272
SPI_gettypeid273
SPI_getvalue269
spi_lastoid, ?
SPI_modifytuple279
SPI_palloc281
SPI_pfree283
SPI_prepare254
SPI_repalloc282
SPI_saveplarR64
ssh, ?
SSL, ?,?,7?
standard deviation, ?
statistics, ?
strings

(See character strings)
subqueries, ?, ?
subquery, ?
substring, ?, ?, ?
sum, ?
superuser, ?
syntax

SQL, ?

T

Index

table, ?
Tcl, 39, 330
TCP/IP, ?
text
(See character strings)
threads
with libpg, 20
tid, ?
time
constants, ?
current, ?
data type, ?
output format, ?
(See Also Formatting)
time with time zone
data type, ?
time without time zone
time, ?
time zone, ?
time zones, ?, ?
timeout
authentication, ?
deadlock, ?
timestamp
data type, ?
timestamp with time zone
data type, ?
timestamp without time zone
data type, ?
timezone
conversion, ?
TOAST, ?
and user-defined types, ?
transaction ID
wraparound, ?
transaction isolation level, ?
transactions, ?
trigger, ?
triggers
in PL/Tcl, ?
Tru64 UNIX, ?
true, ?
types
(See data types)

351

Index

union, ?
UnixWare, ?, ?
unqualified names, ?
UPDATE, ?
upgrading, ?, ?
user

current, ?

vacuum, ?

variance, ?

version, ?, ?

view, ?

views
updating,217

void, ?

where, ?

xid, ?

yacc, ?

352

	PostgreSQL 7.3.2 Programmer's Guide
	Table of Contents
	List of Tables
	List of Figures
	List of Examples
	Preface
	1. What is PostgreSQL?
	2. A Short History of PostgreSQL
	2.1. The Berkeley POSTGRES Project
	2.2. Postgres95
	2.3. PostgreSQL

	3. What's In This Book
	4. Overview of Documentation Resources
	5. Terminology and Notation
	6. Bug Reporting Guidelines
	6.1. Identifying Bugs
	6.2. What to report
	6.3. Where to report bugs

	I. Client Interfaces
	Chapter 1. libpq C Library
	1.1. Introduction
	1.2. Database Connection Functions
	1.3. Command Execution Functions
	1.3.1. Main Routines
	1.3.2. Escaping strings for inclusion in SQL queries
	1.3.3. Escaping binary strings for inclusion in SQL queries
	1.3.4. Retrieving SELECT Result Information
	1.3.5. Retrieving SELECT Result Values
	1.3.6. Retrieving NonSELECT Result Information

	1.4. Asynchronous Query Processing
	1.5. The FastPath Interface
	1.6. Asynchronous Notification
	1.7. Functions Associated with the COPY Command
	1.8. libpq Tracing Functions
	1.9. libpq Control Functions
	1.10. Environment Variables
	1.11. Files
	1.12. Threading Behavior
	1.13. Building Libpq Programs
	1.14. Example Programs

	Chapter 2. Large Objects
	2.1. Introduction
	2.2. Implementation Features
	2.3. Interfaces
	2.3.1. Creating a Large Object
	2.3.2. Importing a Large Object
	2.3.3. Exporting a Large Object
	2.3.4. Opening an Existing Large Object
	2.3.5. Writing Data to a Large Object
	2.3.6. Reading Data from a Large Object
	2.3.7. Seeking on a Large Object
	2.3.8. Closing a Large Object Descriptor
	2.3.9. Removing a Large Object

	2.4. Serverside Builtin Functions
	2.5. Accessing Large Objects from Libpq

	Chapter 3. pgtcl Tcl Binding Library
	3.1. Introduction
	3.2. Loading pgtcl into your application
	3.3. pgtcl Command Reference Information
	pgconnect
	Name
	Synopsis
	Inputs (new style)
	Inputs (old style)
	Outputs

	Description
	Usage

	pgdisconnect
	Name
	Synopsis
	Inputs
	Outputs

	Description

	pgconndefaults
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	pgexec
	Name
	Synopsis
	Inputs
	Outputs

	Description

	pgresult
	Name
	Synopsis
	Inputs
	Options

	Outputs

	Description

	pgselect
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	pgexecute
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	pglisten
	Name
	Synopsis
	Inputs
	Outputs

	Description

	pgonconnectionloss
	Name
	Synopsis
	Inputs
	Outputs

	Description

	pglocreat
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	pgloopen
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	pgloclose
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	pgloread
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	pglowrite
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	pglolseek
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	pglotell
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	pglounlink
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	pgloimport
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	pgloexport
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	Chapter 4. ECPG Embedded SQL in C
	4.1. The Concept
	4.2. Connecting to the Database Server
	4.3. Closing a Connection
	4.4. Running SQL Commands
	4.5. Passing Data
	4.6. Error Handling
	4.7. Including Files
	4.8. Processing Embedded SQL Programs
	4.9. Library Functions
	4.10. Porting From Other RDBMS Packages
	4.11. For the Developer
	4.11.1. The Preprocessor
	4.11.2. The Library

	Chapter 5. JDBC Interface
	5.1. Setting up the JDBC Driver
	5.1.1. Getting the Driver
	5.1.2. Setting up the Class Path
	5.1.3. Preparing the Database for JDBC

	5.2. Using the Driver
	5.2.1. Importing JDBC
	5.2.2. Loading the Driver
	5.2.3. Connecting to the Database
	5.2.4. Closing the Connection

	5.3. Issuing a Query and Processing the Result
	5.3.1. Using the Statement or PreparedStatement Interface
	5.3.2. Using the ResultSet Interface

	5.4. Performing Updates
	5.5. Creating and Modifying Database Objects
	5.6. Storing Binary Data
	5.7. PostgreSQL Extensions to the JDBC API
	5.7.1. Accessing the Extensions
	5.7.1.1. Class org.postgresql.PGConnection
	5.7.1.1.1. Methods

	5.7.1.2. Class org.postgresql.Fastpath
	5.7.1.2.1. Methods

	5.7.1.3. Class org.postgresql.fastpath.FastpathArg
	5.7.1.3.1. Constructors

	5.7.2. Geometric Data Types
	5.7.3. Large Objects
	5.7.3.1. Class org.postgresql.largeobject.LargeObject
	5.7.3.1.1. Variables
	5.7.3.1.2. Methods

	5.7.3.2. Class org.postgresql.largeobject.LargeObjectManager
	5.7.3.2.1. Variables
	5.7.3.2.2. Methods

	5.8. Using the driver in a multithreaded or a servlet environment
	5.9. Connection Pools And DataSources
	5.9.1. JDBC, JDK Version Support
	5.9.2. JDBC Connection Pooling API
	5.9.3. Application Servers: ConnectionPoolDataSource
	5.9.4. Applications: DataSource
	5.9.5. DataSources and JNDI
	5.9.6. Specific Application Server Configurations

	5.10. Further Reading

	Chapter 6. PyGreSQL Python Interface
	6.1. The pg Module
	6.1.1. Constants

	6.2. pg Module Functions
	connect
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description
	Examples

	getdefhost
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	setdefhost
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	getdefport
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	setdefport
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	getdefopt
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	setdefopt
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	getdeftty
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	setdeftty
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	getdefbase
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	setdefbase
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	6.3. Connection Object: pgobject
	query
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	reset
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	close
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	fileno
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	getnotify
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	inserttable
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	putline
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	getline
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	endcopy
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	locreate
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	getlo
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	loimport
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	6.4. Database Wrapper Class: DB
	pkey
	Name
	Synopsis
	Parameters
	Return Type

	Description

	getdatabases
	Name
	Synopsis
	Parameters
	Return Type

	Description

	gettables
	Name
	Synopsis
	Parameters
	Return Type

	Description

	getattnames
	Name
	Synopsis
	Parameters
	Return Type

	Description

	get
	Name
	Synopsis
	Parameters
	Return Type

	Description

	insert
	Name
	Synopsis
	Parameters
	Return Type

	Description

	update
	Name
	Synopsis
	Parameters
	Return Type

	Description

	clear
	Name
	Synopsis
	Parameters
	Return Type

	Description

	delete
	Name
	Synopsis
	Parameters
	Return Type

	Description

	6.5. Query Result Object: pgqueryobject
	getresult
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	dictresult
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	listfields
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	fieldname
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	fieldnum
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	ntuples
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	6.6. Large Object: pglarge
	open
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	close
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	read
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	write
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	seek
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	tell
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	unlink
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	size
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	export
	Name
	Synopsis
	Parameters
	Return Type
	Exceptions

	Description

	II. Server Programming
	Chapter 7. Architecture
	7.1. PostgreSQL Architectural Concepts

	Chapter 8. Extending SQL: An Overview
	8.1. How Extensibility Works
	8.2. The PostgreSQL Type System
	8.3. About the PostgreSQL System Catalogs

	Chapter 9. Extending SQL: Functions
	9.1. Introduction
	9.2. Query Language (SQL) Functions
	9.2.1. Examples
	9.2.2. SQL Functions on Base Types
	9.2.3. SQL Functions on Composite Types
	9.2.4. SQL Table Functions
	9.2.5. SQL Functions Returning Sets

	9.3. Procedural Language Functions
	9.4. Internal Functions
	9.5. C Language Functions
	9.5.1. Dynamic Loading
	9.5.2. Base Types in CLanguage Functions
	9.5.3. Version0 Calling Conventions for CLanguage Functions
	9.5.4. Version1 Calling Conventions for CLanguage Functions
	9.5.5. Composite Types in CLanguage Functions
	9.5.6. Table Function API
	9.5.6.1. Returning Rows (Composite Types)
	9.5.6.2. Returning Sets

	9.5.7. Writing Code
	9.5.8. Compiling and Linking DynamicallyLoaded Functions

	9.6. Function Overloading
	9.7. Table Functions
	9.8. Procedural Language Handlers

	Chapter 10. Extending SQL: Types
	Chapter 11. Extending SQL: Operators
	11.1. Introduction
	11.2. Example
	11.3. Operator Optimization Information
	11.3.1. COMMUTATOR
	11.3.2. NEGATOR
	11.3.3. RESTRICT
	11.3.4. JOIN
	11.3.5. HASHES
	11.3.6. MERGES (SORT1, SORT2, LTCMP, GTCMP)

	Chapter 12. Extending SQL: Aggregates
	Chapter 13. The Rule System
	13.1. Introduction
	13.2. What is a Query Tree?
	13.2.1. The Parts of a Query tree

	13.3. Views and the Rule System
	13.3.1. Implementation of Views in PostgreSQL
	13.3.2. How SELECT Rules Work
	13.3.3. View Rules in NonSELECT Statements
	13.3.4. The Power of Views in PostgreSQL
	13.3.4.1. Benefits

	13.3.5. What about updating a view?

	13.4. Rules on INSERT, UPDATE and DELETE
	13.4.1. Differences from View Rules
	13.4.2. How These Rules Work
	13.4.2.1. A First Rule Step by Step

	13.4.3. Cooperation with Views

	13.5. Rules and Permissions
	13.6. Rules and Command Status
	13.7. Rules versus Triggers

	Chapter 14. Interfacing Extensions To Indexes
	14.1. Introduction
	14.2. Access Methods and Operator Classes
	14.3. Access Method Strategies
	14.4. Access Method Support Routines
	14.5. Creating the Operators and Support Routines
	14.6. Creating the Operator Class
	14.7. Special Features of Operator Classes

	Chapter 15. Index Cost Estimation Functions
	Chapter 16. Triggers
	16.1. Trigger Definition
	16.2. Interaction with the Trigger Manager
	16.3. Visibility of Data Changes
	16.4. Examples

	Chapter 17. Server Programming Interface
	17.1. Interface Functions
	SPIconnect
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage
	Algorithm

	SPIfinish
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage
	Algorithm

	SPIexec
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage
	Structures

	SPIprepare
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	SPIexecp
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	SPIcursoropen
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	SPIcursorfind
	Name
	Synopsis
	Inputs
	Outputs

	Description

	SPIcursorfetch
	Name
	Synopsis
	Inputs
	Outputs

	Description

	SPIcursormove
	Name
	Synopsis
	Inputs
	Outputs

	Description

	SPIcursorclose
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	SPIsaveplan
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	17.2. Interface Support Functions
	SPIfnumber
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	SPIfname
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage
	Algorithm

	SPIgetvalue
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage
	Algorithm

	SPIgetbinval
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage
	Algorithm

	SPIgettype
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage
	Algorithm

	SPIgettypeid
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	SPIgetrelname
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Algorithm

	17.3. Memory Management
	SPIcopytuple
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	SPIcopytupledesc
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	SPIcopytupleintoslot
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	SPImodifytuple
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	SPIpalloc
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	SPIrepalloc
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	SPIpfree
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	SPIfreetuple
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	SPIfreetuptable
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage

	SPIfreeplan
	Name
	Synopsis
	Inputs
	Outputs

	Description

	17.4. Visibility of Data Changes
	17.5. Examples

	III. Procedural Languages
	Chapter 18. Procedural Languages
	18.1. Introduction
	18.2. Installing Procedural Languages

	Chapter 19. PL/pgSQL SQL Procedural Language
	19.1. Overview
	19.1.1. Advantages of Using PL/pgSQL
	19.1.1.1. Better Performance
	19.1.1.2. SQL Support
	19.1.1.3. Portability

	19.1.2. Developing in PL/pgSQL

	19.2. Structure of PL/pgSQL
	19.2.1. Lexical Details

	19.3. Declarations
	19.3.1. Aliases for Function Parameters
	19.3.2. Row Types
	19.3.3. Records
	19.3.4. Attributes
	19.3.5. RENAME

	19.4. Expressions
	19.5. Basic Statements
	19.5.1. Assignment
	19.5.2. SELECT INTO
	19.5.3. Executing an expression or query with no result
	19.5.4. Executing dynamic queries
	19.5.5. Obtaining result status

	19.6. Control Structures
	19.6.1. Returning from a function
	19.6.2. Conditionals
	19.6.2.1. IFTHEN
	19.6.2.2. IFTHENELSE
	19.6.2.3. IFTHENELSE IF
	19.6.2.4. IFTHENELSIFELSE

	19.6.3. Simple Loops
	19.6.3.1. LOOP
	19.6.3.2. EXIT
	19.6.3.3. WHILE
	19.6.3.4. FOR (integer forloop)

	19.6.4. Looping Through Query Results

	19.7. Cursors
	19.7.1. Declaring Cursor Variables
	19.7.2. Opening Cursors
	19.7.2.1. OPEN FOR SELECT
	19.7.2.2. OPEN FOR EXECUTE
	19.7.2.3. Opening a bound cursor

	19.7.3. Using Cursors
	19.7.3.1. FETCH
	19.7.3.2. CLOSE
	19.7.3.3. Returning Cursors

	19.8. Errors and Messages
	19.8.1. Exceptions

	19.9. Trigger Procedures
	19.10. Examples
	19.11. Porting from Oracle PL/SQL
	19.11.1. Main Differences
	19.11.1.1. Quote Me on That: Escaping Single Quotes

	19.11.2. Porting Functions
	19.11.3. Procedures
	19.11.4. Packages
	19.11.5. Other Things to Watch For
	19.11.5.1. EXECUTE
	19.11.5.2. Optimizing PL/pgSQL Functions

	19.11.6. Appendix
	19.11.6.1. Code for my instr functions

	Chapter 20. PL/Tcl Tcl Procedural Language
	20.1. Overview
	20.2. Description
	20.2.1. PL/Tcl Functions and Arguments
	20.2.2. Data Values in PL/Tcl
	20.2.3. Global Data in PL/Tcl
	20.2.4. Database Access from PL/Tcl
	20.2.5. Trigger Procedures in PL/Tcl
	20.2.6. Modules and the unknown command
	20.2.7. Tcl Procedure Names

	Chapter 21. PL/Perl Perl Procedural Language
	21.1. PL/Perl Functions and Arguments
	21.2. Data Values in PL/Perl
	21.3. Database Access from PL/Perl
	21.4. Trusted and Untrusted PL/Perl
	21.5. Missing Features

	Chapter 22. PL/Python Python Procedural Language
	22.1. PL/Python Functions
	22.2. Trigger Functions
	22.3. Database Access
	22.4. Restricted Environment

	Bibliography
	SQL Reference Books
	PostgreSQLSpecific Documentation
	Proceedings and Articles

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

