PostgreSQL 7.3.2 Reference Manual

The PostgreSQL Global Development Group



PostgreSQL 7.3.2 Reference Manual
by The PostgreSQL Global Development Group
Copyright © 1996-2002 by The PostgreSQL Global Development Group

Legal Notice

PostgreSQL is Copyright © 1996-2002 by the PostgreSQL Global Development Group and is distributed under the terms of the license of the
University of California below.

Postgres95 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written
agreement is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in all
copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE

AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PRO-
VIDED HEREUNDER IS ON AN “AS-IS” BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.



Table of Contents

Lad =] 7= (oL TSRO i
|. SQL COMMANGS........eiitiitiiieiteceeete et eete st estesbe et eeteseesbesaeebesbessaebesbeensesaeessesbesseenbesbesseessesreesessens 1
N = 1 ] 1
ALTER DATABASE ...ttt ettt e e e st e et e e et e e s be e e ebee e easeeesabeeeanteseneeas 1
ALTER GROUPL. ...ttt ettt e et e e st e e et e e e eaae e e beeeeebeeesseeesnbeeeentesenneeas 1
ALTER TABLE ...ttt ettt e e e e st e e e e e st b e e e e e santeeeeeesnnbeeeeesnraneeas 1
ALTER TRIGGER ...ttt ettt ettt et e s e e eate e e ette e e be e e e bae e sneeesnbeeeeateseneeas 1
ALTER USER. ...ttt ettt et e st e e et e e e eate e s beeeebeeesnneeesabeeeentesenneas 1
ANALY ZE ettt e et e e et e e e e e st e e e e e e e —eeeeeaa——eeaeeanraeeeaeanraeeaeaanrreeann 1
BEGIN ..ottt ettt ettt e e et e e e et e e e ebe e e e bae e e are e e beeaabeseereeeaneeeanreeaanes 1
CHECKPOINT ...ttt sttt ettt bt e st et et ebe et e bestebensesseseeaeebesbesbeneeneeseeseseearensan 1
CLOSE ... ettt ettt ettt et e st et et e bt ebe e besae b et e st e st eaeebeebesbe e eneereetesaearentan 1
CLUSTER ..ottt ettt ettt st et e e et e st et e s et e e et esesteseseeteseebeseeteseebensetensaseaeas 1
COMMENT <ttt ettt ettt ettt st ete st ebe st ebese et e st ebe s ebeseebesestebessebestebestebessebansetensssaneas 1
COMMIT ettt ettt et e et ettt e s st ete st ebe st ebeseebe st ebansebeseebesestebeseebeseebeseebaseebansetenesseseas 1
COPY ettt ettt ettt ettt ettt be et et e et et et et et e At et ese et ete st ete st ebe st ebe s ebenseteneeteneas 1
CREATE AGGREGATE ..ottt ettt ettt ettt sttt se et st sbene et reenenns 1
CREATE CAST ...ttt ettt st st ettt et ae st eae st be st ebese et e s ebe e ebenesbensstesessetens 1
CREATE CONSTRAINT TRIGGER. ..ottt ettt 1
CREATE CONVERSION.....coioictiicteectee ettt sttt st st se et se et se et sbenssnesesnnns 1
CREATE DATABASE ..ottt sttt sttt st st se et e et e st s be s st be e tns 1
CREATE DOMAIN ...ttt ettt st sttt ettt bbb seebese et e e ebe e st enesbenesnereseenans 1
CREATE FUNCTION. ... .ottt ettt st sttt st se st st b saebe s ebe s be s sbenssnenesnenens 1
CREATE GROUPL......coi ettt ettt sttt sttt st b se et e et s et e ne st enestebesnetns 1
CREATE INDEX ...ttt iietiitete ittt sttt st sa et et ae st s s b be st ebeseebe e ebe e sbenesbenesnesensenens 1
CREATE LANGUAGE ..ottt sttt st st st se et se et et sbene s ne b nenns 1
CREATE OPERATOR.......o ittt sttt sttt st st st et se et et ne b s s nebe et 1
CREATE OPERATOR CLASS ... .ottt st sttt s n s 1
CREATE RULE ...ttt sttt se st st ae st se et se et e et e st ne st nesnene e nens 1
CREATE SCHEMA ...ttt e eee e et e e et e e st e e et e s eenseeeeseeeeastessessessnseeeensenenns 1
CREATE SEQUENCE........oi ettt ste et e st e ste e ae e saa e sate e reesaeesnteeteenneesnneenes 1
CREATE TABLE ...ttt ettt ettt e et e e e s tee e et e s eessesesaseeessbeesseessbeeaerenens 1
CREATE TABLE AS.... oottt ettt ettt eetee e st e e et eeeteeesaaeeeasteesesseesasenaeteneans 1
CREATE TRIGGER.... ..ottt ettt e e e e tee e et e et e e eaaeeeesteeeessessbeeaaseneans 1
CREATE TYPE. ..ottt ettt ettt e et e e e e st e e et e e e e ateeesaseeeasbeesseeesbeeaebenens 1
CREATE USER ...ttt ettt ettt et b e e et e e st e e et e e e e ate e e saseeeesbeesneeesbeeaebenanns 1
CREATE VIEW ...ttt ettt ettt ettt e et e s e e et e e e e ate e e easeeeesbeeeseeesbenaebenans 1
DEALLOCATE ...ttt et e et e e et e e et e e et e e e eateeesabeeeeateseseeeeteeeeseeesnnes 1
DECLARE ...ttt ettt sttt e e ae e be et e be st e st eaeebesbesbe b e st eneeneereabeebesaennens 1
DELETE ...ttt ettt ae et ae et e se et ebe et e se s ebe s et aneebensebensebeseeteseeteseasesennetens 1
DROP AGGREGATE ...ttt ettt s et e et e e et e s ebesssteseetesseseseanesens 1
DROP CAST ettt ettt ae st be st et et b e s ebe s et eneebensebensebesesbeseabesesesessens 1
DROP CONVERSION.... .ottt ettt st st nesbene s seseetns 1
DROP DATABASE ...ttt ettt ettt st s et e et e et ensebesesbesestenesseseseetens 1
DROP DOMAIUN......octiiieti ettt ettt et ae e ae et esesseseesese s ese s ebenssbensebessebesssbesessesesesensesens 1
DROP FUNCTION......cotiictiieteie ettt sttt sttt bt s et esbe e e beseebesesbesesbenessebesesans 1
DROP GROUR.......octiictecteete ettt sttt bbbt et ne et ens et ese st esestenessebe e tens 1
DROP INDEX.... .ottt sttt st be st s be s b e s e bansebensebensebesesbesestesesesenssans 1
DROP LANGUAGE. ..ottt sttt e bbb bbb ne s be e bns 1



DROP OPERATOR......citititeieietetee sttt r e s sr e r s et enenrennenren 1

DROP OPERATOR CLASS. ...ttt ettt et aa e st et saa e snaesnbe e nneennnesnnas 1
[0 T L | RS 1
(D] LS O o | SR 1
DROP SEQUENCE .......ccociiititiisiet ettt st se e se st sae e st se et et et nesaese st sesnesesansanees 1
DROP TABLE ..ottt sttt st st sttt sttt be e st se st sesnese e nte e ee 1
DROP TRIGGER.......cc ottt st st st sae e sn s et e ee 1
DROP TYPE ...ttt sttt st sttt et e bt sesaesesa et e st e teseebe e s benesbesesaesesaesenensenees 1
DROP USER.......ctiitietirietesis ettt sttt sa st se st sa et se et st teseebe e sbesesbesesaesesaesenensenees 1
DIROP VIEW.....cicitieete ettt st sttt sttt et sa et sttt be et s be s saesesaesenentenees 1
N 2SS 1
) O 1 8 I SRS S P 1
) A 1SS 1
e 1O SRS 1
GRANT <.ttt ettt ettt b e stk ese b et e b et e b e Rt e b e Rt e e e b e s e ek e et ke st et et be e benentene s 1
1N S 1 OSSP 1
S I 1 OSSR 1
I AN I SR 1
0 10 OSSR 1
Y 1@ 1 OSSR 1
INOTIFY ettt £ttt b et bbb et et ke ne s b e st b e ne st ese e e be e ebns 1
PREPARE ...ttt ekt e et e b 1
REINDEX ...ttt etttk ettt st bt b e e b 1
L I 1
L YL ] S 1
[ (@ I I 7Y 1
] I S 1
] = I O I 1\ 1 S 1
] SRS 1
SET CONSTRAINTS. ..ttt et e s e st e s re e s ae e sate e teesaeesabeeteenneesneeenes 1
SET SESSION AUTHORIZATION......coiiiect ettt sttt et e s et enneesnae s 1
SET TRANSACTION. ...ttt ettt ste e s ae et e s e sabe s te e saaesate e seesaeesnseeseenseesneeanes 1
SHOW ..ottt sttt sttt sttt e st b et b e st s be st st e Re e e e R e se b et E et et et bene e be st se et 1
START TRANSACTION. ... .ottt sttt sttt st sae e seete st be e te e be e stesessesessesens 1
TRUNG ATE . ......cctiieteistett et ste sttt sttt te st s e sae s saeteseebese et e e ebeseebesessesesaesessebeseetesenteneatanensas 1
UNLISTEN .ottt et b et et e st st esesbesentese st nsenensens 1
UPDATE ...ttt ettt ettt et ettt st s et e s e e s e e s e e b e ne b e st et e st e bese st e se st ese et esenentens 1
R 1 1 TSRS 1
[I. POStgreSQL Client APPIICALIONS........coi ittt bbb e 4
(o 101 =] o | o PSRV 5
Lol C=T= 1 (=T o | o ST USROS 8
(o (== 1= =T o T S 11
(o1 Tz LU LS =T TSP PPPR 14
L0 10T 0o | o 1SR 17
Lo 10T 0] =TT SR 20
L0 10T 01U 1Y SRS 22
1= o oo S 25
T [ o0 oo 5SS 27
T 0 [ 1] S 29
oL TR0 (814 0T o = 1 OSSR 36
0 T0 T (=TT (0 < PP 39



POLCISIL. o bbbt b bbbt et n e 68
POEKSIL. e bbb bbbt 69
A= (o 011 4o | o RSSO 70
[1I. PostgreSQL Server APPIICALIONS ........coi ittt s sea 73
5 T1o | o 0SS 74
111 ToToF=ViTo] o ISP UTRRUSTURTRRIN 77
10 oo 1= =V o TP 78
1o o1 1 O P PSSR 79
foTo I ele] g1 o] (o F= 1 = USSP PTRUSTURURORIN 83
L0 TR (S1ST=3 01 (oo S 84
{01010 {2 86
{01011 1= LS = PSPPSR 90



Preface

The entries in thiReference Manuaire meant to provide in reasonable length an authoritative,
complete, and formal summary about their respective subjects. More information about the use of
PostgreSQL, in narrative, tutorial, or example form, may be found in other parts of the PostgreSQL
documentation set. See the cross-references listed on each reference page.

TheReference Manuantries are also available as traditional “man” pages.



. SQL Commands

This part contains reference information for the SQL commands supported by PostgreSQL. By “SQL”
the language in general is meant; information about the standards conformance and compatibility of
each command can be found on the respective reference page.



ABORT

Name

ABORT — abort the current transaction

Synopsis

ABORT [ WORK | TRANSACTION ]

Inputs

None.

Outputs

ROLLBACK
Message returned if successful.
WARNING: ROLLBACK: no transaction in progress

If there is not any transaction currently in progress.

Description

ABORTrolls back the current transaction and causes all the updates made by the transaction to be
discarded. This command is identical in behavior to the SQL92 commantdBACKand is present
only for historical reasons.

Notes

UseCOMMITto successfully terminate a transaction.

Usage

To abort all changes:

ABORT WORK;



ABORT
Compatibility

SQL92
This command is a PostgreSQL extension present for historical rea®0nsBACKis the SQL92
equivalent command.



ALTER DATABASE

Name
ALTER DATABASE- change a database

Synopsis

ALTER DATABASEname SET variable {TO | =} { wvalue | DEFAULT }
ALTER DATABASEname RESET variable

Description

ALTER DATABASEHS used to change the session default of a run-time configuration variable for a
PostgreSQL database. Whenever a new session is subsequently started in that database, the specified
value becomes the session default value. The database-specific default overrides whatever setting is
present irpostgresgl.conf or has been received from the postmaster.

Only a superuser or the database owner can change the session defaults for a database.

Parameters

name
The name of the database whose session defaults are to be altered.

variable
value

Set the session default for this database of the specified configuration variable to the given value.
If value is DEFAULTor, equivalentlyRESETIs used, the database-specific variable setting is
removed and the system-wide default setting will be inherited in new sessionBE3&F ALL

to clear all settings.

SeeSETand theAdministrator’s Guiddor more information about allowed variable names and
values.

Diagnostics

ALTER DATABASE
Message returned if the alteration was successful.
ERROR: database "dbname" does not exist

Error message returned if the specified database is not known to the system.



ALTER DATABASE

Notes

Using ALTER USERIit is also possible to tie a session default to a specific user rather than a database.
User-specific settings override database-specific ones if there is a conflict.

Examples
To disable index scans by default in the datahese :

ALTER DATABASE test SET enable_indexscan TO off;

Compatibility

The ALTER DATABASEtatementis a PostgreSQL extension.

See Also
ALTER USERCREATE DATABASHROP DATABASESET



ALTER GROUP

Name

ALTER GROUP— add users to a group or remove users from a group

Synopsis

ALTER GROURame ADD USERusername [, ... ]
ALTER GROURame DROP USERisername [, ... ]

Inputs

name
The name of the group to modify.
username

Users which are to be added or removed from the group. The user names must exist.

Outputs

ALTER GROUP

Message returned if the alteration was successful.

Description

ALTER GROUIS used to add or remove users from a group. Only database superusers can use this
command. Adding a user to a group does not create the user. Similarly, removing a user from a group
does not drop the user itself.

UseCREATE GROURo create a new group af@ROP GROURO remove a group.

Usage
Add users to a group:

ALTER GROUP staff ADD USER Kkarl, john;

Remove a user from a group:

ALTER GROUP workers DROP USER beth;



ALTER GROUP

Compatibility

SQL92
There is NnCALTER GROUBtatement in SQL92. The concept of roles is similar.



ALTER TABLE

Name
ALTER TABLE — change the definition of a table

Synopsis

ALTER TABLE [ ONLY ] table [ * ]

ADD [ COLUMN ]column type [ column_constraint [ .11
ALTER TABLE [ ONLY ] table [ * ]

DROP [ COLUMN Jcolumn [ RESTRICT | CASCADE ]
ALTER TABLE [ ONLY ] table [ *]

ALTER [ COLUMN ]column { SET DEFAULT value | DROP DEFAULT }
ALTER TABLE [ ONLY ] table [ * ]

ALTER [ COLUMN ]Jcolumn { SET | DROP } NOT NULL
ALTER TABLE [ ONLY ] table [ *]

ALTER [ COLUMN ]column SET STATISTICS integer
ALTER TABLE [ ONLY ] table [ *]

ALTER [ COLUMN ]column SET STORAGE { PLAIN | EXTERNAL | EXTENDED | MAIN }
ALTER TABLE [ ONLY ] table [ * ]

RENAME [ COLUMN Folumn TO new_column
ALTER TABLE table

RENAME Tnhew_table
ALTER TABLE [ ONLY ] table [ * ]

ADD table_constraint
ALTER TABLE [ ONLY ] table [ * ]

DROP CONSTRAINTonstraint_name [ RESTRICT | CASCADE ]
ALTER TABLE table

OWNER T®ew_owner

Inputs

table

The name (possibly schema-qualified) of an existing table to altenLivis specified, only that

table is altered. IDNLYis not specified, the table and all its descendant tables (if any) are updated.

* can be appended to the table name to indicate that descendant tables are to be scanned, but in
the current version, this is the default behavior. (In releases befor®©RLlYwas the default
behavior.) The default can be altered by changingsifQe INHERITANCEconfiguration option.

column

Name of a new or existing column.
type

Type of the new column.
new_column

New name for an existing column.
new_table

New name for the table.



ALTER TABLE

table_constraint

New table constraint for the table.
constraint_name

Name of an existing constraint to drop.
new_owner

The user name of the new owner of the table.
CASCADE

Automatically drop objects that depend on the dropped column or constraint (for example, views
referencing the column).

RESTRICT

Refuse to drop the column or constraint if there are any dependent objects. This is the default
behavior.

Outputs

ALTER TABLE
Message returned from column or table renaming.
ERROR

Message returned if table or column is not available.

Description

ALTER TABLEchanges the definition of an existing table. There are several sub-forms:

ADD COLUMN
This form adds a new column to the table using the same synt@REATE TABLE
DROP COLUMN

This form drops a column from a table. Note that indexes and table constraints involving the
column will be automatically dropped as well. You will need to S88CADHf anything outside
the table depends on the column --- for example, foreign key references, views, etc.

SET/DROP DEFAULT

These forms set or remove the default value for a column. Note that defaults only apply to
subsequenNSERT commands; they do not cause rows already in the table to change. Defaults
may also be created for views, in which case they are insertedNSERT statements on the
view before the view's ON INSERT rule is applied.



ALTER TABLE

SET/DROP NOT NULL

These forms change whether a column is marked to allow NULL values or to reject NULL
values. You may onhlBET NOT NULlwhen the table contains no null values in the column.

SET STATISTICS

This form sets the per-column statistics-gathering target for subsegiitY ZEoperations.
The target can be set in the range 0 to 1000; alternatively, set it to -1 to revert to using the system
default statistics target.

SET STORAGE

This form sets the storage mode for a column. This controls whether this column is held inline
or in a supplementary table, and whether the data should be compressedruAtgtmust be

used for fixed-length values such &EGERand is inline, uncompressedAIN is for inline,
compressible dat&XTERNALS for external, uncompressed data &8@'ENDEDSs for external,
compressed dateXTENDEIDs the default for all data types that support it. The usEXofERNAL

will make substring operations on a TEXT column faster, at the penalty of increased storage
space.

RENAME

The RENAMEorms change the name of a table (or an index, sequence, or view) or the name of
an individual column in a table. There is no effect on the stored data.

ADD table_constraint
This form adds a new constraint to a table using the same syn@RBATE TABLE
DROP CONSTRAINT

This form drops constraints on a table. Currently, constraints on tables are not required to have
unique names, so there may be more than one constraint matching the specified name. All such
constraints will be dropped.

OWNER

This form changes the owner of the table, index, sequence or view to the specified user.

You must own the table to u. TER TABLE except forALTER TABLE OWNERhich may only be
executed by a superuser.

Notes
The keywordCOLUMNE noise and can be omitted.

In the current implementation @DD COLUMNIefault and NOT NULL clauses for the new column

are not supported. The new column always comes into being with all values NULL. You can use the
SET DEFAULTform of ALTER TABLEto set the default afterwards. (You may also want to update
the already existing rows to the new default value, usiRIPATE) If you want to mark the column
non-null, use thesET NOT NuULLform after you've entered non-null values for the column in all
rows.

TheDROP coLuMddmmand does not physically remove the column, but simply makes it invisible
to SQL operations. Subsequent inserts and updates of the table will store a NULL for the column.
Thus, dropping a column is quick but it will not immediately reduce the on-disk size of your table, as
the space occupied by the dropped column is not reclaimed. The space will be reclaimed over time
as existing rows are updated. To reclaim the space at once, do a duR@y Eof all rows and then
vacuum, as in:



ALTER TABLE

UPDATE table SET col = col;
VACUUM FULL table;

If a table has any descendant tables, it is not permitted to ADD or RENAME a column in the parent
table without doing the same to the descendants --- that is, ALTER TABLE ONLY will be rejected.
This ensures that the descendants always have columns matching the parent.

A recursive DROP COLUMN operation will remove a descendant table’s column only if the descen-
dant does not inherit that column from any other parents and never had an independent definition
of the column. A nonrecursive DROP COLUMN (i.e., ALTER TABLE ONLY ... DROP COLUMN)

never removes any descendant columns, but instead marks them as independently defined rather than
inherited.

Changing any part of the schema of a system catalog is not permitted.

Refer toCREATE TABLHor a further description of valid arguments. TRestgreSQL User’s Guide
has further information on inheritance.

Usage

To add a column of typearchar to a table:

ALTER TABLE distributors ADD COLUMN address VARCHAR(30);

To drop a column from a table:

ALTER TABLE distributors DROP COLUMN address RESTRICT,;

To rename an existing column:

ALTER TABLE distributors RENAME COLUMN address TO city;

To rename an existing table:

ALTER TABLE distributors RENAME TO suppliers;

To add a NOT NULL constraint to a column:

ALTER TABLE distributors ALTER COLUMN street SET NOT NULL;

To remove a NOT NULL constraint from a column:

ALTER TABLE distributors ALTER COLUMN street DROP NOT NULL;



ALTER TABLE

To add a check constraint to a table:

ALTER TABLE distributors ADD CONSTRAINT zipchk CHECK (char_length(zipcode) = 5);

To remove a check constraint from a table and all its children:

ALTER TABLE distributors DROP CONSTRAINT zipchk;

To add a foreign key constraint to a table:

ALTER TABLE distributors ADD CONSTRAINT disttk FOREIGN KEY (address) REF-
ERENCES addresses(address) MATCH FULL;

To add a (multicolumn) unique constraint to a table:

ALTER TABLE distributors ADD CONSTRAINT dist_id_zipcode_key UNIQUE (dist_id, zip-
code);

To add an automatically named primary key constraint to a table, noting that a table can only ever
have one primary key:

ALTER TABLE distributors ADD PRIMARY KEY (dist_id);

Compatibility

SQL92

The ADD COLUMform is compliant with the exception that it does not support defaults and NOT
NULL constraints, as explained above. TRETER COLUMform is in full compliance.

The clauses to rename tables, columns, indexes, and sequences are PostgreSQL extensions from
SQL92.



ALTER TRIGGER

Name
ALTER TRIGGER — change the definition of a trigger

Synopsis

ALTER TRIGGERtrigger ON table
RENAME Thewname

Inputs

trigger

The name of an existing trigger to alter.
table

The name of the table on which this trigger acts.
newname

New name for the existing trigger.

Outputs

ALTER TRIGGER
Message returned from trigger renaming.
ERROR

Message returned if trigger is not available, or new name is a duplicate of another existing trigger
on the table.

Description

ALTER TRIGGERchanges the definition of an existing trigger. TRENAMElause causes the name
of a trigger on the given table to change without otherwise changing the trigger definition.

You must own the table on which the trigger acts in order to change its properties.



ALTER TRIGGER

Notes

Refer toCREATE TRIGGERor a further description of valid arguments.

Usage

To rename an existing trigger:

ALTER TRIGGER emp_stamp ON emp RENAME TO emp_track_chgs;

Compatibility

SQL92

The clause to rename triggers is a PostgreSQL extension from SQL92.



ALTER USER

Name

ALTER USER- change a database user account

Synopsis
ALTER USERusername [ [ WITH ] option [ .. ] ]
where option can be:

[ ENCRYPTED | UNENCRYPTED | PASSWORPassword °
| CREATEDB | NOCREATEDB
| CREATEUSER | NOCREATEUSER
| VALID UNTIL ’ abstime '’

ALTER USERusername SET variable {TO | =} { value | DEFAULT }
ALTER USERusername RESET variable

Description

ALTER USERSs used to change the attributes of a PostgreSQL user account. Attributes not mentioned
in the command retain their previous settings.

The first variant of this command in the synopsis changes certain global user privileges and authenti-
cation settings. (See below for details.) Only a database superuser can change privileges and password
expiration with this command. Ordinary users can only change their own password.

The second and the third variant change a user’s session default for a specified configuration variable.
Whenever the user subsequently starts a new session, the specified value becomes the session default,
overriding whatever setting is presentpostgresqgl.conf or has been received from the postmas-

ter. Ordinary users can change their own session defaults. Superusers can change anyone’s session
defaults.

Parameters

username
The name of the user whose attributes are to be altered.
password
The new password to be used for this account.

ENCRYPTED
UNENCRYPTED

These key words control whether the password is stored encryptgdshadow . (SeeCREATE
USERfor more information about this choice.)



ALTER USER

CREATEDB
NOCREATEDB

These clauses define a user’s ability to create databas#REKTEDBs specified, the user being
defined will be allowed to create his own databases. USIQGREATEDR®iill deny a user the
ability to create databases.

CREATEUSER
NOCREATEUSER

These clauses determine whether a user will be permitted to create new users himself. This option
will also make the user a superuser who can override all access restrictions.

abstime
The date (and, optionally, the time) at which this user’s password is to expire.

variable
value

Set this user’s session default for the specified configuration variable to the given vahleelf

is DEFAULTor, equivalentlyRESETIs used, the user-specific variable setting is removed and the
user will inherit the system-wide default setting in new sessions.RESET ALLto clear all
settings.

SeeSETand theAdministrator’s Guiddor more information about allowed variable names and
values.

Diagnostics

ALTER USER
Message returned if the alteration was successful.
ERROR: ALTER USER: user "username" does not exist

Error message returned if the specified user is not known to the database.

Notes
UseCREATE USERb add new users, aridROP USERo remove a user.
ALTER USERcannot change a user’s group memberships.AISEER GROURo do that.

Using ALTER DATABASHt is also possible to tie a session default to a specific database rather than
a user.



ALTER USER
Examples
Change a user password:

ALTER USER davide WITH PASSWORD ’hu8jmn3’;

Change a user’s valid until date:

ALTER USER manuel VALID UNTIL 'Jan 31 2030’

Change a user’s valid until date, specifying that his authorization should expire at midday on 4th May
1998 using the time zone which is one hour ahead of UTC:

ALTER USER chris VALID UNTIL 'May 4 12:00:00 1998 +1’;

Give a user the ability to create other users and new databases:

ALTER USER miriam CREATEUSER CREATEDB;

Compatibility

The ALTER USERstatement is a PostgreSQL extension. The SQL standard leaves the definition of
users to the implementation.

See Also
CREATE USERDROP USERSET



ANALYZE

Name

ANALYZE — collect statistics about a database

Synopsis

ANALYZE [ VERBOSE ] [ table [ ( column [, ..]) 1]

Inputs

VERBOSE
Enables display of progress messages.
table

The name (possibly schema-qualified) of a specific table to analyze. Defaults to all tables in the
current database.

column

The name of a specific column to analyze. Defaults to all columns.

Outputs

ANALYZE

The command is complete.

Description

ANALYZEcollects statistics about the contents of PostgreSQL tables, and stores the results in the
system tablepg_statistic . Subsequently, the query planner uses the statistics to help determine
the most efficient execution plans for queries.

With no parameterANALYZEexamines every table in the current database. With a paramater,
LYZE examines only that table. It is further possible to give a list of column names, in which case only
the statistics for those columns are updated.



ANALYZE

Notes

It is a good idea to ruANALYZEperiodically, or just after making major changes in the contents of a
table. Accurate statistics will help the planner to choose the most appropriate query plan, and thereby
improve the speed of query processing. A common strategy is tdA@UUM andANALYZEonce a

day during a low-usage time of day.

Unlike VACUUM FULLANALYZErequires only a read lock on the target table, so it can run in parallel
with other activity on the table.

For large tablesANALYZEtakes a random sample of the table contents, rather than examining every
row. This allows even very large tables to be analyzed in a small amount of time. Note however that
the statistics are only approximate, and will change slightly each AiR¥_YZEis run, even if the

actual table contents did not change. This may result in small changes in the planner’s estimated costs
shown byEXPLAIN.

The collected statistics usually include a list of some of the most common values in each column and
a histogram showing the approximate data distribution in each column. One or both of these may be
omitted if ANALYZEdeems them uninteresting (for example, in a unique-key column, there are no
common values) or if the column data type does not support the appropriate operators. There is more
information about the statistics in tiser’s Guide

The extent of analysis can be controlled by adjustingitifeult_statistics_target parameter
variable, or on a column-by-column basis by setting the per-column statistics targ@ilWwigR TA-

BLE ALTER COLUMN SET STATISTIC&eeALTER TABLE The target value sets the maximum
number of entries in the most-common-value list and the maximum number of bins in the histogram.
The default target value is 10, but this can be adjusted up or down to trade off accuracy of planner
estimates against the time taken AMALYZEand the amount of space occupiechin statistic

In particular, setting the statistics target to zero disables collection of statistics for that column. It may
be useful to do that for columns that are never used as part of the WHERE, GROUP BY, or ORDER
BY clauses of queries, since the planner will have no use for statistics on such columns.

The largest statistics target among the columns being analyzed determines the number of table rows
sampled to prepare the statistics. Increasing the target causes a proportional increase in the time and
space needed to dNALYZE

Compatibility

SQL92
There is nCANALYZEstatement in SQL92.



BEGIN

Name

BEGIN — start a transaction block

Synopsis

BEGIN [ WORK | TRANSACTION ]

Inputs

WORK
TRANSACTION

Optional keywords. They have no effect.

Outputs

BEGIN
This signifies that a new transaction has been started.
WARNING: BEGIN: already a transaction in progress

This indicates that a transaction was already in progress. The current transaction is not affected.

Description

By default, PostgreSQL executes transactionariohained modé¢also known as “autocommit” in

other database systems). In other words, each user statement is executed in its own transaction and
a commit is implicitly performed at the end of the statement (if execution was successful, otherwise

a rollback is done)BEGIN initiates a user transaction in chained mode, i.e., all user statements after
BEGIN command will be executed in a single transaction until an exgli€iMMIT or ROLLBACK
Statements are executed more quickly in chained mode, because transaction start/commit requires
significant CPU and disk activity. Execution of multiple statements inside a transaction is also useful

to ensure consistency when changing several related tables: other clients will be unable to see the
intermediate states wherein not all the related updates have been done.

The default transaction isolation level in PostgreSQL is READ COMMITTED, wherein each query
inside the transaction sees changes committed before that query begins execution. So, you have to
useSET TRANSACTION ISOLATION LEVEL SERIALIZABLEust afterBEGIN if you need more
rigorous transaction isolation. (Alternatively, you can change the default transaction isolation level,
see thePostgreSQL Administrator's Guider details.) In SERIALIZABLE mode queries will see



BEGIN
only changes committed before the entire transaction began (actually, before execution of the first
DML statement in the transaction).

Transactions have the standard ACID (atomic, consistent, isolatable, and durable) properties.

Notes

START TRANSACTIOh&s the same functionality 8€GIN.

UseCOMMIT or ROLLBACKTto terminate a transaction.

Refer toLOCK for further information about locking tables inside a transaction.

If you turn autocommit mode off, thenBEGIN is not required: any SQL command automatically
starts a transaction.

Usage

To begin a user transaction:

BEGIN WORK;

Compatibility

SQL92

BEGIN is a PostgreSQL language extension. There is no expligtIN command in SQL92; trans-
action initiation is always implicit and it terminates either witlit@MMITor ROLLBACKstatement.

Note: Many relational database systems offer an autocommit feature as a convenience.

Incidentally, theBEGIN keyword is used for a different purpose in embedded SQL. You are advised
to be careful about the transaction semantics when porting database applications.

SQL92 also requires SERIALIZABLE to be the default transaction isolation level.



CHECKPOINT

Name

CHECKPOINTF force a transaction log checkpoint

Synopsis

CHECKPOINT

Description

Write-Ahead Logging (WAL) puts a checkpoint in the transaction log every so often. (To adjust the
automatic checkpoint interval, see the run-time configuration opt@HECKPOINT_SEGMENTS
andCHECKPOINT_TIMEOUJ The CHECKPOINTcommand forces an immediate checkpoint when
the command is issued, without waiting for a scheduled checkpoint.

A checkpoint is a point in the transaction log sequence at which all data files have been updated
to reflect the information in the log. All data files will be flushed to disk. Refer toRbstgreSQL
Administrator’'s Guiddor more information about the WAL system.

Only superusers may calHECKPOINT The command is not intended for use during normal opera-
tion.

See Also
PostgreSQL Administrator’'s Guide

Compatibility

The CHECKPOINTcommand is a PostgreSQL language extension.



CLOSE

Name

CLOSE — close a cursor

Synopsis

CLOSE cursor

Inputs

cursor

The name of an open cursor to close.

Outputs

CLOSE CURSOR
Message returned if the cursor is successfully closed.
WARNING: PerformPortalClose: portal " cursor " not found

This warning is given itursor is not declared or has already been closed.

Description

CLOSEfrees the resources associated with an open cursor. After the cursor is closed, no subsequent
operations are allowed on it. A cursor should be closed when it is no longer needed.

An implicit close is executed for every open cursor when a transaction is terminae@MmITor
ROLLBACK

Notes

PostgreSQL does not have an expl@RENcursor statement; a cursor is considered open when it is
declared. Use thBECLAREStatement to declare a cursor.



CLOSE

Usage

Close the cursdiahona

CLOSE liahona;

Compatibility

SQL92
CLOSHs fully compatible with SQL92.



CLUSTER

Name

CLUSTER — cluster a table according to an index

Synopsis

CLUSTERIndexname ON tablename

Inputs

indexname
The name of an index.
table

The name (possibly schema-qualified) of a table.

Outputs

CLUSTER

The clustering was done successfully.

Description

CLUSTERiInstructs PostgreSQL to cluster the table specifietbbje based on the index specified
by indexname . The index must already have been definedadmslename

When a table is clustered, it is physically reordered based on the index information. Clustering is a
one-time operation: when the table is subsequently updated, the changes are not clustered. That is, no
attempt is made to store new or updated tuples according to their index order. If one wishes, one can
periodically re-cluster by issuing the command again.

Notes

In cases where you are accessing single rows randomly within a table, the actual order of the data in
the heap table is unimportant. However, if you tend to access some data more than others, and there
is an index that groups them together, you will benefit from usihgSTER

Another place wher€LUSTERS helpful is in cases where you use an index to pull out several rows
from a table. If you are requesting a range of indexed values from a table, or a single indexed value
that has multiple rows that matol. USTERwill help because once the index identifies the heap page



CLUSTER

for the first row that matches, all other rows that match are probably already on the same heap page,
saving disk accesses and speeding up the query.

During the cluster operation, a temporary copy of the table is created that contains the table data in
the index order. Temporary copies of each index on the table are created as well. Therefore, you need
free space on disk at least equal to the sum of the table size and the index sizes.

CLUSTER preserves GRANT, inheritance, index, foreign key, and other ancillary information about
the table.

Because the optimizer records statistics about the ordering of tables, it is advisableAtoMLYZE
on the newly clustered table. Otherwise, the optimizer may make poor choices of query plans.

There is another way to cluster data. TlleUSTERcommand reorders the original table using the
ordering of the index you specify. This can be slow on large tables because the rows are fetched from
the heap in index order, and if the heap table is unordered, the entries are on random pages, so there
is one disk page retrieved for every row moved. (PostgreSQL has a cache, but the majority of a big
table will not fit in the cache.) The other way to cluster a table is to use

SELECT columnlist INTO TABLE newtable
FROMtable ORDER BYcolumnlist

which uses the PostgreSQL sorting code in the ORDER BY clause to create the desired order; this is
usually much faster than an index scan for unordered data. You then drop the old tal#leTERe
TABLE...RENAME to renamenewtable to the old name, and recreate the table’s indexes. However,
this approach does not preserve OIDs, constraints, foreign key relationships, granted privileges, and
other ancillary properties of the table --- all such items must be manually recreated.

Usage

Cluster the employees relation on the basis of its ID attribute:

CLUSTER emp_ind ON emp;

Compatibility

SQL92
There is NnaCLUSTERstatement in SQL92.



COMMENT

Name

COMMENT— define or change the comment of an object

Synopsis

COMMENT ON

[
TABLE object_name |
COLUMNtable_name . column_name |
AGGREGATERgg_name (agg_type ) |
CONSTRAINT constraint_name ON table_name |
DATABASEoObject_name |
DOMAIN object_name |
FUNCTION func_name (argl_type , arg2_type , ...) |
INDEX object_name |
OPERATORop ( leftoperand_type , rightoperand_type ) |
RULE rule_name ON table_name |
SCHEMAobject_name |
SEQUENCHEbbject_name |
TRIGGER trigger_name ON table_name |
TYPE object_name |
VIEW object_name

11S ‘text

Inputs

object_name, table_name.column_name, agg _name, constraint_name,
func_name, op, rule_name, trigger_name

The name of the object to be be commented. Names of tables, aggregates, domains, functions,
indexes, operators, sequences, types, and views may be schema-qualified.

text

The comment to add.

Outputs

COMMENT

Message returned if the table is successfully commented.



Description

COMMENT

COMMENStores a comment about a database object. Comments can be easily retrieved;wih

\dd , \d+ , or\l+ commands. Other user interfaces to retrieve comments can be built atop the same

built-in functions thapsgl uses, namelgbj_description() andcol_description()

To modify a comment, issue a neddMMENGommand for the same object. Only one comment string

is stored for each object. To remove a comment, wiit:L in place of the text string. Comments are
automatically dropped when the object is dropped.

Note: There is presently no security mechanism for comments: any user connected to a database
can see all the comments for objects in that database (although only superusers can change
comments for objects that they don’t own). Therefore, don’t put security-critical information in

comments.

Usage

Attach a comment to the tabheytable :

COMMENT ON TABLE mytable IS 'This is my table.’;

Remove it again:

COMMENT ON TABLE mytable IS NULL;

Some more examples:

COMMENT
ance’;
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT
COMMENT

ON

ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON

AGGREGATE my_aggregate (double precision) IS 'Computes sample vari-

COLUMN my_table.my_field IS 'Employee ID number’;

DATABASE my_database IS ’'Development Database’;

DOMAIN my_domain IS 'Email Address Domain’;

FUNCTION my_function (timestamp) IS 'Returns Roman Numeral’;
INDEX my_index IS 'Enforces uniqueness on employee id’;
OPERATOR 7 (text, text) IS 'Performs intersection of two texts’;
OPERATOR ~ (NONE, text) IS 'This is a prefix operator on text’;
RULE my_rule ON my_table IS 'Logs UPDATES of employee records’;
SCHEMA my_schema IS ’'Departmental data’;

SEQUENCE my_sequence IS 'Used to generate primary keys’;
TABLE my_schema.my_table IS 'Employee Information’;

TRIGGER my_trigger ON my_table IS 'Used for R.L;

TYPE complex IS 'Complex Number datatype’;

VIEW my_view IS 'View of departmental costs’;



COMMENT

Compatibility

SQL92
There is NaCOMMENIN SQL92.



COMMIT

Name

COMMIT — commit the current transaction

Synopsis

COMMIT [ WORK | TRANSACTION ]

Inputs

WORK
TRANSACTION

Optional keywords. They have no effect.

Outputs

COMMIT
Message returned if the transaction is successfully committed.
WARNING: COMMIT: no transaction in progress

If there is no transaction in progress.

Description

COMMITcommits the current transaction. All changes made by the transaction become visible to
others and are guaranteed to be durable if a crash occurs.

Notes
The keywords WORK and TRANSACTION are noise and can be omitted.
UseROLLBACKTto abort a transaction.

Usage

To make all changes permanent:

COMMIT WORK;



COMMIT

Compatibility

SQL92
SQL92 only specifies the two forn@OMMITandCOMMIT WORKtherwise full compatibility.



COPY

Name

COPY — copy data between files and tables

Synopsis
COPYtable [ ( column [, ..] ) ]
FROM { ’filename ' | stdin }
[ [ WITH ]
[ BINARY ]
[ OIDS ]
[ DELIMITER [ AS ] ' delimiter ]
[ NULL [ AS ]’ null string 11
COPYtable [ ( column [, ..] ) ]
TO { ' filename ' | stdout }
[ [ WITH ]
[ BINARY ]
[ OIDS ]
[ DELIMITER [ AS ] ' delimiter ]
[ NULL [ AS ]’ null string 11
Inputs
table

The name (possibly schema-qualified) of an existing table.
column
An optional list of columns to be copied. If no column list is specified, all columns will be used.
filename
The absolute Unix path name of the input or output file.
stdin
Specifies that input comes from the client application.
stdout
Specifies that output goes to the client application.
BINARY

Changes the behavior of field formatting, forcing all data to be stored or read in binary format
rather than as text. You can not spedifgLIMITER or NULLin binary mode.

OIDS
Specifies copying the internal object id (OID) for each row.
delimiter

The single character that separates fields within each row (line) of the file.



COPY

null string

The string that represents a NULL value. The defaultis™(backslash-N). You might prefer
an empty string, for example.

Note: On a copy in, any data item that matches this string will be stored as a NULL value,
so you should make sure that you use the same string as you used on copy out.

Outputs

COPY
The copy completed successfully.
ERROR: reason

The copy failed for the reason stated in the error message.

Description

COPYmoves data between PostgreSQL tables and standard file-systenC@iles. TOcopies the
contents of a tabl a file, whileCOPY FROMbpies datdrom a file to a table (appending the data to
whatever is in the table already).

If a list of columns is specified;OPYwill only copy the data in the specified columns to or from the
file. If there are any columns in the table that are not in the columnd@BY FROMill insert the
default values for those columns.

coPywith a file name instructs the PostgreSQL backend to directly read from or write to a file. The

file must be accessible to the backend and the hame must be specified from the viewpoint of the
backend. Whestdin or stdout is specified, data flows through the client frontend to the backend.

Tip: Do not confuse COPYwith the psql instruction \copy . \copy invokes COPY FROM stdin or
COPY TO stdout, and then fetches/stores the data in a file accessible to the psql client. Thus, file
accessibility and access rights depend on the client rather than the backend when \copy is used.

Notes
COPYcan only be used with plain tables, not with views.

The BINARY keyword will force all data to be stored/read as binary format rather than as text. It is
somewhat faster than the normal copy command, but a binary copy file is not portable across machine
architectures.



COPY

By default, a text copy uses a tab ("\t") character as a delimiter between fields. The field delimiter
may be changed to any other single character with the keydattMITER. Characters in data fields
that happen to match the delimiter character will be backslash quoted.

You must haveselect privilegeon any table whose values are readd®yPY TQandinsert privilege
on a table into which values are being insertedd®PY FROM he backend also needs appropriate
Unix permissions for any file read or written ®0PY

COPY FROMill invoke any triggers and check constraints on the destination table. However, it will
not invoke rules.

COPYstops operation at the first error. This should not lead to problems in the evex@@®a TQ

but the target relation will already have received earlier rows @O&Y FROM hese rows will not

be visible or accessible, but they still occupy disk space. This may amount to a considerable amount
of wasted disk space if the failure happened well into a large copy operation. You may wish to invoke
VACUUMo recover the wasted space.

Files named in &@OPYcommand are read or written directly by the backend, not by the client appli-
cation. Therefore, they must reside on or be accessible to the database server machine, not the client.
They must be accessible to and readable or writable by the PostgreSQL user (the user ID the server
runs as), not the clienCOPYnaming a file is only allowed to database superusers, since it allows
reading or writing any file that the backend has privileges to access.

Tip: The psql instruction \copy reads or writes files on the client machine with the client’s per-
missions, so it is not restricted to superusers.

It is recommended that the file nhame usedCibPYalways be specified as an absolute path. This

is enforced by the backend in the caseC@iPY TQbut for COPY FROMou do have the option of
reading from a file specified by a relative path. The path will be interpreted relative to the backend’s
working directory (somewhere belddPGDATA, not the client’s working directory.

File Formats

Text Format

WhenCOPYis used without the BINARY option, the file read or written is a text file with one line per
table row. Columns (attributes) in a row are separated by the delimiter character. The attribute values
themselves are strings generated by the output function, or acceptable to the input function, of each
attribute’s data type. The specified null-value string is used in place of attributes that are SOPY.
FROMwill raise an error if any line of the input file contains more or fewer columns than are expected.

If OIDS is specified, the OID is read or written as the first column, preceding the user data columns.
(An error is raised if OIDS is specified for a table that does not have OIDs.)

End of data can be represented by a single line containing just backslash-pejiofi end-of-data
marker is not necessary when reading from a Unix file, since the end of file serves perfectly well; but
an end marker must be provided when copying data to or from a client application.

Backslash characters)(may be used in theOPYdata to quote data characters that might otherwise

be taken as row or column delimiters. In particular, the following characteistbe preceded by

a backslash if they appear as part of an attribute value: backslash itself, newline, and the current
delimiter character.



COPY

The following special backslash sequences are recogniz€dbby FROM

Sequence Represents

\b Backspace (ASCII 8)

\f Form feed (ASCII 12)

\n Newline (ASCII 10)

\r Carriage return (ASCII 13)

\t Tab (ASCII 9)

\v \Vertical tab (ASCII 11)

\ digits Backslash followed by one to three octal digits
specifies the character with that numeric code

PresentlyCOPY Tawill never emit an octal-digits backslash sequence, but it does use the other se-
guences listed above for those control characters.

Never put a backslash before a data charaster period (). Such pairs will be mistaken for the
default null string or the end-of-data marker, respectively. Any other backslashed character that is not
mentioned in the above table will be taken to represent itself.

It is strongly recommended that applications generating COPY data convert data newlines and car-
riage returns to then and\r sequences respectively. At present (PostgreSQL 7.2 and older versions)

it is possible to represent a data carriage return without any special quoting, and to represent a data
newline by a backslash and newline. However, these representations will not be accepted by default
in future releases.

Note that the end of each row is marked by a Unix-style newline ("\n"). Presexatyy FROMill not
behave as desired if given a file containing DOS- or Mac-style newlines. This is expected to change
in future releases.

Binary Format

The file format used foCOPY BINARYchanged in PostgreSQL v7.1. The new format consists of a
file header, zero or more tuples, and a file trailer.

File Header

The file header consists of 24 bytes of fixed fields, followed by a variable-length header extension
area. The fixed fields are:

Signature

12-byte sequenceGBCOPY\n\377\\n\0  --- note that the null is a required part of the signa-
ture. (The signature is designed to allow easy identification of files that have been munged by a
non-8-bit-clean transfer. This signature will be changed by newline-translation filters, dropped
nulls, dropped high bits, or parity changes.)

Integer layout field

int32 constant 0x01020304 in source’s byte order. Potentially, a reader could engage in byte-
flipping of subsequent fields if the wrong byte order is detected here.

Flags field

int32 bit mask to denote important aspects of the file format. Bits are numbered from 0 (LSB) to
31 (MSB) --- note that this field is stored with source’s endianness, as are all subsequent integer



COPY

fields. Bits 16-31 are reserved to denote critical file format issues; a reader should abort if it finds
an unexpected bit set in this range. Bits 0-15 are reserved to signal backwards-compatible format
issues; a reader should simply ignore any unexpected bits set in this range. Currently only one
flag bit is defined, and the rest must be zero:

Bit 16

if 1, OIDs are included in the dump; if 0, not

Header extension area length

int32 length in bytes of remainder of header, not including self. In the initial version this will be
zero, and the first tuple follows immediately. Future changes to the format might allow additional
data to be present in the header. A reader should silently skip over any header extension data it
does not know what to do with.

The header extension area is envisioned to contain a sequence of self-identifying chunks. The flags
field is not intended to tell readers what is in the extension area. Specific design of header extension
contents is left for a later release.

This design allows for both backwards-compatible header additions (add header extension chunks, or
set low-order flag bits) and non-backwards-compatible changes (set high-order flag bits to signal such
changes, and add supporting data to the extension area if needed).

Tuples

Each tuple begins with an int16 count of the number of fields in the tuple. (Presently, all tuples in a
table will have the same count, but that might not always be true.) Then, repeated for each field in the
tuple, there is an intlfyplen word possibly followed by field data. Thgplen field is interpreted
thus:
Zero

Field is NULL. No data follows.
>0

Field is a fixed-length data type. Exactly N bytes of data followt$ipeen  word.

Field is avarlena data type. The next four bytes are treelena header, which contains the
total value length including itself.

<-1

Reserved for future use.

For non-NULL fields, the reader can check that thyggen matches the expectegblen for the
destination column. This provides a simple but very useful check that the data is as expected.



COPY

There is no alignment padding or any other extra data between fields. Note also that the format does
not distinguish whether a data type is pass-by-reference or pass-by-value. Both of these provisions
are deliberate: they might help improve portability of the files (although of course endianness and
floating-point-format issues can still keep you from moving a binary file across machines).

If OIDs are included in the dump, the OID field immediately follows the field-count word. It is a
normal field except that it's not included in the field-count. In particular it higplan  --- this will

allow handling of 4-byte vs 8-byte OIDs without too much pain, and will allow OIDs to be shown as
NULL if that ever proves desirable.

File Trailer

The file trailer consists of an int16 word containing -1. This is easily distinguished from a tuple’s
field-count word.

A reader should report an error if a field-count word is neither -1 nor the expected number of columns.
This provides an extra check against somehow getting out of sync with the data.

Usage

The following example copies a table to standard output, using a vertical bar (]) as the field delimiter:

COPY country TO stdout WITH DELIMITER '|;

To copy data from a Unix file into theountry  table:

COPY country FROM ’/usrl/proj/bray/sqgl/country_data’;

Here is a sample of data suitable for copying into a table fewiin  (so it has the termination
sequence on the last line):

AF AFGHANISTAN
AL ALBANIA

DZ ALGERIA

ZM ZAMBIA

W ZIMBABWE

\.

Note that the white space on each line is actually a TAB.

The following is the same data, output in binary format on a Linux/i586 machine. The data is shown
after filtering through the Unix utilityod -c . The table has three fields; the firstdsar(2) , the
second igext , and the third isnteger . All the rows have a null value in the third field.

0000000 P G B C O P Y \n377 \r \n \0 004 003 002 001
0000020 0 \0 \0 \0 \0 \0 \0 \0 003 \0 377 377 006 \0 \0 \O
0000040 A F 377 377 017 \0 0O O A F G H A N I S
0000060 T A N \0 \0 003 \0 377 377 006 \0 \0 \0O A L 377
0000100 377 W W0 0O W A L B A N I A \0 \0 003 \0
0000120 377 377 006 \0 \0 \0 D Zz377377 Ww 0 0 0O A L
0000140 G E R I A \0 \0 003 \0 377 377 006 \0 \0 W0 Z



COPY

0000160 M 377377 \nw \0 0 0 Z A M B | A \0 \0 003
0000200 \0 377 377 006 \0 \0 \0 Z W 377377 \f 0 0 \0 Z
0000220 | M B A B W E \0 \0 377 377

Compatibility

SQL92

There is naCOPYstatement in SQL92.

The following syntax was used by pre-7.3 applications and is still supported:

COPY [ BINARY ] table [ WITH OIDS ]
FROM { ’filename ' | stdin }
[ [USING] DELIMITERS * delimiter ’ ]
[ WITH NULL AS ’'null string "]
COPY [ BINARY ] table [ WITH OIDS ]
TO { ' filename ' | stdout }
[ [USING] DELIMITERS * delimiter ' ]
[ WITH NULL AS ’'null string "]



CREATE AGGREGATE

Name

CREATE AGGREGATE- define a new aggregate function

Synopsis

CREATE AGGREGATEame ( BASETYPE = input_data_type ,
SFUNC =sfunc , STYPE = state_type
[ , FINALFUNC = ffunc ]
[ , INITCOND = initial_condition 1)

Inputs

name
The name (optionally schema-qualified) of an aggregate function to create.
input_data_type

The input data type on which this aggregate function operates. This can be speciityas
for an aggregate that does not examine its input values (an examplmig) ).

sfunc

The name of the state transition function to be called for each input data value. This is normally
a function of two arguments, the first being of tytate_type  and the second of type-
put_data type . Alternatively, for an aggregate that does not examine its input values, the
function takes just one argument of tygkate_type . In either case the function must return

a value of typestate_type . This function takes the current state value and the current input
data item, and returns the next state value.

state_type
The data type for the aggregate’s state value.
ffunc

The name of the final function called to compute the aggregate’s result after all input data has
been traversed. The function must take a single argument ostgfe type . The output data

type of the aggregate is defined as the return type of this functi€éfanié  is not specified, then

the ending state value is used as the aggregate’s result, and the outputstgbe ig/pe

initial_condition

The initial setting for the state value. This must be a literal constant in the form accepted for the
data typestate_type . If not specified, the state value starts out NULL.



CREATE AGGREGATE

Outputs

CREATE AGGREGATE

Message returned if the command completes successfully.

Description

CREATE AGGREGATIows a user or programmer to extend PostgreSQL functionality by defin-
ing new aggregate functions. Some aggregate functions for base types suiciiirasger) and
avg(double precision) are already provided in the base distribution. If one defines new types or
needs an aggregate function not already provided, GREATE AGGREGAT®&N be used to provide
the desired features.

If a schema name is given (for examp@REATE AGGREGATE myschema.myagg ..) then the
aggregate function is created in the specified schema. Otherwise it is created in the current schema
(the one at the front of the search path; SE8RRENT_SCHEMAY)

An aggregate function is identified by its name and input data type. Two aggregates in the same
schema can have the same name if they operate on different input types. The name and input data
type of an aggregate must also be distinct from the name and input data type(s) of every ordinary
function in the same schema.

An aggregate function is made from one or two ordinary functions: a state transition fusictian ,
and an optional final calculation functidfunc . These are used as follows:

sfunc ( internal-state, next-data-item ) ---> next-internal-state
ffunc ( internal-state ) ---> aggregate-value

PostgreSQL creates a temporary variable of datasyygge to hold the current internal state of the
aggregate. At each input data item, the state transition function is invoked to calculate a new internal
state value. After all the data has been processed, the final function is invoked once to calculate the
aggregate’s output value. If there is no final function then the ending state value is returned as-is.

An aggregate function may provide an initial condition, that is, an initial value for the internal state
value. This is specified and stored in the database as a field akttpe but it must be a valid external
representation of a constant of the state value data type. If it is not supplied then the state value starts
out NULL.

If the state transition function is declared “strict”, then it cannot be called with NULL inputs. With
such a transition function, aggregate execution behaves as follows. NULL input values are ignored
(the function is not called and the previous state value is retained). If the initial state value is NULL,
then the first non-NULL input value replaces the state value, and the transition function is invoked be-
ginning with the second non-NULL input value. This is handy for implementing aggregatesdike

Note that this behavior is only available whsfate_type is the same agput_data type

When these types are different, you must supply a non-NULL initial condition or use a non-strict
transition function.



CREATE AGGREGATE

If the state transition function is not strict, then it will be called unconditionally at each input value,
and must deal with NULL inputs and NULL transition values for itself. This allows the aggregate
author to have full control over the aggregate’s handling of null values.

If the final function is declared “strict”, then it will not be called when the ending state value is NULL;
instead a NULL result will be output automatically. (Of course this is just the normal behavior of strict
functions.) In any case the final function has the option of returning NULL. For example, the final
function foravg returns NULL when it sees there were zero input tuples.

Notes
UseDROP AGGREGAT®&drop aggregate functions.

The parameters cfREATE AGGREGAT®@N be written in any order, not just the order illustrated
above.

Usage

Refer to the chapter on aggregate functions inRbstgreSQL Programmer’s Guider complete
examples of usage.

Compatibility

SQL92

CREATE AGGREGATE a PostgreSQL language extension. There iSCREATE AGGREGATH
SQL92.



CREATE CAST

Name

CREATE CAST- define a user-defined cast

Synopsis

CREATE CAST gourcetype  AS targettype )
WITH FUNCTIONfuncname ( argtype )
[ AS ASSIGNMENT | AS IMPLICIT ]

CREATE CAST ¢gourcetype  AS targettype )
WITHOUT FUNCTION
[ AS ASSIGNMENT | AS IMPLICIT ]

Description

CREATE CASTlefines a new cast. A cast specifies how to perform a conversion between two data
types. For example,

SELECT CAST(42 AS text);
converts the integer constant 42 to typet by invoking a previously specified function, in this case
text(int4) . (If no suitable cast has been defined, the conversion fails.)

Two types may béinary compatiblewhich means that they can be converted into one another “for
free” without invoking any function. This requires that corresponding values use the same internal
representation. For instance, the types andvarchar are binary compatible.

By default, a cast can be invoked only by an explicit cast request, that is an exgit(x AS
typename ), X:: typename , ortypename (x) construct.

If the cast is markedS ASSIGNMENThen it can be invoked implicitly when assigning to a column
of the target data type. For example, supposingftitatl  is a column of typeext , then

INSERT INTO foo(fl) VALUES(42);
will be allowed if the cast from typanteger  to typetext is markedAS ASSIGNMENTotherwise
not. (We generally use the terassignment cagb describe this kind of cast.)

If the cast is markedS IMPLICIT then it can be invoked implicitly in any context, whether assign-
ment or internally in an expression. For example, sihcéakestext arguments,

SELECT 'The time is ' || now();

will be allowed only if the cast from typgmestamp totext is markedAS IMPLICIT . Otherwise
it will be necessary to write the cast explicitly, for example

SELECT ’'The time is ' || CAST(now() AS text);

(We generally use the terimplicit castto describe this kind of cast.)

It is wise to be conservative about marking casts as implicit. An overabundance of implicit casting
paths can cause PostgreSQL to choose surprising interpretations of commands, or to be unable to
resolve commands at all because there are multiple possible interpretations. A good rule of thumb is



CREATE CAST

to make a cast implicitly invokable only for information-preserving transformations between types in
the same general type category. For example, the castiftemto int4 can reasonably be implicit,

but the cast fronfloat8  to int4 should probably be assignment-only. Cross-type-category casts,
such agext toint4 , are best made explicit-only.

To be able to create a cast, you must own the source or the target data type. To create a
binary-compatible cast, you must be superuser (this restriction is made because an erroneous
binary-compatible cast conversion can easily crash the server).

Parameters
sourcetype

The name of the source data type of the cast.
targettype

The name of the target data type of the cast.
funcname (argtype )

The function used to perform the cast. The function name may be schema-qualified. If it is not,
the function will be looked up in the path. The argument type must be identical to the source
type, the result data type must match the target type of the cast.

WITHOUT FUNCTION

Indicates that the source type and the target type are binary compatible, so no function is required
to perform the cast.

AS ASSIGNMENT
Indicates that the cast may be invoked implicitly in assignment contexts.
AS IMPLICIT

Indicates that the cast may be invoked implicitly in any context.

Notes
UseDROP CASTo remove user-defined casts.

Remember that if you want to be able to convert types both ways you need to declare casts both ways
explicitly.

Prior to PostgreSQL 7.3, every function that had the same name as a data type, returned that data type,
and took one argument of a different type was automatically a cast function. This convention has been
abandoned in face of the introduction of schemas and to be able to represent binary compatible casts
in the catalogs. (The built-in cast functions still follow this naming scheme, but they have to be shown
as casts ipg_cast now.)

Examples

To create a cast from typext to typeint4 using the functiorint4(text)
CREATE CAST (text AS int4) WITH FUNCTION int4(text);

(This cast is already predefined in the system.)



CREATE CAST

Compatibility

The CREATE CASTommand conforms to SQL99, except that SQL99 does not make provisions for
binary compatible type#\S IMPLICIT is a PostgreSQL extension, too.

See Also
CREATE FUNCTIONCREATE TYPEDROP CASTPostgreSQL Programmer’s Guide



CREATE CONSTRAINT TRIGGER

Name
CREATE CONSTRAINT TRIGGER- define a new constraint trigger

Synopsis

CREATE CONSTRAINT TRIGGERame
AFTER events ON
relation constraint attributes
FOR EACH ROW EXECUTE PROCEDWRE '( args ')

Inputs

name
The name of the constraint trigger.
events
The event categories for which this trigger should be fired.
relation
The name (possibly schema-qualified) of the relation in which the triggering events occur.
constraint
Actual constraint specification.
attributes
Constraint attributes.
func (args )

Function to call as part of the trigger processing.

Outputs

CREATE TRIGGER

Message returned if successful.



CREATE CONSTRAINT TRIGGER

Description
CREATE CONSTRAINT TRIGGHR used withinCREATE/ALTER TABLEand by pg_dump to create
the special triggers for referential integrity.

It is not intended for general use.



CREATE CONVERSION

Name

CREATE CONVERSION define a user-defined conversion

Synopsis

CREATE [DEFAULT] CONVERSIONonversion_name
FOR source_encoding TO dest_encoding FROMfuncname

Description

CREATE CONVERSIOdefines a new encoding conversion. Conversion names may be used in the
CONVERT() function to specify a particular encoding conversion. Also, conversions that are marked
DEFAULT can be used for automatic encoding conversion between frontend and backend. For this
purpose, two conversions, from encoding A to B AND from encoding B to A, must be defined.

To be able to create a conversion, you must have the execute right on the function and the create right
on the destination schema.

Parameters
DEFAULT

The DEFAULTclause indicates that this conversion is the default for this particular source to
destination encoding. There should be only one default encoding in a schema for the encoding
pair.

conversion_name

The name of the conversion. The conversion name may be schema-qualified. If it is not, the con-
version is defined in the current schema. The conversion hame must be unique within a schema.

source_encoding

The source encoding name.
source_encoding

The destination encoding name.
funcname

The function used to perform the conversion. The function name may be schema-qualified. If it
is not, the function will be looked up in the path.

The function must have the following signature:

conv_proc(
INTEGER, -- source encoding id
INTEGER, -- destination encoding id

CSTRING, -- source string (null terminated C string)
CSTRING, -- destination string (null terminated C string)
INTEGER -- source string length

) returns VOID;



CREATE CONVERSION

Notes
UseDROP CONVERSION remove user-defined conversions.

The privileges required to create a conversion may be changed in a future release.

Examples
To create a conversion from encoding UNICODE to LATIN1 usimgunc :

CREATE CONVERSION myconv FOR 'UNICODE’ TO 'LATIN1’ FROM myfunc;

Compatibility

CREATE CONVERSIONN a PostgreSQL extension. There is GREATE CONVERSIOstatement in
SQL99.

See Also
CREATE FUNCTIONDROP CONVERSIONPostgreSQL Programmer’s Guide



CREATE DATABASE

Name

CREATE DATABASE— create a new database

Synopsis

CREATE DATABASHame
[ [ WITH ] [ OWNER [=] dbowner ]
[ LOCATION [=] ' dbpath ]
[ TEMPLATE [=] template ]
[ ENCODING [=] encoding 1] 1]

Inputs

name
The name of a database to create.
dbowner

Name of the database user who will own the new databasBEBAULTto use the default
(namely, the user executing the command).

dbpath

An alternate file-system location in which to store the new database, specified as a string literal;
or DEFAULTto use the default location.

template

Name of template from which to create the new databadeBAULTto use the default template
(templatel ).

encoding

Multibyte encoding method to use in the new database. Specify a string literal name (e.g.,
'SQL_ASCII' ), or an integer encoding number,REFAULTto use the default encoding.

Outputs

CREATE DATABASE

Message returned if the command completes successfully.
ERROR: user ' username ' is not allowed to create/drop databases

You must have the speci@REATED#rivilege to create databases. SEREATE USER
ERROR: createdb: database " name" already exists

This occurs if a database with thame specified already exists.



CREATE DATABASE

ERROR: database path may not contain single quotes

The database locatiatbpath cannot contain single quotes. This is required so that the shell
commands that create the database directory can execute safely.

ERROR: CREATE DATABASE: may not be called in a transaction block

If you have an explicit transaction block in progress you cannotGREATE DATABASEYou
must finish the transaction first.

ERROR: Unable to create database directory ’ path .
ERROR: Could not initialize database directory.

These are most likely related to insufficient permissions on the data directory, a full disk, or other
file system problems. The user under which the database server is running must have access to
the location.

Description
CREATE DATABASEreates a hew PostgreSQL database.

Normally, the creator becomes the owner of the new database. Superusers can create databases owned
by other users using tl@WNERIlause. They can even create databases owned by users with no special
privileges. Non-superusers WiGtREATEDBrivilege can only create databases owned by themselves.

An alternate location can be specified in order to, for example, store the database on a different disk.
The path must have been prepared withittigocation command.

If the path name does not contain a slash, it is interpreted as an environment variable name, which
must be known to the server process. This way the database administrator can exercise control over
locations in which databases can be created. (A customary choice iIR@IATA2) If the server is
compiled withALLOW_ABSOLUTE_DBPATKi®t so by default), absolute path names, as identified by

a leading slash (e.gysr/local/pgsgl/data ), are allowed as well.

By default, the new database will be created by cloning the standard system datalpistel . A
different template can be specified by writif§MPLATE =name. In particular, by writingTEMPLATE

= template0 , you can create a virgin database containing only the standard objects predefined by
your version of PostgreSQL. This is useful if you wish to avoid copying any installation-local objects
that may have been addedtémplatel

The optional encoding parameter allows selection of the database encoding, if your server was com-
piled with multibyte encoding support. When not specified, it defaults to the encoding used by the
selected template database.

Optional parameters can be written in any order, not only the order illustrated above.

Notes
CREATE DATABASIS a PostgreSQL language extension.
UseDROP DATABASHD remove a database.

The progranctreatedhis a shell script wrapper around this command, provided for convenience.



CREATE DATABASE

There are security and data integrity issues involved with using alternate database locations specified
with absolute path names, and by default only an environment variable known to the backend may be
specified for an alternate location. See the Administrator's Guide for more information.

Although it is possible to copy a database other tleatplatel by specifying its name as the tem-
plate, this is not (yet) intended as a general-purpose COPY DATABASE facility. We recommend that
databases used as templates be treated as read-only. Sekertiméstrator's Guiddor more informa-

tion.

Usage

To create a new database:

olly=> create database lusiadas;

To create a new database in an alternate afgtvate_db

$ mkdir private_db
$ initlocation ~/private_db
The location will be initialized with username "olly".
This user will own all the files and must also own the server process.
Creating directory /home/olly/private_db
Creating directory /home/olly/private_db/base

initlocation is complete.

$ psql olly
Welcome to psql, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
\h for help with SQL commands
\? for help on internal slash commands
\g or terminate with semicolon to execute query
\q to quit

oly=> CREATE DATABASE elsewhere WITH LOCATION = '/home/olly/private_db’;
CREATE DATABASE

Compatibility

SQL92

There is noOCREATE DATABASEtatement in SQL92. Databases are equivalent to catalogs, whose
creation is implementation-defined.



CREATE DOMAIN

Name

CREATE DOMAIN— define a new domain

Synopsis

CREATE DOMAINdomainname [AS] data_type
[ DEFAULT default_expr ]
[ constraint [ -11

where constraint is:

[ CONSTRAINT constraint_name ]
{ NOT NULL | NULL }

Parameters

domainname
The name (optionally schema-qualified) of a domain to be created.
data_type

The underlying data type of the domain. This may include array specifiers. Refer iséhns
Guidefor further information about data types and arrays.

DEFAULT default_expr

The DEFAULTclause specifies a default value for columns of the domain data type. The value
is any variable-free expression (but subselects are not allowed). The data type of the default
expression must match the data type of the domain.

The default expression will be used in any insert operation that does not specify a value for the
column. If there is no default for a domain, then the default is NULL.

Note: If a default value is specified for a particular column, it overrides any default associated
with the domain. In turn, the domain default overrides any default value associated with the
underlying data type.

CONSTRAINT constraint_name

An optional name for a constraint. If not specified, the system generates a name.
NOT NULL

Values of this domain are not allowed to be NULL.
NULL

Values of this domain are allowed to be NULL. This is the default.

This clause is only available for compatibility with non-standard SQL databases. Its use is dis-
couraged in new applications.



CREATE DOMAIN

Outputs

CREATE DOMAIN

Message returned if the domain is successfully created.

Description

CREATE DOMAIRIlows the user to register a new data domain with PostgreSQL for use in the current
data base. The user who defines a domain becomes its owner.

If a schema name is given (for examp@REATE DOMAIN myschema.mydomain ... ) then the

domain is created in the specified schema. Otherwise it is created in the current schema (the one at
the front of the search path; SEB&lRRENT_SCHEMA)) The domain name must be unique among the
types and domains existing in its schema.

Domains are useful for abstracting common fields between tables into a single location for mainte-
nance. An email address column may be used in several tables, all with the same properties. Define a
domain and use that rather than setting up each table’s constraints individually.

Examples

This example creates tlweuntry_code data type and then uses the type in a table definition:

CREATE DOMAIN country_code char(2) NOT NULL;
CREATE TABLE countrylist (id INT4, country country_code);

Compatibility

SQL99 defines CREATE DOMAIN, but says that the only allowed constraint type is CHECK con-
straints. CHECK constraints for domains are not yet supported by PostgreSQL.

See Also
DROP DOMAIN PostgreSQL Programmer’s Guide



CREATE FUNCTION

Name
CREATE FUNCTIOMN- define a new function

Synopsis

CREATE [ OR REPLACE ] FUNCTIOName ( [ argtype [, ...] 1)
RETURNSrettype
{ LANGUAGE langname
| IMMUTABLE | STABLE | VOLATILE
| CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT | STRICT
| [EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER

| AS ' definition
| AS ' obj_file ', ' link_symbol ’
} o
[ WITH ( attribute [ .]1)]1]
Description

CREATE FUNCTIONefines a new functiotCREATE OR REPLACE FUNCTI®NI either create a

new function, or replace an existing definition.

The user that creates the function becomes the owner of the function.

Parameters

name

The name of a function to create. If a schema name is included, then the function is created in the
specified schema. Otherwise it is created in the current schema (the one at the front of the search
path; seeCURRENT_SCHEMA)) The name of the new function must not match any existing
function with the same argument types in the same schema. However, functions of different

argument types may share a name (this is callestioading.

argtype

The data type(s) of the function’s arguments, if any. The input types may be base, complex, or
domain types, or the same as the type of an existing column. The type of a column is referenced
by writing tablename .columnname %TYPE using this can sometimes help make a function
independent from changes to the definition of a table. Depending on the implementation language
it may also be allowed to specify “pseudo-types” suclktsasng . Pseudo-types indicate that

the actual argument type is either incompletely specified, or outside the set of ordinary SQL data

types.
rettype

The return data type. The return type may be specified as a base, complex, or domain type, or
the same as the type of an existing column. Depending on the implementation language it may
also be allowed to specify “pseudo-types” sucltsteing . Thesetof modifier indicates that

the function will return a set of items, rather than a single item.



CREATE FUNCTION

langname

The name of the language that the function is implemented in. M®QeC, internal  , or the
name of a user-defined procedural language. (Seeastelang) For backward compatibility,
the name may be enclosed by single quotes.

IMMUTABLE
STABLE
VOLATILE

These attributes inform the system whether it is safe to replace multiple evaluations of the func-
tion with a single evaluation, for run-time optimization. At most one choice should be specified.
If none of these appeaVOLATILE is the default assumption.

IMMUTABLEIndicates that the function always returns the same result when given the same
argument values; that is, it does not do database lookups or otherwise use information not directly
present in its parameter list. If this option is given, any call of the function with all-constant
arguments can be immediately replaced with the function value.

STABLEIindicates that within a single table scan the function will consistently return the same

result for the same argument values, but that its result could change across SQL statements. This
is the appropriate selection for functions whose results depend on database lookups, parameter

variables (such as the current time zone), etc. Also note thalWRRENT_TIMESTAMRMIly
of functions qualify as stable, since their values do not change within a transaction.

VOLATILE indicates that the function value can change even within a single table scan, so no
optimizations can be made. Relatively few database functions are volatile in this sense; some ex-
amples areandom() , currval() ,timeofday() . Note that any function that has side-effects
must be classified volatile, even if its result is quite predictable, to prevent calls from being
optimized away; an example sgtval()

CALLED ON NULL INPUT
RETURNS NULL ON NULL INPUT
STRICT

CALLED ON NULL INPUTthe default) indicates that the function will be called normally when
some of its arguments are null. It is then the function author’s responsibility to check for null
values if necessary and respond appropriately.

RETURNS NULL ON NULL INPWF STRICT indicates that the function always returns NULL
whenever any of its arguments are NULL. If this parameter is specified, the function is not
executed when there are NULL arguments; instead a NULL result is assumed automatically.

[EXTERNAL] SECURITY INVOKER
[EXTERNAL] SECURITY DEFINER

SECURITY INVOKERNdicates that the function is to be executed with the privileges of the user
that calls it. That is the defaulBECURITY DEFINERSpecifies that the function is to be executed
with the privileges of the user that created it.

The key wordEXTERNALIs present for SQL compatibility but is optional since, unlike in SQL,
this feature does not only apply to external functions.

definition

A string defining the function; the meaning depends on the language. It may be an internal
function name, the path to an object file, an SQL query, or text in a procedural language.



CREATE FUNCTION

obj_file ,link_symbol

This form of theAS clause is used for dynamically linked C language functions when the func-
tion name in the C language source code is not the same as the name of the SQL function.
The stringobj_file is the name of the file containing the dynamically loadable object, and
link_symbol is the object’s link symbol, that is, the name of the function in the C language
source code.

attribute

The historical way to specify optional pieces of information about the function. The following
attributes may appear here:

isStrict
EquivalentttﬁTRlCT Oor RETURNS NULL ON NULL INPUT
isCachable

isCachable is an obsolete equivalent 4fIMUTABLE it's still accepted for backwards-
compatibility reasons.

Attribute names are not case-sensitive.

Notes

Refer to the chapter in thBostgreSQL Programmer’s Guidm the topic of extending PostgreSQL
via functions for further information on writing external functions.

The full SQL type syntax is allowed for input arguments and return value. However, some details
of the type specification (e.g., the precision field fomeric types) are the responsibility of the
underlying function implementation and are silently swallowed (i.e., not recognized or enforced) by
theCREATE FUNCTIOMOmmand.

PostgreSQL allows functionverloading that is, the same name can be used for several different
functions so long as they have distinct argument types. This facility must be used with caution for
internal and C-language functions, however.

Two internal  functions cannot have the same C name without causing errors at link time. To get
around that, give them different C names (for example, use the argument types as part of the C names),
then specify those names in the AS claus€REATE FUNCTIONTf the AS clause is left empty, then
CREATE FUNCTIOMSssumes the C name of the function is the same as the SQL name.

Similarly, when overloading SQL function names with multiple C-language functions, give each C-
language instance of the function a distinct name, then use the alternative formpsfdlaeise in the
CREATE FUNCTIONYyntax to select the appropriate C-language implementation of each overloaded
SQL function.

When repeate@REATE FUNCTIONalls refer to the same object file, the file is only loaded once. To
unload and reload the file (perhaps during development), udeQA® command.

UseDROP FUNCTIOND remove user-defined functions.

To update the definition of an existing function, (BREATE OR REPLACE FUNCTIONDte that it

is not possible to change the name or argument types of a function this way (if you tried, you'd just
be creating a new, distinct function). AISOREATE OR REPLACE FUNCTI@NI not let you change

the return type of an existing function. To do that, you must drop and re-create the function.



CREATE FUNCTION

If you drop and then re-create a function, the new function is not the same entity as the old; you will
break existing rules, views, triggers, etc that referred to the old functionCHEATE OR REPLACE
FUNCTIONto change a function definition without breaking objects that refer to the function.

To be able to define a function, the user must haveJheGEprivilege on the language.

By default, only the owner (creator) of the function has the right to execute it. Other users must be
granted th&EXECUTEprivilege on the function to be able to use it.

Examples

To create a simple SQL function:

CREATE FUNCTION one() RETURNS integer
AS 'SELECT 1 AS RESULT;
LANGUAGE SQL;

SELECT one() AS answer;
answer

The next example creates a C function by calling a routine from a user-created shared library named
funcs.so  (the extension may vary across platforms). The shared library file is sought in the server’s
dynamic library search path. This particular routine calculates a check digit and returns true if the
check digit in the function parameters is correct. It is intended for use in a CHECK constraint.

CREATE FUNCTION ean_checkdigit(char, char) RETURNS boolean
AS ’funcs’ LANGUAGE C;

CREATE TABLE product (
id char(8) PRIMARY KEY,
eanprefix char(8) CHECK (eanprefix ~ ’'[0-9]{2}-[0-9]{5})
REFERENCES brandname(ean_prefix),
eancode char(6) CHECK (eancode ~ '[0-9{6}),
CONSTRAINT ean CHECK (ean_checkdigit(eanprefix, eancode))

The next example creates a function that does type conversion from the user-defined type complex to
the built-in type point. The function is implemented by a dynamically loaded object that was compiled
from C source (we illustrate the now-deprecated alternative of specifying the absolute file name to the
shared object file). For PostgreSQL to find a type conversion function automatically, the SQL function
has to have the same name as the return type, and so overloading is unavoidable. The function name
is overloaded by using the second form of f&clause in the SQL definition:

CREATE FUNCTION point(complex) RETURNS point
AS ’'home/bernie/pgsql/lib/complex.so’, 'complex_to_point’
LANGUAGE C STRICT;

The C declaration of the function could be:

Point * complex_to_point (Complex *z)

{



CREATE FUNCTION
Point *p;

p = (Point *) palloc(sizeof(Point));
p->X = z->X;
p->y = z->y;

return p;

}

Note that the function is marked “strict”; this allows us to skip checking for NULL input in the
function body.

Compatibility

A CREATE FUNCTIONommand is defined in SQL99. The PostgreSQL version is similar but not
fully compatible. The attributes are not portable, neither are the different available languages.

See Also
DROP FUNCTION GRANT, LOAD, REVOKE createlangPostgreSQL Programmer’'s Guide



CREATE GROUP

Name
CREATE GROUPR— define a new user group

Synopsis

CREATE GROURame [ [ WITH ] optio

>
—

- 11
where option can be:

SYSID gid
| USER username [, ..]

Inputs

name
The name of the group.
gid
The SYSID clause can be used to choose the PostgreSQL group id of the new group. It is not
necessary to do so, however.
If this is not specified, the highest assigned group id plus one, starting at 1, will be used as default.
username

A list of users to include in the group. The users must already exist.

Outputs

CREATE GROUP

Message returned if the command completes successfully.

Description

CREATE GROUP will create a new group in the database installation. Refer #adiménistrator’s
Guidefor information about using groups for authentication. You must be a database superuser to use
this command.

UseALTER GROURo change a group’s membership, @ROP GROURo remove a group.



CREATE GROUP

Usage

Create an empty group:

CREATE GROUP staff;

Create a group with members:

CREATE GROUP marketing WITH USER jonathan, david;

Compatibility

SQL92
There is NaCREATE GROUstatement in SQL92. Roles are similar in concept to groups.



CREATE INDEX

Name
CREATE INDEX — define a new index

Synopsis

CREATE [ UNIQUE ] INDEX index_name ON table
[ USING acc_method ] ( column [ ops_name ][, ..])
[ WHERE predicate ]
CREATE [ UNIQUE ] INDEX index_name ON table
[ USING acc_method ] ( func_name ( column [, ... ]) [ ops_name ] )
[ WHERE predicate ]

Inputs

UNIQUE

Causes the system to check for duplicate values in the table when the index is created (if data
already exist) and each time data is added. Attempts to insert or update data which would result
in duplicate entries will generate an error.

index_name

The name of the index to be created. No schema name can be included here; the index is always
created in the same schema as its parent table.

table
The name (possibly schema-qualified) of the table to be indexed.

acc_method
The name of the access method to be used for the index. The default access mBirREHS

PostgreSQL provides four access methods for indexes:
BTREE
an implementation of Lehman-Yao high-concurrency B-trees.
RTREE
implements standard R-trees using Guttman’s quadratic split algorithm.
HASH
an implementation of Litwin’s linear hashing.
GIST

Generalized Index Search Trees.

column

The name of a column of the table.



CREATE INDEX

ops_name
An associated operator class. See below for details.
func_name
A function, which returns a value that can be indexed.
predicate

Defines the constraint expression for a partial index.

Outputs

CREATE INDEX
The message returned if the index is successfully created.
ERROR: Cannot create index: 'index_name’ already exists.

This error occurs if it is impossible to create the index.

Description

CREATE INDEXconstructs an indexdex _name on the specifiedable

Tip: Indexes are primarily used to enhance database performance. But inappropriate use will
result in slower performance.

In the first syntax shown above, the key field(s) for the index are specified as column names. Multiple
fields can be specified if the index access method supports multicolumn indexes.

In the second syntax shown above, an index is defined on the result of a user-specified function
func_name applied to one or more columns of a single table. THaeetional indexesan be used

to obtain fast access to data based on operators that would normally require some transformation to
apply them to the base data. For example, a functional indexer(col)  would allow the clause
WHERE upper(col) = 'JIM'  to use an index.

PostgreSQL provides B-tree, R-tree, hash, and GiST access methods for indexes. The B-tree access
method is an implementation of Lehman-Yao high-concurrency B-trees. The R-tree access method
implements standard R-trees using Guttman’s quadratic split algorithm. The hash access method is
an implementation of Litwin’s linear hashing. We mention the algorithms used solely to indicate that

all of these access methods are fully dynamic and do not have to be optimized periodically (as is the
case with, for example, static hash access methods).

When thewHERElause is present,@artial indexis created. A partial index is an index that contains
entries for only a portion of a table, usually a portion that is somehow more interesting than the rest
of the table. For example, if you have a table that contains both billed and unbilled orders where the



CREATE INDEX

unbilled orders take up a small fraction of the total table and yet that is an often used section, you can
improve performance by creating an index on just that portion. Another possible application is to use
WHERRvith UNIQUEto enforce uniqueness over a subset of a table.

The expression used in tieHERElIause may refer only to columns of the underlying table (but it can
use all columns, not only the one(s) being indexed). Presently, subqueries and aggregate expressions
are also forbidden iWVHERE

All functions and operators used in an index definition musintrmutable that is, their results must
depend only on their input arguments and never on any outside influence (such as the contents of
another table or the current time). This restriction ensures that the behavior of the index is well-
defined. To use a user-defined function in an index, remember to mark the function immutable when
you create it.

UseDROP INDEXto remove an index.

Notes

The PostgreSQL query optimizer will consider using a B-tree index whenever an indexed attribute is
involved in a comparison using one &f; <=, =, >=, >

The PostgreSQL query optimizer will consider using an R-tree index whenever an indexed attribute
is involved in a comparison using one ef<, &<, &>, >>, @, ~=, &&

The PostgreSQL query optimizer will consider using a hash index whenever an indexed attribute is
involved in a comparison using theoperator.

Testing has shown PostgreSQL's hash indexes to be similar or slower than B-tree indexes, and the
index size and build time for hash indexes is much worse. Hash indexes also suffer poor performance
under high concurrency. For these reasons, hash index use is discouraged.

Currently, only the B-tree and gist access methods support multicolumn indexes. Up to 32 keys may
be specified by default (this limit can be altered when building PostgreSQL). Only B-tree currently
supports unique indexes.

An operator classcan be specified for each column of an index. The operator class identifies the
operators to be used by the index for that column. For example, a B-tree index on four-byte integers
would use thent4_ops class; this operator class includes comparison functions for four-byte in-
tegers. In practice the default operator class for the field’s data type is usually sufficient. The main
point of having operator classes is that for some data types, there could be more than one meaningful
ordering. For example, we might want to sort a complex-number data type either by absolute value or
by real part. We could do this by defining two operator classes for the data type and then selecting the
proper class when making an index. There are also some operator classes with special purposes:

- The operator class&®x_ops andbigbox_ops both support R-tree indexes on thex data type.
The difference between them is thedbox_ops scales box coordinates down, to avoid floating-
point exceptions from doing multiplication, addition, and subtraction on very large floating-point
coordinates. (Note: this was true some time ago, but currently the two operator classes both use
floating point and are effectively identical.)

The following query shows all defined operator classes:

SELECT am.amname AS acc_method,
opc.opcname AS ops_name
FROM pg_am am, pg_opclass opc
WHERE opc.opcamid = am.oid
ORDER BY acc_method, ops_name;



Usage

To create a B-tree index on the figlte  in the tabl€efilms

CREATE UNIQUE INDEX title_idx
ON films (title);

Compatibility

SQL92
CREATE INDEX is a PostgreSQL language extension.
There is NaCREATE INDEXxcommand in SQL92.

CREATE INDEX



CREATE LANGUAGE

Name

CREATE LANGUAGE define a new procedural language

Synopsis

CREATE [ TRUSTED ] [ PROCEDURAL ] LANGUAGENgname
HANDLERCcall_handler [ VALIDATOR valfunction ]

Description

Using CREATE LANGUAGE PostgreSQL user can register a new procedural language with a Post-
greSQL database. Subsequently, functions and trigger procedures can be defined in this new language.
The user must have the PostgreSQL superuser privilege to register a new language.

CREATE LANGUAGE fectively associates the language name with a call handler that is responsible
for executing functions written in the language. Refer toRnegrammer’s Guiddor more informa-
tion about language call handlers.

Note that procedural languages are local to individual databases. To make a language available in all
databases by default, it should be installed intot¢heplatel  database.

Parameters

TRUSTED

TRUSTEDspecifies that the call handler for the language is safe, that is, it does not offer an un-
privileged user any functionality to bypass access restrictions. If this keyword is omitted when
registering the language, only users with the PostgreSQL superuser privilege can use this lan-
guage to create new functions.

PROCEDURAL
This is a noise word.
langname

The name of the new procedural language. The language name is case insensitive. A procedural
language cannot override one of the built-in languages of PostgreSQL.

For backward compatibility, the name may be enclosed by single quotes.
HANDLERcall_handler

call_handler is the name of a previously registered function that will be called to execute
the procedural language functions. The call handler for a procedural language must be written in
a compiled language such as C with version 1 call convention and registered with PostgreSQL as
a function taking no arguments and returning Hrgyuage_handler  type, a placeholder type

that is simply used to identify the function as a call handler.

VALIDATORvalfunction

valfunction is the name of a previously registered function that will be called when a new
function in the language is created, to validate the new function. If no validator function is spec-



CREATE LANGUAGE

ified, then a new function will not be checked when it is created. The validator function must
take one argument of typsid , which will be the OID of the to-be-created function, and will
typically returnvoid .

A validator function would typically inspect the function body for syntactical correctness, but it
can also look at other properties of the function, for example if the language cannot handle certain
argument types. To signal an error, the validator function should usgdy@ function. The

return value of the function is ignored.

Diagnostics

CREATE LANGUAGE

This message is returned if the language is successfully created.

ERROR: PL handler function funcname () doesn’t exist

This error is returned if the functidiuncname () is not found.

Notes

This command normally should not be executed directly by users. For the procedural languages sup-
plied in the PostgreSQL distribution, tiseeatelangscript should be used, which will also install the
correct call handlercteatelang ~ will call CREATE LANGUAGHternally.)

In PostgreSQL versions before 7.3, it was necessary to declare handler functions as returning the
placeholder typapaque , rather tharlanguage_handler . To support loading of old dump files,
CREATE LANGUAGHIll accept a function declared as returniogaque , but it will issue a NOTICE

and change the function’s declared return typatguage_handler

Use theCREATE FUNCTIONommand to create a new function.

UseDROP LANGUAGEor better yet th@roplangscript, to drop procedural languages.

The system catalogg_language records information about the currently installed procedural lan-
guages.

Table "pg_language"

Attribute [ Type | Modifier
+ +
lanname | name |
lanispl | boolean |

lanpltrusted | boolean |
lanplcallfoid | oid |
lanvalidator | oid |



CREATE LANGUAGE

lanacl | aclitem[] |
lanname | lanispl | lanpltrusted | lanplcallfoid | lanvalidator | lanacl
+ + + + +-
internal | f | f [ 0 | 2246 |
c | f | f [ 0| 2247 |
sql | f | t | 0 | 2248 | {=U}

At present, with the exception of the permissions, the definition of a procedural language cannot be
changed once it has been created.

To be able to use a procedural language, a user must be grantésitGeprivilege. Thecreatelang
program automatically grants permissions to everyone if the language is known to be trusted.

Examples

The following two commands executed in sequence will register a new procedural language and the
associated call handler.

CREATE FUNCTION plsample_call_handler () RETURNS language_handler
AS ’$libdir/plsample’
LANGUAGE C;

CREATE LANGUAGE plsample
HANDLER plsample_call_handler;

Compatibility

CREATE LANGUAGE a PostgreSQL extension.

History
TheCREATE LANGUAGIHMMand first appeared in PostgreSQL 6.3.

See Also

createlangCREATE FUNCTIONdroplang DROP LANGUAGEGRANT, REVOKE PostgreSQL
Programmer’s Guide



CREATE OPERATOR

Name

CREATE OPERATOR- define a new operator

Synopsis

CREATE OPERATORame ( PROCEDURE =func_name
[, LEFTARG = Ilefttype
] [ RIGHTARG = righttype ]
[, COMMUTATOR =com_op ] [, NEGATOR = neg_op ]
, RESTRICT = res_proc ] [, JOIN = join_proc ]
HASHES ] [, MERGES ]
SORT1 = left_sort_op ] [ SORT2 = right_sort_op ]
LTCMP = less_than_op ] [[ GTCMP = greater_than_op 1)

————

Inputs

name

The operator to be defined. See below for allowable characters. The name may be schema-
qualified, for exampl€REATE OPERATOR myschema.+ (...) .

func_name
The function used to implement this operator.
lefttype

The type of the left-hand argument of the operator, if any. This option would be omitted for a
left-unary operator.

righttype

The type of the right-hand argument of the operator, if any. This option would be omitted for a
right-unary operator.

com_op

The commutator of this operator.
neg_op

The negator of this operator.
res_proc

The restriction selectivity estimator function for this operator.
join_proc

The join selectivity estimator function for this operator.
HASHES

Indicates this operator can support a hash join.
MERGES

Indicates this operator can support a merge join.



CREATE OPERATOR

left_sort_op

If this operator can support a merge join, the less-than operator that sorts the left-hand data type
of this operator.

right_sort_op

If this operator can support a merge join, the less-than operator that sorts the right-hand data type
of this operator.

less_than_op

If this operator can support a merge join, the less-than operator that compares the input data
types of this operator.

greater_than_op

If this operator can support a merge join, the greater-than operator that compares the input data
types of this operator.

Outputs

CREATE OPERATOR

Message returned if the operator is successfully created.

Description

CREATE OPERATO®efines a new operataname. The user who defines an operator becomes its
owner.

If a schema name is given then the operator is created in the specified schema. Otherwise it is created
in the current schema (the one at the front of the search patigU$RRENT_SCHEMAY))

Two operators in the same schema can have the same name if they operate on different data types.
This is calledoverloading The system will attempt to pick the intended operator based on the actual
input data types when there is ambiguity.

The operatoname is a sequence of up (WAMEDATALEN (63 by default) characters from the fol-
lowing list:

+X <>~ 1@HEWBNE]'?S

There are a few restrictions on your choice of name:

« $ cannot be defined as a single-character operator, although it can be part of a multicharacter oper-
ator name.



CREATE OPERATOR

« - and/* cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

- A multicharacter operator name cannot end ior - , unless the name also contains at least one of
these characters:

~1@#NN&|'?S$

For example@-is an allowed operator name, but is not. This restriction allows PostgreSQL to
parse SQL-compliant queries without requiring spaces between tokens.

Note: When working with non-SQL-standard operator names, you will usually need to separate
adjacent operators with spaces to avoid ambiguity. For example, if you have defined a left-unary
operator named @ you cannot write X*@Y, you must write X* @Yto ensure that PostgreSQL reads
it as two operator names not one.

The operatot= is mapped te<> on input, so these two names are always equivalent.

At least one ofLEFTARGand RIGHTARGMust be defined. For binary operators, both should be de-
fined. For right unary operators, ornlffFTARGshould be defined, while for left unary operators only
RIGHTARGshould be defined.

Thefunc_name procedure must have been previously defined uUSRBATE FUNCTIONNd must
be defined to accept the correct number of arguments (either one or two) of the indicated types.

The commutator operator should be identified if one exists, so that PostgreSQL can reverse the order
of the operands if it wishes. For example, the operator area-less<hat, would probably have a
commutator operator, area-greater-tham,>. Hence, the query optimizer could freely convert:

box '((0,0), (1,1)y >>> MYBOXES.description

to

MYBOXES.description <<< box '((0,0), (1,1))

This allows the execution code to always use the latter representation and simplifies the query opti-
mizer somewhat.

Similarly, if there is a negator operator then it should be identified. Suppose that an operator, area-

equal, ===, exists, as well as an area not equal, !==. The negator link allows the query optimizer to
simplify

NOT MYBOXES.description === box ’((0,0), (1,1))
to

MYBOXES.description == box ’'((0,0), (1,1))



CREATE OPERATOR

If a commutator operator name is supplied, PostgreSQL searches for it in the catalog. If it is found
and it does not yet have a commutator itself, then the commutator’s entry is updated to have the newly
created operator as its commutator. This applies to the negator, as well. This is to allow the definition
of two operators that are the commutators or the negators of each other. The first operator should be
defined without a commutator or negator (as appropriate). When the second operator is defined, name
the first as the commutator or negator. The first will be updated as a side effect. (As of PostgreSQL
6.5 , it also works to just have both operators refer to each other.)

The HASHES MERGESSORT] SORT2 LTCMPR andGTCMPRoptions are present to support the query
optimizer in performing joins. PostgreSQL can always evaluate a join (i.e., processing a clause with
two tuple variables separated by an operator that retutimlaan ) by iterative substitution . In
addition, PostgreSQL can use a hash-join algorithm ; however, it must know whether this strategy is
applicable. The current hash-join algorithm is only correct for operators that represent equality tests;
furthermore, equality of the data type must mean bitwise equality of the representation of the type.
(For example, a data type that contains unused bits that don’t matter for equality tests could not be
hash-joined.) ThélASHESIag indicates to the query optimizer that a hash join may safely be used
with this operator.

Similarly, theMERGESlag indicates whether merge-sort is a usable join strategy for this operator. A
merge join requires that the two input data types have consistent orderings, and that the merge-join
operator behave like equality with respect to that ordering. For example, it is possible to merge-join
equality between an integer and a float variable by sorting both inputs in ordinary numeric order.
Execution of a merge join requires that the system be able to identify four operators related to the
merge-join equality operator: less-than comparison for the left input data type, less-than comparison
for the right input data type, less-than comparison between the two data types, and greater-than com-
parison between the two data types. It is possible to specify these by name,SB3RT& SORT2

LTCMPR andGTCMPoptions respectively. The system will fill in the default names<, <, > respec-

tively if any of these are omitted wheviERGESs specified. AISOMERGESwill be assumed to be
implied if any of these four operator options appear.

If other join strategies are found to be practical, PostgreSQL will change the optimizer and run-time
system to use them and will require additional specification when an operator is defined. Fortunately,
the research community invents new join strategies infrequently, and the added generality of user-
defined join strategies was not felt to be worth the complexity involved.

The RESTRICTandJOIN options assist the query optimizer in estimating result sizes. If a clause of
the form:

myboxes.description <<< box '((0,0), (1,1))

is present in the qualification, then PostgreSQL may have to estimate the fraction of the instances in
myboxes that satisfy the clause. The functiogs_proc must be a registered function (meaning it

is already defined usinQREATE FUNCTIONwhich accepts arguments of the correct data types and
returns a floating-point number. The query optimizer simply calls this function, passing the param-
eter((0,0), (1,1)) and multiplies the result by the relation size to get the expected number of
instances.

Similarly, when the operands of the operator both contain instance variables, the query optimizer
must estimate the size of the resulting join. The funcimn proc  will return another floating-

point number which will be multiplied by the cardinalities of the two tables involved to compute the
expected result size.

The difference between the function

my_procedure_1 (MYBOXES.description, box ’((0,0), (1,1)))



CREATE OPERATOR

and the operator

MYBOXES.description === box '((0,0), (1,1))'

is that PostgreSQL attempts to optimize operators and can decide to use an index to restrict the search
space when operators are involved. However, there is no attempt to optimize functions, and they are
performed by brute force. Moreover, functions can have any number of arguments while operators are
restricted to one or two.

Notes

Refer to the chapter on operators in PestgreSQL User’'s Guidr further information. Refer to
DROP OPERATQR delete user-defined operators from a database.

To give a schema-qualified operator name&am_op or the other optional arguments, use the-
ERATOR() syntax, for example

COMMUTATOR = OPERATOR(myschema.===) ,

Usage

The following command defines a new operator, area-equality, for the BOX data type:

CREATE OPERATOR ===
LEFTARG = box,
RIGHTARG = box,
PROCEDURE = area_equal_procedure,
COMMUTATOR = ===,
NEGATOR = !==,
RESTRICT = area_restriction_procedure,
JOIN = area_join_procedure,

HASHES,
SORT1 = <<,
SORT2 = <<<

-- Since sort operators were given, MERGES is implied.
-- LTCMP and GTCMP are assumed to be < and > respectively

Compatibility

SQL92
CREATE OPERATORa PostgreSQL extension. There iSCREATE OPERATGHatement in SQL92.



CREATE OPERATOR CLASS

Name
CREATE OPERATOR CLASS- define a new operator class for indexes

Synopsis

CREATE OPERATOR CLASfame [ DEFAULT ] FOR TYPE data_type USING access_method AS
{ OPERATORSstrategy_number operator_id [ ( type, type ) ][ RECHECK ]
| FUNCTION support_number func_name ( parameter_types )
| STORAGE storage_type
Lo

Inputs

name
The name of the operator class to be created. The name may be schema-qualified.
DEFAULT

If present, the operator class will become the default index operator class for its data type. At
most one operator class can be the default for a specific data type and access method.

data_type

The column data type that this operator class is for.
access_method

The name of the index access method this operator class is for.
strategy_number

The index access method’s strategy number for an operator associated with the operator class.
operator_id

The identifier (optionally schema-qualified) of an operator associated with the operator class.
type

The input data type(s) of an operator, MONEto signify a left-unary or right-unary operator.

The input data types may be omitted in the normal case where they are the same as the operator
class’s data type.

RECHECK

If present, the index is “lossy” for this operator, and so the tuples retrieved using the index must
be rechecked to verify that they actually satisfy the qualification clause involving this operator.

support_number

The index access method'’s support procedure number for a function associated with the operator
class.

func_name

The name (optionally schema-qualified) of a function that is an index access method support
procedure for the operator class.



CREATE OPERATOR CLASS

parameter_types
The parameter data type(s) of the function.
storage_type

The data type actually stored in the index. Normally this is the same as the column data type,
but some index access methods (only GIST at this writing) allow it to be differentSTORAGE
clause must be omitted unless the index access method allows a different type to be used.

Outputs

CREATE OPERATOR CLASS

Message returned if the operator class is successfully created.

Description
CREATE OPERATOR CLAgdsfines a new operator classme.

An operator class defines how a particular data type can be used with an index. The operator class
specifies that certain operators will fill particular roles or “strategies” for this data type and this access
method. The operator class also specifies the support procedures to be used by the index access method
when the operator class is selected for an index column. All the operators and functions used by an
operator class must be defined before the operator class is created.

If a schema name is given then the operator class is created in the specified schema. Otherwise it is
created in the current schema (the one at the front of the search pa@yRBENT_SCHEMA)) Two

operator classes in the same schema can have the same name only if they are for different index access
methods.

The user who defines an operator class becomes its owner. Presently, the creating user must be a
superuser. (This restriction is made because an erroneous operator class definition could confuse or
even crash the server.)

CREATE OPERATOR CLASI®es not presently check whether the class definition includes all the
operators and functions required by the index access method. It is the user’s responsibility to define a
valid operator class.

Refer to the chapter on interfacing extensions to indexes iRtisggreSQL Programmer’s Guider
further information.

Notes
Refer toDROP OPERATOR CLASS delete user-defined operator classes from a database.



CREATE OPERATOR CLASS

Usage

The following example command defines a GiST index operator class for dataitype (array of
int4). Seecontrib/intarray/ for the complete example.

CREATE OPERATOR CLASS gist__int_ops
DEFAULT FOR TYPE _int4 USING gist AS

OPERATOR 3 &&,
OPERATOR 6 = RECHECK,
OPERATOR 7 @,
OPERATOR 8 ~,
OPERATOR 20 @@ (Lint4, query_int),
FUNCTION 1 g_int_consistent (internal, _int4, int4),
FUNCTION 2 g_int_union (bytea, internal),
FUNCTION 3 g_int_compress (internal),
FUNCTION 4 g_int_decompress (internal),
FUNCTION 5 g_int_penalty (internal, internal, internal),
FUNCTION 6 g_int_picksplit (internal, internal),

7

FUNCTION g_int_same (_int4, _int4, internal);

The OPERATORFUNCTION andSTORAGElauses may appear in any order.

Compatibility

SQL92

CREATE OPERATOR CLASS a PostgreSQL extension. There is @GREATE OPERATOR CLASS
statement in SQL92.



CREATE RULE

Name

CREATE RULE— define a new rewrite rule

Synopsis

CREATE [ OR REPLACE ] RULEhame AS ONevent
TO table [ WHERE condition ]
DO [ INSTEAD ] action

where action can be:

NOTHING

| query
| ( query ; query ..)

Inputs

name

The name of a rule to create. This must be distinct from the name of any other rule for the same
table.

event

Event is one oBELECT, UPDATE DELETEOr INSERT.
table

The name (optionally schema-qualified) of the table or view the rule applies to.
condition

Any SQL conditional expression (returnibgolean ). The condition expression may not refer
to any tables excepiew andold , and may not contain aggregate functions.

query

The query or queries making up tlaetion can be any SQLSELECT INSERT, UPDATE
DELETE or NOTIFY statement.

Within thecondition ~ andaction , the special table namesw andold may be used to refer to
values in the referenced tabtew is valid in ON INSERT and ON UPDATE rules to refer to the new
row being inserted or updatedd is valid in ON UPDATE and ON DELETE rules to refer to the
existing row being updated or deleted.

Outputs

CREATE RULE

Message returned if the rule is successfully created.



CREATE RULE

Description

CREATE RULElefines a new rule applying to a specified table or vVie(REATE OR REPLACE RULE
will either create a new rule, or replace an existing rule of the same name for the same table.

The PostgreSQlrule systemallows one to define an alternate action to be performed on inserts,
updates, or deletions from database tables. Rules are used to implement table views as well.

The semantics of a rule is that at the time an individual instance (row) is accessed, inserted, updated,
or deleted, there is an old instance (for selects, updates and deletes) and a new instance (for inserts and
updates). All the rules for the given event type and the given target table are examined successively (in
order by name). If theondition  specified in the WHERE clause (if any) is true, detion  part

of the rule is executed. Thaction is done instead of the original query if INSTEAD is specified;
otherwise it is done after the original query in the case of ON INSERT, or before the original query in
the case of ON UPDATE or ON DELETE. Within both thendition =~ andaction , values from

fields in the old instance and/or the new instance are substituteddforattribute-name and

new. attribute-name

Theaction part of the rule can consist of one or more queries. To write multiple queries, surround
them with parentheses. Such queries will be performed in the specified ordexcfidve can also

be NOTHING indicating no action. Thus, a DO INSTEAD NOTHING rule suppresses the original
query from executing (when its condition is true); a DO NOTHING rule is useless.

Theaction part of the rule executes with the same command and transaction identifier as the user
command that caused activation.

It is important to realize that a rule is really a query transformation mechanism, or query macro. The

entire query is processed to convert it into a series of queries that include the rule actions. This occurs
before evaluation of the query starts. So, conditional rules are handled by adding the rule condition
to the WHERE clause of the action(s) derived from the rule. The above description of a rule as an

operation that executes for each row is thus somewhat misleading. If you actually want an operation
that fires independently for each physical row, you probably want to use a trigger not a rule. Rules are
most useful for situations that call for transforming entire queries independently of the specific data

being handled.

Rules and Views

Presently, ON SELECT rules must be unconditional INSTEAD rules and must have actions that
consist of a single SELECT query. Thus, an ON SELECT rule effectively turns the table into a view,
whose visible contents are the rows returned by the rule’s SELECT query rather than whatever had
been stored in the table (if anything). It is considered better style to write a CREATE VIEW command
than to create a real table and define an ON SELECT rule for it.

CREATE VIEWtreates a dummy table (with no underlying storage) and associates an ON SELECT
rule with it. The system will not allow updates to the view, since it knows there is no real table there.
You can create the illusion of an updatable view by defining ON INSERT, ON UPDATE, and ON
DELETE rules (or any subset of those that's sufficient for your purposes) to replace update actions on
the view with appropriate updates on other tables.

There is a catch if you try to use conditional rules for view updates: tmergtbe an unconditional
INSTEAD rule for each action you wish to allow on the view. If the rule is conditional, or is not



CREATE RULE

INSTEAD, then the system will still reject attempts to perform the update action, because it thinks it
might end up trying to perform the action on the dummy table in some cases. If you want to handle
all the useful cases in conditional rules, you can; just add an unconditional DO INSTEAD NOTHING
rule to ensure that the system understands it will never be called on to update the dummy table.
Then make the conditional rules non-INSTEAD; in the cases where they fire, they add to the default
INSTEAD NOTHING action.

Notes

You must have rule definition access to a table in order to define a rule on iIGRSETAaNdREVOKE
to change permissions.

Itis very important to take care to avoid circular rules. For example, though each of the following two
rule definitions are accepted by PostgreSQL, the select command will cause PostgreSQL to report an
error because the query cycled too many times:

CREATE RULE "_RETURN" AS
ON SELECT TO emp
DO INSTEAD

SELECT * FROM toyemp;

CREATE RULE " _RETURN" AS
ON SELECT TO toyemp
DO INSTEAD

SELECT * FROM emp;

This attempt to select frolEMPwill cause PostgreSQL to issue an error because the queries cycled
too many times:

SELECT * FROM emp;

Presently, if a rule contains a NOTIFY query, the NOTIFY will be executed unconditionally --- that is,
the NOTIFY will be issued even if there are not any rows that the rule should apply to. For example,
in

CREATE RULE notify_me AS ON UPDATE TO mytable DO NOTIFY mytable;

UPDATE mytable SET name = 'foo’ WHERE id = 42;

one NOTIFY event will be sent during the UPDATE, whether or not there are any rows with id = 42.
This is an implementation restriction that may be fixed in future releases.

Compatibility

SQL92
CREATE RULBEs a PostgreSQL language extension. There iSRBATE RULBtatementin SQL92.



CREATE SCHEMA

Name
CREATE SCHEMA— define a new schema

Synopsis

CREATE SCHEMAchemaname [ AUTHORIZATION username ] [ schema_element [ ... ] ]
CREATE SCHEMA AUTHORIZATIOMername [ schema_element [ ... ] ]

Inputs

schemaname
The name of a schema to be created. If this is omitted, the user name is used as the schema name.

username

The name of the user who will own the schema. If omitted, defaults to the user executing the
command. Only superusers may create schemas owned by users other than themselves.

schema_element

An SQL statement defining an object to be created within the schema. CurrenthGRBNTE
TABLE, CREATE VIEWandGRANTare accepted as clauses witRiREATE SCHEM®ther kinds
of objects may be created in separate commands after the schema is created.

Outputs

CREATE SCHEMA
Message returned if the command is successful.
ERROR: namespace "schemaname" already exists

If the schema specified already exists.

Description

CREATE SCHEMWill enter a new schema into the current database. The schema name must be dis-
tinct from the name of any existing schema in the current database.

A schema is essentially a namespace: it contains named objects (tables, data types, functions, and
operators) whose names may duplicate those of other objects existing in other schemas. Named ob-
jects are accessed either by “qualifying” their names with the schema name as a prefix, or by setting a



CREATE SCHEMA
search path that includes the desired schema(s). Unqualified objects are created in the current schema
(the one at the front of the search path; S RRENT_SCHEMAY)

Optionally, CREATE SCHEMzan include subcommands to create objects within the new schema. The
subcommands are treated essentially the same as separate commands issued after creating the schema,
except that if the\UTHORIZATIONclause is used, all the created objects will be owned by that user.

Notes

To create a schema, the invoking user must IGREATBprivilege for the current database. (Of course,
superusers bypass this check.)

UseDROP SCHEMA remove a schema.

Examples

Create a schema:

CREATE SCHEMA myschema;

Create a schema for ugee --- the schema will also be namgz :

CREATE SCHEMA AUTHORIZATION joe;

Create a schema and create a table and view within it:

CREATE SCHEMA hollywood
CREATE TABLE films (title text, release date, awards text[])
CREATE VIEW winners AS
SELECT title, release FROM films WHERE awards IS NOT NULL;

Notice that the individual subcommands do not end with semicolons.

The following is an equivalent way of accomplishing the same result:

CREATE SCHEMA hollywood;
CREATE TABLE hollywood.films (title text, release date, awards text[]);
CREATE VIEW hollywood.winners AS
SELECT title, release FROM hollywood.flms WHERE awards IS NOT NULL;

Compatibility

SQL92

SQL92 allows aDEFAULT CHARACTER SEfause inCREATE SCHEMAs well as more subcom-
mand types than are presently accepted by PostgreSQL.



CREATE SCHEMA

SQL92 specifies that the subcommand<REATE SCHEMway appear in any order. The present
PostgreSQL implementation does not handle all cases of forward references in subcommands; it may
sometimes be necessary to reorder the subcommands to avoid forward references.

In SQL92, the owner of a schema always owns all objects within it. PostgreSQL allows schemas to
contain objects owned by users other than the schema owner. This can happen only if the schema
owner grantCREATEights on his schema to someone else.



CREATE SEQUENCE

Name

CREATE SEQUENCE- define a new sequence generator

Synopsis

CREATE [ TEMPORARY | TEMP ] SEQUENGEqgname [ INCREMENT increment ]
[ MINVALUE minvalue ] [ MAXVALUE maxvalue |
[ START start ] [ CACHE cache ] [ CYCLE ]

Inputs

TEMPORARY or TEMP

If specified, the sequence object is created only for this session, and is automatically dropped on
session exit. Existing permanent sequences with the same name are not visible (in this session)
while the temporary sequence exists, unless they are referenced with schema-qualified names.

segname
The name (optionally schema-qualified) of a sequence to be created.
increment

The INCREMENTincrement  clause is optional. A positive value will make an ascending se-
guence, a negative one a descending sequence. The default value is one (1).

minvalue

The optional claus®INVALUE minvalue determines the minimum value a sequence can gen-
erate. The defaults are 1 and -2"63-1 for ascending and descending sequences, respectively.

maxvalue

The optional clausAXVALUEmaxvalue determines the maximum value for the sequence.
The defaults are 2763-1 and -1 for ascending and descending sequences, respectively.

start

The optionalSTART start  clause enables the sequence to begin anywhere. The default start-
ing value isminvalue for ascending sequences andxvalue for descending ones.

cache

The CACHEcache option enables sequence numbers to be preallocated and stored in memory
for faster access. The minimum value is 1 (only one value can be generated at a time, i.e., no
cache) and this is also the default.

CYCLE

The optional CYCLE keyword may be used to enable the sequence to wrap around when the
maxvalue or minvalue has been reached by an ascending or descending sequence respec-
tively. If the limit is reached, the next number generated will bertfievalue  or maxvalue ,
respectively. Without CYCLE, after the limit is reachesktval calls will return an error.



CREATE SEQUENCE

Outputs

CREATE SEQUENCE
Message returned if the command is successful.

ERROR: Relation ' segname’ already exists
If the sequence specified already exists.

ERROR: DefineSequence: MINVALUE ( start ) can't be >= MAXVALUE ( max)
If the specified starting value is out of range.

ERROR: DefineSequence: START value ( start ) can’'t be < MINVALUE (  min)
If the specified starting value is out of range.

ERROR: DefineSequence: MINVALUE ( min) can't be >= MAXVALUE ( max)

If the minimum and maximum values are inconsistent.

Description

CREATE SEQUENGHIll enter a new sequence number generator into the current database. This in-
volves creating and initializing a new single-row table with the naegname. The generator will
be owned by the user issuing the command.

If a schema name is given then the sequence is created in the specified schema. Otherwise it is created
in the current schema (the one at the front of the search pathlCWR®ENT_SCHEMA)) TEMP
sequences exist in a special schema, so a schema name may not be given when creating a TEMP
sequence. The sequence name must be distinct from the name of any other sequence, table, index, or
view in the same schema.

After a sequence is created, you use the functi@sssal , currval andsetval to operate on the
sequence. These functions are documented iVeg’'s Guide

Although you cannot update a sequence directly, you can use a query like

SELECT * FROMsegname;

to examine the parameters and current state of a sequence. In particulast thetue  field of
the sequence shows the last value allocated by any backend process. (Of course, this value may be
obsolete by the time it's printed, if other processes are actively dairgal calls.)



CREATE SEQUENCE

Caution

Unexpected results may be obtained if a cache setting greater than one is
used for a sequence object that will be used concurrently by multiple backends.
Each backend will allocate and cache successive sequence values during one
access to the sequence object and increase the sequence object’s last_value
accordingly. Then, the next cache -1 uses of nextval  within that backend sim-
ply return the preallocated values without touching the shared object. So, any
numbers allocated but not used within a session will be lost when that session
ends. Furthermore, although multiple backends are guaranteed to allocate dis-
tinct sequence values, the values may be generated out of sequence when all
the backends are considered. (For example, with a cache setting of 10, back-
end A might reserve values 1..10 and return nextval =1, then backend B might
reserve values 11..20 and return nextval =11 before backend A has gener-
ated nextval =2.) Thus, with a cache setting of one it is safe to assume that
nextval values are generated sequentially; with a cache setting greater than
one you should only assume that the nextval values are all distinct, not that
they are generated purely sequentially. Also, last_value  will reflect the latest
value reserved by any backend, whether or not it has yet been returned by
nextval . Another consideration is that a setval executed on such a sequence
will not be noticed by other backends until they have used up any preallocated
values they have cached.

Notes
UseDROP SEQUENG& remove a sequence.

Sequences are based laigint  arithmetic, so the range cannot exceed the range of an eight-byte
integer (-9223372036854775808 to 9223372036854775807). On some older platforms, there may be
no compiler support for eight-byte integers, in which case sequences use ieggkar arithmetic

(range -2147483648 to +2147483647).

Whencache is greater than one, each backend uses its own cache to store preallocated numbers.
Numbers that are cached but not used in the current session will be lost, resulting in “holes” in the
sequence.

Usage

Create an ascending sequence caldlethl |, starting at 101

CREATE SEQUENCE serial START 101;

Select the next number from this sequence:

SELECT nextval(’serial’);

nextval

Use this sequence in an INSERT:



CREATE SEQUENCE

INSERT INTO distributors VALUES (nextval('serial’), 'nothing’);

Update the sequence value after a COPY FROM:

BEGIN;

COPY distributors FROM ’input_file’;

SELECT setval('serial’, max(id)) FROM distributors;
END;

Compatibility

SQL92

CREATE SEQUENGE& a PostgreSQL language extension. There iSREATE SEQUENGEatement
in SQL92.



CREATE TABLE

Name

CREATE TABLE— define a new table

Synopsis
CREATE [ [ LOCAL ] { TEMPORARY | TEMP } ] TABLE table_name (
{ column_name data_type [ DEFAULT default_expr ] [ column_constraint [ .11
| table_constraint YL ]
)
[ INHERITS ( parent_table [[ .- 1)1

[ WITH OIDS | WITHOUT OIDS ]
where column_constraint is:
[ CONSTRAINT constraint_name ]

{ NOT NULL | NULL | UNIQUE | PRIMARY KEY |
CHECK expression ) |

REFERENCESeftable [ ( refcoumn )] [ MATCH FULL | MATCH PARTIAL ]
[ ON DELETE action ] [ ON UPDATE action ]}
[ DEFERRABLE | NOT DEFERRABLE ] [ INITIALLY DEFERRED | INITIALLY IMMEDI-
ATE ]
and table_constraint is:

[ CONSTRAINT constraint_name ]

{ UNIQUE ( column_name [, ... 1) |
PRIMARY KEY (column_name [, ... ] ) |
CHECK ( expression ) |

FOREIGN KEY (column_name [, ... ] ) REFERENCES reftable [ ( refcolumn [, ... ]) ]
[ MATCH FULL | MATCH PARTIAL ] [ ON DELETEaction ] [ ON UPDATE ac-
tion 1}
[ DEFERRABLE | NOT DEFERRABLE ] [ INITIALLY DEFERRED | INITIALLY IMMEDI-
ATE ]
Description

CREATE TABLEwWiIll create a new, initially empty table in the current database. The table will be
owned by the user issuing the command.

If a schema name is given (for exampGREATE TABLE myschema.mytable ... ) then the table

is created in the specified schema. Otherwise it is created in the current schema (the one at the front
of the search path; se&URRENT_SCHEMA)) TEMP tables exist in a special schema, so a schema
name may not be given when creating a TEMP table. The table name must be distinct from the name
of any other table, sequence, index, or view in the same schema.

CREATE TABLElso automatically creates a data type that represents the tuple type (structure type)
corresponding to one row of the table. Therefore, tables cannot have the same name as any existing
data type in the same schema.

A table cannot have more than 1600 columns. (In practice, the effective limit is lower because of
tuple-length constraints).



CREATE TABLE

The optional constraint clauses specify constraints (or tests) that new or updated rows must satisfy
for an insert or update operation to succeed. A constraint is a named rule: an SQL object which

helps define valid sets of values by putting limits on the results of insert, update, or delete operations
performed on a table.

There are two ways to define constraints: table constraints and column constraints. A column con-
straint is defined as part of a column definition. A table constraint definition is not tied to a particular
column, and it can encompass more than one column. Every column constraint can also be written as
a table constraint; a column constraint is only a notational convenience if the constraint only affects
one column.

Parameters

[LOCAL] TEMPORARYOr [LOCAL] TEMP

If specified, the table is created as a temporary table. Temporary tables are automatically dropped
at the end of a session. Existing permanent tables with the same name are not visible to the
current session while the temporary table exists, unless they are referenced with schema-qualified
names. Any indexes created on a temporary table are automatically temporary as well.

TheLOCALword is optional. But see und€ompatibility,
table_name

The name (optionally schema-qualified) of the table to be created.
column_name

The name of a column to be created in the new table.
data_type

The data type of the column. This may include array specifiers. Refer todbes Guidefor
further information about data types and arrays.

DEFAULT default_expr

The DEFAULTclause assigns a default data value for the column whose column definition it
appears within. The value is any variable-free expression (subselects and cross-references to
other columns in the current table are not allowed). The data type of the default expression must
match the data type of the column.

The default expression will be used in any insert operation that does not specify a value for the
column. If there is no default for a column, then the default is NULL.

INHERITS ( parent_table [ .. 1)

The optionalNHERITS clause specifies a list of tables from which the new table automatically
inherits all columns. If the same column name exists in more than one parent table, an error
is reported unless the data types of the columns match in each of the parent tables. If there is
no conflict, then the duplicate columns are merged to form a single column in the new table.
If the column name list of the new table contains a column that is also inherited, the data type
must likewise match the inherited column(s), and the column definitions are merged into one.
However, inherited and new column declarations of the same name need not specify identical
constraints: all constraints provided from any declaration are merged together and all are applied
to the new table. If the new table explicitly specifies a default value for the column, this default
overrides any defaults from inherited declarations of the column. Otherwise, any parents that
specify default values for the column must all specify the same default, or an error will be
reported.



CREATE TABLE

WITH OIDSor WITHOUT OIDS

This optional clause specifies whether rows of the new table should have OIDs (object identifiers)
assigned to them. The default is to have OIDs. (If the new table inherits from any tables that have
OIDs, thenwITH OIDSis forced even if the command say8THOUT OIDS)

SpecifyingWITHOUT OIlDSallows the user to suppress generation of OIDs for rows of a table.
This may be worthwhile for large tables, since it will reduce OID consumption and thereby
postpone wraparound of the 32-bit OID counter. Once the counter wraps around, uniqueness of
OIDs can no longer be assumed, which considerably reduces their usefulness.

CONSTRAINT constraint_name

An optional name for a column or table constraint. If not specified, the system generates a name.
NOT NULL

The column is not allowed to contain NULL values.
NULL
The column is allowed to contain NULL values. This is the default.

This clause is only available for compatibility with non-standard SQL databases. Its use is dis-
couraged in new applications.

UNIQUE(column constraint)
UNIQUE ( column_name [, ... ]) (table constraint)

The UNIQUEconstraint specifies a rule that a group of one or more distinct columns of a table
may contain only unique values. The behavior of the unique table constraint is the same as that
for column constraints, with the additional capability to span multiple columns.

For the purpose of a unique constraint, NULL values are not considered equal.

Each unique table constraint must name a set of columns that is different from the set of columns
named by any other unique or primary key constraint defined for the table. (Otherwise it would
just be the same constraint listed twice.)

PRIMARY KEY(column constraint)
PRIMARY KEY (column_name [, ... ]) (table constraint)

The primary key constraint specifies that a column or columns of a table may contain only
unique (non-duplicate), non-NULL values. TechnicaflRIMARY KEYs merely a combination

of UNIQUEandNOT NULL but identifying a set of columns as primary key also provides meta-
data about the design of the schema, as a primary key implies that other tables may rely on this
set of columns as a unique identifier for rows.

Only one primary key can be specified for a table, whether as a column constraint or a table
constraint.

The primary key constraint should name a set of columns that is different from other sets of
columns named by any unique constraint defined for the same table.

CHECK gxpression )

CHECKclauses specify integrity constraints or tests which new or updated rows must satisfy for
an insert or update operation to succeed. Each constraint must be an expression producing a
Boolean result. A condition appearing within a column definition should reference that column’s
value only, while a condition appearing as a table constraint may reference multiple columns.

Currently, CHECKexpressions cannot contain subselects nor refer to variables other than columns
of the current row.



CREATE TABLE

REFERENCESeftable [ ¢ refcolumn ) ][ MATCH matchtype ] [ ON DELETE

acton ] [ ON UPDATE action ] (column constraint)

FOREIGN KEY (column [, ... ] ) REFERENCES reftable [ ( refcolumn [, ..

1)1 [ MATCH matchtype ] [ ON DELETE action ][ ON UPDATE action ] (table

constraint)

The REFERENCE®olumn constraint specifies that a group of one or more columns of the new
table must only contain values which match against values in the referenced coluefn(s)
column of the referenced tableftable . If refcolumn is omitted, the primary key of the
reftable is used. The referenced columns must be the columns of a unique or primary key
constraint in the referenced table.

A value added to these columns is matched against the values of the referenced table and refer-
enced columns using the given match type. There are three match WAeSH FULLMATCH
PARTIAL, and a default match type if none is specifigshTCH FULIwill not allow one column

of a multicolumn foreign key to be NULL unless all foreign key columns are NULL. The default
match type allows some foreign key columns to be NULL while other parts of the foreign key
are not NULL.MATCH PARTIALS not yet implemented.

In addition, when the data in the referenced columns is changed, certain actions are performed
on the data in this table’s columns. Th&l DELETEclause specifies the action to do when a
referenced row in the referenced table is being deleted. Likewis@Nh8PDATElause specifies

the action to perform when a referenced column in the referenced table is being updated to a new
value. If the row is updated, but the referenced column is not actually changed, no action is done.
There are the following possible actions for each clause:

NO ACTION

Produce an error indicating that the deletion or update would create a foreign key constraint
violation. This is the default action.

RESTRICT
Same aplO ACTION
CASCADE

Delete any rows referencing the deleted row, or update the value of the referencing column
to the new value of the referenced column, respectively.

SET NULL
Set the referencing column values to NULL.
SET DEFAULT

Set the referencing column values to their default value.

If primary key column is updated frequently, it may be wise to add an index tREFERENCES
column so thaNO ACTIONandCASCADEctions associated with tlHREFERENCE®olumn can
be more efficiently performed.

DEFERRABLBr NOT DEFERRABLE

This controls whether the constraint can be deferred. A constraint that is not deferrable will
be checked immediately after every command. Checking of constraints that are deferrable may
be postponed until the end of the transaction (using3B& CONSTRAINT&mMmand)NOT



CREATE TABLE

DEFERRABLEHs the default. Only foreign key constraints currently accept this clause. All other
constraint types are not deferrable.

INITIALLY IMMEDIATE or INITIALLY DEFERRED

If a constraint is deferrable, this clause specifies the default time to check the constraint. If the
constraint iSNITIALLY IMMEDIATE , it is checked after each statement. This is the default. If
the constraint iSNITIALLY DEFERRED, it is checked only at the end of the transaction. The
constraint check time can be altered with 8T CONSTRAINT&mmand.

Diagnostics

CREATE TABLE

Message returned if table is successfully created.

ERROR

Message returned if table creation failed. This is usually accompanied by some descriptive text,
such asERROR: Relation ' table ' already exists , which occurs at run time if the table
specified already exists in the database.

Notes

- Whenever an application makes use of OIDs to identify specific rows of a table, it is recommended
to create a unique constraint on thie¢ column of that table, to ensure that OIDs in the table will
indeed uniquely identify rows even after counter wraparound. Avoid assuming that OIDs are unique
across tables; if you need a database-wide unique identifier, use the combinadidacdd and
row OID for the purpose. (It is likely that future PostgreSQL releases will use a separate OID
counter for each table, so that it will beecessarynot optional, to includeableoid to have a
unigue identifier database-wide.)

Tip: The use of WITHOUT 0IDSs not recommended for tables with no primary key, since without
either an OID or a unique data key, it is difficult to identify specific rows.

« PostgreSQL automatically creates an index for each unique constraint and primary key constraint
to enforce the uniqueness. Thus, it is not necessary to create an explicit index for primary key
columns. (Se€REATE INDEXor more information.)



CREATE TABLE

« The SQL92 standard says tf@ECKcolumn constraints may only refer to the column they apply
to; only CHECKable constraints may refer to multiple columns. PostgreSQL does not enforce this

restriction; it treats column and table check constraints alike.

« Unique constraints and primary keys are not inherited in the current implementation. This makes
the combination of inheritance and unigue constraints rather dysfunctional.

Examples

Create tabléiims and tabledistributors

CREATE TABLE films (

code CHARACTER(5) CONSTRAINT firstkey PRIMARY KEY,
title CHARACTER VARYING(40) NOT NULL,

did DECIMAL(3) NOT NULL,

date_prod DATE,

kind CHAR(10),

len INTERVAL HOUR TO MINUTE

);

CREATE TABLE distributors (

did DECIMAL(3) PRIMARY KEY DEFAULT NEXTVAL('serial’),

name  VARCHAR(40) NOT NULL CHECK (name<> ")

Create a table with a 2-dimensional array:

CREATE TABLE array (
vector INT[][]
)i

Define a unique table constraint for the table films. Unique table constraints can be defined on one or

more columns of the table:

CREATE TABLE films (

code CHAR(5),

title VARCHAR(40),

did DECIMAL(3),

date_prod DATE,

kind VARCHAR(10),

len INTERVAL HOUR TO MINUTE,

CONSTRAINT production UNIQUE(date_prod)

Define a check column constraint:

CREATE TABLE distributors (
did DECIMAL(3) CHECK (did > 100),
name VARCHAR(40)



CREATE TABLE

Define a check table constraint:

CREATE TABLE distributors (
did DECIMAL(3),
name VARCHAR(40)
CONSTRAINT conl CHECK (did > 100 AND name <> ")

Define a primary key table constraint for the tafites . Primary key table constraints can be defined
on one or more columns of the table.

CREATE TABLE films (

code CHAR(5),

title VARCHAR(40),

did DECIMAL(3),

date_prod DATE,

kind VARCHAR(10),

len INTERVAL HOUR TO MINUTE,

CONSTRAINT code_title PRIMARY KEY/(code,title)

Define a primary key constraint for takl&tributors . The following two examples are equivalent,
the first using the table constraint syntax, the second the column constraint notation.

CREATE TABLE distributors (
did DECIMAL(3),
name  CHAR VARYING(40),
PRIMARY KEY(did)

);

CREATE TABLE distributors (
did DECIMAL(3) PRIMARY KEY,
name VARCHAR(40)

This assigns a literal constant default value for the colmame, and arranges for the default value
of columndid to be generated by selecting the next value of a sequence object. The default value of
modtime will be the time at which the row is inserted.

CREATE TABLE distributors (
name VARCHAR(40) DEFAULT ’luso films’,
did INTEGER DEFAULT NEXTVAL(distributors_serial’),
modtime  TIMESTAMP DEFAULT CURRENT_TIMESTAMP

Define twoNOT NULLcolumn constraints on the tabdistributors , one of which is explicitly
given a name:

CREATE TABLE distributors (
did DECIMAL(3) CONSTRAINT no_null NOT NULL,
name VARCHAR(40) NOT NULL



CREATE TABLE

Define a unique constraint for tlame column:

CREATE TABLE distributors (
did DECIMAL(3),
name VARCHAR(40) UNIQUE

);
The above is equivalent to the following specified as a table constraint:

CREATE TABLE distributors (
did DECIMAL(3),
name VARCHAR(40),
UNIQUE(name)

Compatibility

The CREATE TABLEconforms to SQL92 Intermediate and to a subset of SQL99, with exceptions
listed below and in the descriptions above.

Temporary Tables

In addition to the local temporary table, SQL92 also defineREATE GLOBAL TEMPORARY TABLE
statement. Global temporary tables are also visible to other sessions.

For temporary tables, there is an optiog&l COMMITlause:

CREATE { GLOBAL | LOCAL } TEMPORARY TABLEble ( .. ) [ ON COMMIT { DELETE | PRE-
SERVE } ROWS ]

TheON COMMITlause specifies whether or not the temporary table should be emptied of rows when-
ever COMMITis executed. If theON COMMITlause is omitted, SQL92 specifies that the default is
ON COMMIT DELETE ROW®Bwever, the behavior of PostgreSQL is always {iké¢ COMMIT PRE-
SERVE ROWS

NULL “Constraint”

The NULL “constraint” (actually a non-constraint) is a PostgreSQL extension to SQL92 that is in-
cluded for compatibility with some other RDBMS (and for symmetry withti@ NULLconstraint).
Since it is the default for any column, its presence is simply noise.

Assertions

An assertion is a special type of integrity constraint and shares the same namespace as other con-
straints. However, an assertion is not necessarily dependent on one particular table as constraints are,
S0 SQL92 provides theREATE ASSERTIONtatement as an alternate method for defining a con-
straint:

CREATE ASSERTIOName CHECK ( condition )



CREATE TABLE

PostgreSQL does not implement assertions at present.

Inheritance

Multiple inheritance via théNHERITS clause is a PostgreSQL language extension. SQL99 (but not
SQL92) defines single inheritance using a different syntax and different semantics. SQL99-style in-
heritance is not yet supported by PostgreSQL.

Object IDs
The PostgreSQL concept of OIDs is not standard.

See Also
ALTER TABLEDROP TABLE



CREATE TABLE AS

Name

CREATE TABLE AS- create a new table from the results of a query

Synopsis

CREATE [ [ LOCAL ] { TEMPORARY | TEMP } ] TABLE table_name [ ( column_name [, ...] ) ]
AS query

Description

CREATE TABLE ASreates a table and fills it with data computed IBEAECTcommand. The table
columns have the names and data types associated with the output columnSBEHET (except
that you can override the column names by giving an explicit list of new column names).

CREATE TABLE Adears some resemblance to creating a view, but it is really quite different: it
creates a new table and evaluates the query just once to fill the new table initially. The new table will
not track subsequent changes to the source tables of the query. In contrast, a view re-evaluates its
definingSELECTstatement whenever it is queried.

Parameters

[LOCAL] TEMPORARYOr [LOCAL] TEMP

If specified, the table is created as a temporary table. RefeR®BATE TABLEor details.
table_name

The name (optionally schema-qualified) of the table to be created.
column_name

The name of a column in the new table. Multiple column names can be specified using a comma-
delimited list of column names. If column names are not provided, they are taken from the output
column names of the query.

query

A query statement (that is, ®ELECT command). Refer t&ELECTfor a description of the
allowed syntax.

Diagnostics
Refer toCREATE TABLEandSELECTfor a summary of possible output messages.



CREATE TABLE AS

Notes

This command is functionally equivalent&ELECT INTQbut it is preferred since it is less likely to
be confused with other uses of tRELECT ... INTO syntax.

Compatibility

This command is modeled after an Oracle feature. There is no command with equivalent functionality
in SQL92 or SQL99. However, a combination OREATE TABLEand INSERT ... SELECT can
accomplish the same thing with little more effort.

History
TheCREATE TABLE Agommand has been available since PostgreSQL 6.3.

See Also
CREATE TABLECREATE VIEWSELECT SELECT INTO



CREATE TRIGGER

Name
CREATE TRIGGER— define a new trigger

Synopsis

CREATE TRIGGERhame { BEFORE | AFTER } { event [OR ..]}
ON table FOR EACH { ROW | STATEMENT }
EXECUTE PROCEDUREnc ( arguments )

Inputs

name

The name to give the new trigger. This must be distinct from the name of any other trigger for
the same table.

event
One of INSERT, DELETE or UPDATE.
table
The name (optionally schema-qualified) of the table the trigger is for.
func
A user-supplied function that is declared as taking no arguments and returnirngdype
arguments

An optional comma-separated list of arguments to be provided to the function when the trigger is
executed, along with the standard trigger data such as old and new tuple contents. The arguments
are literal string constants. Simple names and numeric constants may be written here too, but they
will all be converted to strings.

Outputs

CREATE TRIGGER

This message is returned if the trigger is successfully created.



CREATE TRIGGER

Description

CREATE TRIGGERvill enter a new trigger into the current data base. The trigger will be associated
with the relationtable and will execute the specified functifunc .

The trigger can be specified to fire either before BEFORE the operation is attempted on a tuple
(before constraints are checked and tR6ERT, UPDATEOr DELETEIs attempted) or AFTER the
operation has been attempted (e.g., after constraints are checked &6ERE, UPDATEOr DELETE

has completed). If the trigger fires before the event, the trigger may skip the operation for the current
tuple, or change the tuple being inserted (MBERT andUPDATEoperations only). If the trigger fires

after the event, all changes, including the last insertion, update, or deletion, are “visible” to the trigger.

If multiple triggers of the same kind are defined for the same event, they will be fired in alphabetical
order by name.

SELECTdoes not modify any rows so you can not cresi:ECTtriggers. Rules and views are more
appropriate in such cases.

Refer to the chapters on SPI and Triggers inRbstgreSQL Programmer’s Guider more informa-
tion.

Notes
To create a trigger on a table, the user must hav@®EeGERprivilege on the table.

In PostgreSQL versions before 7.3, it was necessary to declare trigger functions as returning the place-
holder typeopaque , rather thanrigger . To support loading of old dump fileSREATE TRIGGER

will accept a function declared as returningaque , but it will issue a NOTICE and change the
function’s declared return type togger

As of the current releas§TATEMENTriggers are not implemented.

Refer to theDROP TRIGGERommand for information on how to remove triggers.

Examples

Check if the specified distributor code exists in the distributors table before appending or updating a
row in the table films:

CREATE TRIGGER if_dist_exists
BEFORE INSERT OR UPDATE ON films FOR EACH ROW
EXECUTE PROCEDURE check_primary_key ('did’, ’distributors’, ’did’);

Before cancelling a distributor or updating its code, remove every reference to the table films:

CREATE TRIGGER if_film_exists
BEFORE DELETE OR UPDATE ON distributors FOR EACH ROW
EXECUTE PROCEDURE check_foreign_key (1, 'CASCADE’, 'did’, ‘films’, 'did’);

The second example can also be done by using a foreign key, constraint as in:

CREATE TABLE distributors (
did DECIMAL(3),
name VARCHAR(40),
CONSTRAINT if_film_exists



CREATE TRIGGER

FOREIGN KEY(did) REFERENCES films
ON UPDATE CASCADE ON DELETE CASCADE

Compatibility
SQL92

There is NCCREATE TRIGGERtatement in SQL92.
SQL99

The CREATE TRIGGERtatement in PostgreSQL implements a subset of the SQL99 standard.
The following functionality is missing:

+ SQL99 allows triggers to fire on updates to specific columns (AETER UPDATE OF
coll, col2 ).

« SQL99 allows you to define aliases for the “old” and “new” rows or tables for use in the defi-
nition of the triggered action (e.gCREATE TRIGGER ... ON tablename REFERENCING
OLD ROW AS somename NEW ROW AS othername ).. Since PostgreSQL allows trig-
ger procedures to be written in any number of user-defined languages, access to the data is
handled in a language-specific way.

- PostgreSQL only has row-level triggers, no statement-level triggers.

« PostgreSQL only allows the execution of a stored procedure for the triggered action. SQL99
allows the execution of a number of other SQL commands, SUGREATE TABLES trig-
gered action. This limitation is not hard to work around by creating a stored procedure that
executes these commands.

SQL99 specifies that multiple triggers should be fired in time-of-creation order. PostgreSQL uses

name order, which was judged more convenient to work with.

See Also
CREATE FUNCTIONALTER TRIGGERDROP TRIGGERPostgreSQL Programmer’s Guide



CREATE TYPE

Name
CREATE TYPE — define a new data type

Synopsis

CREATE TYPEtypename ( INPUT = input_function , OUTPUT = output_function
, INTERNALLENGTH = { internallength | VARIABLE }
[ , DEFAULT = default ]
[ , ELEMENT = element ] [, DELIMITER =  delimiter ]
[ , PASSEDBYVALUE ]
[ , ALIGNMENT = alignment ]
[ , STORAGE = storage ]

)
CREATE TYPEtypename AS
( column_name data_type [ .- 1)
Inputs
typename

The name (optionally schema-qualified) of a type to be created.
internallength

A literal value, which specifies the internal length of the new type.
input_function

The name of a function, created DREATE FUNCTIONwhich converts data from its external
form to the type’s internal form.

output_function

The name of a function, created REATE FUNCTIONwhich converts data from its internal
form to a form suitable for display.

element

The type being created is an array; this specifies the type of the array elements.
delimiter

The delimiter character to be used between values in arrays made of this type.
default

The default value for the data type. Usually this is omitted, so that the default is NULL.
alignment

Storage alignment requirement of the data type. If specified, mushdoe, int2 , int4 , or
double ;the defaultisnt4 .



CREATE TYPE

storage

Storage technique for the data type. If specified, musplhie@ , external , extended , or
main ; the default iglain

column_name
The name of a column of the composite type.
data_type

The name of an existing data type.

Outputs

CREATE TYPE

Message returned if the type is successfully created.

Description

CREATE TYPRllows the user to register a new data type with PostgreSQL for use in the current data
base. The user who defines a type becomes its owner.

If a schema name is given then the type is created in the specified schema. Otherwise it is created in
the current schema (the one at the front of the search patiGURRENT_SCHEMA)) The type name

must be distinct from the name of any existing type or domain in the same schema. (Because tables
have associated data types, type names also must not conflict with table names in the same schema.)

Base Types

The first form of CREATE TYPEreates a new base type (scalar type). It requires the registration of
two functions (using CREATE FUNCTION) before defining the type. The representation of a new
base type is determined byput_function , which converts the type’s external representation

to an internal representation usable by the operators and functions defined for the type. Naturally,
output_function performs the reverse transformation. The input function may be declared as
taking one argument of typestring , or as taking three arguments of typss&ing , OID, int4 .

(The first argument is the input text as a C string, the second argument is the element type in case this
is an array type, and the third is thgmod of the destination column, if known.) It should return a
value of the data type itself. The output function may be declared as taking one argument of the new
data type, or as taking two arguments of which the second is®ype(The second argument is again

the array element type for array types.) The output function should returresyjrey

You should at this point be wondering how the input and output functions can be declared to have
results or inputs of the new type, when they have to be created before the new type can be created.
The answer is that the input function must be created first, then the output function, then the data type.
PostgreSQL will first see the name of the new data type as the return type of the input function. It
will create a “shell” type, which is simply a placeholder entrypin type , and link the input function
definition to the shell type. Similarly the output function will be linked to the (now already existing)



CREATE TYPE

shell type. Finally,CREATE TYPHeplaces the shell entry with a complete type definition, and the
new type can be used.

Note: In PostgreSQL versions before 7.3, it was customary to avoid creating a shell type by
replacing the functions’ forward references to the type name with the placeholder pseudo-type
OPAQUEThe cstring  inputs and results also had to be declared as OPAQUbefore 7.3. To support
loading of old dump files, CREATE TYPEwill accept functions declared using opaque , but it will
issue a NOTICE and change the function’s declaration to use the correct types.

New base data types can be fixed length, in which @asenallength is a positive integer, or
variable length, indicated by settingernallength to VARIABLE. (Internally, this is represented

by settingtyplen to -1.) The internal representation of all variable-length types must start with an
integer giving the total length of this value of the type.

To indicate that a type is an array, specify the type of the array elements usiBgkENTKeyword.
For example, to define an array of 4-byte integers ("int4"), specify

ELEMENT = int4

More details about array types appear below.

To indicate the delimiter to be used between values in the external representation of arrays of this
type, delimiter can be set to a specific character. The default delimiter is the commaNbte
that the delimiter is associated with the array element type, not the array type itself.

A default value may be specified, in case a user wants columns of the data type to default to something
other than NULL. Specify the default with tlEEFAULTkeyword. (Such a default may be overridden
by an explicitDEFAULTclause attached to a particular column.)

The optional flagPASSEDBYVALUEHNdicates that values of this data type are passed by value rather
than by reference. Note that you may not pass by value types whose internal representation is longer
than the width of th®atum type (four bytes on most machines, eight bytes on a few).

The alignment  keyword specifies the storage alignment required for the data type. The allowed
values equate to alignment on 1, 2, 4, or 8 byte boundaries. Note that variable-length types must have
an alignment of at least 4, since they necessarily containtan as their first component.

The storage  keyword allows selection of storage strategies for variable-length data types (only
plain is allowed for fixed-length typesplain disables TOAST for the data type: it will always be
stored in-line and not compressedtended gives full TOAST capability: the system will first try

to compress a long data value, and will move the value out of the main table row if it’s still too long.
external  allows the value to be moved out of the main table, but the system will not try to compress
it. main allows compression, but discourages moving the value out of the main table. (Data items
with this storage method may still be moved out of the main table if there is no other way to make a
row fit, but they will be kept in the main table preferentially oegtended andexternal items.)

Composite Types

The second form 0€EREATE TYPEreates a composite type. The composite type is specified by a
list of column names and data types. This is essentially the same as the row type of a table, but using
CREATE TYPRvoids the need to create an actual table when all that is wanted is to define a type. A
stand-alone composite type is useful as the return type of a function.



CREATE TYPE

Array Types

Whenever a user-defined base data type is created, PostgreSQL automatically creates an associated
array type, whose name consists of the base type’s name prepended with an underscore. The parser
understands this naming convention, and translates requests for columnsfobfypento requests

for type _foo . The implicitly-created array type is variable length and uses the built-in input and
output functionsarray_in  andarray_out

You might reasonably ask “why is there BhEMENToption, if the system makes the correct array type
automatically?” The only case where it's useful to BEEEMENTSs when you are making a fixed-length

type that happens to be internally an array of N identical things, and you want to allow the N things
to be accessed directly by subscripting, in addition to whatever operations you plan to provide for the
type as a whole. For example, typame allows its constituenthar s to be accessed this way. A 2-D
point type could allow its two component floats to be accessecbik&[0] andpoint[1] . Note

that this facility only works for fixed-length types whose internal form is exactly a sequence of N
identical fixed-length fields. A subscriptable variable-length type must have the generalized internal
representation used kyray_in  andarray_out . For historical reasons (i.e., this is clearly wrong

but it's far too late to change it), subscripting of fixed-length array types starts from zero, rather than
from one as for variable-length arrays.

Notes

User-defined type names cannot begin with the underscore characlearfti can only be 62 char-

acters long (or in generdlAMEDATALEN-2rather than th&lAMEDATALEN-Xharacters allowed for

other names). Type names beginning with underscore are reserved for internally-created array type
names.

Examples

This example creates thex data type and then uses the type in a table definition:

CREATE TYPE box (INTERNALLENGTH = 186,
INPUT = my_procedure_1, OUTPUT = my_procedure_2);
CREATE TABLE myboxes (id INT4, description box);

If box’s internal structure were an array of fdlwat4 s, we might instead say

CREATE TYPE box (INTERNALLENGTH = 16,
INPUT = my_procedure_1, OUTPUT = my_procedure_2,
ELEMENT = float4);

which would allow a box value’s component floats to be accessed by subscripting. Otherwise the type
behaves the same as before.

This example creates a large object type and uses it in a table definition:

CREATE TYPE bigobj (INPUT = lo_filein, OUTPUT = lo_fileout,
INTERNALLENGTH = VARIABLE);
CREATE TABLE big_objs (id int4, obj bigobj):

This example creates a composite type and uses it in a table function definition:



CREATE TYPE

CREATE TYPE compfoo AS (fl int, f2 text);
CREATE FUNCTION getfoo() RETURNS SETOF compfoo AS 'SELECT fooid, fooname FROM foo’ LAN-
GUAGE SQL;

Compatibility

This CREATE TYPEcommand is a PostgreSQL extension. There GREATE TYPEstatement in
SQL99 that is rather different in detail.

See Also
CREATE FUNCTIONDROP TYPEPostgreSQL Programmer’s Guide



CREATE USER

Name
CREATE USER- define a new database user account

Synopsis
CREATE USERusername [ [ WITH ] option [ ... ] ]
where option can be:

SYSID uid
| [ ENCRYPTED | UNENCRYPTED ] PASSWORIDpdssword ’
| CREATEDB | NOCREATEDB
| CREATEUSER | NOCREATEUSER
| IN GROUP groupname [, ...]
| VALID UNTIL * abstime ’

Description

CREATE USERVill add a new user to an instance of PostgreSQL. Refer té\theinistrator's Guide
for information about managing users and authentication. You must be a database superuser to use
this command.

Parameters

username
The name of the user.

uid
TheSYSID clause can be used to choose the PostgreSQL user ID of the user that is being created.

It is not at all necessary that those match the Unix user IDs, but some people choose to keep the
numbers the same.

If this is not specified, the highest assigned user ID plus one (with a minimum of 100) will be
used as default.

password

Sets the user’s password. If you do not plan to use password authentication you can omit this
option, but the user won't be able to connect to a password-authenticated server. The password
can be set or changed later, usthigTER USER

ENCRYPTED
UNENCRYPTED

These keywords control whether the password is stored encrypted shadow . (If neither is
specified, the default behavior is determined byRh€SWORD_ENCRYPTIGHrver parameter.)

If the presented string is already in MD5-encrypted format, then it is stored as-is, regardless
of whetherENCRYPTEDr UNENCRYPTEID specified. This allows reloading of encrypted pass-
words during dump/restore.



CREATE USER

See the chapter on client authentication inAlggninistrator's Guiddor details on how to set up
authentication mechanisms. Note that older clients may lack support for the MD5 authentication
mechanism that is needed to work with passwords that are stored encrypted.

CREATEDB
NOCREATEDB

These clauses define a user’s ability to create databas#REKTEDBs specified, the user being
defined will be allowed to create his own databases. USIi@GREATEDRiill deny a user the
ability to create databases. If this clause is omitOCREATEDB used by default.

CREATEUSER
NOCREATEUSER

These clauses determine whether a user will be permitted to create new users himself. This option
will also make the user a superuser who can override all access restrictions. Omitting this clause
will set the user’s value of this attribute to NOCREATEUSER

groupname

A name of a group into which to insert the user as a new member. Multiple group names may be
listed.

abstime

The VALID UNTIL clause sets an absolute time after which the user’s password is no longer
valid. If this clause is omitted the login will be valid for all time.

Diagnostics

CREATE USER

Message returned if the command completes successfully.

Notes

UseALTER USERo change the attributes of a user, @@OP USERo remove a user. UsBL TER
GROUPto add the user to groups or remove the user from groups. PostgreSQL includes a program
createusethat has the same functionality as this command (in fact, it calls this command) but can be
run from the command shell.

Examples

Create a user with no password:

CREATE USER jonathan;



CREATE USER

Create a user with a password:

CREATE USER davide WITH PASSWORD 'jw8s0F4’;

Create a user with a password, whose account is valid until the end of 2001. Note that after one second
has ticked in 2002, the account is not valid:

CREATE USER miriam WITH PASSWORD ’jw8s0F4’ VALID UNTIL 'Jan 1 2002’;

Create an account where the user can create databases:

CREATE USER manuel WITH PASSWORD ’jw8sOF4" CREATEDB,;

Compatibility

The CREATE USERtatement is a PostgreSQL extension. The SQL standard leaves the definition of
users to the implementation.

See Also
ALTER USERDROP USERcreateuser



CREATE VIEW

Name
CREATE VIEW — define a new view

Synopsis

CREATE [ OR REPLACE ] VIEWiew [ ( column name list ) ] AS SELECT query

Inputs

view
The name (optionally schema-qualified) of a view to be created.
column name list

An optional list of names to be used for columns of the view. If given, these names override the
column names that would be deduced from the SQL query.

query
An SQL query (that is, SELECT statement) which will provide the columns and rows of the
view.

Refer toSELECTfor more information about valid arguments.

Outputs

CREATE VIEW

The message returned if the view is successfully created.
ERROR: Relation ' view ' already exists

This error occurs if the view specified already exists in the database.
WARNING: Attribute *  column’ has an unknown type

The view will be created having a column with an unknown type if you do not specify it. For
example, the following command gives a warning:

CREATE VIEW vista AS SELECT 'Hello World’

whereas this command does not:
CREATE VIEW vista AS SELECT text 'Hello World’



CREATE VIEW

Description

CREATE VIEWefines a view of a query. The view is not physically materialized. Instead, a query
rewrite rule (arON SELECTule) is automatically generated to support SELECT operations on views.

CREATE OR REPLACE VIBEM/similar, but if a view of the same name already exists, it is replaced.
You can only replace a view with a new query that generates the identical set of columns (i.e., same
column names and data types).

If a schema name is given (for exampBREATE VIEW myschema.myview ... ) then the view is
created in the specified schema. Otherwise it is created in the current schema (the one at the front of
the search path; s&8URRENT_SCHEMA)) The view name must be distinct from the name of any
other view, table, sequence, or index in the same schema.

Notes

Currently, views are read only: the system will not allow an insert, update, or delete on a view. You
can get the effect of an updatable view by creating rules that rewrite inserts, etc. on the view into
appropriate actions on other tables. For more informatiorC$t€ATE RULE

Use theDROP VIEW$tatement to drop views.

Usage

Create a view consisting of all Comedy films:

CREATE VIEW kinds AS
SELECT *
FROM films
WHERE kind = 'Comedy’;

SELECT * FROM kinds;

code | title | did | date_prod | kind | len
UA502 | Bananas | 105 | 1971-07-13 | Comedy | 01:22
C_701 | There’'s a Girl in my Soup | 107 | 1970-06-11 | Comedy | 01:36
(2 rows)

Compatibility

SQL92

SQL92 specifies some additional capabilities forG@REATE VIEWStatement:

CREATE VIEWview [ column [, ..] ]
AS SELECT expression [ AS colname ] [, ...
FROMtable [ WHERE condition ]
[ WITH [ CASCADE | LOCAL ] CHECK OPTION ]



CREATE VIEW

The optional clauses for the full SQL92 command are:

CHECK OPTION

This option is to do with updatable views. ANSERT andUPDATEcommands on the view will
be checked to ensure data satisfy the view-defining condition. If they do not, the update will be
rejected.

LOCAL
Check for integrity on this view.
CASCADE

Check for integrity on this view and on any dependent view. CASCADE is assumed if neither
CASCADE nor LOCAL is specified.

CREATE OR REPLACE VIBE#/a PostgreSQL language extension.



DEALLOCATE

Name

DEALLOCATE — remove a prepared query

Synopsis

DEALLOCATE [ PREPARE ]plan_name

Inputs

PREPARE
This keyword is ignored.
plan_name

The name of the prepared query to remove.

Outputs

DEALLOCATE

The prepared query was removed successfully.

Description

DEALLOCATEHS used to remove a previously prepared query. If you do not explibELLOCATER
prepared query, it is removed when the session ends.

For more information on prepared queries, BREPARE

Compatibility

SQL92
SQL92 includes ®EALLOCATEtatement, but it is only for use in embedded SQL clients.



DECLARE

Name

DECLARE — define a cursor

Synopsis

DECLAREcursorname [ BINARY ] [ INSENSITIVE ] [ SCROLL ]
CURSOR FORjuery
[ FOR { READ ONLY | UPDATE [ OFcolumn [, ..] 11

Inputs

cursorname
The name of the cursor to be used in subsequent FETCH operations.
BINARY
Causes the cursor to fetch data in binary rather than in text format.
INSENSITIVE

SQL92 keyword indicating that data retrieved from the cursor should be unaffected by updates
from other processes or cursors. Since cursor operations occur within transactions in PostgreSQL
this is always the case. This keyword has no effect.

SCROLL

SQL92 keyword indicating that data may be retrieved in multiple rows per FETCH operation.
Since this is allowed at all times by PostgreSQL this keyword has no effect.

query

An SQL query which will provide the rows to be governed by the cursor. Refer to the SELECT
statement for further information about valid arguments.

READ ONLY

SQL92 keyword indicating that the cursor will be used in a read only mode. Since this is the only
cursor access mode available in PostgreSQL this keyword has no effect.

UPDATE

SQL92 keyword indicating that the cursor will be used to update tables. Since cursor updates are
not currently supported in PostgreSQL this keyword provokes an informational error message.

column

Column(s) to be updated. Since cursor updates are not currently supported in PostgreSQL the
UPDATE clause provokes an informational error message.



DECLARE

Outputs

DECLARE CURSOR
The message returned if the SELECT is run successfully.
WARNING: Closing pre-existing portal " cursorname "

This message is reported if the same cursor name was already declared in the current transaction
block. The previous definition is discarded.

ERROR: DECLARE CURSOR may only be used in begin/end transaction blocks

This error occurs if the cursor is not declared within a transaction block.

Description

DECLAREallows a user to create cursors, which can be used to retrieve a small number of rows at a
time out of a larger query. Cursors can return data either in text or in binary formatriETQH.

Normal cursors return data in text format, either ASCII or another encoding scheme depending on
how the PostgreSQL backend was built. Since data is stored natively in binary format, the system
must do a conversion to produce the text format. In addition, text formats are often larger in size than
the corresponding binary format. Once the information comes back in text form, the client application
may need to convert it to a binary format to manipulate it. BINARY cursors give you back the data in
the native binary representation.

As an example, if a query returns a value of one from an integer column, you would get a stting of
with a default cursor whereas with a binary cursor you would get a 4-byte value equal to control-A
("A).

BINARY cursors should be used carefully. User applications such as psql are not aware of binary
cursors and expect data to come back in a text format.

String representation is architecture-neutral whereas binary representation can differ between differ-
ent machine architectureBostgreSQL does not resolve byte ordering or representation issues for
binary cursors Therefore, if your client machine and server machine use different representations
(e.g., “big-endian” versus “little-endian”), you will probably not want your data returned in binary
format. However, binary cursors may be a little more efficient since there is less conversion overhead
in the server to client data transfer.

Tip: If you intend to display the data in ASCII, getting it back in ASCII will save you some effort
on the client side.

Notes

Cursors are only available in transactions. Us&EGIN, COMMIT and ROLLBACKto define a
transaction block.

In SQL92 cursors are only available in embedded SQL (ESQL) applications. The PostgreSQL back-
end does not implement an expliGPEN cursor statement; a cursor is considered to be open when



DECLARE

it is declared. However, ecpg, the embedded SQL preprocessor for PostgreSQL, supports the SQL92
cursor conventions, including those involving DECLARE and OPEN statements.

Usage

To declare a cursor:

DECLARE liahona CURSOR
FOR SELECT * FROM films;

Compatibility

SQL92

SQL92 allows cursors only in embedded SQL and in modules. PostgreSQL permits cursors to be
used interactively. SQL92 allows embedded or modular cursors to update database information. All
PostgreSQL cursors are read only. The BINARY keyword is a PostgreSQL extension.



DELETE

Name
DELETE — delete rows of a table

Synopsis

DELETE FROM [ ONLY ]Jtable [ WHERE condition ]

Inputs

table
The name (optionally schema-qualified) of an existing table.
condition
This is an SQL selection query which returns the rows which are to be deleted.

Refer to the SELECT statement for further description of the WHERE clause.

Outputs

DELETE count
Message returned if items are successfully deleted cohat is the number of rows deleted.

If count is 0, no rows were deleted.

Description

DELETEremoves rows which satisfy the WHERE clause from the specified table.

If the condition(WHERE clause) is absent, the effect is to delete all rows in the table. The resultis a
valid, but empty table.

Tip: TRUNCATE is a PostgreSQL extension which provides a faster mechanism to remove all
rows from a table.

By default DELETE will delete tuples in the table specified and all its sub-tables. If you wish to only
update the specific table mentioned, you should use the ONLY clause.



DELETE

You must have write access to the table in order to modify it, as well as read access to any table whose
values are read in theondition

Usage

Remove all films but musicals:

DELETE FROM films WHERE kind <> ’'Musical’;
SELECT * FROM films;

code | title | did | date_prod | kind | len
+ — + +
UA501 | West Side Story | 105 | 1961-01-03 | Musical | 02:32
TC901 | The King and | | 109 | 1956-08-11 | Musical | 02:13
WD101 | Bed Knobs and Broomsticks | 111 | | Musical | 01:57
(3 rows)
Clear the tabldiims

DELETE FROM films;
SELECT * FROM films;

code | title | did | date_prod | kind | len

+ + +. + +
t t t t t

(0 rows)

Compatibility

SQL92
SQL92 allows a positioned DELETE statement:

DELETE FROMable WHERE
CURRENT OFursor

wherecursor identifies an open cursor. Interactive cursors in PostgreSQL are read-only.



DROP AGGREGATE

Name

DROP AGGREGATE-remove a user-defined aggregate function

Synopsis

DROP AGGREGATEame ( type ) [ CASCADE | RESTRICT ]

Inputs

name
The name (optionally schema-qualified) of an existing aggregate function.
type

The input data type of the aggregate function* @rthe function accepts any input type. (Refer
to thePostgreSQL User’s Guidier further information about data types.)

CASCADE
Automatically drop objects that depend on the aggregate.
RESTRICT

Refuse to drop the aggregate if there are any dependent objects. This is the default.

Outputs

DROP AGGREGATE
Message returned if the command is successful.
ERROR: RemoveAggregate: aggregate ’ name’ for type type does not exist

This message occurs if the aggregate function specified does not exist in the database.

Description

DROP AGGREGATEIl delete an existing aggregate definition. To execute this command the current
user must be the owner of the aggregate.



DROP AGGREGATE

Notes
UseCREATE AGGREGAT® create aggregate functions.

Usage

To remove thenyavg aggregate for typatd :

DROP AGGREGATE myavg(int4);

Compatibility

SQL92

There is ndDROP AGGREGATBEtement in SQL92; the statement is a PostgreSQL language exten-
sion.



DROP CAST

Name

DROP CAST-remove a user-defined cast

Synopsis

DROP CAST gourcetype  AS targettype )
[ CASCADE | RESTRICT ]

Description
DROP CASTemoves a previously defined cast.

To be able to drop a cast, you must own the source or the target data type. These are the same privileges
that are required to create a cast.

Parameters

sourcetype

The name of the source data type of the cast.
targettype

The name of the target data type of the cast.

CASCADE
RESTRICT

These key words do not have any effect, since there are no dependencies on casts.

Notes

UseCREATE CASTo create user-defined casts.

Examples
To drop the cast from typext to typeint :

DROP CAST (text AS intd);

Compatibility
TheDROP CASTommand conforms to SQL99.



DROP CAST

See Also
CREATE CAST



DROP CONVERSION

Name
DROP CONVERSION remove a user-defined conversion

Synopsis

DROP CONVERSIONonversion_name
[ CASCADE | RESTRICT ]

Description
DROP CONVERSIQ®mMoves a previously defined conversion.

To be able to drop a conversion, you must own the conversion.

Parameters
conversion_name
The name of the conversion. The conversion name may be schema-qualified.

CASCADE
RESTRICT

These key words do not have any effect, since there are no dependencies on conversions.

Notes
UseCREATE CONVERSION create user-defined conversions.

The privileges required to drop a conversion may be changed in a future release.

Examples

To drop the conversion namet/name

DROP CONVERSION myname;

Compatibility

DROP CONVERSIGsla PostgreSQL extension. There isSDROP CONVERSIGitatementin SQL99.

See Also
CREATE CONVERSION



DROP DATABASE

Name

DROP DATABASE— remove a database

Synopsis

DROP DATABASHame

Inputs

name

The name of an existing database to remove.

Outputs

DROP DATABASE
This message is returned if the command is successful.
DROP DATABASE: cannot be executed on the currently open database

You cannot be connected to the database you are about to remove. Instead, cormsmect to
platel or any other database and run this command again.

DROP DATABASE: may not be called in a transaction block

You must finish the transaction in progress before you can call this command.

Description

DROP DATABASEemoves the catalog entries for an existing database and deletes the directory con-
taining the data. It can only be executed by the database owner (usually the user that created it).

DROP DATABASEannot be undone. Use it with care!

Notes

This command cannot be executed while connected to the target database. Thus, it might be more
convenient to use the shell scrigiopdh which is a wrapper around this command, instead.

Refer toCREATE DATABASKOr information on how to create a database.



DROP DATABASE

Compatibility

SQL92

DROP DATABASEtatement is a PostgreSQL language extension; there is no such command in
SQL92.



DROP DOMAIN

Name
DROP DOMAIN— remove a user-defined domain

Synopsis

DROP DOMAINjomainname [, ..] [ CASCADE | RESTRICT ]

Inputs

domainname

The name (optionally schema-qualified) of an existing domain.
CASCADE

Automatically drop objects that depend on the domain (such as table columns).
RESTRICT

Refuse to drop the domain if there are any dependent objects. This is the default.

Outputs

DROP DOMAIN
The message returned if the command is successful.

)

ERROR: RemoveDomain: type ' domainname’ does not exist

This message occurs if the specified domain (or type) is not found.

Description
DROP DOMAIMill remove a user domain from the system catalogs.

Only the owner of a domain can remove it.

Examples

To remove thébox domain:

DROP DOMAIN box;



DROP DOMAIN

Compatibility

SQL92

See Also
CREATE DOMAIN



DROP FUNCTION

Name

DROP FUNCTION— remove a user-defined function

Synopsis

DROP FUNCTIOName ( [ type [, ..] 1) [ CASCADE | RESTRICT ]

Inputs

name
The name (optionally schema-qualified) of an existing function.
type
The type of a parameter of the function.
CASCADE
Automatically drop objects that depend on the function (such as operators or triggers).
RESTRICT

Refuse to drop the function if there are any dependent objects. This is the default.

Outputs

DROP FUNCTION
Message returned if the command completes successfully.
WARNING: RemoveFunction: Function " name" (" types ") does not exist

This message is given if the function specified does not exist in the current database.

Description

DROP FUNCTION will remove the definition of an existing function. To execute this command the
user must be the owner of the function. The input argument types to the function must be specified,
since several different functions may exist with the same name and different argument lists.



DROP FUNCTION

Notes
Refer toCREATE FUNCTIONor information on creating functions.

Examples

This command removes the square root function:

DROP FUNCTION sqrt(integer);

Compatibility

A DROP FUNCTIOSNtatementis defined in SQL99. One of its syntax forms is similar to PostgreSQL's.

See Also
CREATE FUNCTION



DROP GROUP

Name
DROP GROUR— remove a user group

Synopsis

DROP GROURame

Inputs

name

The name of an existing group.

Outputs

DROP GROUP

The message returned if the group is successfully deleted.

Description
DROP GROURmoves the specified group from the database. The users in the group are not deleted.

UseCREATE GROURo add new groups, amtlLTER GROURo change a group’s membership.

Usage
To drop a group:

DROP GROUP staff;

Compatibility

SQL92
There is NADROP GROUR SQL92.



DROP INDEX

Name
DROP INDEX — remove an index

Synopsis

DROP INDEXindex_name [, ..] [ CASCADE | RESTRICT ]

Inputs

index_name

The name (optionally schema-qualified) of an index to remove.
CASCADE

Automatically drop objects that depend on the index.
RESTRICT

Refuse to drop the index if there are any dependent objects. This is the default.

Outputs

DROP INDEX
The message returned if the command completes successfully.
ERROR: index " index_name " does not exist

This message occursiifdex_name is not an index in the database.

Description

DROP INDEXdrops an existing index from the database system. To execute this command you must
be the owner of the index.

Notes
DROP INDEXs a PostgreSQL language extension.

Refer toCREATE INDEXor information on how to create indexes.



DROP INDEX

Usage

This command will remove thetle_idx index:
DROP INDEX title_idx;

Compatibility

SQL92

SQL92 defines commands by which to access a generic relational database. Indexes are an
implementation-dependent feature and hence there are no index-specific commands or definitions in
the SQL92 language.



DROP LANGUAGE

Name

DROP LANGUAGE- remove a user-defined procedural language

Synopsis

DROP [ PROCEDURAL ] LANGUAGtme [ CASCADE | RESTRICT ]

Inputs

name

The name of an existing procedural language. For backward compatibility, the name may be
enclosed by single quotes.

CASCADE
Automatically drop objects that depend on the language (such as functions in the language).
RESTRICT

Refuse to drop the language if there are any dependent objects. This is the default.

Outputs

DROP LANGUAGE
This message is returned if the language is successfully dropped.
ERROR: Language " name" doesn't exist

This message occurs if a language cafladhe is not found in the database.

Description

DROP PROCEDURAL LANGUAGI remove the definition of the previously registered procedural
language calledame.

Notes
TheDROP PROCEDURAL LANGUAGEement is a PostgreSQL language extension.
Refer toCREATE LANGUAGHor information on how to create procedural languages.



DROP LANGUAGE

Usage

This command removes the PL/Sample language:

DROP LANGUAGE plsample;

Compatibility

SQL92
There is NdDROP PROCEDURAL LANGUAGEQL92.



DROP OPERATOR

Name

DROP OPERATOR-remove a user-defined operator

Synopsis

DROP OPERATOR ( lefttype | NONE , righttype | NONE ) [ CASCADE | RE-
STRICT ]

Inputs

The identifier (optionally schema-qualified) of an existing operator.
lefttype

The type of the operator’s left argument; wiN©NETf the operator has no left argument.
righttype

The type of the operator’s right argument; wiR®NEf the operator has no right argument.
CASCADE

Automatically drop objects that depend on the operator.
RESTRICT

Refuse to drop the operator if there are any dependent objects. This is the default.

Outputs

DROP OPERATOR
The message returned if the command is successful.

ERROR: RemoveOperator: binary operator ’ oper ' taking ' lefttype '’ and
" righttype ' does not exist

This message occurs if the specified binary operator does not exist.

)

ERROR: RemoveOperator: left unary operator
not exist

oper ' taking ' lefttype ' does

This message occurs if the left unary operator specified does not exist.

ERROR: RemoveOperator: right unary operator ’ oper ' taking ' righttype ' does
not exist

This message occurs if the right unary operator specified does not exist.



DROP OPERATOR

Description

DROP OPERATQOHROpS an existing operator from the database. To execute this command you must
be the owner of the operator.

The left or right type of a left or right unary operator, respectively, must be specifie@HE

Notes
TheDROP OPERATCHRRatement is a PostgreSQL language extension.
Refer toCREATE OPERATO#fr information on how to create operators.

Usage

Remove power operatarn forint4 :

DROP OPERATOR ~ (int4, int4);

Remove left unary negation operatorl( ) for boolean :

DROP OPERATOR ! (none, bool);

Remove right unary factorial operatar!( ) forint4 :

DROP OPERATOR ! (int4, none);

Compatibility

SQL92
There is NDROP OPERATOR SQL92.



DROP OPERATOR CLASS

Name

DROP OPERATOR CLASS-remove a user-defined operator class

Synopsis

DROP OPERATOR CLASfme USING access_method [ CASCADE | RESTRICT ]

Inputs

name

The name (optionally schema-qualified) of an existing operator class.
access_method

The name of the index access method the operator class is for.
CASCADE

Automatically drop objects that depend on the operator class.
RESTRICT

Refuse to drop the operator class if there are any dependent objects. This is the default.

Outputs

DROP OPERATOR CLASS

The message returned if the command is successful.

Description

DROP OPERATOR CLA880ps an existing operator class from the database. To execute this com-
mand you must be the owner of the operator class.

Notes
TheDROP OPERATOR CLASttement is a PostgreSQL language extension.
Refer toCREATE OPERATOR CLA%S information on how to create operator classes.



DROP OPERATOR CLASS

Usage

Remove B-tree operator clasg&iget_ops

DROP OPERATOR CLASS widget_ops USING btree;

This command will not execute if there are any existing indexes that use the operator class. Add
CASCADEO drop such indexes along with the operator class.

Compatibility

SQL92
There is NdDROP OPERATOR CLABSSQL92.



DROP RULE

Name

DROP RULE— remove a rewrite rule

Synopsis

DROP RULEname ON relation [ CASCADE | RESTRICT ]

Inputs

name
The name of an existing rule to drop.
relation
The name (optionally schema-qualified) of the relation the rule applies to.
CASCADE
Automatically drop objects that depend on the rule.
RESTRICT

Refuse to drop the rule if there are any dependent objects. This is the default.

Outputs

DROP RULE
Message returned if successful.
ERROR: Rule "name" not found

This message occurs if the specified rule does not exist.

Description

DROP RULErops a rule from the specified PostgreSQL rule system. PostgreSQL will immediately
cease enforcing it and will purge its definition from the system catalogs.



DROP RULE

Notes
TheDROP RULBtatement is a PostgreSQL language extension.

Refer toCREATE RULHor information on how to create rules.

Usage

To drop the rewrite rul@eewrule :

DROP RULE newrule ON mytable;

Compatibility

SQL92
There is NADROP RULHN SQL92.



DROP SCHEMA

Name

DROP SCHEMA— remove a schema

Synopsis

DROP SCHEMAame [, ..] [ CASCADE | RESTRICT ]

Inputs

name
The name of a schema.
CASCADE
Automatically drop objects (tables, functions, etc) that are contained in the schema.
RESTRICT

Refuse to drop the schema if it contains any objects. This is the default.

Outputs

DROP SCHEMA
The message returned if the schema is successfully dropped.
ERROR: Schema "name" does not exist

This message occurs if the specified schema does not exist.

Description
DROP SCHEM&moves schemas from the data base.

A schema can only be dropped by its owner or a superuser. Note that the owner can drop the schema
(and thereby all contained objects) even if he does not own some of the objects within the schema.

Notes

Refer to theCREATE SCHEMgtatement for information on how to create a schema.



DROP SCHEMA

Usage

To remove schemaystuff from the database, along with everything it contains:

DROP SCHEMA mystuff CASCADE;

Compatibility

SQL92

DROP SCHEMA fully compatible with SQL92, except that the standard only allows one schema to
be dropped per command.



DROP SEQUENCE

Name

DROP SEQUENCE-remove a sequence

Synopsis

DROP SEQUENCEame [, ..] [ CASCADE | RESTRICT ]

Inputs

name
The name (optionally schema-qualified) of a sequence.
CASCADE
Automatically drop objects that depend on the sequence.
RESTRICT

Refuse to drop the sequence if there are any dependent objects. This is the default.

Outputs

DROP SEQUENCE
The message returned if the sequence is successfully dropped.
ERROR: sequence " name" does not exist

This message occurs if the specified sequence does not exist.

Description

DROP SEQUENGCEMoves sequence number generators from the data base. With the current imple-
mentation of sequences as special tables it works just likbR@P TABLEBtatement.

Notes
TheDROP SEQUENGHatement is a PostgreSQL language extension.

Refer to theCREATE SEQUENGHatement for information on how to create a sequence.



Usage

To remove sequencerial  from database:

DROP SEQUENCE serial;

Compatibility

SQL92
There is NAODROP SEQUENGE SQL92.

DROP SEQUENCE



DROP TABLE

Name

DROP TABLE —remove a table

Synopsis

DROP TABLEname [, ..] [ CASCADE | RESTRICT ]

Inputs

name

The name (optionally schema-qualified) of an existing table to drop.
CASCADE

Automatically drop objects that depend on the table (such as views).
RESTRICT

Refuse to drop the table if there are any dependent objects. This is the default.

Outputs

DROP TABLE
The message returned if the command completes successfully.
ERROR: table " name" does not exist

If the specified table does not exist in the database.

Description

DROP TABLEemoves tables from the database. Only its owner may destroy a table. A table may be
emptied of rows, but not destroyed, by usgLETE

DROP TABLEalways removes any indexes, rules, triggers, and constraints that exist for the target
table. However, to drop a table that is referenced by a foreign-key constraint of another table, CAS-
CADE must be specified. (CASCADE will remove the foreign-key constraint, not the other table
itself.)



DROP TABLE

Notes
Refer toCREATE TABLENdALTER TABLEfor information on how to create or modify tables.

Usage

To destroy two tablegiims anddistributors

DROP TABLE films, distributors;

Compatibility

SQL92



DROP TRIGGER

Name

DROP TRIGGER— remove a trigger

Synopsis

DROP TRIGGERhame ON table [ CASCADE | RESTRICT ]

Inputs

name
The name of an existing trigger.
table
The name (optionally schema-qualified) of a table.
CASCADE
Automatically drop objects that depend on the trigger.
RESTRICT

Refuse to drop the trigger if there are any dependent objects. This is the default.

Outputs

DROP TRIGGER
The message returned if the trigger is successfully dropped.
ERROR: DropTrigger: there is no trigger name on relation " table "

This message occurs if the trigger specified does not exist.

Description

DROP TRIGGERvill remove an existing trigger definition. To execute this command the current user
must be the owner of the table for which the trigger is defined.



DROP TRIGGER

Examples

Destroy thef_dist_exists trigger on tabldiims

DROP TRIGGER if_dist_exists ON films;

Compatibility
SQL92

There is NdDROP TRIGGERtatement in SQL92.
SQL99

The DROP TRIGGERtatement in PostgreSQL is incompatible with SQL99. In SQL99, trigger
names are not local to tables, so the command is SiDRIYP TRIGGERhame.

See Also
CREATE TRIGGER



DROP TYPE

Name

DROP TYPE— remove a user-defined data type

Synopsis

DROP TYPEtypename [, ..] [ CASCADE | RESTRICT ]

Inputs

typename
The name (optionally schema-qualified) of an existing type.
CASCADE

Automatically drop objects that depend on the type (such as table columns, functions, operators,
etc).

RESTRICT

Refuse to drop the type if there are any dependent objects. This is the default.

Outputs

DROP TYPE
The message returned if the command is successful.
ERROR: RemoveType: type ' typename ' does not exist

This message occurs if the specified type is not found.

Description
DROP TYPHvill remove a user type from the system catalogs.

Only the owner of a type can remove it.



DROP TYPE
Examples
To remove théox type:

DROP TYPE box;

Compatibility

Note that theCREATE TYPEommand and the data type extension mechanisms in PostgreSQL differ
from SQL99.

See Also
CREATE TYPE



DROP USER

Name

DROP USER-remove a database user account

Synopsis

DROP USERhame

Description

DROP USERemoves the specified user from the database. It does not remove tables, views, or other
objects owned by the user. If the user owns any database, an error is raised.

Parameters

name

The name of an existing user.

Diagnostics

DROP USER
The message returned if the user is successfully deleted.
ERROR: DROP USER: user 'hame" does not exist
This message occurs if the user name is not found.
DROP USER: user "name' owns database " name", cannot be removed

You must drop the database first or change its ownership.

Notes

UseCREATE USERo add new users, aldLTER USERo change a user’s attributes. PostgreSQL
includes a prograndropuserthat has the same functionality as this command (in fact, it calls this
command) but can be run from the command shell.



DROP USER

Examples

To drop a user account:

DROP USER jonathan;

Compatibility

The DROP USERtatement is a PostgreSQL extension. The SQL standard leaves the definition of
users to the implementation.

See Also
CREATE USERALTER USERdropuser



DROP VIEW

Name

DROP VIEW — remove a view

Synopsis

DROP VIEWname [, ..] [ CASCADE | RESTRICT ]

Inputs

name

The name (optionally schema-qualified) of an existing view.
CASCADE

Automatically drop objects that depend on the view (such as other views).
RESTRICT

Refuse to drop the view if there are any dependent objects. This is the default.

Outputs

DROP VIEW
The message returned if the command is successful.
ERROR: view name does not exist

This message occurs if the specified view does not exist in the database.

Description

DROP VIEWArops an existing view from the database. To execute this command you must be the
owner of the view.

Notes

Refer toCREATE VIEWor information on how to create views.



Usage

This command will remove the view callé&ghds :

DROP VIEW kinds;

Compatibility

SQL92

DROP VIEW



END

Name

END — commit the current transaction

Synopsis

END [ WORK | TRANSACTION ]

Inputs

WORK
TRANSACTION

Optional keywords. They have no effect.

Outputs

COMMIT
Message returned if the transaction is successfully committed.
WARNING: COMMIT: no transaction in progress

If there is no transaction in progress.

Description
ENDis a PostgreSQL extension, and is a synonym for the SQL92-comp@@iaMIT.

Notes
The keywords WORK and TRANSACTION are noise and can be omitted.
UseROLLBACKto abort a transaction.

Usage

To make all changes permanent:

END WORK;



END

Compatibility

SQL92
ENDis a PostgreSQL extension which provides functionality equivaleBQMMIT.



EXECUTE

Name

EXECUTE — execute a prepared query

Synopsis

EXECUTEplan_name [ ( parameter [, ...] ) ]

Inputs

plan_name
The name of the prepared query to execute.
parameter

The actual value of a parameter to the prepared query. This must be an expression yielding a value
of a type compatible with the data-type specified for this parameter position iRREEARE
statement that created the prepared query.

Description

EXECUTHS used to execute a previously prepared query. Since prepared queries only exist for the
duration of a session, the prepared query must have been createRRBPAREtatement executed
earlier in the current session.

If the PREPAREtatement that created the query specified some parameters, a compatible set of param-
eters must be passed to tAeECUTEstatement, or else an error is raised. Note that (unlike functions)
prepared queries are not overloaded based on the type or number of their parameters: the name of a
prepared query must be unique within a database session.

For more information on the creation and usage of prepared quericBRERARE

Compatibility

SQL92

SQL92 includes aBXECUTEstatement, but it is only for use in embedded SQL clients. BX@CUTE
statement implemented by PostgreSQL also uses a somewhat different syntax.



EXPLAIN

Name

EXPLAIN — show the execution plan of a statement

Synopsis

EXPLAIN [ ANALYZE ] [ VERBOSE ] query

Inputs

ANALYZE

Flag to carry out the query and show actual run times.
VERBOSE

Flag to show detailed query plan dump.

query
Any query .

Outputs

Query plan
Explicit query plan from the PostgreSQL planner.

Note: Prior to PostgreSQL 7.3, the query plan was emitted in the form of a NOTICE message.
Now it appears as a query result (formatted like a table with a single text column).

Description

This command displays the execution plan that the PostgreSQL planner generates for the supplied
query. The execution plan shows how the table(s) referenced by the query will be scanned---by plain

sequential scan, index scan, etc.---and if multiple tables are referenced, what join algorithms will be

used to bring together the required tuples from each input table.

The most critical part of the display is the estimated query execution cost, which is the planner’s
guess at how long it will take to run the query (measured in units of disk page fetches). Actually two
numbers are shown: the start-up time before the first tuple can be returned, and the total time to return



EXPLAIN

all the tuples. For most queries the total time is what matters, but in contexts such as an EXISTS sub-
query the planner will choose the smallest start-up time instead of the smallest total time (since the
executor will stop after getting one tuple, anyway). Also, if you limit the number of tuples to return
with a LIMIT clause, the planner makes an appropriate interpolation between the endpoint costs to
estimate which plan is really the cheapest.

The ANALYZE option causes the query to be actually executed, not only planned. The total elapsed
time expended within each plan node (in milliseconds) and total number of rows it actually returned
are added to the display. This is useful for seeing whether the planner’s estimates are close to reality.

Caution

Keep in mind that the query is actually executed when ANALYZE is used. Al-
though EXPLAIN will discard any output that a SELECT would return, other
side-effects of the query will happen as usual. If you wish to use EXPLAIN ANA-
LYZEon an INSERT, UPDATE, or DELETE query without letting the query affect
your data, use this approach:

BEGIN;
EXPLAIN ANALYZE ..,
ROLLBACK;

The VERBOSE option emits the full internal representation of the plan tree, rather than just a sum-
mary. Usually this option is only useful for debugging PostgreSQL. The VERBOSE dump is either
pretty-printed or not, depending on the setting of BX@®LAIN_PRETTY_PRINTconfiguration param-

eter.

Notes

There is only sparse documentation on the optimizer's use of cost information in PostgreSQL. Refer
to theUser’s GuideandProgrammer’s Guiddor more information.

Usage

To show a query plan for a simple query on a table with a simgde column and 10000 rows:

EXPLAIN SELECT * FROM foo;
QUERY PLAN

Seq Scan on foo (cost=0.00..155.00 rows=10000 width=4)
(2 row)

If there is an index and we use a query with an indexable WHERE condik®i, AIN will show a
different plan:

EXPLAIN SELECT * FROM foo WHERE i = 4;
QUERY PLAN

Index Scan using fi on foo (cost=0.00..5.98 rows=1 width=4)



EXPLAIN

Index Cond: (i = 4)
(2 rows)

And here is an example of a query plan for a query using an aggregate function:

EXPLAIN SELECT sum(i) FROM foo WHERE i < 10;
QUERY PLAN

Aggregate (cost=23.93..23.93 rows=1 width=4)
-> Index Scan using fi on foo (cost=0.00..23.92 rows=6 width=4)
Index Cond: (i < 10)
(3 rows)

Note that the specific numbers shown, and even the selected query strategy, may vary between Post-
greSQL releases due to planner improvements.

Compatibility

SQL92
There is NCEXPLAIN statement defined in SQL92.



FETCH

Name

FETCH — retrieve rows from a table using a cursor

Synopsis

FETCH [ direction ][ count ] {IN | FROM } cursor
FETCH [ FORWARD | BACKWARD | RELATIVE ] [# | ALL | NEXT | PRIOR ]
{IN | FROM } cursor

Inputs

direction

selector  defines the fetch direction. It can be one of the following:

FORWARD

fetch next row(s). This is the defaultsklector  is omitted.
BACKWARD

fetch previous row(s).
RELATIVE

Noise word for SQL92 compatibility.

count

count determines how many rows to fetch. It can be one of the following:

#

A signed integer that specifies how many rows to fetch. Note that a negative integer is
equivalent to changing the sense of FORWARD and BACKWARD.

ALL

Retrieve all remaining rows.
NEXT

Equivalent to specifying a count af
PRIOR

Equivalent to specifying a count ef .



FETCH

cursor

An open cursor’s name.

Outputs

FETCHreturns the results of the query defined by the specified cursor. The following messages will
be returned if the query fails:

WARNING: PerformPortalFetch: portal " cursor " not found

If cursor is not previously declared. The cursor must be declared within a transaction block.
WARNING: FETCH/ABSOLUTE not supported, using RELATIVE

PostgreSQL does not support absolute positioning of cursors.
ERROR: FETCH/RELATIVE at current position is not supported

SQL92 allows one to repetitively retrieve the cursor at its “current position” using the syntax
FETCH RELATIVE 0 FROMursor

PostgreSQL does not currently support this notion; in fact the value zero is reserved to indicate
that all rows should be retrieved and is equivalent to specifying the ALL keyword. If the RELA-
TIVE keyword has been used, PostgreSQL assumes that the user intended SQL92 behavior and
returns this error message.

Description

FETCHallows a user to retrieve rows using a cursor. The nhumber of rows retrieved is specified by

If the number of rows remaining in the cursor is less tiahen only those available are fetched.
Substituting the keyword ALL in place of a humber will cause all remaining rows in the cursor to
be retrieved. Instances may be fetched in both FORWARD and BACKWARD directions. The default
direction is FORWARD.

Tip: Negative numbers are allowed to be specified for the row count. A negative number is equiv-
alent to reversing the sense of the FORWARD and BACKWARD keywords. For example, FORWARD
-1 is the same as BACKWARD .1

Notes

Note that the FORWARD and BACKWARD keywords are PostgreSQL extensions. The SQL92 syn-
tax is also supported, specified in the second form of the command. See below for details on compat-
ibility issues.



FETCH

Updating data in a cursor is not supported by PostgreSQL, because mapping cursor updates back to
base tables is not generally possible, as is also the case with VIEW updates. Consequently, users must
issue explicit UPDATE commands to replace data.

Cursors may only be used inside of transactions because the data that they store spans multiple user
gueries.

Use MOVE to change cursor positioMECLAREwill define a cursor. Refer tBEGIN, COMMIT,
andROLLBACKfor further information about transactions.

Usage

The following examples traverses a table using a cursor.

-- Set up and use a cursor:

BEGIN WORK;
DECLARE liahona CURSOR FOR SELECT * FROM films;

-- Fetch first 5 rows in the cursor liahona:
FETCH FORWARD 5 IN liahona;

code | title | did | date_prod | kind | len
BL101 | The Third Man | 101 | 1949-12-23 | Drama | 01:44
BL102 | The African Queen | 101 | 1951-08-11 | Romantic | 01:43
JL201 | Une Femme est une Femme | 102 | 1961-03-12 | Romantic | 01:25
P_301 | Vertigo | 103 | 1958-11-14 | Action | 02:08
P_302 | Becket | 103 | 1964-02-03 | Drama | 02:28

-- Fetch previous row:
FETCH BACKWARD 1 IN liahona;

code | title | did | date_prod | kind | len
+ +-t + +
P_301 | Vertigo | 103 | 1958-11-14 | Action | 02:08

-- close the cursor and commit work:

CLOSE liahona;
COMMIT WORK;

Compatibility
SQL92

Note: The non-embedded use of cursors is a PostgreSQL extension. The syntax and usage of
cursors is being compared against the embedded form of cursors defined in SQL92.



FETCH

SQL92 allows absolute positioning of the cursor for FETCH, and allows placing the results into
explicit variables:

FETCH ABSOLUTHEt
FROMcursor
INTO : variable [, ...]

ABSOLUTE

The cursor should be positioned to the specified absolute row number. All row numbers in Post-
greSQL are relative numbers so this capability is not supported.

:variable

Target host variable(s).



GRANT

Name

GRANT— define access privileges

Synopsis

GRANT { { SELECT | INSERT | UPDATE | DELETE | RULE | REFERENCES | TRIG-
GER }
[,...] | ALL [ PRIVILEGES ] }
ON [ TABLE ] tablename [, ..]
TO { username | GROUP groupname | PUBLIC } [, ...]

GRANT { { CREATE | TEMPORARY | TEMP } [..] | ALL [ PRIVILEGES ] }
ON DATABASHIbname [, ..]
TO { username | GROUP groupname | PUBLIC } [, ...]

GRANT { EXECUTE | ALL [ PRIVILEGES ] }
ON FUNCTIONfuncname ([ type , ...) [, ...]
TO { username | GROUP groupname | PUBLIC } [, ..]

GRANT { USAGE | ALL [ PRIVILEGES ] }
ON LANGUAGHangname [, ...]
TO { username | GROUP groupname | PUBLIC } [, ..]]

GRANT { { CREATE | USAGE } [,...] | ALL [ PRIVILEGES ] }
ON SCHEMAchemaname [, ...]
TO { username | GROUP groupname | PUBLIC } [, ...]

Description

The GRANTcommand gives specific permissions on an object (table, view, sequence, database, func-
tion, procedural language, or schema) to one or more users or groups of users. These permissions are
added to those already granted, if any.

The key wordPUBLIC indicates that the privileges are to be granted to all users, including those that
may be created latePUBLIC may be thought of as an implicitly defined group that always includes all
users. Note that any particular user will have the sum of privileges granted directly to him, privileges
granted to any group he is presently a member of, and privileges grarfemtaC.

There is no need to grant privileges to the creator of an object, as the creator has all privileges by
default. (The creator could, however, choose to revoke some of his own privileges for safety.) Note
that the ability to grant and revoke privileges is inherent in the creator and cannot be lost. The right to
drop an object, or to alter it in any way not described by a grantable right, is likewise inherent in the
creator, and cannot be granted or revoked.

Depending on the type of object, the initial default privileges may include granting some privileges
to PUBLIC. The default is no public access for tables and sche&agPtable creation privilege

for database€EXECUTBprivilege for functions; andUSAGHprivilege for languages. The object cre-

ator may of course revoke these privileges. (For maximum security, iSSIRENM@KEN the same
transaction that creates the object; then there is no window in which another user may use the object.)

The possible privileges are:



GRANT

SELECT

Allows SELECTfrom any column of the specified table, view, or sequence. Also allows the use
of COPYTO. For sequences, this privilege also allows the use ofdheal function.

INSERT
Allows INSERTof a new row into the specified table. Also allo@®PYFROM.
UPDATE

Allows UPDATEof any column of the specified tableELECT ... FOR UPDATE also requires
this privilege (besides theELECTprivilege). For sequences, this privilege allows the use of the
nextval andsetval functions.

DELETE

Allows DELETEof a row from the specified table.
RULE

Allows the creation of a rule on the table/view. (S28EATE RULEtatement.)
REFERENCES

To create a foreign key constraint, it is necessary to have this privilege on both the referencing
and referenced tables.

TRIGGER

Allows the creation of a trigger on the specified table. (SREATE TRIGGERtatement.)
CREATE

For databases, allows new schemas to be created within the database.

For schemas, allows new objects to be created within the schema. To rename an existing object,
you must own the obje@ind have this privilege for the containing schema.

TEMPORARY
TEMP

Allows temporary tables to be created while using the database.
EXECUTE

Allows the use of the specified function and the use of any operators that are implemented on
top of the function. This is the only type of privilege that is applicable to functions. (This syntax
works for aggregate functions, as well.)

USAGE

For procedural languages, allows the use of the specified language for the creation of functions
in that language. This is the only type of privilege that is applicable to procedural languages.

For schemas, allows access to objects contained in the specified schema (assuming that the ob-
jects’ own privilege requirements are also met). Essentially this allows the grantee to “look up”
objects within the schema.

ALL PRIVILEGES

Grant all of the privileges applicable to the object at once.ARK/ILEGES key word is optional
in PostgreSQL, though it is required by strict SQL.

The privileges required by other commands are listed on the reference page of the respective com-
mand.



GRANT

Notes
The REVOKEcommand is used to revoke access privileges.

It should be noted that databasgperusersan access all objects regardless of object privilege set-
tings. This is comparable to the rightsrobt in a Unix system. As withoot , it's unwise to operate
as a superuser except when absolutely necessary.

Currently, to grant privileges in PostgreSQL to only a few columns, you must create a view having
the desired columns and then grant privileges to that view.

Usepsqls \dp command to obtain information about existing privileges, for example:

lusitania=> \dp mytable
Access privileges for database "lusitania”

Schema | Table | Access privileges

+ +
public | mytable | {=r,miriam=arwdRxt,"group todos=arw"}
(1 row)

The entries shown bylp are interpreted thus:

=XXXX -- privileges granted to PUBLIC
uname=xxxx -- privileges granted to a user
group gname=xxxx -- privileges granted to a group

r -- SELECT ("read")
w -- UPDATE ("write")
a -- INSERT ("append")

d -- DELETE

R -- RULE

X -- REFERENCES
t -- TRIGGER

X -- EXECUTE

U -- USAGE

C -- CREATE

T -- TEMPORARY
arwdRxt -- ALL PRIVILEGES (for tables)

The above example display would be seen by usgam after creating tablenytable and doing

GRANT SELECT ON mytable TO PUBLIC;
GRANT SELECT,UPDATE,INSERT ON mytable TO GROUP todos;

If the “Access privileges” column is empty for a given object, it means the object has default privileges
(that is, its privileges field is NULL). Default privileges always include all privileges for the owner,
and may include some privileges fBUBLIC depending on the object type, as explained above. The
first GRANTor REVOKEON an object will instantiate the default privileges (producing, for example,
{=,miriam=arwdRxt} ) and then modify them per the specified request.

Examples

Grant insert privilege to all users on table films:

GRANT INSERT ON films TO PUBLIC;



GRANT

Grant all privileges to usenanuel on viewkinds :

GRANT ALL PRIVILEGES ON kinds TO manuel;

Compatibility

SQL92

ThePRIVILEGES key word inALL PRIVILEGES is required. SQL does not support setting the priv-
ileges on more than one table per command.

The SQL92 syntax for GRANT allows setting privileges for individual columns within a table, and
allows setting a privilege to grant the same privileges to others:

GRANT privilege [, -]
ONobject [ ( column [, .]J)11L ..
TO { PUBLIC | username [, ..] } [ WITH GRANT OPTION ]

SQL allows to grant the USAGE privilege on other kinds of objects: CHARACTER SET, COLLA-
TION, TRANSLATION, DOMAIN.

The TRIGGER privilege was introduced in SQL99. The RULE privilege is a PostgreSQL extension.

See Also
REVOKE



INSERT

Name

INSERT — create new rows in a table

Synopsis

INSERT INTO table [ ( column [, ..]) ]
{ DEFAULT VALUES | VALUES ( { expression | DEFAULT } [, ...] ) | SE-
LECT query }

Inputs

table

The name (optionally schema-qualified) of an existing table.
column

The name of a column itable
DEFAULT VALUES

All columns will be filled by null values or by values specified when the table was created using
DEFAULTCclauses.

expression
A valid expression or value to assigndgolumn .
DEFAULT

This column will be filled in by the column DEFAULT clause, or NULL if a default is not
available.

query
A valid query. Refer to the SELECT statement for a further description of valid arguments.

Outputs

INSERT oid 1
Message returned if only one row was insert@d. is the numeric OID of the inserted row.
INSERT 0 #

Message returned if more than one rows were inseftélthe number of rows inserted.



INSERT

Description

INSERT allows one to insert new rows into a table. One can insert a single row at a time or several
rows as a result of a query. The columns in the target list may be listed in any order.

Each column not present in the target list will be inserted using a default value, either a declared
DEFAULT value or NULL. PostgreSQL will reject the new column if a NULL is inserted into a
column declared NOT NULL.

If the expression for each column is not of the correct data type, automatic type coercion will be
attempted.

You must have insert privilege to a table in order to append to it, as well as select privilege on any
table specified in a WHERE clause.

Usage

Insert a single row into tabléims

INSERT INTO films VALUES
(UA502','Bananas’,105,'1971-07-13’,’'Comedy’,INTERVAL '82 minute’);

In this second example the last colufen is omitted and therefore it will have the default value of
NULL:

INSERT INTO films (code, title, did, date_prod, kind)
VALUES ('T_601', 'Yojimbo’, 106, DATE '1961-06-16’, 'Drama’);

In the third example, we use the DEFAULT values for the date columns rather than specifying an
entry.

INSERT INTO films VALUES
(UA502',’Bananas’,105,DEFAULT,’Comedy’,INTERVAL '82 minute’);
INSERT INTO films (code, title, did, date_prod, kind)
VALUES ('T_601’, 'Yojimbo’, 106, DEFAULT, 'Drama’);

Insert a single row into table distributors; note that only columame is specified, so the omitted
columndid will be assigned its default value:

INSERT INTO distributors (name) VALUES ('British Lion’);

Insert several rows into table films from tathep :

INSERT INTO films SELECT * FROM tmp;



INSERT

Insert into arrays (refer to theostgreSQL User’s Guidier further information about arrays):

-- Create an empty 3x3 gameboard for noughts-and-crosses
-- (all of these queries create the same board attribute)
INSERT INTO tictactoe (game, board[1:3][1:3])

VALUES (L{{","," 104" "}):
INSERT INTO tictactoe (game, board[3][3])

VALUES (2,'{});
INSERT INTO tictactoe (game, board)

VALUES (3, {.1{3 {1

Compatibility

SQL92

INSERT is fully compatible with SQL92. Possible limitations in features of theery clause are
documented foBELECT



LISTEN

Name

LISTEN — listen for a notification

Synopsis

LISTEN name

Inputs

name

Name of notify condition.

Outputs

LISTEN
Message returned upon successful completion of registration.
WARNING: Async_Listen: We are already listening on name

If this backend is already registered for that notify condition.

Description
LISTEN registers the current PostgreSQL backend as a listener on the notify comditran

Whenever the commandOTIFY name is invoked, either by this backend or another one connected

to the same database, all the backends currently listening on that notify condition are notified, and
each will in turn notify its connected frontend application. See the discussi®lOdfFY for more
information.

A backend can be unregistered for a given notify condition withiUR&ISTEN command. Also, a
backend’s listen registrations are automatically cleared when the backend process exits.

The method a frontend application must use to detect notify events depends on which PostgreSQL
application programming interface it uses. With the libpq library, the application i&$8€EN as an
ordinary SQL command, and then must periodically call the rolripeotifies  to find out whether

any notify events have been received. Other interfaces such as libpgtcl provide higher-level methods
for handling notify events; indeed, with libpgtcl the application programmer should not even issue
LISTEN or UNLISTENdirectly. See the documentation for the library you are using for more details.

NOTIFY contains a more extensive discussion of the ude®fEN andNOTIFY.



LISTEN

Notes

name can be any string valid as a name; it need not correspond to the name of any actual table. If
notifyname  is enclosed in double-quotes, it need not even be a syntactically valid name, but can
be any string up to 63 characters long.

In some previous releases of PostgreS@ame had to be enclosed in double-quotes when it did
not correspond to any existing table name, even if syntactically valid as a name. That is no longer
required.

Usage

Configure and execute a listen/notify sequence from psql:

LISTEN virtual,
NOTIFY virtual;

Asynchronous NOTIFY ‘virtual' from backend with pid '8448' received.

Compatibility

SQL92
There is NALISTEN in SQL92.



LOAD

Name
LOAD— load or reload a shared library file

Synopsis

LOAD ’filename

Description

Loads a shared library file into the PostgreSQL backend’s address space. If the file had been loaded
previously, it is first unloaded. This command is primarily useful to unload and reload a shared li-
brary file that has been changed since the backend first loaded it. To make use of the shared library,
function(s) in it need to be declared using ®BREATE FUNCTIONommand.

The file name is specified in the same way as for shared library nameREATE FUNCTION
in particular, one may rely on a search path and automatic addition of the system’s standard shared
library file name extension. See tReogrammer’s Guiddéor more detalil.

Compatibility

LOADiIs a PostgreSQL extension.

See Also
CREATE FUNCTIONPostgreSQL Programmer’s Guide



LOCK

Name
LOCK — explicitly lock a table

Synopsis

LOCK [ TABLE ] name [, ..]
LOCK [ TABLE ] name [, ...] IN lockmode MODE

where lockmode is one of:

ACCESS SHARE | ROW SHARE | ROW EXCLUSIVE | SHARE UPDATE EXCLUSIVE |
SHARE | SHARE ROW EXCLUSIVE | EXCLUSIVE | ACCESS EXCLUSIVE

Inputs

name
The name (optionally schema-qualified) of an existing table to lock.
ACCESS SHARE MODE

This is the least restrictive lock mode. It conflicts only with ACCESS EXCLUSIVE mode. It
is used to protect a table from being modified by concurremMER TABLE DROP TABLENd
VACUUM FULcommands.

Note: The SELECTcommand acquires a lock of this mode on referenced tables. In general,
any query that only reads a table and does not modify it will acquire this lock mode.

ROW SHARE MODE
Conflicts with EXCLUSIVE and ACCESS EXCLUSIVE lock modes.

Note: The SELECT FOR UPDAT&mmand acquires a lock of this mode on the target table(s)
(in addition to ACCESS SHARIBcks on any other tables that are referenced but not selected
FOR UPDATE

ROW EXCLUSIVE MODE

Conflicts with SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE and ACCESS EXCLUSIVE
modes.

Note: The commands UPDATE DELETE and INSERT acquire this lock mode on the target
table (in addition to ACCESS SHARIbcks on any other referenced tables). In general, this
lock mode will be acquired by any query that modifies the data in a table.



LOCK

SHARE UPDATE EXCLUSIVE MODE

Conflicts with SHARE UPDATE EXCLUSIVE, SHARE, SHARE ROW EXCLUSIVE, EX-
CLUSIVE and ACCESS EXCLUSIVE modes. This mode protects a table against concurrent
schema changes anv&CUUNuUNS.

Note: Acquired by VACUUMwithout FULL).

SHARE MODE

Conflicts with ROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE ROW EXCLU-
SIVE, EXCLUSIVE and ACCESS EXCLUSIVE modes. This mode protects a table against
concurrent data changes.

Note: Acquired by CREATE INDEX

SHARE ROW EXCLUSIVE MODE

Conflicts with ROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE, SHARE ROW
EXCLUSIVE, EXCLUSIVE and ACCESS EXCLUSIVE modes.

Note: This lock mode is not automatically acquired by any PostgreSQL command.

EXCLUSIVE MODE

Conflicts with ROW SHARE, ROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE,
SHARE ROW EXCLUSIVE, EXCLUSIVE and ACCESS EXCLUSIVE modes. This mode al-
lows only concurrent ACCESS SHARE, i.e., only reads from the table can proceed in parallel
with a transaction holding this lock mode.

Note: This lock mode is not automatically acquired by any PostgreSQL command.

ACCESS EXCLUSIVE MODE

Conflicts with all lock modes. This mode guarantees that the holder is the only transaction ac-
cessing the table in any way.

Note: Acquired by ALTER TABLE DROP TABLEand VACUUM FULIstatements. This is also
the default lock mode for LOCK TABLEStatements that do not specify a mode explicitly.

Outputs

LOCK TABLE

The lock was successfully acquired.



LOCK

ERRORname: Table does not exist.

Message returned ifame does not exist.

Description

LOCK TABLEobtains a table-level lock, waiting if necessary for any conflicting locks to be released.
Once obtained, the lock is held for the remainder of the current transaction. (ThereJLOELK
TABLE command; locks are always released at transaction end.)

When acquiring locks automatically for commands that reference tables, PostgreSQL always uses
the least restrictive lock mode possibl@CK TABLBEprovides for cases when you might need more
restrictive locking.

For example, suppose an application runs a transaction at READ COMMITTED isolation level and
needs to ensure that data in a table remains stable for the duration of the transaction. To achieve this
you could obtain SHARE lock mode over the table before querying. This will prevent concurrent data
changes and ensure subsequent reads of the table see a stable view of committed data, because SHARE
lock mode conflicts with the ROW EXCLUSIVE lock acquired by writers, and yob€K TABLE

name IN SHARE MODEtatement will wait until any concurrent holders of ROW EXCLUSIVE mode
commit or roll back. Thus, once you obtain the lock, there are no uncommitted writes outstanding;
furthermore none can begin until you release the lock.

Note: To achieve a similar effect when running a transaction at the SERIALIZABLE isolation
level, you have to execute the LOCK TABLEstatement before executing any DML statement. A
serializable transaction’s view of data will be frozen when its first DML statement begins. A later
LOCKwill still prevent concurrent writes --- but it won’t ensure that what the transaction reads
corresponds to the latest committed values.

If a transaction of this sort is going to change the data in the table, then it should use SHARE ROW
EXCLUSIVE lock mode instead of SHARE mode. This ensures that only one transaction of this type
runs at a time. Without this, a deadlock is possible: two transactions might both acquire SHARE
mode, and then be unable to also acquire ROW EXCLUSIVE mode to actually perform their updates.
(Note that a transaction’s own locks never conflict, so a transaction can acquire ROW EXCLUSIVE
mode when it holds SHARE mode --- but not if anyone else holds SHARE mode.)

Two general rules may be followed to prevent deadlock conditions:

« Transactions have to acquire locks on the same objects in the same order.

For example, if one application updates row R1 and than updates row R2 (in the same transaction)
then the second application shouldn’t update row R2 if it's going to update row R1 later (in a single
transaction). Instead, it should update rows R1 and R2 in the same order as the first application.

- If multiple lock modes are involved for a single object, then transactions should always acquire the
most restrictive mode first.

An example for this rule was given previously when discussing the use of SHARE ROW EXCLU-
SIVE mode rather than SHARE mode.



LOCK

PostgreSQL does detect deadlocks and will rollback at least one waiting transaction to resolve the
deadlock. If it is not practical to code an application to follow the above rules strictly, an alternative
solution is to be prepared to retry transactions when they are aborted by deadlocks.

When locking multiple tables, the commabdCK a, b; is equivalenttd. OCK a; LOCK b;. The
tables are locked one-by-one in the order specified in@@kcommand.

Notes

LOCK ... IN ACCESS SHARE MODEequiresSELECTprivileges on the target table. All other forms
of LOCKrequireUPDATEand/orDELETEprivileges.

LOCKis useful only inside a transaction blodHGIN...COMMITJ, since the lock is dropped as soon as
the transaction ends. LOCKcommand appearing outside any transaction block forms a self-contained
transaction, so the lock will be dropped as soon as it is obtained.

RDBMS locking uses the following standard terminology:

EXCLUSIVE
An exclusive lock prevents other locks of the same type from being granted.
SHARE

A shared lock allows others to also hold the same type of lock, but prevents the corresponding
EXCLUSIVE lock from being granted.

ACCESS
Locks table schema.
ROW

Locks individual rows.

PostgreSQL does not follow this terminology exadti@CK TABLEonly deals with table-level locks,

and so the mode names involving ROW are all misnomers. These mode names should generally be
read as indicating the intention of the user to acquire row-level locks within the locked table. Also,
ROW EXCLUSIVE mode does not follow this naming convention accurately, since it is a sharable
table lock. Keep in mind that all the lock modes have identical semantics so &Gt TABLES
concerned, differing only in the rules about which modes conflict with which.

Usage

Obtain a SHARE lock on a primary key table when going to perform inserts into a foreign key table:

BEGIN WORK;
LOCK TABLE films IN SHARE MODE;
SELECT id FROM films
WHERE name = 'Star Wars: Episode | - The Phantom Menace’;
-- Do ROLLBACK if record was not returned
INSERT INTO films_user_comments VALUES
(Lid_, 'GREAT! | was waiting for it for so long!);
COMMIT WORK;



LOCK

Take a SHARE ROW EXCLUSIVE lock on a primary key table when going to perform a delete
operation:

BEGIN WORK;

LOCK TABLE films IN SHARE ROW EXCLUSIVE MODE;

DELETE FROM films_user_comments WHERE id IN
(SELECT id FROM films WHERE rating < 5);

DELETE FROM films WHERE rating < 5;

COMMIT WORK;

Compatibility

SQL92

There is nALOCK TABLEN SQL92, which instead us€3cT TRANSACTIONO specify concurrency
levels on transactions. We support that too; SE& TRANSACTIORbr details.

Except for ACCESS SHARE, ACCESS EXCLUSIVE, and SHARE UPDATE EXCLUSIVE lock
modes, the PostgreSQL lock modes andU®€K TABLESyntax are compatible with those present
in Oracle(TM).



MOVE

Name

MOVE — position a cursor on a specified row of a table

Synopsis

MOVE [ direction ][ count ]
{IN | FROM } cursor

Description

MOVEallows a user to move cursor position a specified number of rM@/Bvorks like theFETCH
command, but only positions the cursor and does not return rows.

Refer toFETCH for details on syntax and usage.

Notes
MOVHS a PostgreSQL language extension.

Refer toFETCH for a description of valid arguments. Refe@& CLAREto define a cursor. Refer to
BEGIN, COMMIT, andROLLBACKfor further information about transactions.

Usage

Set up and use a cursor:

BEGIN WORK;

DECLARE liahona CURSOR FOR SELECT * FROM films;
-- Skip first 5 rows:

MOVE FORWARD 5 IN liahona;

MOVE

-- Fetch 6th row in the cursor liahona:

FETCH 1 IN liahona;

FETCH

code | title | did | date_prod | kind | len
P_303 | 48 Hrs | 103 | 1982-10-22| Action | 01:37
(1 row)
-- close the cursor liahona and commit work:
CLOSE liahona;
COMMIT WORK;




MOVE
Compatibility
SQL92

There is no SQL9MOVEstatement. Instead, SQL92 allows oneFBTCHrows from an absolute
cursor position, implicitly moving the cursor to the correct position.



NOTIFY

Name

NOTIFY — generate a notification

Synopsis

NOTIFY name

Inputs

notifyname

Notify condition to be signaled.

Outputs

NOTIFY
Acknowledgement that notify command has executed.
Notify events

Events are delivered to listening frontends; whether and how each frontend application reacts
depends on its programming.

Description

TheNOTIFY command sends a notify event to each frontend application that has previously executed
LISTEN notifyname  for the specified notify condition in the current database.

The information passed to the frontend for a notify event includes the notify condition name and the
notifying backend process’s PID. It is up to the database designer to define the condition names that
will be used in a given database and what each one means.

Commonly, the notify condition name is the same as the name of some table in the database, and the
notify event essentially means “I changed this table, take a look at it to see what's new”. But no such
association is enforced by tthOTIFY andLISTEN commands. For example, a database designer
could use several different condition names to signal different sorts of changes to a single table.

NOTIFY provides a simple form of signal or IPC (interprocess communication) mechanism for a
collection of processes accessing the same PostgreSQL database. Higher-level mechanisms can be
built by using tables in the database to pass additional data (beyond a mere condition name) from
notifier to listener(s).



NOTIFY

WhenNOTIFY is used to signal the occurrence of changes to a particular table, a useful programming
technique is to put th8IOTIFY in a rule that is triggered by table updates. In this way, notification
happens automatically when the table is changed, and the application programmer can’t accidentally
forgetto doit.

NOTIFY interacts with SQL transactions in some important ways. Firstly, NIOTIFY is executed
inside a transaction, the notify events are not delivered until and unless the transaction is committed.
This is appropriate, since if the transaction is aborted we would like all the commands within it
to have had no effect, includingOTIFY. But it can be disconcerting if one is expecting the notify
events to be delivered immediately. Secondly, if a listening backend receives a notify signal while it is
within a transaction, the notify event will not be delivered to its connected frontend until just after the
transaction is completed (either committed or aborted). Again, the reasoning is that if a notify were
delivered within a transaction that was later aborted, one would want the notification to be undone
somehow---but the backend cannot “take back” a notify once it has sent it to the frontend. So notify
events are only delivered between transactions. The upshot of this is that applicationsQisiRyg

for real-time signaling should try to keep their transactions short.

NOTIFY behaves like Unix signals in one important respect: if the same condition name is signaled
multiple times in quick succession, recipients may get only one notify event for several executions
of NOTIFY. So itis a bad idea to depend on the number of notifies received. InsteadQuigey to

wake up applications that need to pay attention to something, and use a database object (such as a
sequence) to keep track of what happened or how many times it happened.

It is common for a frontend that send®TIFY to be listening on the same notify name itself. In

that case it will get back a notify event, just like all the other listening frontends. Depending on the
application logic, this could result in useless work---for example, re-reading a database table to find
the same updates that that frontend just wrote out. In PostgreSQL 6.4 and later, it is possible to avoid
such extra work by noticing whether the notifying backend process’s PID (supplied in the notify event
message) is the same as one’s own backend’s PID (available from libpg). When they are the same,
the notify event is one’s own work bouncing back, and can be ignored. (Despite what was said in the
preceding paragraph, this is a safe technique. PostgreSQL keeps self-notifies separate from notifies
arriving from other backends, so you cannot miss an outside notify by ignoring your own notifies.)

Notes

name can be any string valid as a name; it need not correspond to the name of any actual table. If
name is enclosed in double-quotes, it need not even be a syntactically valid name, but can be any
string up to 63 characters long.

In some previous releases of PostgreS@ame had to be enclosed in double-quotes when it did
not correspond to any existing table name, even if syntactically valid as a name. That is no longer
required.

In PostgreSQL releases prior to 6.4, the backend PID delivered in a notify message was always the
PID of the frontend’s own backend. So it was not possible to distinguish one’s own notifies from other
clients’ notifies in those earlier releases.

Usage
Configure and execute a listen/notify sequence from psql:
LISTEN virtual;

NOTIFY virtual;
Asynchronous NOTIFY ‘virtual' from backend with pid '8448' received.



NOTIFY

Compatibility

SQL92
There is NANOTIFY statement in SQL92.



PREPARE

Name
PREPARE — create a prepared query

Synopsis

PREPAREplan_name [ ( datatype [, ..] ) ] AS query

Inputs

plan_name

An arbitrary name given to this particular prepared query. It must be unique within a single
session, and is used to execute or remove a previously prepared query.

datatype

The data-type of a parameter to the prepared query. To refer to the parameters in the prepared
query itself, uses1, $2, etc.

Outputs

PREPARE

The query has been prepared successfully.

Description

PREPAREreates a prepared query. A prepared query is a server-side object that can be used to opti-
mize performance. When tlRREPARBtatement is executed, the specified query is parsed, rewritten,
and planned. When a subsequERECUTEstatement is issued, the prepared query need only be ex-
ecuted. Thus, the parsing, rewriting, and planning stages are only performed once, instead of every
time the query is executed.

Prepared queries can take parameters: values that are substituted into the query when it is executed. To
specify the parameters to a prepared query, include a list of data-types witRERAREtatement.

In the query itself, you can refer to the parameters by position uEing2, etc. When executing the

query, specify the actual values for these parameters iBXECUTEtatement -- refer t&e XECUTE

for more information.

Prepared queries are stored locally (in the current backend), and only exist for the duration of the
current database session. When the client exits, the prepared query is forgotten, and so it must be
re-created before being used again. This also means that a single prepared query cannot be used by



PREPARE

multiple simultaneous database clients; however, each client can create their own prepared query to
use.

Prepared queries have the largest performance advantage when a single backend is being used to
execute a large number of similar queries. The performance difference will be particularly significant

if the queries are complex to plan or rewrite. For example, if the query involves a join of many tables

or requires the application of several rules. If the query is relatively simple to plan and rewrite but
relatively expensive to execute, the performance advantage of prepared queries will be less noticeable.

Notes

In some situations, the query plan produced by PostgreSQL for a prepared query may be inferior to

the plan produced if the query were submitted and executed normally. This is because when the query
is planned (and the optimizer attempts to determine the optimal query plan), the actual values of any

parameters specified in the query are unavailable. PostgreSQL collects statistics on the distribution

of data in the table, and can use constant values in a query to make guesses about the likely result of
executing the query. Since this data is unavailable when planning prepared queries with parameters,
the chosen plan may be sub-optimal.

For more information on query planning and the statistics collected by PostgreSQL for query opti-
mization purposes, see tAdNALYZEdocumentation.

Compatibility

SQL92

SQL92 includes #REPAREtatement, but it is only for use in embedded SQL clients. AREPARE
statement implemented by PostgreSQL also uses a somewhat different syntax.



REINDEX

Name
REINDEX — rebuild corrupted indexes

Synopsis

REINDEX { TABLE | DATABASE | INDEX } name [ FORCE ]

Inputs

TABLE
Recreate all indexes of a specified table.
DATABASE
Recreate all system indexes of a specified database. (User-table indexes are not included.)
INDEX
Recreate a specified index.
name

The name of the specific table/database/index to be reindexed. Table and index names may be
schema-qualified.

FORCE

Force rebuild of system indexes. Without this keywBEINDEX skips system indexes that are
not marked invalid. FORCE is irrelevant fRBEINDEX INDEX or when reindexing user indexes.

Outputs

REINDEX

Message returned if the table is successfully reindexed.

Description

REINDEXis used to rebuild corrupted indexes. Although in theory this should never be necessary, in
practice indexes may become corrupted due to software bugs or hardware fREINISEXprovides
a recovery method.

REINDEXalso removes certain dead index pages that can't be reclaimed any other way. See the "Rou-
tine Reindexing" section in the manual for more information.



REINDEX

If you suspect corruption of an index on a user table, you can simply rebuild that index, or all indexes
on the table, usin@EINDEX INDEXor REINDEX TABLE

Note: Another approach to dealing with a corrupted user-table index is just to drop and recreate
it. This may in fact be preferable if you would like to maintain some semblance of normal operation
on the table meanwhile. REINDEXacquires exclusive lock on the table, while CREATE INDEXonly
locks out writes not reads of the table.

Things are more difficult if you need to recover from corruption of an index on a system table. In
this case it's important for the backend doing the recovery to not have used any of the suspect indexes
itself. (Indeed, in this sort of scenario you may find that backends are crashing immediately at start-up,
due to reliance on the corrupted indexes.) To recover safely, the postmaster must be shut down and a
stand-alone PostgreSQL backend must be started instead, giving it the command-line options -O and
-P (these options allow system table modifications and prevent use of system indexes, respectively).
Then isSUeREINDEX INDEX REINDEX TABLE or REINDEX DATABASHIepending on how much

you want to reconstruct. If in doubt, UREINDEX DATABASE FORGQ& force reconstruction of all

system indexes in the database. Then quit the standalone backend and restart the postmaster.

Since this is likely the only situation when most people will ever use a standalone backend, some
usage notes might be in order:

- Start the backend with a command like
postgres -D $PGDATA -O -P my_database

Provide the correct path to the database area Wittor make sure that the environment variable
PGDATAS set. Also specify the name of the particular database you want to work in.

+ You can issue any SQL command, not oREINDEX

- Be aware that the standalone backend treats newline as the command entry terminator; there is no
intelligence about semicolons, as there is in psql. To continue a command across multiple lines,
you must type backslash just before each newline except the last one. Also, you won't have any of
the conveniences of command-line editing (no command history, for example).

- To quit the backend, type EOE¢ntrol+D, usually).

See thepostgreseference page for more information.
Usage

Recreate the indexes on the tabigtable :

REINDEX TABLE mytable;

Rebuild a single index:

REINDEX INDEX my_index;

Rebuild all system indexes (this will only work in a standalone backend):



REINDEX

REINDEX DATABASE my_database FORCE;

Compatibility

SQL92
There is NAREINDEXin SQL92.



RESET

Name

RESET— restore the value of a run-time parameter to a default value

Synopsis

RESET variable

RESET ALL

Inputs

variable
The name of a run-time parameter. S#€T for a list.
ALL

Resets all settable run-time parameters to default values.

Description

RESETrestores run-time parameters to their default values. RefSEfDfor details.RESETis an
alternate spelling for

SET variable TO DEFAULT

The default value is defined as the value that the variable would have had, I&#Trever been

issued for it in the current session. The actual source of this value might be a compiled-in default, the
postmaster’s configuration file or command-line switches, or per-database or per-user default settings.
See theAdministrator’'s Guiddor details.

See theSET manual page for details on the transaction behavi®RESET

Diagnostics

See under th8 ETcommand.

Examples

SetDateStyle to its default value:

RESET DateStyle;



RESET

Setgeqo to its default value:

RESET GEQO;

Compatibility

RESETis a PostgreSQL extension.



REVOKE

Name

REVOKE— remove access privileges

Synopsis

REVOKE { { SELECT | INSERT | UPDATE | DELETE | RULE | REFERENCES | TRIG-
GER }
[,--] | ALL [ PRIVILEGES ] }
ON [ TABLE ] tablename [, ..]
FROM {username | GROUP groupname | PUBLIC } [, ..]

REVOKE { { CREATE | TEMPORARY | TEMP } [,...] | ALL [ PRIVILEGES ] }
ON DATABASHbname [, ..]
FROM {username | GROUP groupname | PUBLIC } [, ..]

REVOKE { EXECUTE | ALL [ PRIVILEGES ] }
ON FUNCTIONfuncname ([ type , ...) [, ...]
FROM {username | GROUP groupname | PUBLIC } [, ..]

REVOKE { USAGE | ALL [ PRIVILEGES ] }
ON LANGUAGHangname [, ...]
FROM {username | GROUP groupname | PUBLIC } [, ..]

REVOKE { { CREATE | USAGE } [,..] | ALL [ PRIVILEGES ] }
ON SCHEMAchemaname [, ...]
FROM {username | GROUP groupname | PUBLIC } [, ..]

Description

REVOKEallows the creator of an object to revoke previously granted permissions from one or more
users or groups of users. The key wendBLIC refers to the implicitly defined group of all users.

Note that any particular user will have the sum of privileges granted directly to him, privileges granted
to any group he is presently a member of, and privileges grant&B1IC. Thus, for example,
revoking SELECT privilege fronrPUBLIC does not necessarily mean that all users have lost SELECT
privilege on the object: those who have it granted directly or via a group will still have it.

See the description of tteRANTcommand for the meaning of the privilege types.

Notes

Usepsqgls \z command to display the privileges granted on existing objects. Seds&#NT for
information about the format.

Examples

Revoke insert privilege for the public on talfilens

REVOKE INSERT ON films FROM PUBLIC;



REVOKE

Revoke all privileges from usenanuel on viewkinds :

REVOKE ALL PRIVILEGES ON kinds FROM manuel;

Compatibility

SQL92

The compatibility notes of th&6RANTcommand apply analogously REVOKEThe syntax summary
is:

REVOKE [ GRANT OPTION FOR ] { SELECT | INSERT | UPDATE | DELETE | REFER-
ENCES }
ONobject [ ( column [, ..]) ]
FROM { PUBLIC | username [, ..] }
{ RESTRICT | CASCADE }

If userl gives a privilege WITH GRANT OPTION to user2, and user2 gives it to user3 then userl
can revoke this privilege in cascade using the CASCADE keyword. If userl gives a privilege WITH
GRANT OPTION to user2, and user2 gives it to user3, then if userl tries to revoke this privilege it
fails if he specifies the RESTRICT keyword.

See Also
GRANT



ROLLBACK

Name

ROLLBACK — abort the current transaction

Synopsis

ROLLBACK [ WORK | TRANSACTION ]

Inputs

None.

Outputs

ROLLBACK
Message returned if successful.
WARNING: ROLLBACK: no transaction in progress

If there is not any transaction currently in progress.

Description

ROLLBACKolls back the current transaction and causes all the updates made by the transaction to be
discarded.

Notes

UseCOMMIT to successfully terminate a transactid®8ORTis a synonym foROLLBACK

Usage

To abort all changes:

ROLLBACK WORK;



ROLLBACK

Compatibility

SQL92
SQL92 only specifies the two fornROLLBACKandROLLBACK WORRtherwise full compatibility.



SELECT

Name

SELECT — retrieve rows from a table or view

Synopsis

SELECT [ ALL | DISTINCT [ ON (  expression [ -1)11
* | expression [ AS output name ][, ..]
[ FROM from_item [, ...] ]
[ WHERE condition ]
[ GROUP BYexpression [, ...] 1]
[ HAVING condition [ 11
[ { UNION | INTERSECT | EXCEPT } [ ALL ]  select ]
[ ORDER BY expression [ ASC | DESC | USING operator ] [, ...]1]
[ LIMIT { count | ALL } ]
[ OFFSET start ]
[ FOR UPDATE [ OF tablename [, ...] ] 1]

where from_item can be:

[ ONLY ] table_name [ * ]
[[ AS] alias [ ( column_alias_list )11

( select )

[ AS ] alias [ ( column_alias_list ) ]
I
table_function_name ([ argument [, ..]1)
[ AS] alias [ ( column_alias_list | column_definition_list ) 1
I
table_function_name ([ argument [, ..]]1)
AS ( column_definition_list )

I
from_item [ NATURAL ] join_type from_item
[ ON join_condition | USING ( join_column_list ) ]

Inputs

expression
The name of a table’s column or an expression.
output_name

Specifies another name for an output column using the AS clause. This hame is primarily used
to label the column for display. It can also be used to refer to the column’s value in ORDER BY
and GROUP BY clauses. But tleeitput_name cannot be used in the WHERE or HAVING
clauses; write out the expression instead.

from_item

A table reference, sub-SELECT, table function, or JOIN clause. See below for details.



SELECT

condition

A Boolean expression giving a result of true or false. See the WHERE and HAVING clause
descriptions below.

select

A select statement with all features except the ORDER BY, LIMIT/OFFSET, and FOR UPDATE
clauses (even those can be used when the select is parenthesized).

FROM items can contain:

table_name

The name (optionally schema-qualified) of an existing table or vie@NIEYis specified, only

that table is scanned. ®NLYis not specified, the table and all its descendant tables (if any)
are scanned: can be appended to the table name to indicate that descendant tables are to be
scanned, but in the current version, this is the default behavior. (In releases befar(Aas

the default behavior.) The default behavior can be modified by changirgQhdNHERITANCE
configuration option.

alias

A substitute name for the FROM item containing the alias. An alias is used for brevity or to

eliminate ambiguity for self-joins (where the same table is scanned multiple times). When an
alias is provided, it completely hides the actual name of the table or table function; for example
givenFROM foo AS f, the remainder of the SELECT must refer to this FROM itenfi &t

foo . If an alias is written, a column alias list can also be written to provide substitute names for
one or more columns of the table.

select

A sub-SELECT can appear in the FROM clause. This acts as though its output were created as
a temporary table for the duration of this single SELECT command. Note that the sub-SELECT
must be surrounded by parentheses, and anmlietbe provided for it.

table function

A table function can appear in the FROM clause. This acts as though its output were created as
a temporary table for the duration of this single SELECT command. An alias may also be used.
If an alias is written, a column alias list can also be written to provide substitute names for one
or more columns of the table function. If the table function has been defined as returning the
record datatype, an alias, or the keywoxd, must be present, followed by a column definition

list in the form (column_name data_type [, ... ]). The column definition list must match

the actual number and types of columns returned by the function.

join_type

One of [ INNER ] JOIN , LEFT [ OUTER ] JOIN, RIGHT [ OUTER ] JOIN, FULL

[ OUTER ] JOIN, or CROSS JOIN For INNER and OUTER join types, exactly one of
NATURAL, ON join_condition , or USING (join_column_list ) must appear. For
CROSS JOIN, none of these items may appear.

join_condition

A qualification condition. This is similar to the WHERE condition except that it only applies to
the two from_items being joined in this JOIN clause.



SELECT

join_column_list

A USING column list ( a, b, ... ) is shorthand for the ON condition left_table.a = right_table.a
AND left_table.b =right_table.b ...

Outputs

Rows
The complete set of rows resulting from the query specification.
count

The count of rows returned by the query.

Description

SELECTwill return rows from one or more tables. Candidates for selection are rows which satisfy the
WHERE condition; if WHERE is omitted, all rows are candidates. (B#¢ERE Clausg

Actually, the returned rows are not directly the rows produced by the FROM/WHERE/GROUP
BY/HAVING clauses; rather, the output rows are formed by computing the SELECT output
expressions for each selected rowcan be written in the output list as a shorthand for all the
columns of the selected rows. Also, one can wigtele_name .* as a shorthand for the columns
coming from just that table.

DISTINCT will eliminate duplicate rows from the resuliLL (the default) will return all candidate
rows, including duplicates.

DISTINCT ON eliminates rows that match on all the specified expressions, keeping only the first row
of each set of duplicates. The DISTINCT ON expressions are interpreted using the same rules as for
ORDER BY items; see below. Note that the “first row” of each set is unpredictable WRBER BY

is used to ensure that the desired row appears first. For example,

SELECT DISTINCT ON (location) location, time, report
FROM weatherReports
ORDER BY location, time DESC;

retrieves the most recent weather report for each location. But if we had not used ORDER BY to force
descending order of time values for each location, we’'d have gotten a report of unpredictable age for
each location.

The GROUP BY clause allows a user to divide a table into groups of rows that match on one or more
values. (Se6&ROUP BY Clausg

The HAVING clause allows selection of only those groups of rows meeting the specified condition.
(SeeHAVING Clause



SELECT

The ORDER BY clause causes the returned rows to be sorted in a specified order. If ORDER BY is
not given, the rows are returned in whatever order the system finds cheapest to produoR [Ede
BY Clauseé

SELECT queries can be combined using UNION, INTERSECT, and EXCEPT operators. Use paren-
theses if necessary to determine the ordering of these operators.

The UNION operator computes the collection of rows returned by the queries involved. Duplicate
rows are eliminated unless ALL is specified. (%&¢ION Clause)

The INTERSECT operator computes the rows that are common to both queries. Duplicate rows are
eliminated unless ALL is specified. (SB¢TERSECT Clausk

The EXCEPT operator computes the rows returned by the first query but not the second query. Dupli-
cate rows are eliminated unless ALL is specified. (E€EPT Clausg

The LIMIT clause allows a subset of the rows produced by the query to be returned to the user. (See
LIMIT Clause)

The FOR UPDATE clause causes the SELECT statement to lock the selected rows against concurrent
updates.

You must have SELECT privilege to a table to read its values (Se6RANTREVOKEstatements).
Use of FOR UPDATE requires UPDATE privilege as well.

FROM Clause

The FROM clause specifies one or more source tables for the SELECT. If multiple sources are spec-
ified, the result is conceptually the Cartesian product of all the rows in all the sources --- but usually
qualification conditions are added to restrict the returned rows to a small subset of the Cartesian
product.

When a FROM item is a simple table name, it implicitly includes rows from sub-tables (inheritance
children) of the tableONLYwill suppress rows from sub-tables of the table. Before PostgreSQL 7.1,
this was the default result, and adding sub-tables was done by appenditige table name. This old
behavior is available via the commag8T SQL_Inheritance TO OFF

A FROM item can also be a parenthesized sub-SELECT (note that an alias clause is required for a
sub-SELECT!). This is an extremely handy feature since it's the only way to get multiple levels of
grouping, aggregation, or sorting in a single query.

A FROM item can be a table function (typically, a function that returns multiple rows and/or columns,
though actually any function can be used). The function is invoked with the given argument value(s),
and then its output is scanned as though it were a table.

In some cases it is useful to define table functions that can return different column sets depending on
how they are invoked. To support this, the table function can be declared as returning the pseudo-type
record . When such a function is used in FROM, it must be followed by an alias, or the keyagord
alone, and then by a parenthesized list of column names and types. This provides a query-time com-
posite type definition. The composite type definition must match the actual composite type returned
from the function, or an error will be reported at run-time.

Finally, a FROM item can be a JOIN clause, which combines two simpler FROM items. (Use paren-
theses if necessary to determine the order of nesting.)

A CROSS JOIN or INNER JOIN is a simple Cartesian product, the same as you get from listing the
two items at the top level of FROM. CROSS JOIN is equivalent to INNER JOIN ON (TRUE), that is,
no rows are removed by qualification. These join types are just a notational convenience, since they
do nothing you couldn’t do with plain FROM and WHERE.



SELECT

LEFT OUTER JOIN returns all rows in the qualified Cartesian product (i.e., all combined rows that
pass its ON condition), plus one copy of each row in the left-hand table for which there was no
right-hand row that passed the ON condition. This left-hand row is extended to the full width of the
joined table by inserting null values for the right-hand columns. Note that onlyah¢’'s own ON

or USING condition is considered while deciding which rows have matches. Outer ON or WHERE
conditions are applied afterwards.

Conversely, RIGHT OUTER JOIN returns all the joined rows, plus one row for each unmatched
right-hand row (extended with nulls on the left). This is just a notational convenience, since you could
convertitto a LEFT OUTER JOIN by switching the left and right inputs.

FULL OUTER JOIN returns all the joined rows, plus one row for each unmatched left-hand row
(extended with nulls on the right), plus one row for each unmatched right-hand row (extended with
nulls on the left).

For all the JOIN types except CROSS JOIN, you must write exactly one gb@Ncondition ,
USING (join_column_list ), or NATURAL. ON is the most general case: you can write any
gualification expression involving the two tables to be joined. A USING column list (a, b, ... ) is
shorthand for the ON condition left_table.a = right_table.a AND left_table.b = right_table.b ... Also,
USING implies that only one of each pair of equivalent columns will be included in the JOIN output,
not both. NATURAL is shorthand for a USING list that mentions all similarly-named columns in the
tables.

WHERE Clause

The optional WHERE condition has the general form:

WHEREboolean_expr

boolean_expr can consist of any expression which evaluates to a Boolean value. In many cases,
this expression will be:

expr cond_op expr

or

log_op expr

wherecond_op can be one of: =g, <=, >, >= or <>, a conditional operator like ALL, ANY,
IN, LIKE, or a locally defined operator, andg_op can be one of: AND, OR, NOT. SELECT will
ignore all rows for which the WHERE condition does not return TRUE.

GROUP BY Clause
GROUP BY specifies a grouped table derived by the application of this clause:

GROUP BYexpression [ -]

GROUP BY will condense into a single row all selected rows that share the same values for the
grouped columns. Aggregate functions, if any, are computed across all rows making up each group,



SELECT

producing a separate value for each group (whereas without GROUP BY, an aggregate produces a
single value computed across all the selected rows). When GROUP BY is present, it is not valid for
the SELECT output expression(s) to refer to ungrouped columns except within aggregate functions,
since there would be more than one possible value to return for an ungrouped column.

A GROUP BY item can be an input column name, or the name or ordinal number of an output column
(SELECT expression), or it can be an arbitrary expression formed from input-column values. In case
of ambiguity, a GROUP BY name will be interpreted as an input-column name rather than an output
column name.

HAVING Clause
The optional HAVING condition has the general form:

HAVING boolean_expr

whereboolean_expr is the same as specified for the WHERE clause.

HAVING specifies a grouped table derived by the elimination of group rows that do not satisfy the
boolean_expr . HAVING is different from WHERE: WHERE filters individual rows before appli-
cation of GROUP BY, while HAVING filters group rows created by GROUP BY.

Each column referenced boolean_expr  shall unambiguously reference a grouping column, un-
less the reference appears within an aggregate function.

ORDER BY Clause

ORDER BYexpression [ ASC | DESC | USING operator ] [, ...]

An ORDER BY item can be the name or ordinal number of an output column (SELECT expres-
sion), or it can be an arbitrary expression formed from input-column values. In case of ambiguity, an
ORDER BY name will be interpreted as an output-column name.

The ordinal number refers to the ordinal (left-to-right) position of the result column. This feature
makes it possible to define an ordering on the basis of a column that does not have a unique name.
This is never absolutely necessary because it is always possible to assign a name to a result column
using the AS clause, e.g.:

SELECT title, date_prod + 1 AS newlen FROM films ORDER BY newlen;

It is also possible to ORDER BY arbitrary expressions (an extension to SQL92), including fields that
do not appear in the SELECT result list. Thus the following statement is legal:

SELECT name FROM distributors ORDER BY code;

A limitation of this feature is that an ORDER BY clause applying to the result of a UNION, INTER-
SECT, or EXCEPT query may only specify an output column name or number, not an expression.



SELECT

Note that if an ORDER BY item is a simple name that matches both a result column name and an
input column name, ORDER BY will interpret it as the result column name. This is the opposite of
the choice that GROUP BY will make in the same situation. This inconsistency is mandated by the
SQL92 standard.

Optionally one may add the key wonESC(descending) oASC(ascending) after each column name
in theORDER BY¥lause. If not specifiedSCis assumed by default. Alternatively, a specific ordering
operator name may be specifi@&Cis equivalent taJSING < andDESCis equivalent taJSING >.

The null value sorts higher than any other value in a domain. In other words, with ascending sort order
nulls sort at the end and with descending sort order nulls sort at the beginning.

Data of character types is sorted according to the locale-specific collation order that was established
when the database cluster was initialized.

UNION Clause

table_query UNION [ ALL ] table_query
[ ORDER BYexpression [ ASC | DESC | USING operator ][, ...] ]
[ LIMIT { count | ALL } ]
[ OFFSET start ]

wheretable_query  specifies any select expression without an ORDER BY, LIMIT, or FOR UP-
DATE clause. (ORDER BY and LIMIT can be attached to a sub-expression if it is enclosed in paren-
theses. Without parentheses, these clauses will be taken to apply to the result of the UNION, not to
its right-hand input expression.)

The UNION operator computes the collection (set union) of the rows returned by the queries involved.
The two SELECT statements that represent the direct operands of the UNION must produce the same
number of columns, and corresponding columns must be of compatible data types.

The result of UNION does not contain any duplicate rows unless the ALL option is specified. ALL
prevents elimination of duplicates.

Multiple UNION operators in the same SELECT statement are evaluated left to right, unless otherwise
indicated by parentheses.

Currently, FOR UPDATE may not be specified either for a UNION result or for the inputs of a
UNION.

INTERSECT Clause

table_query INTERSECT [ ALL ] table_query
[ ORDER BYexpression [ ASC | DESC | USING operator ] [, ...] ]
[ LIMIT { count | ALL } ]
[ OFFSET start ]

wheretable_query  specifies any select expression without an ORDER BY, LIMIT, or FOR UP-
DATE clause.

INTERSECT is similar to UNION, except that it produces only rows that appear in both query outputs,
rather than rows that appear in either.



SELECT

The result of INTERSECT does not contain any duplicate rows unless the ALL option is specified.
With ALL, a row that has m duplicates in L and n duplicates in R will appear min(m,n) times.

Multiple INTERSECT operators in the same SELECT statement are evaluated left to right, unless
parentheses dictate otherwise. INTERSECT binds more tightly than UNION --- that is, A UNION B
INTERSECT C will be read as A UNION (B INTERSECT C) unless otherwise specified by paren-
theses.

EXCEPT Clause

table_query EXCEPT [ ALL ] table_query
[ ORDER BY expression [ ASC | DESC | USING operator ] [, ...]1]
[ LIMIT { count | ALL } ]
[ OFFSET start ]

wheretable_query  specifies any select expression without an ORDER BY, LIMIT, or FOR UP-
DATE clause.

EXCEPT is similar to UNION, except that it produces only rows that appear in the left query’s output
but not in the right query’s output.

The result of EXCEPT does not contain any duplicate rows unless the ALL option is specified. With
ALL, a row that has m duplicates in L and n duplicates in R will appear max(m-n,0) times.

Multiple EXCEPT operators in the same SELECT statement are evaluated left to right, unless paren-
theses dictate otherwise. EXCEPT binds at the same level as UNION.

LIMIT Clause

LIMIT { count | ALL }
OFFSET start

wherecount specifies the maximum number of rows to return, atadt  specifies the number of
rows to skip before starting to return rows.

LIMIT allows you to retrieve just a portion of the rows that are generated by the rest of the query. If
a limit count is given, no more than that many rows will be returned. If an offset is given, that many
rows will be skipped before starting to return rows.

When using LIMIT, it is a good idea to use an ORDER BY clause that constrains the result rows
into a unique order. Otherwise you will get an unpredictable subset of the query’s rows---you may be
asking for the tenth through twentieth rows, but tenth through twentieth in what ordering? You don’t
know what ordering unless you specify ORDER BY.

As of PostgreSQL 7.0, the query optimizer takes LIMIT into account when generating a query plan,
so you are very likely to get different plans (yielding different row orders) depending on what you
use for LIMIT and OFFSET. Thus, using different LIMIT/OFFSET values to select different subsets
of a query resultvill give inconsistent resultanless you enforce a predictable result ordering with
ORDER BY. This is not a bug; it is an inherent consequence of the fact that SQL does not promise to
deliver the results of a query in any particular order unless ORDER BY is used to constrain the order.



SELECT

FOR UPDATE Clause

FOR UPDATE [ OFtablename [, ...] ]

FOR UPDATE causes the rows retrieved by the query to be locked as though for update. This prevents
them from being modified or deleted by other transactions until the current transaction ends; that is,
other transactions that attempt UPDATE, DELETE, or SELECT FOR UPDATE of these rows will be
blocked until the current transaction ends. Also, if an UPDATE, DELETE, or SELECT FOR UPDATE
from another transaction has already locked a selected row or rows, SELECT FOR UPDATE will wait
for the other transaction to complete, and will then lock and return the updated row (or no row, if the
row was deleted). For further discussion see the concurrency chapteridée's Guide

If specific tables are named in FOR UPDATE, then only rows coming from those tables are locked;
any other tables used in the SELECT are simply read as usual.

FOR UPDATE cannot be used in contexts where returned rows can't be clearly identified with indi-
vidual table rows; for example it can’t be used with aggregation.

FOR UPDATE may appear before LIMIT for compatibility with pre-7.3 applications. However, it
effectively executes after LIMIT, and so that is the recommended place to write it.

Usage
To join the tabldilms  with the tabledistributors

SELECT f.title, f.did, d.name, f.date_prod, f.kind
FROM distributors d, films f
WHERE f.did = d.did

title | did | name | date_prod | kind
B + + B

The Third Man | 101 | British Lion | 1949-12-23 | Drama
The African Queen | 101 | British Lion | 1951-08-11 | Romantic
Une Femme est une Femme | 102 | Jean Luc Godard | 1961-03-12 | Romantic
Vertigo | 103 | Paramount | 1958-11-14 | Action
Becket | 103 | Paramount | 1964-02-03 | Drama
48 Hrs | 103 | Paramount | 1982-10-22 | Action
War and Peace | 104 | Mosfilm | 1967-02-12 | Drama
West Side Story | 105 | United Artists | 1961-01-03 | Musical
Bananas | 105 | United Artists | 1971-07-13 | Comedy
Yojimbo | 106 | Toho | 1961-06-16 | Drama
There’s a Girl in my Soup | 107 | Columbia | 1970-06-11 | Comedy
Taxi Driver | 107 | Columbia | 1975-05-15 | Action
Absence of Malice | 107 | Columbia | 1981-11-15 | Action
Storia di una donna | 108 | Westward | 1970-08-15 | Romantic
The King and | | 109 | 20th Century Fox | 1956-08-11 | Musical
Das Boot | 110 | Bavaria Atelier | 1981-11-11 | Drama
Bed Knobs and Broomsticks | 111 | Walt Disney | | Musical

(17 rows)

To sum the columiten of all films and group the results knd :



SELECT
SELECT kind, SUM(len) AS total FROM films GROUP BY kind;

kind | total
__________ Fommmeem
Action | 07:34
Comedy | 02:58
Drama | 14:28
Musical | 06:42
Romantic | 04:38
(5 rows)

To sum the columien of all films, group the results bkind and show those group totals that are
less than 5 hours:

SELECT kind, SUM(len) AS total
FROM films
GROUP BY kind
HAVING SUM(len) < INTERVAL '5 hour’;

kind | total
__________ Fommmeem
Comedy | 02:58
Romantic | 04:38
(2 rows)

The following two examples are identical ways of sorting the individual results according to the
contents of the second columma(ne):

SELECT * FROM distributors ORDER BY name;
SELECT * FROM distributors ORDER BY 2;

did | name

_____ e ——————

109 | 20th Century Fox
110 | Bavaria Atelier
101 | British Lion

107 | Columbia

102 | Jean Luc Godard
113 | Luso films

104 | Mosfilm

103 | Paramount

106 | Toho

105 | United Artists

111 | Walt Disney
112 | Warner Bros.
108 | Westward
(13 rows)

This example shows how to obtain the union of the talissibutors andactors , restricting
the results to those that begin with letter W in each table. Only distinct rows are wanted, so the ALL
keyword is omitted:

distributors: actors:

10



SELECT

did | name id | name
_____ o ———— e e —————

108 | Westward 1 | Woody Allen
111 | Walt Disney 2 | Warren Beatty
112 | Warner Bros. 3 | Walter Matthau

SELECT distributors.name

FROM distributors

WHERE distributors.name LIKE 'W%’
UNION
SELECT actors.name

FROM actors

WHERE actors.name LIKE 'W%;

Walt Disney
Walter Matthau
Warner Bros.
Warren Beatty
Westward
Woody Allen

This example shows how to use a table function, both with and without a column definition list.

distributors:

108 | Westward
111 | Walt Disney
112 | Warner Bros.

CREATE FUNCTION distributors(int)
RETURNS SETOF distributors AS ’
SELECT * FROM distributors WHERE did = $1;
" LANGUAGE SQL;

SELECT * FROM distributors(111);

did | name
_____ e ————

111 | Walt Disney
(1 row)

CREATE FUNCTION distributors_2(int)
RETURNS SETOF RECORD AS
SELECT * FROM distributors WHERE did = $1;
" LANGUAGE SQL;

SELECT * FROM distributors_2(111) AS (f1 int, f2 text);

fl | f2

_____ B

111 | Walt Disney
(1 row)

11



SELECT

Compatibility

Extensions

PostgreSQL allows one to omit ti&ROMclause from a query. This feature was retained from the
original PostQUEL query language. It has a straightforward use to compute the results of simple
expressions:

SELECT 2+2;

?column?

Some other SQL databases cannot do this except by introducing a dummy one-row table to do the
select from. A less obvious use is to abbreviate a normal select from one or more tables:

SELECT distributors.* WHERE distributors.name = 'Westward’;

did | name
_____ ommm————
108 | Westward

This works because an implicit FROM item is added for each table that is referenced in the query but
not mentioned in FROM. While this is a convenient shorthand, it's easy to misuse. For example, the

query

SELECT distributors.* FROM distributors d;

is probably a mistake; most likely the user meant

SELECT d.* FROM distributors d;

rather than the unconstrained join

SELECT distributors.* FROM distributors d, distributors distributors;

that he will actually get. To help detect this sort of mistake, PostgreSQL 7.1 and later will warn if the
implicit-FROM feature is used in a query that also contains an explicit FROM clause.

The table-function feature is a PostgreSQL extension.

SQL92

12



SELECT

SELECT Clause

In the SQL92 standard, the optional keywadlis just noise and can be omitted without affecting the
meaning. The PostgreSQL parser requires this keyword when renaming output columns because the
type extensibility features lead to parsing ambiguities in this contexis optional in FROM items,
however.

The DISTINCT ON phrase is not part of SQL92. Nor are LIMIT and OFFSET.

In SQL92, an ORDER BY clause may only use result column names or numbers, while a GROUP
BY clause may only use input column names. PostgreSQL extends each of these clauses to allow the
other choice as well (but it uses the standard’s interpretation if there is ambiguity). PostgreSQL also
allows both clauses to specify arbitrary expressions. Note that names appearing in an expression will
always be taken as input-column names, not as result-column names.

UNION/INTERSECT/EXCEPT Clause

The SQL92 syntax for UNION/INTERSECT/EXCEPT allows an additional CORRESPONDING BY
option:

table_query UNION [ALL]
[CORRESPONDING [BY ¢olumn [,...])]]
table_query

The CORRESPONDING BY clause is not supported by PostgreSQL.

13



SELECT INTO

Name

SELECT INTO — create a new table from the results of a query

Synopsis

SELECT [ ALL | DISTINCT [ ON (  expression [ -1)11
* | expression [ AS output name ][, ..]
INTO [ TEMPORARY | TEMP ] [ TABLE ] new_table
[ FROM from_item [, ..] ]
[ WHERE condition ]
[ GROUP BY expression [, ]1]
[ HAVING condition [ .11
[ { UNION | INTERSECT | EXCEPT } [ ALL ] select ]
[ ORDER BY expression [ ASC | DESC | USING operator ][, ...] ]
[ LIMIT { count | ALL } ]
[ OFFSET start ]

[ FOR UPDATE [ OF tablename [, ...] ]1
Inputs
TEMPORARY
TEMP

If specified, the table is created as a temporary table. RefeRBATE TABLEor details.
new_table

The name (optionally schema-qualified) of the table to be created.

All other inputs are described in detail fSELECT

Outputs
Refer toCREATE TABLENdSELECTfor a summary of possible output messages.

Description

SELECT INTOcreates a new table and fills it with data computed by a query. The data is not returned
to the client, as it is with a norm&8ELECT. The new table’s columns have the names and data types
associated with the output columns of tHELECT

Note: CREATE TABLE AS is functionally equivalent to SELECT INTQ CREATE TABLE ASs the
recommended syntax, since SELECT INTOis not standard. In fact, this form of SELECT INTOis
not available in PL/pgSQL or ecpg, because they interpret the INTO clause differently.



SELECT INTO

Compatibility

SQL92 usesSELECT ... INTO to represent selecting values into scalar variables of a host pro-
gram, rather than creating a new table. This indeed is the usage found in PL/pgS@tpandhe
PostgreSQL usage SELECT INTOto represent table creation is historical. It's best to OBREATE
TABLE ASfor this purpose in new coOdeCREATE TABLE A$n't standard either, but it’s less likely

to cause confusion.)



SET

Name

SET— change a run-time parameter

Synopsis

SET [ SESSION | LOCAL ] variable {TO | =} { wvalue |’ value ' | DEFAULT }
SET [ SESSION | LOCAL ] TIME ZONE { timezone | LOCAL | DEFAULT }

Inputs

SESSION

Specifies that the command takes effect for the current session. (This is the default if neither
SESSIONNnor LOCALappears.)

LOCAL

Specifies that the command takes effect for only the current transaction G&ftéITor ROLL-
BACK the session-level setting takes effect again. NoteSkat LOCALwill appear to have no
effect if it's executed outside BEGIN block, since the transaction will end immediately.

variable
A settable run-time parameter.
value

New value of parameteDEFAULTcan be used to specify resetting the parameter to its default
value. Lists of strings are allowed, but more complex constructs may need to be single or double
guoted.

Description

The SET command changes run-time configuration parameters. Many of the run-time parameters
listed in theAdministrator’s Guidecan be changed on-the-fly wiBET. (But some require superuser
privileges to change, and others cannot be changed after server or session start.) NGHE dindt

affects the value used by the current session.

If SET or SET SESSIONIs issued within a transaction that is later aborted, the effects o$HTe
command disappear when the transaction is rolled back. (This behavior represents a change from
PostgreSQL versions prior to 7.3, where the effectS®f would not roll back after a later error.)

Once the surrounding transaction is committed, the effects will persist until the end of the session,
unless overridden by anothgET.

The effects ofSET LOCALUast only till the end of the current transaction, whether committed or not.
A special case iISET followed by SET LOCALwithin a single transaction: th&@ET LOCALvalue will



SET
be seen until the end of the transaction, but afterwards (if the transaction is committs&)rtvedue
will take effect.

Even withautocommit  set tooff , SET does not start a new transaction block. Seethecommit
section of theAdministrator's Guiddor details.

Here are additional details about a few of the parameters that can be set:

DATESTYLE

Choose the date/time representation style. Two separate settings are involved: the default
date/time output and the interpretation of ambiguous input.

The following are date/time output styles:

ISO
Use ISO 8601-style dates and tim&¥YY-MM-DD HH:MM:S¥ This is the default.
SQL

Use Oracle/Ingres-style dates and times. Note that this style has nothing to do with SQL
(which mandates ISO 8601 style), the naming of this option is a historical accident.

PostgreSQL
Use traditional PostgreSQL format.
German

Usedd.mm.yyyy for numeric date representations.

The following two options determine both a substyle of the “SQL” and “PostgreSQL”" output
formats and the preferred interpretation of ambiguous date input.

European

Usedd/mm/yyyy for numeric date representations.

NonEuropean
us

Usemm/dd/yyyy for numeric date representations.

Avalue forSET DATESTYLEan be one from the first list (output styles), or one from the second
list (substyles), or one from each separated by a comma.

SET DATESTYLEaffects interpretation of input and provides several standard output formats.
For applications needing different variations or tighter control over input or output, consider
using theto_char family of functions.

There are several now-deprecated means for setting the date style in addition to the normal
methods of setting it VI8ET or a configuration-file entry:

Setting the postmasteisGDATESTYLENvironment variable. (This will be overridden by any
of the other methods.)

Running postmaster using the optian-e to set dates to thEuropean convention. (This
overrides environment variables and configuration-file entries.)



SET

Setting the client'GDATESTYLEnvironment variable. IPGDATESTYLHs set in the fron-
tend environment of a client based on libpq, libpg will automaticallyDeTESTYLEto the
value of PGDATESTYLEluring connection start-up. This is equivalent to a manually issued
SET DATESTYLE

NAMES
SET NAMESs an alias folISET CLIENT_ENCODING
SEED

Sets the internal seed for the random number generator.

value

The value for the seed to be used by thedom function. Allowed values are floating-point
numbers between 0 and 1, which are then multiplied 12

The seed can also be set by invoking teeseed  SQL function:
SELECT setseed( value );

SERVER_ENCODING

Shows the server-side multibyte encoding. (At present, this parameter can be shown but not set,
because the encoding is determined at initdb time.)

TIME ZONE
TIMEZONE

Sets the default time zone for your session. Arguments can be an SQL time interval constant, an
integer or double precision constant, or a string representing a time zone name recognized by the
host operating system.

Here are some typical values for time zone settings:

'PST8PDT’

Set the time zone for Berkeley, California.
'Portugal’

Set the time zone for Portugal.
'Europe/Rome’

Set the time zone for ltaly.

Set the time zone to 7 hours offset west from GMT (equivalent to PDT).
INTERVAL '08:00' HOUR TO MINUTE

Set the time zone to 8 hours offset west from GMT (equivalent to PST).



SET
LOCAL
DEFAULT

Set the time zone to your local time zone (the one that your operating system defaults to).

The available time zone names depend on your operating system. For example, on Linux
lusr/share/zoneinfo contains the database of time zones; the names of the files in that
directory can be used as parameters to this command.

If an invalid time zone is specified, the time zone becomes GMT (on most systems anyway).

If the PGTZenvironment variable is set in the frontend environment of a client based on libpq,
libpg will automaticallySET TIMEZONEO the value oPGTZduring connection start-up.

UseSHOW!to show the current setting of a parameter.

Diagnostics

SET

Message returned if successful.
ERROR: 'name is not a valid option name

The parameter you tried to set does not exist.
ERROR: 'name’: permission denied

You must be a superuser to alter certain settings.
ERROR: 'name cannot be changed after server start

Some parameters are fixed once the server is started.

Examples

Set the style of date to traditional PostgreSQL with European conventions:

SET DATESTYLE TO PostgreSQL,European;

Set the time zone for Berkeley, California, using quotes to preserve the uppercase spelling of the time
zone name (note that the date styl@istgreSQL for this example):

SET TIME ZONE ’'PST8PDT’;
SELECT CURRENT_TIMESTAMP AS today;
today

Tue Feb 26 07:32:21.42834 2002 PST



SET

Set the time zone for Italy (note the required single quotes to handle the special characters):

SET TIME ZONE ’'Europe/Rome’;
SELECT CURRENT_TIMESTAMP AS today;

today

2002-10-08 05:39:35.008271+02

Compatibility

SQL92

SET TIME ZONEextends syntax defined in SQL9x. SQL9x allows only numeric time zone offsets
while PostgreSQL allows full time zone specifier strings as well. All oBET features are Post-
greSQL extensions.

See Also

The functionset_config  provides the equivalent capability. Skscellaneous Functions the
PostgreSQL User’s Guide



SET CONSTRAINTS

Name
SET CONSTRAINTS- set the constraint mode of the current transaction

Synopsis

SET CONSTRAINTS { ALL | constraint [, ..] } { DEFERRED | IMMEDIATE }

Description

SET CONSTRAINTSets the behavior of constraint evaluation in the current transactitmMMBDI-
ATE mode, constraints are checked at the end of each statem&®EFERREDNode, constraints are
not checked until transaction commit.

Note: This command only alters the behavior of constraints within the current transaction. Thus,
if you execute this command outside of an explicit transaction block (such as one started with
BEGIN), it will not appear to have any effect. If you wish to change the behavior of a constraint
without needing to issue a SET CONSTRAINT®ommand in every transaction, specify INITIALLY
DEFERREDYr INITIALLY IMMEDIATE when you create the constraint.

When you change the mode of a constraint toNWIEDIATE , the new constraint mode takes effect
retroactively: any outstanding data modifications that would have been checked at the end of the trans-
action (when usindPEFERREPare instead checked during the execution of38& CONSTRAINTS
command.

Upon creation, a constraint is always give one of three characterifticSALLY DEFERRED,
INITIALLY IMMEDIATE DEFERRABLE, or INITIALLY IMMEDIATE NOT DEFERRABLE The third
class is not affected by tH&ET CONSTRAINT&0mmand.

Currently, only foreign key constraints are affected by this setting. Check and unique constraints are
always effectively initially immediate not deferrable.

Compatibility

SQL92, SQL99

SET CONSTRAINTSs defined in SQL92 and SQL99. The implementation in PostgreSQL complies
with the behavior defined in the standard, except for the PostgreSQL limitatior6HTatCON-
STRAINTS cannot be applied to check or unique constraints.



SET SESSION AUTHORIZATION

Name

SET SESSION AUTHORIZATION- set the session user identifier and the current user identifier
of the current session

Synopsis

SET [ SESSION | LOCAL ] SESSION AUTHORIZATION username
SET [ SESSION | LOCAL ] SESSION AUTHORIZATION DEFAULT
RESET SESSION AUTHORIZATION

Description

This command sets the session user identifier and the current user identifier of the current SQL-
session context to besername . The user name may be written as either an identifier or a string
literal. The session user identifier is valid for the duration of a connection; for example, it is possible
to temporarily become an unprivileged user and later switch back to become a superuser.

The session user identifier is initially set to be the (possibly authenticated) user name provided by
the client. The current user identifier is normally equal to the session user identifier, but may change
temporarily in the context of “setuid” functions and similar mechanisms. The current user identifier
is relevant for permission checking.

The session user identifier may be changed only if the initial session useuftrenticated usg¢had
the superuser privilege. Otherwise, the command is accepted only if it specifies the authenticated user
name.

The SESSIONandLOCALmodifiers act the same as for the regu&Tcommand.

The DEFAULTand RESETforms reset the session and current user identifiers to be the originally
authenticated user name. These forms are always accepted.

Examples

SELECT SESSION_USER, CURRENT_USER,;
current_user | session_user

+
1

peter | peter
SET SESSION AUTHORIZATION ’paul’;

SELECT SESSION_USER, CURRENT_USER,;
current_user | session_user

+
1

paul | paul



SET SESSION AUTHORIZATION

Compatibility
SQL99

SQL99 allows some other expressions to appear in place of the liteeahame which are not
important in practice. PostgreSQL allows identifier syntagdrname” ), which SQL does not. SQL

does not allow this command during a transaction; PostgreSQL does not make this restriction because
there is no reason to. The privileges necessary to execute this command are left implementation-
defined by the standard.



SET TRANSACTION

Name
SET TRANSACTION- set the characteristics of the current transaction

Synopsis

SET TRANSACTION ISOLATION LEVEL { READ COMMITTED | SERIALIZABLE }
SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL
{ READ COMMITTED | SERIALIZABLE }

Description

This command sets the transaction isolation level. $B& TRANSACTIONommand sets the char-
acteristics for the current SQL-transaction. It has no effect on any subsequent transactions. This com-
mand cannot be used after the first query or data-modification stateREMEET, INSERT, DELETE

UPDATE FETCH COPY of a transaction has been executefT SESSION CHARACTERISTICSets

the default transaction isolation level for each transaction for a se §#0n TRANSACTIONan over-

ride it for an individual transaction.

The isolation level of a transaction determines what data the transaction can see when other transac-
tions are running concurrently.

READ COMMITTED
A statement can only see rows committed before it began. This is the default.
SERIALIZABLE

The current transaction can only see rows committed before first query or data-modification
statement was executed in this transaction.

Tip: Intuitively, serializable means that two concurrent transactions will leave the database
in the same state as if the two has been executed strictly after one another in either order.

Notes

The session default transaction isolation level can also be set with the command
SET default_transaction_isolation =’ value '’

and in the configuration file. Consult tieministrator’'s Guiddor more information.



SET TRANSACTION

Compatibility

SQL92, SQL99

SERIALIZABLE is the default level in SQL. PostgreSQL does not provide the isolation |@i®
UNCOMMITTERNdREPEATABLE REAIBecause of multiversion concurrency control, SERIAL-
IZABLE level is not truly serializable. See thiser's Guidefor details.

In SQL there are two other transaction characteristics that can be set with these commands: whether
the transaction is read-only and the size of the diagnostics area. Neither of these concepts are sup-
ported in PostgreSQL.



SHOW

Name

SHOW- show the value of a run-time parameter

Synopsis

SHOWnhame

SHOW ALL

Inputs

name
The name of a run-time parameter. S#€T for a list.
ALL

Show all current session parameters.

Description

SHOwWwill display the current setting of a run-time parameter. These variables can be set using the
SET statement, by editing theostgresgl.conf , through theeGOPTIONSenvironmental variable,
or through a command-line flag when starting the postmaster.

Even withautocommit set tooff , SHOVWdoes not start a new transaction block. Seathecommit
section of theAdministrator’s Guiddor details.

Diagnostics

ERROR: Option ' name’ is not recognized

Message returned ifame does not stand for an existing parameter.

Examples

Show the currenbateStyle  setting:

SHOW DateStyle;
DateStyle



SHOW

ISO with US (NonEuropean) conventions
1 row)

Show the current genetic optimizeyego) setting:

SHOW GEQO;
geqo

Show all settings:

SHOW ALL;
name setting

australian_timezones | off
authentication_timeout | 60
checkpoint_segments | 3

wal_debug | O
wal_sync_method | fdatasync
(94 rows)

Compatibility
The SHOWommand is a PostgreSQL extension.

See Also

The functioncurrent_setting produces equivalent output. Sktscellaneous Functions the
PostgreSQL User’s Guide



START TRANSACTION

Name
START TRANSACTION- start a transaction block

Synopsis

START TRANSACTION [ ISOLATION LEVEL { READ COMMITTED | SERIALIZABLE } ]

Inputs

None.

Outputs

START TRANSACTION
Message returned if successful.
WARNING: BEGIN: already a transaction in progress

If there is already a transaction in progress when the command is issued.

Description

This command begins a new transaction. If the isolation level is specified, the new transaction has
that isolation level. In all other respects, the behavior of this command is identical ®EGEN
command.

Notes

The isolation level of a transaction can also be set withS8Bd TRANSACTIONMommand. If no
isolation level is specified, the default isolation level is used.

Compatibility

SQL99

SERIALIZABLE is the default isolation level in SQL99, but it is not the usual default in PostgreSQL:
the factory default setting is READ COMMITTED. PostgreSQL does not provide the isolation levels
READ UNCOMMITTEINdREPEATABLE REAMMecause of lack of predicate locking, tARERIALIZ-

ABLE level is not truly serializable. See thuser’'s Guidefor details.



START TRANSACTION

In SQLI9 this statement can specify two other properties of the new transaction: whether the transac-
tion is read-only and the size of the diagnostics area. Neither of these concepts are currently supported
in PostgreSQL.



TRUNCATE

Name
TRUNCATE — empty a table

Synopsis

TRUNCATE [ TABLE ] name

Inputs

name

The name (optionally schema-qualified) of the table to be truncated.

Outputs

TRUNCATE TABLE

Message returned if the table is successfully truncated.

Description

TRUNCATHuickly removes all rows from a table. It has the same effect as an unqualifiegirEbut
since it does not actually scan the table it is faster. This is most useful on large tables.

TRUNCATEannot be executed inside a transaction bl&k3INCOMMITpair), because there is no
way to roll it back.

Usage
Truncate the tablbigtable

TRUNCATE TABLE bigtable;



TRUNCATE

Compatibility

SQL92
There is NOTRUNCATEN SQL92.



UNLISTEN

Name
UNLISTEN — stop listening for a notification

Synopsis

UNLISTEN { notifyname | * }

Inputs

notifyname

Name of previously registered notify condition.

All current listen registrations for this backend are cleared.

Outputs

UNLISTEN

Acknowledgment that statement has executed.

Description

UNLISTEN is used to remove an existifngOTIFY registration.UNLISTEN cancels any existing reg-
istration of the current PostgreSQL session as a listener on the notify conditiiyname . The
special condition wildcard cancels all listener registrations for the current session.

NOTIFY contains a more extensive discussion of the udefEN andNOTIFY.

Notes

notifyname  need not be a valid class name but can be any string valid as a name up to 64 characters
long.

The backend does not complain if you unlisten something you were not listening for. Each backend
will automatically execut&NLISTEN * when exiting.



UNLISTEN

Usage

To subscribe to an existing registration:

LISTEN virtual;

LISTEN

NOTIFY virtual;

NOTIFY

Asynchronous NOTIFY ‘virtual' from backend with pid '8448' received

OnceUNLISTEN has been executed, furthie®TIFY commands will be ignored:

UNLISTEN virtual;

UNLISTEN

NOTIFY virtual;

NOTIFY

-- notice no NOTIFY event is received

Compatibility

SQL92
There is NAUNLISTENin SQL92.



UPDATE

Name
UPDATE — update rows of a table

Synopsis

UPDATE [ ONLY ] table SET col = expression [ ..]
[ FROM fromlist ]
[ WHERE condition ]

Inputs

table

The name (optionally schema-qualified) of an existing tableNEYis specified, only that table

is updated. HONLYis not specified, the table and all its descendant tables (if any) are updated.

* can be appended to the table name to indicate that descendant tables are to be scanned, but
in the current version, this is the default behavior. (In releases beforoMLY,was the default
behavior.) The default can be altered by changingsQe_INHERITANCEconfiguration option.

column

The name of a column itable
expression

A valid expression or value to assign to column.
fromlist

A PostgreSQL non-standard extension to allow columns from other tables to appear in the
WHERE condition.

condition

Refer to the SELECT statement for a further description of the WHERE clause.

Outputs

UPDATE#

Message returned if successful. Theneans the number of rows updated#lis O no rows are
updated.



UPDATE

Description

UPDATEchanges the values of the columns specified for all rows which satisfy condition. Only the
columns to be modified need appear as columns in the statement.

Array references use the same syntax foun8ELECT That is, either single array elements, a range
of array elements or the entire array may be replaced with a single query.

You must have write access to the table in order to modify it, as well as read access to any table whose
values are mentioned in the WHERE condition.

By default UPDATE will update tuples in the table specified and all its sub-tables. If you wish to only
update the specific table mentioned, you should use the ONLY clause.

Usage

Change wordrama with Dramatic  on columnkind :

UPDATE films

SET kind = 'Dramatic’

WHERE kind = 'Drama’;

SELECT *

FROM films

WHERE kind = ’'Dramatic’ OR kind = 'Drama’;

code | title | did | date_prod | kind | len
+ +-moet + +
BL101 | The Third Man | 101 | 1949-12-23 | Dramatic | 01:44
P_302 | Becket | 103 | 1964-02-03 | Dramatic | 02:28
M_401 | War and Peace | 104 | 1967-02-12 | Dramatic | 05:57
T_601 | Yojimbo | 106 | 1961-06-16 | Dramatic | 01:50
DA101 | Das Boot | 110 | 1981-11-11 | Dramatic | 02:29
Compatibility
SQL92

SQL92 defines a different syntax for the positioned UPDATE statement:

UPDATEtable SET column = expression [ -]
WHERE CURRENT Q@Hrsor

wherecursor identifies an open cursor.



VACUUM

Name

VACUUM — garbage-collect and optionally analyze a database

Synopsis

VACUUM [ FULL ] [ FREEZE ] [ VERBOSE ] [ table ]
VACUUM [ FULL ] [ FREEZE ] [ VERBOSE ] ANALYZE [ table [ ( column [ ..] ) 1]

Inputs

FULL

Selects “full” vacuum, which may reclaim more space, but takes much longer and exclusively
locks the table.

FREEZE
Selects aggressive “freezing” of tuples.
VERBOSE
Prints a detailed vacuum activity report for each table.
ANALYZE
Updates statistics used by the optimizer to determine the most efficient way to execute a query.
table

The name (optionally schema-qualified) of a specific table to vacuum. Defaults to all tables in
the current database.

column

The name of a specific column to analyze. Defaults to all columns.

Outputs

VACUUM
The command is complete.
INFO: --Relation table --
The report header fdable

INFO: Pages 98: Changed 25, Reapped 74, Empty 0, New 0; Tup 1000: Vac
3000, Crash 0, UnUsed 0, MinLen 188, MaxLen 188; Re-using: Free/Avail.
Space 586952/586952; EndEmpty/Avail. Pages 0/74. Elapsed 0/0 sec.

The analysis fotable itself.



VACUUM

INFO: Index index : Pages 28; Tuples 1000: Deleted 3000. Elapsed 0/0 sec.

The analysis for an index on the target table.

Description

VACUUMeclaims storage occupied by deleted tuples. In normal PostgreSQL operation, tuples that are
deleted or obsoleted by UPDATE are not physically removed from their table; they remain present
until aVACUUNs done. Therefore it's necessary to\deCUUNperiodically, especially on frequently-
updated tables.

With no parametelyACUUNprocesses every table in the current database. With a parametrm
processes only that table.

VACUUM ANALYZgerforms avACUUMINd then amNALYZEfor each selected table. This is a handy
combination form for routine maintenance scripts. B8\LYZEfor more details about its process-

ing.

PlainvACUUNwithoutFULL) simply reclaims space and makes it available for re-use. This form of the
command can operate in parallel with normal reading and writing of the table, as an exclusive lock
is not obtainedVACUUM FULIdoes more extensive processing, including moving of tuples across
blocks to try to compact the table to the minimum number of disk blocks. This form is much slower
and requires an exclusive lock on each table while it is being processed.

FREEZEIis a special-purpose option that causes tuples to be marked “frozen” as soon as possible,
rather than waiting until they are quite old. If this is done when there are no other open transactions
in the same database, then it is guaranteed that all tuples in the database are “frozen” and will not be
subject to transaction ID wraparound problems, no matter how long the database is left un-vacuumed.
FREEZEis not recommended for routine use. Its only intended usage is in connection with preparation
of user-defined template databases, or other databases that are completely read-only and will not
receive routine maintenans&CUUNperations. See thedministrator's Guiddor details.

Notes

We recommend that active production databasegAmuMed frequently (at least nightly), in order

to remove expired rows. After adding or deleting a large number of records, it may be a good idea to
issue &VACUUM ANALYZeommand for the affected table. This will update the system catalogs with
the results of all recent changes, and allow the PostgreSQL query optimizer to make better choices in
planning user queries.

TheFULL option is not recommended for routine use, but may be useful in special cases. An example
is when you have deleted most of the rows in a table and would like the table to physically shrink to
occupy less disk spacéACUUM FULWill usually shrink the table more than a plamCuuUmvould.

Usage
The following is an example from runningACUUNMN a table in the regression database:
regression=> VACUUM VERBOSE ANALYZE onek;

INFO: --Relation onek--
INFO: Index onek_uniquel: Pages 14; Tuples 1000: Deleted 3000.



VACUUM

CPU 0.00s/0.11u sec elapsed 0.12 sec.

INFO: Index onek_unique2: Pages 16; Tuples 1000: Deleted 3000.
CPU 0.00s/0.10u sec elapsed 0.10 sec.
INFO: Index onek_hundred: Pages 13; Tuples 1000: Deleted 3000.
CPU 0.00s/0.10u sec elapsed 0.10 sec.
INFO: Index onek_stringul: Pages 31; Tuples 1000: Deleted 3000.
CPU 0.01s/0.09u sec elapsed 0.10 sec.
INFO: Removed 3000 tuples in 70 pages.
CPU 0.02s/0.04u sec elapsed 0.07 sec.
INFO: Pages 94: Changed 0, Empty 0; Tup 1000: Vac 3000, Keep 0, UnUsed O.
Total CPU 0.05s/0.45u sec elapsed 0.59 sec.
INFO: Analyzing onek
VACUUM
Compatibility
SQL92

There is novACUUMtatement in SQL92.



Il. PostgreSQL Client Applications

This part contains reference information for PostgreSQL client applications and utilities. Not all of
these commands are of general utility, some may require special privileges. The common feature

of these applications is that they can be run on any host, independent of where the database server
resides.



clusterdb

Name

clusterdb  — cluster a PostgreSQL database

Synopsis

clusterdb  [connection-options ...] [--table | -ttable ] [dbname]
clusterdb  [connection-options ..] [--all | -a]

Description

clusterdb is a utility for reclustering tables in a PostgreSQL database. It finds tables that have previ-
ously been clustered, and clusters them again on the same index that was last used. Tables that have
never been clustered are not touched.

clusterdb is a shell script wrapper around the backend com@atETERvia the PostgreSQL in-
teractive terminapsql There is no effective difference between clustering databases via this or other
methods. psqgl must be found by the script and a database server must be running at the targeted host.
Also, any default settings and environment variables available to psql and the libpg front-end library

do apply.
clusterdb might need to connect several times to the PostgreSQL server, asking for a password each
time. It is convenient to have®HOME/.pgpass file in such cases.

Options
clusterdb accepts the following command-line arguments:
-a
--all
Cluster all databases.

[[d] dbname
[--dbname]  dbname

Specifies the name of the database to be clustered. If this is not specified &od-all ) is
not used, the database name is read from the environment vapPi@bleTABASEIf that is not
set, the user name specified for the connection is used.

-e
--echo
Echo the commands that clusterdb generates and sends to the server.
-q
--quiet

Do not display a response.



clusterdb

-t table
--table table

Clustergtable only.

clusterdb also accepts the following command-line arguments for connection parameters:
-h host
--host  host

Specifies the host name of the machine on which the server is running. If host begins with a
slash, it is used as the directory for the Unix domain socket.

-p port
--port  port

Specifies the Internet TCP/IP port or local Unix domain socket file extension on which the server
is listening for connections.

-U username
--username username

User name to connect as

-W
--password

Force password prompt.

Diagnostics

CLUSTER
Everything went well.
clusterdb: Cluster failed.

Something went wrong. clusterdb is only a wrapper script. Qdg¢STERandpsqlfor a detailed
discussion of error messages and potential problems. Note that this message may appear once
per table to be clustered.

Environment

PGDATABASE
PGHOST
PGPORT
PGUSER

Default connection parameters.



Examples

To cluster the databasest :

$ clusterdb test

To cluster a single tablieo in a database nameglzzy :

$ clusterdb --table foo xyzzy

See Also
CLUSTER

clusterdb



createdb

Name

createdb — create a new PostgreSQL database

Synopsis

createdb [options ...][dbname][description ]

Description
createdb creates a new PostgreSQL database.

Normally, the database user who executes this command becomes the owner of the new database.
However a different owner can be specified via #beoption, if the executing user has appropriate
privileges.

createdb is a shell script wrapper around the SQL commdEATE DATABASHa the PostgreSQL
interactive terminapsql Thus, there is nothing special about creating databases via this or other
methods. This means that the psql program must be found by the script and that a database server
must be running at the targeted port. Also, any default settings and environment variables available to
psqgl and the libpq front-end library will apply.

Options

createdb accepts the following command-line arguments:

dbname

Specifies the name of the database to be created. The name must be unique among all Post-
greSQL databases in this installation. The default is to create a database with the same name as
the current system user.

description
This optionally specifies a comment to be associated with the newly created database.

-D location
--location location

Specifies the alternative location for the database. SeérgtlaTation

-e
--echo

Echo the queries that createdb generates and sends to the server.

-E encoding
--encoding encoding

Specifies the character encoding scheme to be used in this database.

-O owner
--owner owner

Specifies the database user who will own the new database.



createdb
-q
--quiet
Do not display a response.

-T template
--template template

Specifies the template database from which to build this database.

The optionsD, -E, -O, and-T correspond to options of the underlying SQL comm&REATE
DATABASEssee there for more information about them.

createdb also accepts the following command-line arguments for connection parameters:
-h  host
--host  host

Specifies the host name of the machine on which the server is running. If host begins with a
slash, it is used as the directory for the Unix domain socket.

-p port
--port  port

Specifies the Internet TCP/IP port or the local Unix domain socket file extension on which the
server is listening for connections.

-U username
--username  username

User name to connect as

-W
--password

Force password prompt.

Diagnostics

CREATE DATABASE
The database was successfully created.
createdb: Database creation failed.
(Saysitall)
createdb: Comment creation failed. (Database was created.)

The comment/description for the database could not be created. The database itself will have
been created already. You can use the SQL comnGmdMENT ON DATABARECreate the
comment later on.

If there is an error condition, the backend error message will be displayeCFATE DATABASE
andpsqlfor possibilities.



createdb
Environment

PGDATABASE
If set, the name of the database to create, unless overridden on the command line.

PGHOST
PGPORT
PGUSER

Default connection parameteEGUSERalso determines the name of the database to create, if it
is not specified on the command line or PEDATABASE

Examples

To create the databademo using the default database server:

$ createdb demo
CREATE DATABASE

The response is the same as you would have gotten from runni@REETE DATABASEQL com-
mand.

To create the databasemo using the server on hostlen, port 5000, using theATIN1 encoding
scheme with a look at the underlying query:

$ createdb -p 5000 -h eden -E LATIN1 -e demo
CREATE DATABASE "demo" WITH ENCODING = °'LATINY'
CREATE DATABASE

See Also
dropdh CREATE DATABASE

10



createlang

Name

createlang — define a new PostgreSQL procedural language
Synopsis

createlang  [connection-options ...]langname [dbname]
createlang  [connection-options ...] —-list | -| dbname
Description

createlang is a utility for adding a new programming language to a PostgreSQL database. create-
lang can handle all the languages supplied in the default PostgreSQL distribution, but not languages
provided by other parties.

Although backend programming languages can be added directly using several SQL commands, it is
recommended to use createlang because it performs a number of checks and is much easier to use.
SeeCREATE LANGUAGHoOr additional information.

Options

createlang accepts the following command-line arguments:

langname
Specifies the name of the procedural programming language to be defined.

[[d] dbname
[--dbname]  dbname

Specifies to which database the language should be added. The default is to use the database with
the same name as the current system user.

-e
--echo

Displays SQL commands as they are executed.

|
--list

Shows a list of already installed languages in the target database (which must be specified).
-L directory

Specifies the directory in which the language interpreter is to be found. The directory is normally
found automatically; this option is primarily for debugging purposes.

createlang also accepts the following command-line arguments for connection parameters:

11



createlang
-h  host
--host  host

Specifies the host name of the machine on which the server is running. If host begins with a
slash, it is used as the directory for the Unix domain socket.

-p port
--port  port

Specifies the Internet TCP/IP port or local Unix domain socket file extension on which the server
is listening for connections.

-U username
--username  username

User name to connect as

-W
--password

Force password prompt.

Environment

PGDATABASE
PGHOST
PGPORT
PGUSER

Default connection parameters.

Diagnostics

Most error messages are self-explanatory. If not, run createlang witkethe option and see under
the respective SQL command for details. Check also upsigifor more possibilities.

Notes
Usedroplangto remove a language.

createlang is a shell script that invokes psql several times. If you have things arranged so that a
password prompt is required to connect, you will be prompted for a password several times.

Examples

To installpltcl  into the databasemplatel

$ createlang pltcl templatel

12



createlang

See Also
droplang CREATE LANGUAGE

13



createuser

Name

createuser — define a new PostgreSQL user account

Synopsis

createuser [options ...] [username ]

Description

createuser creates a new PostgreSQL user. Only superusers (usensesither set in the
pg_shadow table) can create new PostgreSQL users, so createuser must be invoked by someone
who can connect as a PostgreSQL superuser.

Being a superuser also implies the ability to bypass access permission checks within the database, so
superuserdom should not be granted lightly.

createuser is a shell script wrapper around the SQL comr@&EATE USERia the PostgreSQL
interactive terminapsql Thus, there is nothing special about creating users via this or other methods.
This means that the psql application must be found by the script and that a database server must be
running at the targeted host. Also, any default settings and environment variables used by psql and
the libpq front-end library will apply.

Options

createuser accepts the following command-line arguments:

username

Specifies the name of the PostgreSQL user to be created. This name must be unique among all
PostgreSQL users.

-a
--adduser
The new user is allowed to create other users. (Note: Actually, this makes the newsuper a
ruser. The option is poorly named.)
-A
--no-adduser
The new user is not allowed to create other users (i.e., the new user is a regular user, not a
superuser).
-d
--createdb
The new user is allowed to create databases.
-D

--no-createdb

The new user is not allowed to create databases.

14



createuser

-e
--echo
Echo the queries that createuser generates and sends to the server.
-E
--encrypted
Encrypts the user’s password stored in the database. If not specified, the default is used.
- uid
--sysid uid
Allows you to pick a non-default user ID for the new user. This is not necessary, but some people
like it.
-N
--unencrypted
Does not encrypt the user’s password stored in the database. If not specified, the default is used.
-P
--pwprompt
If given, createuser will issue a prompt for the password of the new user. This is not necessary if
you do not plan on using password authentication.
-q
--quiet

Do not display a response.

You will be prompted for a name and other missing information if it is not specified on the command
line.

createuser also accepts the following command-line arguments for connection parameters:
-h  host
--host  host

Specifies the host name of the machine on which the server is running. If host begins with a
slash, it is used as the directory for the Unix domain socket.

-p port
--port  port

Specifies the Internet TCP/IP port or local Unix domain socket file extension on which the server
is listening for connections.

-U username
--username  username

User name to connect as (not the user name to create)

-W
--password

Force password prompt (to connect to the server, not for the password of the new user).

15



createuser
Environment

PGHOST
PGPORT
PGUSER

Default connection parameters

Diagnostics

CREATE USER
All is well.

createuser: creation of user username " failed

Something went wrong. The user was not created.

If there is an error condition, the backend error message will be displayedCSeATE USERNd
psqlfor possibilities.

Examples

To create a usgoe on the default database server:

$ createuser joe

Is the new user allowed to create databases? (y/n) n

Shall the new user be allowed to create more new users? (y/n) n
CREATE USER

To create the same ugee using the server on hostlen, port 5000, avoiding the prompts and taking
a look at the underlying query:

$ createuser -p 5000 -h eden -D -A -e joe
CREATE USER "joe" NOCREATEDB NOCREATEUSER
CREATE USER

See Also
dropuserCREATE USER

16



dropdb

Name

dropdb — remove a PostgreSQL database

Synopsis

dropdb [options ...] dbname

Description

dropdb destroys an existing PostgreSQL database. The user who executes this command must be a
database superuser or the owner of the database.

dropdb is a shell script wrapper around the SQL comni2ROP DATABASHKia the PostgreSQL
interactive terminapsgl Thus, there is nothing special about dropping databases via this or other
methods. This means that the psql must be found by the script and that a database server is running at
the targeted host. Also, any default settings and environment variables available to psql and the libpg
front-end library do apply.

Options

dropdb accepts the following command-line arguments:

dbname

Specifies the name of the database to be removed. The database must be one of the existing
PostgreSQL databases in this installation.

-e
--echo

Echo the queries that dropdb generates and sends to the server.
-i
--interactive

Issues a verification prompt before doing anything destructive.
-q
--quiet

Do not display a response.

createdb also accepts the following command-line arguments for connection parameters:

-h  host
--host  host

Specifies the host name of the machine on which the server is running. If host begins with a
slash, it is used as the directory for the Unix domain socket.

17



dropdb

-p port
--port  port

Specifies the Internet TCP/IP port or local Unix domain socket file extension on which the server
is listening for connections.

-U username
--username username

User name to connect as

-W
--password

Force password prompt.

Diagnostics

DROP DATABASE
The database was successfully removed.
dropdb: Database removal failed.

Something didn’t work out.

If there is an error condition, the backend error message will be displayedS@® DATABASE
andpsqlfor possibilities.

Environment

PGHOST
PGPORT
PGUSER

Default connection parameters

Examples

To destroy the databasemo on the default database server:

$ dropdb demo
DROP DATABASE

To destroy the databasemo using the server on hostlen, port 5000, with verification and a peek
at the underlying query:

$ dropdb -p 5000 -h eden -i -e demo
Database "demo" will be permanently deleted.

18



Are you sure? (y/n) y

DROP DATABASE "demo"

DROP DATABASE

See Also
createdbDROP DATABASE

dropdb

19



droplang

Name

droplang — remove a PostgreSQL procedural language
Synopsis

droplang [connection-options ...]langname [dbname]
droplang [connection-options ...] —-list | -I dbname
Description

droplang is a utility for removing an existing programming language from a PostgreSQL database.
droplang can drop any procedural language, even those not supplied by the PostgreSQL distribution.

Although backend programming languages can be removed directly using several SQL commands, it
is recommended to use droplang because it performs a number of checks and is much easier to use.
SeeDROP LANGUAGHor more.

Options

droplang accepts the following command line arguments:

langname
Specifies the name of the backend programming language to be removed.

[-d] dbname
[--dbname]  dbname

Specifies from which database the language should be removed. The default is to use the database
with the same name as the current system user.

-e
--echo

Displays SQL commands as they are executed.

|
--list

Shows a list of already installed languages in the target database (which must be specified).

droplang also accepts the following command line arguments for connection parameters:

-h host
--host  host

Specifies the host name of the machine on which the server is running. If host begins with a
slash, it is used as the directory for the Unix domain socket.

20



droplang
-p port
--port  port

Specifies the Internet TCP/IP port or local Unix domain socket file extension on which the server
is listening for connections.

-U username
--username username

User name to connect as

-W
--password

Force password prompt.

Environment

PGDATABASE
PGHOST
PGPORT
PGUSER

Default connection parameters.

Diagnostics

Most error messages are self-explanatory. If not, run droplang withdtie option and see under
the respective SQL command for details. Check also upsgifor more possibilities.

Notes

Usecreatelandgo add a language.
Examples

To removepltcl

$ droplang pltcl dbname

See Also
createlangDROP LANGUAGE

21



dropuser

Name

dropuser — remove a PostgreSQL user account

Synopsis

dropuser [options ...][username ]

Description

dropuser removes an existing PostgreSQL aseithe databases which that user owned. Only users
with usesuper set in thepg_shadow table can destroy PostgreSQL users.

dropuser is a shell script wrapper around the SQL comnRR@P USERia the PostgreSQL interac-

tive terminalpsql Thus, there is nothing special about removing users via this or other methods. This
means that the psql must be found by the script and that a database server is running at the targeted
host. Also, any default settings and environment variables available to psql and the libpqg front-end
library do apply.

Options

dropuser accepts the following command-line arguments:

username

Specifies the name of the PostgreSQL user to be removed. This name must exist in the Post-
greSQL installation. You will be prompted for a name if none is specified on the command line.

-e
--echo

Echo the queries that dropuser generates and sends to the server.
-i
--interactive
Prompt for confirmation before actually removing the user.
-q
--quiet

Do not display a response.

createuser also accepts the following command-line arguments for connection parameters:

-h  host
--host  host

Specifies the host name of the machine on which the server is running. If host begins with a
slash, it is used as the directory for the Unix domain socket.

22



dropuser

-p port
--port  port

Specifies the Internet TCP/IP port or local Unix domain socket file extension on which the server
is listening for connections.

-U username
--username username

User name to connect as (not the user name to drop)

-W
--password

Force password prompt (to connect to the server, not for the password of the user to be dropped).

Environment

PGHOST
PGPORT
PGUSER

Default connection parameters

Diagnostics

DROP USER
Allis well.
dropuser: deletion of user " username " failed

Something went wrong. The user was not removed.

If there is an error condition, the backend error message will be displaye® e USERandpsql
for possibilities.

Examples

To remove usepe from the default database server:

$ dropuser joe
DROP USER

To remove usejpe using the postmaster on hesten, port 5000, with verification and a peek at the
underlying query:

$ dropuser -p 5000 -h eden -i -e joe
User "joe" and any owned databases will be permanently deleted.

23



Are you sure? (y/n) y
DROP USER "joe"
DROP USER

See Also
createuseDROP USER

dropuser

24



ecpg

Name
ecpg — embedded SQL C preprocessor

Synopsis

ecpg [option ..]file

Description

ecpg is the embedded SQL preprocessor for C programs. It converts C programs with embedded SQL
statements to normal C code by replacing the SQL invocations with special function calls. The output
files can then be processed with any C compiler tool chain.

ecpg Wwill convert each input file given on the command line to the corresponding C output file.
Input files preferrably have the extensig@gc , in which case the extension will be replaced.dyto
determine the output file name. If the extension of the input file ispyet , then the output file name

is computed by appending to the full file name. The output file name can also be overridden using
the-o option.

This reference page does not describe the embedded SQL language. BestghneSQL Program-
mer’s Guidefor that.

Options

ecpg accepts the following command-line arguments:

-C

Automatically generate C code from SQL code. Currently, this work&X@C SQL TYPE
-D symbol

Define a C preprocessor symbol.
-l directory

Specify an additional include path, used to find files includedXBC SQL INCLUDEDefaults

are. (current directory)/usr/locall/include , the PostgreSQL include directory which is
defined at compile time (defaultisr/local/pgsgl/include ), and/usr/include , in that
order.

-0 filename

Specifies that ecpg should write all its output to the gifilemame

Turn on autocommit of transactions. In this mode, each query is automatically committed unless
it is inside an explicit transaction block. In the default mode, queries are committed only when
EXEC SQL COMMI® issued.

Print additional information including the version and the include path.

25



ecpg

---help
Show a brief summary of the command usage, then exit.
--version

Output version information, then exit.

Notes

When compiling the preprocessed C code files, the compiler needs to be able to find the ECPG header
files in the PostgreSQL include directory. Therefore, one might have to use tbption when in-
voking the compiler (e.g-)/usr/local/pgsgl/include ).

Programs using C code with embedded SQL have to be linked againgteitgy  library, for ex-
ample using the flag4/usr/local/pgsql/lib -lecpg

The value of either of these directories that is appropriate for the installation can be found out using
pg_config

Examples

If you have an embedded SQL C source file napredl.pgc , you can create an executable program
using the following sequence of commands:

ecpg progl.pgc

cc -l/usr/local/pgsgl/include -c progl.c
cc -0 progl progl.o -L/usr/local/pgsql/lib -lecpg

See Also

PostgreSQL Programmer’s Guider a more detailed description of the embedded SQL interface

26



pg_config

Name

pg_config — retrieve information about the installed version of PostgreSQL

Synopsis

pg_config  {--bindir | --includedir | --includedir-server | --libdir | --pkglibdir | --configure |
--version...}

Description

The pg_config utility prints configuration parameters of the currently installed version of PostgreSQL.
It is intended, for example, to be used by software packages that want to interface to PostgreSQL to
facilitate finding the required header files and libraries.

Options

To use pg_config, supply one or more of the following options:

--bindir

Print the location of user executables. Use this, for example, to find the psql program. This is
normally also the location where tipg_config program resides.

--includedir

Print the location of C header files of the client interfaces.
--includedir-server

Print the location of C header files for server programming.
--libdir

Print the location of object code libraries.
--pkglibdir

Print the location of dynamically loadable modules, or where the server would search for them.
(Other architecture-dependent data files may also be installed in this directory.)

--configure

Print the options that were given to tlenfigure  script when PostgreSQL was configured

for building. This can be used to reproduce the identical configuration, or to find out with what
options a binary package was built. (Note however that binary packages often contain vendor-
specific custom patches.)

--version
Print the version of PostgreSQL and exit.

If more than one option (except fewersion ) is given, the information is printed in that order,
one item per line.

27



pg_config

Notes

The option--includedir-server is new in PostgreSQL 7.2. In prior releases, the server include
files were installed in the same location as the client headers, which could be queried with the
includedir . To make your package handle both cases, try the newer option first and test the exit
status to see whether it succeeded.

In releases prior to PostgreSQL 7.1, before pgeconfig came to be, a method for finding the
equivalent configuration information did not exist.

History
Thepg_config utility first appeared in PostgreSQL 7.1.

See Also

PostgreSQL Programmer’s Guide

28



pg_dump

Name

pg_dump — extract a PostgreSQL database into a script file or other archive file

Synopsis

pg_dump [options ...] [dbname]

Description

pg_dump is a utility for saving a PostgreSQL database into a script or an archive file. The script
files are in plain-text format and contain the SQL commands required to reconstruct the database to
the state it was in at the time it was saved. To restore these scriptpsgs@hey can be used to
reconstruct the database even on other machines and other architectures, with some modifications
even on other SQL database products.

Furthermore, there are alternative archive file formats that are meant to be usqujwigistoreo

rebuild the database, and they also allow pg_restore to be selective about what is restored, or even
to reorder the items prior to being restored. The archive files are also designed to be portable across
architectures.

pg_dump will save the information necessary to re-generate all user-defined types, functions, tables,
indexes, aggregates, and operators. In addition, all the data is copied out in text format so that it can
be readily copied in again, as well as imported into tools for editing.

When used with one of the archive file formats and combined with pg_restore, pg_dump provides a
flexible archival and transfer mechanism. pg_dump can be used to backup an entire database, then
pg_restore can be used to examine the archive and/or select which parts of the database are to be
restored. The most flexible output file format is the “custom” formgt {. It allows for selection

and reordering of all archived items, and is compressed by defaulttaFhdormat (Ft ) is not
compressed and it is not possible to reorder data when loading, but it is otherwise quite flexible;
moreover, it can be manipulated with other tools suctaas

While runningpg_dump, one should examine the output for any warnings (printed on standard error),
especially in light of the limitations listed below.

pg_dump makes consistent backups even if the database is being used concurrently. pg_dump does
not block other users accessing the database (readers or writers).

Options

The following command-line options are used to control the output format.

dbname

Specifies the name of the database to be dumped. If this is not specified, the environment variable
PGDATABASIS used. If that is not set, the user name specified for the connection is used.

29



pg_dump

-a

--data-only
Dump only the data, not the schema (data definitions).
This option is only meaningful for the plain-text format. For the other formats, you may specify
the option when you calig_restore

-b

--blobs
Include large objects in dump.

-C

--clean
Output commands to clean (drop) database objects prior to (the commands for) creating them.
This option is only meaningful for the plain-text format. For the other formats, you may specify
the option when you calig_restore

-C

--create
Begin the output with a command to create the database itself and reconnect to the created
database. (With a script of this form, it doesn’t matter which database you connect to before
running the script.)
This option is only meaningful for the plain-text format. For the other formats, you may specify
the option when you calig_restore

-d

--inserts
Dump data a$NSERT commands (rather thabOPY. This will make restoration very slow, but
it makes the archives more portable to other SQL database packages.

-D

--column-inserts
--attribute-inserts

Dump data asINSERT commands with explicit column names$NEERT INTO table
(column, ..) VALUES ... ). This will make restoration very slow, but it is necessary if
you desire to rearrange column ordering.

-f  file
--file=  file

Send output to the specified file. If this is omitted, the standard output is used.

-F format
--format=  format

Selects the format of the outpddrmat can be one of the following:

p
Output a plain-text SQL script file (default)

Output atar archive suitable for input into pg_restore. Using this archive format allows
reordering and/or exclusion of schema elements at the time the database is restored. It is
also possible to limit which data is reloaded at restore time.

30



pg_dump

Output a custom archive suitable for input into pg_restore. This is the most flexible format
in that it allows reordering of data load as well as schema elements. This format is also
compressed by default.

-i
--ignore-version
Ignore version mismatch between pg_dump and the database server.

pg_dump can handle databases from previous releases of PostgreSQL, but very old versions are
not supported anymore (currently prior to 7.0). Use this option if you need to override the version
check (and if pg_dump then fails, don't say you weren’t warned).

-0

--0ids
Dump object identifiers (OIDs) for every table. Use this option if your application references the
OID columns in some way (e.g., in a foreign key constraint). Otherwise, this option should not
be used.

-0

--no-owner
Do not output commands to set the object ownership to match the original database. Typically,
pg_dump issues (psql-specifichnnect  statements to set ownership of schema elements. See
also underR and-X use-set-session-authorization . Note thatO does not prevent all
reconnections to the database, only the ones that are exclusively used for ownership adjustments.
This option is only meaningful for the plain-text format. For the other formats, you may specify
the option when you cafig_restore

-R

--no-reconnect

Prohibit pg_dump from outputting a script that would require reconnections to the database while
being restored. An average restoration script usually has to reconnect several times as different
users to set the original ownerships of the objects. This option is a rather blunt instrument because
it makes pg_dump lose this ownership informationiessyou use theX use-set-session-

authorization option.

One possible reason why reconnections during restore might not be desired is if the access to the
database requires manual interaction (e.g., passwords).

This option is only meaningful for the plain-text format. For the other formats, you may specify
the option when you calig_restore

-S
--schema-only
Dump only the schema (data definitions), no data.

-S username
--superuser=  username

Specify the superuser user name to use when disabling triggers. This is only
relevant if --disable-triggers is used. (Usually, it's better to specify
--use-set-session-authorization , and then start the resulting script as superuser.)

31



pg_dump

-t table
--table= table

Dump data fotable only.

-v
--verbose

Specifies verbose mode. This will cause pg_dump to print progress messages to standard error.

-X
--no-privileges
--no-acl

Prevent dumping of access privileges (grant/revoke commands).

-X use-set-session-authorization
--use-set-session-authorization

Normally, if a (plain-text mode) script generated by pg_dump must alter the current database
user (e.g., to set correct object ownerships), it uses theqasglect command. This command
actually opens a new connection, which might require manual interaction (e.g., passwords). If
you use theX use-set-session-authorization option, then pg_dump will instead out-

put SET SESSION AUTHORIZATIGidmmands. This has the same effect, but it requires that

the user restoring the database from the generated script be a database superuser. This option
effectively overrides theR option.

SinceSET SESSION AUTHORIZATIO8a standard SQL command, whersasinect  only
works in psql, this option also enhances the theoretical portability of the output script.

This option is only meaningful for the plain-text format. For the other formats, you may specify
the option when you calig_restore

-X disable-triggers
--disable-triggers

This option is only relevant when creating a data-only dump. It instructs pg_dump to include
commands to temporarily disable triggers on the target tables while the data is reloaded. Use this
if you have referential integrity checks or other triggers on the tables that you do not want to
invoke during data reload.

Presently, the commands emitted falisable-triggers must be done as superuser. So, you
should also specify a superuser name wah or preferably specify-use-set-session-
authorization and then be careful to start the resulting script as a superuser. If you give
neither option, the entire script must be run as superuser.

This option is only meaningful for the plain-text format. For the other formats, you may specify
the option when you calig_restore

-Z 0.9
--compress= 0..9

Specify the compression level to use in archive formats that support compression (currently only
the custom archive format supports compression).

The following command-line options control the database connection parameters.

32



pg_dump
-h host
--host= host

Specifies the host name of the machine on which the server is running. If host begins with a
slash, it is used as the directory for the Unix domain socket.

-p port
--port=_ port

Specifies the Internet TCP/IP port or local Unix domain socket file extension on which the server
is listening for connections. The port number defaults to 5432, or the value Bf3RORENVI-
ronment variable (if set).

-U username

Connect as the given user

Force a password prompt. This should happen automatically if the server requires password
authentication.

Long option forms are only available on some platforms.

Environment

PGDATABASE
PGHOST
PGPORT
PGUSER

Default connection parameters

Diagnostics

Connection to database ’templatel’ failed.
connectDBStart() -- connect() failed: No such file or directory
Is the postmaster running locally
and accepting connections on Unix socket '/tmp/.s.PGSQL.5432"?

pg_dump could not attach to the PostgreSQL server on the specified host and port. If you see
this message, ensure that the server is running on the proper host and that you have specified the
proper port.

Note: pg_dump internally executes SELECTstatements. If you have problems running pg_dump,
make sure you are able to select information from the database using, for example, psq|l.

33



pg_dump

Notes

If your installation has any local additions to the templatel database, be careful to restore the output of
pg_dump into a truly empty database; otherwise you are likely to get errors due to duplicate definitions
of the added objects. To make an empty database without any local additions, copy from templateO
not templatel, for example:

CREATE DATABASE foo WITH TEMPLATE template0;

pg_dump has a few limitations:

« When dumping a single table or as plain text, pg_dump does not handle large objects. Large objects
must be dumped in their entirety using one of the binary archive formats.

« When doing a data only dump, pg_dump emits queries to disable triggers on user tables before
inserting the data and queries to re-enable them after the data has been inserted. If the restore is
stopped in the middle, the system catalogs may be left in the wrong state.

Members of tar archives are limited to a size less than 8 GB. (This is an inherent limitation of the tar
file format.) Therefore this format cannot be used if the textual representation of a table exceeds that
size. The total size of a tar archive and any of the other output formats is not limited, except possibly
by the operating system.

Examples

To dump a database:

$ pg_dump mydb > db.out

To reload this database:

$ psql -d database -f db.out

To dump a database calledydb that contains large objects taa file:

$ pg_dump -Ft -b mydb > db.tar

To reload this database (with large objects) to an existing database walleil:

$ pg_restore -d newdb db.tar

History

The pg_dump utility first appeared in Postgres95 rel@a@2 . The non-plain-text output formats
were introduced in PostgreSQL reledsk .

34



pg_dump

See Also
pg_dumpallpg_restorepsql PostgreSQL Administrator's Guide

35



pg_dumpall

Name

pg_dumpall — extract a PostgreSQL database cluster into a script file

Synopsis

pg_dumpall [options ...]

Description

pg_dumpall is a utility for writing out (“dumping”) all PostgreSQL databases of a cluster into one
script file. The script file contains SQL commands that can be used as inpattto restore the
databases. It does this by callipg_dumpfor each database in a cluster. pg_dumpall also dumps
global objects that are common to all databases. (pg_dump does not save these objects.) This currently
includes the information about database users and groups.

Thus, pg_dumpall is an integrated solution for backing up your databases. But note a limitation: it
cannot dump “large objects”, since pg_dump cannot dump such objects into text files. If you have
databases containing large objects, they should be dumped using one of pg_dump’s non-text output
modes.

Since pg_dumpall reads tables from all databases you will most likely have to connect as a database
superuser in order to produce a complete dump. Also you will need superuser privileges to execute
the saved script in order to be allowed to add users and groups, and to create databases.

The SQL script will be written to the standard output. Shell operators should be used to redirect it into
a file.

pg_dumpall might need to connect several times to the PostgreSQL server, asking for a password each
time. It is convenient to have$HOME/.pgpass file in such cases.

Options
The following command-line options are used to control the output format.

-C
--clean

Include SQL commands to clean (drop) the databases before recreating them.

-d

--inserts
Dump data adNSERT commands (rather thabOPY. This will make restoration very slow, but
it makes the output more portable to other RDBMS packages.

-D

--column-inserts
--attribute-inserts

Dump data asINSERT commands with explicit column namesNEERT INTO table
(column, ..) VALUES .. ). This will make restoration very slow, but it is necessary if

36



pg_dumpall

you desire to rearrange column ordering.
-9
--globals-only
Dump only global objects (users and groups), no databases.
-i
--ignore-version

Ignore version mismatch between pg_dumpall and the database server.

pg_dumpall can handle databases from previous releases of PostgreSQL, but very old versions
are not supported anymore (currently prior to 7.0). Use this option if you need to override the
version check (and if pg_dumpall then fails, don’t say you weren’t warned).

-0

--oids
Dump object identifiers (OIDs) for every table. Use this option if your application references the
OID columns in some way (e.g., in a foreign key constraint). Otherwise, this option should not
be used.

-V

--verbose

Specifies verbose mode. This will cause pg_dumpall to print progress messages to standard error.

The following command-line options control the database connection parameters.

-h host

Specifies the host name of the machine on which the database server is running. If host begins
with a slash, it is used as the directory for the Unix domain socket. The default is taken from the
PGHOS®Nvironment variable, if set, else a Unix domain socket connection is attempted.

-p port

The port number on which the server is listening. Defaults tcPBBORENnvironment variable,
if set, or a compiled-in default.

-U username
Connect as the given user.
-W

Force a password prompt. This should happen automatically if the server requires password
authentication.

Long options are only available on some platforms.

37



pg_dumpall
Environment

PGHOST
PGPORT
PGUSER

Default connection parameters.

Notes
Since pg_dumpall calls pg_dump internally, some diagnostic messages will refer to pg_dump.

pg_dumpall will need to connect several times to the PostgreSQL server. If password authentication
is configured, it will ask for a password each time. In that case it would be convenient to set up a
password file.

Examples

To dump all databases:

$ pg_dumpall > db.out

To reload this database use, for example:
$ psql -f db.out templatel

(It is not important to which database you connect here since the script file created by pg_dumpall
will contain the appropriate commands to create and connect to the saved databases.)

See Also

pg_dump psqgl Check there for details on possible error conditions.

38



pg_restore

Name

pg_restore — restore a PostgreSQL database from an archive file created by pg_dump

Synopsis

pg_restore [options ...]

Description

pg_restore is a utility for restoring a PostgreSQL database from an archive cregbgd dayympin
one of the non-plain-text formats. It will issue the commands necessary to re-generate all user-defined
types, functions, tables, indexes, aggregates, and operators, as well as the data in the tables.

The archive files contain information for pg_restore to rebuild the database, but also allow pg_restore
to be selective about what is restored, or even to reorder the items prior to being restored. The archive
files are designed to be portable across architectures.

pg_restore can operate in two modes: If a database name is specified, the archive is restored directly
into the database. Otherwise, a script containing the SQL commands necessary to rebuild the database
is created (and written to a file or standard output), similar to the ones created by the pg_dump plain
text format. Some of the options controlling the script output are therefore analogous to pg_dump
options.

Obviously, pg_restore cannot restore information that is not present in the archive file; for instance, if
the archive was made using the “dump dataN&ERTS” option, pg_restore will not be able to load
the data usin@OPYstatements.

Options

pg_restore  accepts the following command line arguments. (Long option forms are only available
on some platforms.)

archive-name

Specifies the location of the archive file to be restored. If not specified, the standard input is used.
-a
--data-only

Restore only the data, no schema (definitions).

-C
--clean

Clean (drop) database objects before recreating them.
-C
--create
Create the database before restoring into it. (When this switch appears, the database named with

-d is used only to issue the initi@lREATE DATABASEommand. All data is restored into the
database name that appears in the archive.)

39



pg_restore

-d dbname
--dbname= dbname

Connect to databagtbhname and restore directly into the database. Large objects can only be
restored by using a direct database connection.

-f  filename
-file=  filename

Specify output file for generated script, or for the listing when used withDefault is the
standard output.

-F format
--format=  format

Specify format of the archive. It is not necessary to specify the format, since pg_restore will
determine the format automatically. If specified, it can be one of the following:
t

Archive is atar archive. Using this archive format allows reordering and/or exclusion of
schema elements at the time the database is restored. It is also possible to limit which data
is reloaded at restore time.

Archive is in the custom format of pg_dump. This is the most flexible format in that it
allows reordering of data load as well as schema elements. This format is also compressed
by default.

-i
--ignore-version

Ignore database version checks.

-l index
--index= index

Restore definition for nameddex only.
-l

--list
List the contents of the archive. The output of this command can be used with thation to
restrict and reorder the items that are restored.

-L list-file

--use-list= list-file
Restore elements ilist-file only, and in the order they appear in the file. Lines can be
moved and may also be commented out by placingathe start of the line.

-N

--orig-order

Restore items in the original dump order. By default pg_dump will dump items in an order
convenient to pg_dump, then save the archive in a modified OID order. This option overrides the
OID ordering.

40



pg_restore

-0

--oid-order
Restore items in the OID order. By default pg_dump will dump items in an order convenient
to pg_dump, then save the archive in a modified OID order. This option enforces strict OID
ordering.

-O

--no-owner

Prevent any attempt to restore original object ownership. Objects will be owned by the user name
used to attach to the database.

-P function-name(argtype [, ...])
--function= function-name(argtype [, ...])

Specify a procedure or function to be restored.

-r
--rearrange

Restore items in modified OID order. By default pg_dump will dump items in an order conve-
nient to pg_dump, then save the archive in a modified OID order. Most objects will be restored
in OID order, but some things (e.g., rules and indexes) will be restored at the end of the process
irrespective of their OIDs. This option is the default.

-R

--no-reconnect
While restoring an archive, pg_restore typically has to reconnect to the database several times
with different user names to set the correct ownership of the created objects. If this is undesir-
able (e.g., because manual interaction (passwords) would be necessary for each reconnection),
this option prevents pg_restore from issuing any reconnection requests. (A connection request
while in plain text mode, not connected to a database, is made by puttingosgt\aonnect
command.) However, this option is a rather blunt instrument because it makes pg_restore lose
all object ownership informatiominlessyou use theX use-set-session-authorization
option.

-S

--schema-only
Restore the schema (definitions), no data. Sequence values will be reset.

-S username
--superuser=  username

Specify the superuser user name to use when disabling triggers. This is only relevant if
disable-triggers is used.

-t table
--table= table

Restore schema/data fiable  only.

-T trigger
--trigger= trigger

Restore definition ofrigger  only.

-V
--verbose

Specifies verbose mode.

41



pg_restore

-X
--no-privileges
--no-acl

Prevent restoration of access privileges (grant/revoke commands).

-X use-set-session-authorization
--use-set-session-authorization

Normally, if restoring an archive requires altering the current database user (e.g., to set cor-
rect object ownerships), a new connection to the database must be opened, which might require
manual interaction (e.g., passwords). If you use-thaise-set-session-authorization

option, then pg_restore will instead use BET SESSION AUTHORIZATIGMmmand. This

has the same effect, but it requires that the user restoring the archive is a database superuser. This
option effectively overrides th&k option.

-X disable-triggers
--disable-triggers

This option is only relevant when performing a data-only restore. It instructs pg_restore to ex-
ecute commands to temporarily disable triggers on the target tables while the data is reloaded.
Use this if you have referential integrity checks or other triggers on the tables that you do not
want to invoke during data reload.

Presently, the commands emitted fedisable-triggers must be done as superuser. So,
you should also specify a superuser name vwdthor preferably specify-use-set-session-
authorization and run pg_restore as a PostgreSQL superuser.

pg_restore  also accepts the following command line arguments for connection parameters:
-h  host
--host=host

Specifies the host name of the machine on which the server is running. If host begins with a
slash, it is used as the directory for the Unix domain socket.

-p port
--port= port

Specifies the Internet TCP/IP port or local Unix domain socket file extension on which the server
is listening for connections. The port number defaults to 5432, or the value BffhORENVI-
ronment variable (if set).

-U username

Connect as the given user

Force a password prompt. This should happen automatically if the server requires password
authentication.

42



pg_restore
Environment

PGHOST
PGPORT
PGUSER

Default connection parameters.

Diagnostics

Connection to database 'templatel’ failed.
connectDBStart() -- connect() failed: No such file or directory
Is the postmaster running locally
and accepting connections on Unix socket '/tmp/.s.PGSQL.5432"?

pg_restore could not attach to the PostgreSQL server process on the specified host and port.
If you see this message, ensure that the server is running on the proper host and that you have
specified the proper port. If your site uses an authentication system, ensure that you have obtained
the required authentication credentials.

Note: When a direct database connection is specified using the -d option, pg_restore internally
executes SQL statements. If you have problems running pg_restore, make sure you are able to
select information from the database using, for example, psql.

Notes

If your installation has any local additions to tteenplatel database, be careful to load the output

of pg_restore into a truly empty database; otherwise you are likely to get errors due to duplicate
definitions of the added objects. To make an empty database without any local additions, copy from
template0 not templatel, for example:

CREATE DATABASE foo WITH TEMPLATE = templateO;

The limitations of pg_restore are detailed below.

« When restoring data to a pre-existing table, pg_restore emits queries to disable triggers on user
tables before inserting the data then emits queries to re-enable them after the data has been inserted.
If the restore is stopped in the middle, the system catalogs may be left in the wrong state.

« pg_restore will not restore large objects for a single table. If an archive contains large objects, then
all large objects will be restored.

See also thpg_dumpdocumentation for details on limitations of pg_dump.

43



pg_restore

Examples

To dump a database:

$ pg_dump mydb > db.out

To reload this database:

$ psql -d database -f db.out

To dump a database calleg/db that contains large objects taa file:

$ pg_dump -Ft -b mydb > db.tar

To reload this database (with large objects) to an existing database roaildbl:

$ pg_restore -d newdb db.tar

To reorder database items, it is first necessary to dump the table of contents of the archive:
$ pg_restore -l archive.file > archive.list

The listing file consists of a header and one line for each item, e.g.,

Archive created at Fri Jul 28 22:28:36 2000
; dbname: birds

; TOC Entries: 74

; Compression: 0

; Dump Version: 1.4-0

; Format: CUSTOM

; Selected TOC Entries:

145344 TABLE species postgres
145344 ACL species

145359 TABLE nt_header postgres
145359 ACL nt_header

145402 TABLE species_records postgres
145402 ACL species_records

145416 TABLE ss_old postgres

; 145416 ACL ss_old

10; 145433 TABLE map_resolutions postgres
11; 145433 ACL map_resolutions

12; 145443 TABLE hs_old postgres

13; 145443 ACL hs_old

CoNooRrONT

Semi-colons are comment delimiters, and the numbers at the start of lines refer to the internal archive
ID assigned to each item.

Lines in the file can be commented out, deleted, and reordered. For example,

44



pg_restore

10; 145433 TABLE map_resolutions postgres
;2; 145344 TABLE species postgres

;4; 145359 TABLE nt_header postgres

6; 145402 TABLE species_records postgres
;8; 145416 TABLE ss_old postgres

could be used as input f@y_restore  and would only restore items 10 and 6, in that order.

$ pg_restore -L archive.list archive.file

History
The pg_restore utility first appeared in PostgreSQL 7.1.

See Also
pg_dumppg_dumpall psql PostgreSQL Administrator's Guide

45



psql

Name

psql — PostgreSQL interactive terminal

Synopsis

psql [options ][dbname [user ]]

Description

psql is a terminal-based front-end to PostgreSQL. It enables you to type in queries interactively, issue
them to PostgreSQL, and see the query results. Alternatively, input can be from a file. In addition, it

provides a number of meta-commands and various shell-like features to facilitate writing scripts and
automating a wide variety of tasks.

Options

-a

--echo-all
Print all the lines to the screen as they are read. This is more useful for script processing rather
than interactive mode. This is equivalent to setting the varigtleCo all

-A

--no-align
Switches to unaligned output mode. (The default output mode is otherwise aligned.)

-c query
--command query

Specifies that psql is to execute one query strqueery , and then exit. This is useful in shell
scripts.

query must be either a query string that is completely parsable by the backend (i.e., it contains
no psql specific features), or it is a single backslash command. Thus you cannot mix SQL and
psgl meta-commands. To achieve that, you could pipe the string into psql, likedhds:"\x

\\ select * from foo;" | psql

-d dbname
--dbname dbname

Specifies the name of the database to connect to. This is equivalent to spedifyange as the
first non-option argument on the command line.

-e
--echo-queries

Show all queries that are sent to the backend. This is equivalent to setting the vaGatie
queries

46



psql

-E
--echo-hidden

Echoes the actual queries generated by \d and other backslash commands. You can use this if
you wish to include similar functionality into your own programs. This is equivalent to setting
the variableECHO_HIDDENrom within psq|l.

-f  filename
--file filename

Use the filefilename  as the source of queries instead of reading queries interactively. After
the file is processed, psql terminates. This is in many ways equivalent to the internal command
\i .

If flename is- (hyphen), then standard input is read.

Using this option is subtly different from writingsgl < filename . In general, both will

do what you expect, but using§ enables some nice features such as error messages with line
numbers. There is also a slight chance that using this option will reduce the start-up overhead.
On the other hand, the variant using the shell’s input redirection is (in theory) guaranteed to yield
exactly the same output that you would have gotten had you entered everything by hand.

-F separator

--field-separator separator
Useseparator  as the field separator. This is equivalentdset fieldsep or\f .
-h  hostname

--host  hostname

Specifies the host name of the machine on which the postmaster is running. If host begins with a
slash, it is used as the directory for the Unix-domain socket.

-H
--html
Turns on HTML tabular output. This is equivalentpset format html or the\H command.
-l
--list
Lists all available databases, then exits. Other non-connection options are ignored. This is similar
to the internal commantist
-0 filename

--output filename

Put all query output into fillename . This is equivalent to the commaiw.

-p port
--port  port

Specifies the TCP/IP port or, by omission, the local Unix domain socket file extension on which
the postmaster is listening for connections. Defaults to the value dP@RORTenvironment
variable or, if not set, to the port specified at compile time, usually 5432.

-P assignment
--pset  assignment

Allows you to specify printing options in the style ' pset on the command line. Note that here
you have to separate name and value with an equal sign instead of a space. Thus to set the output
format to LaTeX, you could writeP format=latex

47



psql

-q

--quiet
Specifies that psqgl should do its work quietly. By default, it prints welcome messages and various
informational output. If this option is used, none of this happens. This is useful witkcthe
option. Within psqgl you can also set tlJIET variable to achieve the same effect.

-R separator
--record-separator separator

Useseparator  as the record separator. This is equivalent to\piset recordsep com-
mand.
-S
--single-step
Run in single-step mode. That means the user is prompted before each query is sent to the
backend, with the option to cancel execution as well. Use this to debug scripts.

-S
--single-line
Runs in single-line mode where a newline terminates a query, as a semicolon does.

Note: This mode is provided for those who insist on it, but you are not necessarily encour-
aged to use it. In particular, if you mix SQL and meta-commands on a line the order of
execution might not always be clear to the inexperienced user.

-t

--tuples-only

Turn off printing of column names and result row count footers, etc. It is completely equivalent
to thelt meta-command.

-T table_options
--table-attr table_options

Allows you to specify options to be placed within the HTNHble tag. Seapset for details.

Makes psql prompt for the user name and password before connecting to the database.

This option is deprecated, as it is conceptually flawed. (Prompting for a non-default user name
and prompting for a password because the backend requires it are really two different things.)
You are encouraged to look at the and-W options instead.

-U username
--username  username

Connects to the database as the username instead of the default. (You must have permis-
sion to do so, of course.)

-v assignment
--set  assignment
--variable assignment

Performs a variable assignment, like thet internal command. Note that you must separate
name and value, if any, by an equal sign on the command line. To unset a variable, leave off the
equal sign. To just set a variable without a value, use the equal sign but leave off the value. These

48



psql

assignments are done during a very early stage of start-up, so variables reserved for internal
purposes might get overwritten later.

-V

--version
Shows the psql version.

-W

--password
Requests that psqgl should prompt for a password before connecting to a database. This will
remain set for the entire session, even if you change the database connection with the meta-
commandconnect
In the current version, psql automatically issues a password prompt whenever the backend re-
guests password authentication. Because this is currently based on a hack, the automatic recog-
nition might mysteriously fail, hence this option to force a prompt. If no password prompt is
issued and the backend requires password authentication the connection attempt will fail.

-X

--expanded
Turns on extended row format mode. This is equivalent to the comiwand

-X,

--no-psglrc
Do not read the start-up file/.psqlrc

-?

--help

Shows help about psgl command line arguments.

Long options are not available on all platforms.

Exit Status

psql returns 0 to the shell if it finished normally, 1 if a fatal error of its own (out of memory, file not
found) occurs, 2 if the connection to the backend went bad and the session is not interactive, and 3 if
an error occurred in a script and the variablé_ ERROR_STORas set.

Usage

Connecting To A Database

psql is a regular PostgreSQL client application. In order to connect to a database you need to know
the name of your target database, the host name and port number of the server and what user name
you want to connect as. psql can be told about those parameters via command line options, namely
-d,-h,-p, and-U respectively. If an argument is found that does not belong to any option it will be
interpreted as the database name (or the user name, if the database name is also given). Not all these
options are required, defaults do apply. If you omit the host name, psql will connect via a Unix domain
socket to a server on the local host. The default port number is compile-time determined. Since the
database server uses the same default, you will not have to specify the port in most cases. The default
user name is your Unix user name, as is the default database name. Note that you can't just connect

49



psql

to any database under any user name. Your database administrator should have informed you about
your access rights. To save you some typing you can also set the environment veEiWaRABASE
PGHOSTPGPOR®BNAPGUSERO appropriate values.

If the connection could not be made for any reason (e.g., insufficient privileges, postmaster is not
running on the server, etc.), psql will return an error and terminate.

Entering Queries

In normal operation, psql provides a prompt with the name of the database to which psql is currently
connected, followed by the string>. For example,

$ psgl testdb
Welcome to psqgl 7.3.2, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
\h for help with SQL commands
\? for help on internal slash commands
\g or terminate with semicolon to execute query
\q to quit

testdb=>

At the prompt, the user may type in SQL queries. Ordinarily, input lines are sent to the backend when
a query-terminating semicolon is reached. An end of line does not terminate a query! Thus queries
can be spread over several lines for clarity. If the query was sent and without error, the query results
are displayed on the screen.

Whenever a query is executed, psql also polls for asynchronous notification events geneta&d by
TEN andNOTIFY.

Meta-Commands

Anything you enter in psql that begins with an unquoted backslash is a psgl meta-command that
is processed by psql itself. These commands are what makes psql interesting for administration or
scripting. Meta-commands are more commonly called slash or backslash commands.

The format of a psql command is the backslash, followed immediately by a command verb, then any
arguments. The arguments are separated from the command verb and each other by any number of
whitespace characters.

To include whitespace into an argument you may quote it with a single quote. To include a single quote
into such an argument, precede it by a backslash. Anything contained in single quotes is furthermore
subject to C-like substitutions fan (new line),\t (tab),\ digits ,\0 digits , and\0x digits

(the character with the given decimal, octal, or hexadecimal code).

If an unquoted argument begins with a colon), (it is taken as a psql variable and the value of the
variable is used as the argument instead.

Arguments that are enclosed in backquotgsafe taken as a command line that is passed to the shell.
The output of the command (with any trailing newline removed) is taken as the argument value. The
above escape sequences also apply in backquotes.

50



psql

Some commands take an SQL identifier (such as a table name) as argument. These arguments follow
the syntax rules of SQL regarding double quotes: an identifier without double quotes is coerced to
lower-case, while whitespace within double quotes is included in the argument.

Parsing for arguments stops when another unquoted backslash occurs. This is taken as the beginning
of a new meta-command. The special sequé&nc@wo backslashes) marks the end of arguments and
continues parsing SQL queries, if any. That way SQL and psgl commands can be freely mixed on a
line. But in any case, the arguments of a meta-command cannot continue beyond the end of the line.

The following meta-commands are defined:

\a

If the current table output format is unaligned, switch to aligned. If it is not unaligned, set it to
unaligned. This command is kept for backwards compatibility.\Bs= for a general solution.

\cd [directory ]

Change the current working directorydoectory . Without argument, change to the current
user’'s home directory.

Tip: To print your current working directory, use \lpwd .

\C [title ]
Set the title of any tables being printed as the result of a query or unset any such title. This
command is equivalent tgpset title tite . (The name of this command derives from

“caption”, as it was previously only used to set the caption in an HTML table.)
\connect (or\c ) [ dbname [ username ]]

Establishes a connection to a new database and/or under a user name. The previous connection
is closed. Ifdbname is - the current database name is assumed.

If username is omitted the current user name is assumed.

As a special rule\connect without any arguments will connect to the default database as the
default user (as you would have gotten by starting psql without any arguments).

If the connection attempt failed (wrong user name, access denied, etc.), the previous connection
will be kept if and only if psql is in interactive mode. When executing a non-interactive script,
processing willimmediately stop with an error. This distinction was chosen as a user convenience
against typos on the one hand, and a safety mechanism that scripts are not accidentally acting on
the wrong database on the other hand.

\copy table [ ( column_list )1 { from | to } filename | stdin | stdout [
with ] [ oids ] [ delimiter [as] "character ' ] [ null [as] “string 7]

Performs a frontend (client) copy. This is an operation that runs an SQRY command, but
instead of the backend'’s reading or writing the specified file, psqgl reads or writes the file and
routes the data between the backend and the local file system. This means that file accessibility
and privileges are those of the local user, not the server, and no SQL superuser privileges are
required.

The syntax of the command is similar to that of the SQPYcommand (see its description for
the details). Note that, because of this, special parsing rules apply teotiye command. In
particular, the variable substitution rules and backslash escapes do not apply.

51



psql

Tip: This operation is not as efficient as the SQL COPYcommand because all data must
pass through the client/server IP or socket connection. For large amounts of data the other
technique may be preferable.

Note: Note the difference in interpretation of stdin and stdout between frontend and back-
end copies: in a frontend copy these always refer to psql’s input and output stream. On a
backend copy stdin comes from wherever the COPYitself came from (for example, a script
run with the -f option), and stdout refers to the query output stream (see \o meta-command
below).

\copyright
Shows the copyright and distribution terms of PostgreSQL.
\d [ pattern ]

For each relation (table, view, index, or sequence) matchingaftern , show all columns,

their types, and any special attributes suchi@3 NULLor defaults, if any. Associated indexes,
constraints, rules, and triggers are also shown, as is the view definition if the relation is a view.
(“Matching the pattern” is defined below.)

The command fornd+ is identical, but any comments associated with the table columns are
shown as well.

Note: If\d is used without a pattern  argument, it is equivalent to \dtvs  which will show a
list of all tables, views, and sequences. This is purely a convenience measure.

\da [ pattern ]

Lists all available aggregate functions, together with the data type they operateatieth
(a regular expression) is specified, only matching aggregates are shown.

\dd [ pattern ]

Shows the descriptions of objects matchingpgh#ern , or of all visible objects if no argument

is given. But in either case, only objects that have a description are listed. (“Object” covers ag-
gregates, functions, operators, types, relations (tables, views, indexes, sequences, large objects),
rules, and triggers.) For example:

=> \dd version
Object descriptions

Schema | Name | Object | Description
+ + +
pg_catalog | version | function | PostgreSQL version string
1 row)

Descriptions for objects can be created with @@VMENT GBQL command.

Note: PostgreSQL stores the object descriptions in the pg_description system table.

52



psql

\dD [ pattern ]

Lists all available domains (derived types)pHttern is specified, only matching domains are
shown.

\df [ pattern ]

Lists available functions, together with their argument and return typpattfrn  is specified,
only matching functions are shown. If the fokdi+ is used, additional information about each
function, including language and description, is shown.

Note: To reduce clutter, \df does not show data type 1/O functions. This is implemented by
ignoring functions that accept or return type cstring

\distvS [ pattern ]

This is not the actual command name: the letters|, s, t, v, S stand for index, sequence, table, view,
and system table, respectively. You can specify any or all of these letters, in any order, to obtain
a listing of all the matching objects. The letter S restricts the listing to system objects; without
S, only non-system objects are shown. If “+” is appended to the command name, each object is
listed with its associated description, if any.

If a pattern is specified, only objects whose name matches the pattern are listed.
\dl

This is an alias fo¥o_list  , which shows a list of large objects.
\do [ pattern ]

Lists available operators with their operand and return typespHttern is specified, only
operators whose name matches the pattern are listed.

\dp [ pattern ]

Produces a list of all available tables with their associated access permissiopattdra is
specified, only tables whose name matches the pattern are listed.

The command&RANT andREVOKE are used to set access permissions.(&RANT for more
information.

\dT [ pattern ]

Lists all data types or only those that maggdttern . The command forndT+ shows extra
information.

\du [ pattern ]
Lists all database users, or only those that magdtern
\edit (or\e) [ filename ]

If filename is specified, the file is edited; after the editor exits, its content is copied back to
the query buffer. If no argument is given, the current query buffer is copied to a temporary file
which is then edited in the same fashion.

The new query buffer is then re-parsed according to the normal rules of psql, where the whole
buffer is treated as a single line. (Thus you cannot make scripts this wayi Uga that.)

This means also that if the query ends with (or rather contains) a semicolon, it is immediately
executed. In other cases it will merely wait in the query buffer.

53



psql

Tip: psql searches the environment variables PSQL_EDITOR EDITOR, and VISUAL (in that
order) for an editor to use. If all of them are unset, /bin/vi is run.

\echo text [...]

Prints the arguments to the standard output, separated by one space and followed by a newline.
This can be useful to intersperse information in the output of scripts. For example:

=> \echo ‘date’
Tue Oct 26 21:40:57 CEST 1999

If the first argument is an unquoted the the trailing newline is not written.

Tip: If you use the \o command to redirect your query output you may wish to use \qecho
instead of this command.

\encoding [ encoding ]

Sets the client encoding, if you are using multibyte encodings. Without an argument, this com-
mand shows the current encoding.

\f [string ]

Sets the field separator for unaligned query output. The default is [pip8de alsapset for a
generic way of setting output options.

\g [{ filename || command} ]

Sends the current query input buffer to the backend and optionally saves the ouifmit in
name or pipes the output into a separate Unix shell to execatemand A bare\g is virtually
equivalent to a semicolon. ¥y with argument is a “one-shot” alternative to tlee command.

\help (or\h ) [ command]

Give syntax help on the specified SQL command:dinmand is not specified, then psql will
list all the commands for which syntax help is availablecdfnmandis an asterisk (“*”), then
syntax help on all SQL commands is shown.

Note: To simplify typing, commands that consists of several words do not have to be quoted.
Thus it is fine to type \help alter table

\H
Turns on HTML query output format. If the HTML format is already on, it is switched back
to the default aligned text format. This command is for compatibility and convenience, but see
\pset about setting other output options.

\i filename

Reads input from the filBlename  and executes it as though it had been typed on the keyboard.

Note: If you want to see the lines on the screen as they are read you must set the variable
ECHQ0 all .

54



psql

\I (or\list )

List all the databases in the server as well as their owners. Append a “+" to the command name
to see any descriptions for the databases as well. If your PostgreSQL installation was compiled
with multibyte encoding support, the encoding scheme of each database is shown as well.

\lo_export loid filename

Reads the large object with OlBid from the database and writes itfiename . Note that
this is subtly different from the server functitm export , which acts with the permissions of
the user that the database server runs as and on the server’s file system.

Tip: Use \lo_list to find out the large object’s OID.

Note: See the description of the LO_TRANSACTIONvariable for important information con-
cerning all large object operations.

\lo_import  filename [ comment ]

Stores the file into a PostgreSQL “large object”. Optionally, it associates the given comment with
the object. Example:

foo=> \lo_import '’home/peter/pictures/photo.xcf’ 'a picture of me’
lo_import 152801

The response indicates that the large object received object id 152801 which one ought to re-

member if one wants to access the object ever again. For that reason it is recommended to al-
ways associate a human-readable comment with every object. Those can then be seen with the
\lo_list command.

Note that this command is subtly different from the server-gdinport  because it acts as
the local user on the local file system, rather than the server’s user and file system.

Note: See the description of the LO_TRANSACTIONvariable for important information con-
cerning all large object operations.

\lo_list

Shows a list of all PostgreSQL “large objects” currently stored in the database, along with any
comments provided for them.

\lo_unlink loid

Deletes the large object with OlBid from the database.

Tip: Use \lo_list to find out the large object’s OID.

Note: See the description of the LO_TRANSACTIONvariable for important information con-
cerning all large object operations.

55



psql

\o [{filename || command}]

Saves future query results to the filename  or pipes future results into a separate Unix shell
to executeeommand If no arguments are specified, the query output will be resstitaut

“Query results” includes all tables, command responses, and notices obtained from the database
server, as well as output of various backslash commands that query the database {@ych as
but not error messages.

Tip: To intersperse text output in between query results, use \gecho .

\p
Print the current query buffer to the standard output.
\pset parameter [value ]

This command sets options affecting the output of query result taideameter describes
which option is to be set. The semanticsvafue depend thereon.

Adjustable printing options are:

format

Sets the output format to one wfialigned |, aligned , html , orlatex . Unique abbrevia-
tions are allowed. (That would mean one letter is enough.)

“Unaligned” writes all fields of a tuple on a line, separated by the currently active field sepa-
rator. This is intended to create output that might be intended to be read in by other programs
(tab-separated, comma-separated). “Aligned” mode is the standard, human-readable, nicely
formatted text output that is default. The “HTML” and “LaTeX"” modes put out tables that
are intended to be included in documents using the respective mark-up language. They are
not complete documents! (This might not be so dramatic in HTML, but in LaTeX you must
have a complete document wrapper.)

border

The second argument must be a number. In general, the higher the number the more borders
and lines the tables will have, but this depends on the particular format. In HTML mode,
this will translate directly into théorder=... attribute, in the others only values 0 (no
border), 1 (internal dividing lines), and 2 (table frame) make sense.

expanded (Orx)

Toggles between regular and expanded format. When expanded format is enabled, all output
has two columns with the field name on the left and the data on the right. This mode is useful
if the data wouldn't fit on the screen in the normal “horizontal” mode.

Expanded mode is supported by all four output modes.

null
The second argument is a string that should be printed whenever a field is null. The default
is not to print anything, which can easily be mistaken for, say, an empty string. Thus, one
might choose to writépset null (null)’

fieldsep

Specifies the field separator to be used in unaligned output mode. That way one can create,
for example, tab- or comma-separated output, which other programs might prefer. To set a

56



psql
tab as field separator, typeset fieldsep "\t . The default field separator it (a
“pipe” symbol).
footer
Toggles the display of the default footgr rows)
recordsep

Specifies the record (line) separator to use in unaligned output mode. The default is a new-
line character.

tuples_only  (ort)

Toggles between tuples only and full display. Full display may show extra information such
as column headers, titles, and various footers. In tuples only mode, only actual table data is
shown.

titte  [text ]

Sets the table title for any subsequently printed tables. This can be used to give your output
descriptive tags. If no argument is given, the title is unset.

Note: This formerly only affected HTML mode. You can now set titles in any output
format.

tableattr (orT)[text ]

Allows you to specify any attributes to be placed inside the HTistlle tag. This could
for example beellpadding  or bgcolor . Note that you probably don’t want to specify
border here, as that is already taken care ofifmet border

pager

Toggles the use of a pager for query and psql help output. If the environment vaviehiR
is set, the output is piped to the specified program. Otherwise a platform-dependent default
(such asnore) is used.

In any case, psql only uses the pager if it seems appropriate. That means among other
things that the output is to a terminal and that the table would normally not fit on the screen.
Because of the modular nature of the printing routines it is not always possible to predict
the number of lines that will actually be printed. For that reason psql might not appear very
discriminating about when to use the pager.

lllustrations on how these different formats look can be seen iEdaenplesection.

Tip: There are various shortcut commands for \pset . See\a,\C,\H,\t ,\T, and \x .

Note: It is an error to call \pset without arguments. In the future this call might show the
current status of all printing options.

\q
Quit the psql program.

57



psql

\gecho text [...]

This command is identical techo except that all output will be written to the query output
channel, as set by .

\r
Resets (clears) the query buffer.
\s [filename ]

Print or save the command line historyftename . If filename is omitted, the history is
written to the standard output. This option is only available if psqgl is configured to use the GNU
history library.

Note: Inthe current version, it is no longer necessary to save the command history, since that
will be done automatically on program termination. The history is also loaded automatically
every time psql starts up.

\set [name[value [...]]]

Sets the internal variableameto value or, if more than one value is given, to the concatenation
of all of them. If no second argument is given, the variable is just set with no value. To unset a
variable, use thunset command.

Valid variable names can contain characters, digits, and underscores. See the section about psql
variables for details.

Although you are welcome to set any variable to anything you want, psql treats several variables
as special. They are documented in the section about variables.

Note: This command is totally separate from the SQL command SET .

\t

Toggles the display of output column name headings and row count footer. This command is
equivalent tdpset tuples_only and is provided for convenience.

\T table_options

Allows you to specify options to be placed within ttable tag in HTML tabular output mode.
This command is equivalent tpset tableattr table_options

\timing
Toggles a display of how long each SQL statement takes, in milliseconds.
\w {filename ||command}

Outputs the current query buffer to the filename  or pipes it to the Unix commancbm-
mand.

\x
Toggles extended row format mode. As such it is equivalekdset expanded
\z [ pattern ]

Produces a list of all available tables with their associated access permissiopattdra is
specified, only tables whose name matches the pattern are listed.

58



psql

The command&RANT andREVOKE are used to set access permissions.(&RANT for more
information.

This is an alias foxdp (“display permissions”).
\l [ command]

Escapes to a separate Unix shell or executes the Unix comotanchand. The arguments are
not further interpreted, the shell will see them as is.

\?

Get help information about the backslash (“\") commands.

The varioudd commands acceptfmattern parameter to specify the object name(s) to be displayed.
Patterns are interpreted similarly to SQL identifiers, in that unquoted letters are forced to lowercase,
while double quotes'() protect letters from case conversion and allow incorporation of whitespace
into the identifier. Within double quotes, paired double quotes reduce to a single double quote in the
resulting name. For exampleQO"BAR"BAZis interpreted afboBARbaz , and"A weird"™' name"

become® weird" name .

More interestingly\d patterns allow the use af to mean “any sequence of characters”, anib

mean “any single character”. (This notation is comparable to Unix shell filename patterns.) Advanced
users can also use regular-expression notations such as character classes, foj@@mpbematch

“any digit”. To make any of these pattern-matching characters be interpreted literally, surround it with
double quotes.

A pattern that contains an (unquoted) dot is interpreted as a schema name pattern followed by an
object name pattern. For examplegdt foo*.bar* displays all tables in schemas whose name
starts withfoo and whose table name starts withr . If no dot appears, then the pattern matches
only objects that are visible in the current schema search path.

Whenever theattern  parameter is omitted completely, thie commands display all objects that
are visible in the current schema search path. To see all objects in the database, use therpattern

Advanced features

Variables

psql provides variable substitution features similar to common Unix command shells. This feature
is new and not very sophisticated, yet, but there are plans to expand it in the future. Variables are
simply name/value pairs, where the value can be any string of any length. To set variables, use the
psgl meta-commandet :

testdb=> \set foo bar

sets the variable “foo” to the value “bar”. To retrieve the content of the variable, precede the name
with a colon and use it as the argument of any slash command:

testdb=> \echo :foo
bar

59



psql

Note: The arguments of \set are subject to the same substitution rules as with other commands.
Thus you can construct interesting references such as \set :foo 'something’ and get “soft
links” or “variable variables” of Perl or PHP fame, respectively. Unfortunately (or fortunately?),
there is no way to do anything useful with these constructs. On the other hand, \set bar :foo

is a perfectly valid way to copy a variable.

If you call\set without a second argument, the variable is simply set, but has no value. To unset (or
delete) a variable, use the commangket

psql’s internal variable names can consist of letters, numbers, and underscores in any order and any
number of them. A number of regular variables are treated specially by psql. They indicate certain
option settings that can be changed at run time by altering the value of the variable or represent
some state of the application. Although you can use these variables for any other purpose, this is not
recommended, as the program behavior might grow really strange really quickly. By convention, all
specially treated variables consist of all upper-case letters (and possibly numbers and underscores).
To ensure maximum compatibility in the future, avoid such variables. A list of all specially treated
variables follows.

DBNAME

The name of the database you are currently connected to. This is set every time you connect to a
database (including program start-up), but can be unset.

ECHO

If setto “all ", all lines entered or from a script are written to the standard output before they are

parsed or executed. To specify this on program start-up, use the switthset to “queries ",
psqgl merely prints all queries as they are sent to the backend. The option for-this is

ECHO_HIDDEN

When this variable is set and a backslash command queries the database, the query is first shown.
This way you can study the PostgreSQL internals and provide similar functionality in your own
programs. If you set the variable to the valmexec , the queries are just shown but are not
actually sent to the backend and executed.

ENCODING

The current client multibyte encoding. If you are not set up to use multibyte characters, this
variable will always contain “SQL_ASCI|I”.

HISTCONTROL

If this variable is set tagnorespace , lines which begin with a space are not entered into the
history list. If set to a value ofgnoredups , lines matching the previous history line are not
entered. A value ofjnoreboth  combines the two options. If unset, or if set to any other value
than those above, all lines read in interactive mode are saved on the history list.

Note: This feature was shamelessly plagiarized from bash.

HISTSIZE

The number of commands to store in the command history. The default value is 500.

Note: This feature was shamelessly plagiarized from bash.

60



psql

HOST

The database server host you are currently connected to. This is set every time you connect to a
database (including program start-up), but can be unset.

IGNOREEOF

If unset, sending an EOF character (usu&ligntrol+D) to an interactive session of psql will
terminate the application. If set to a numeric value, that many EOF characters are ignored before
the application terminates. If the variable is set but has no numeric value, the default is 10.

Note: This feature was shamelessly plagiarized from bash.

LASTOID

The value of the last affected OID, as returned fromiINBERT or lo_insert ~ command. This
variable is only guaranteed to be valid until after the result of the next SQL command has been
displayed.

LO_TRANSACTION

If you use the PostgreSQL large object interface to specially store data that does not fit into one
tuple, all the operations must be contained in a transaction block. (See the documentation of the
large object interface for more information.) Since psql has no way to tell if you already have a
transaction in progress when you call one of its internal commaledsxport  ,\lo_import
\lo_unlink ) it must take some arbitrary action. This action could either be to roll back any
transaction that might already be in progress, or to commit any such transaction, or to do nothing
at all. In the last case you must provide your oBEGIN TRANSACTIOKCOMMIThlock or the

results will be unpredictable (usually resulting in the desired action’s not being performed in any
case).

To choose what you want to do you set this variable to one of “rollback”, “commit”, or “nothing”.
The default is to roll back the transaction. If you just want to load one or a few objects this is
fine. However, if you intend to transfer many large objects, it might be advisable to provide one
explicit transaction block around all commands.

ON_ERROR_STOP

By default, if non-interactive scripts encounter an error, such as a malformed SQL query or
internal meta-command, processing continues. This has been the traditional behavior of psql but
it is sometimes not desirable. If this variable is set, script processing will immediately terminate.
If the script was called from another script it will terminate in the same fashion. If the outermost
script was not called from an interactive psql session but rather using tloption, psql will

return error code 3, to distinguish this case from fatal error conditions (error code 1).

PORT

The database server port to which you are currently connected. This is set every time you connect
to a database (including program start-up), but can be unset.

PROMPT1
PROMPT2
PROMPT3

These specify what the prompt psql issues is supposed to look like Peamfting below.
QUIET

This variable is equivalent to the command line optign It is probably not too useful in inter-
active mode.

61



psql

SINGLELINE

This variable is set by the command line optisn You can unset or reset it at run time.
SINGLESTEP

This variable is equivalent to the command line option
USER

The database user you are currently connected as. This is set every time you connect to a database
(including program start-up), but can be unset.

SQL Interpolation

An additional useful feature of psql variables is that you can substitute (“interpolate”) them into
regular SQL statements. The syntax for this is again to prepend the variable name with a folon (

testdb=> \set foo 'my_table’
testdb=> SELECT * FROM :foo;

would then query the tabley table . The value of the variable is copied literally, so it can even
contain unbalanced quotes or backslash commands. You must make sure that it makes sense where
you put it. Variable interpolation will not be performed into quoted SQL entities.

A popular application of this facility is to refer to the last inserted OID in subsequent statements to
build a foreign key scenario. Another possible use of this mechanism is to copy the contents of a file
into a field. First load the file into a variable and then proceed as above.

testdb=> \set content '\" ‘cat my_file.txt' '\"
testdb=> INSERT INTO my_table VALUES (:content);

One possible problem with this approach is thet file.txt might contain single quotes. These
need to be escaped so that they don’t cause a syntax error when the third line is processed. This could
be done with the program sed:

testdb=> \set content '\" ‘sed -e "s/A\\WW/g" < my_file.txt’ '\"

Observe the correct number of backslashes (6)! You can resolve it this way: After psql has parsed this
line, it passesed -e "s/'AW/g" < my_file.txt to the shell. The shell will do its own thing

inside the double quotes and execsdd with the argumentse ands/’/\V/g . When sed parses

this it will replace the two backslashes with a single one and then do the substitution. Perhaps at one
point you thought it was great that all Unix commands use the same escape character. And this is
ignoring the fact that you might have to escape all backslashes as well because SQL text constants are
also subject to certain interpretations. In that case you might be better off preparing the file externally.

Since colons may legally appear in queries, the following rule applies: If the variable is not set, the
character sequence “colon+name” is not changed. In any case you can escape a colon with a backslash
to protect it from interpretation. (The colon syntax for variables is standard SQL for embedded query
languages, such as ecpg. The colon syntax for array slices and type casts are PostgreSQL extensions,
hence the conflict.)

62



psql

Prompting

The prompts psql issues can be customized to your preference. The three vaPRDIESTL
PROMPT2andPROMPTZontain strings and special escape sequences that describe the appearance of
the prompt. Prompt 1 is the normal prompt that is issued when psqgl requests a new query. Prompt 2
is issued when more input is expected during query input because the query was not terminated with
a semicolon or a quote was not closed. Prompt 3 is issued when you run a@@@Qtommand and

you are expected to type in the tuples on the terminal.

The value of the respective prompt variable is printed literally, except where a percent sign (“%”")
is encountered. Depending on the next character, certain other text is substituted instead. Defined
substitutions are:

%M

The full host name (with domain name) of the database serv@iocali  if the connection is
over a Unix domain socket, giocal:  /dir/name ], if the Unix domain socket is not at the
compiled in default location.

%m

The host name of the database server, truncated after the first flotatir  if the connection
is over a Unix domain socket.

%>

The port number at which the database server is listening.
%n

The user name you are connected as (not your local system user name).
%l

The name of the current database.
%o~

Like %/, but the output is “~” (tilde) if the database is your default database.
%t

If the current user is a database superuser, then a “#”, otherwisé a “
%R

In prompt 1 normally “=", but “*" if in single-line mode, and “!” if the session is disconnected
from the database (which can happekcifhnect fails). In prompt 2 the sequence is replaced
by “-", “*"| a single quote, or a double quote, depending on whether psql expects more input
because the query wasn't terminated yet, because you are ingide. &/ comment, or
because you are inside a quote. In prompt 3 the sequence doesn't resolve to anything.

9digits

If digits  starts withOx the rest of the characters are interpreted as a hexadecimal digit and
the character with the corresponding code is substituted. If the first digitthe characters

are interpreted as on octal number and the corresponding character is substituted. Otherwise a
decimal number is assumed.

%:name:
The value of the psqgl, variableame. See the sectiorVariables for details.
%‘command

The output ocommand, similar to ordinary “back-tick” substitution.

63



psql

To insert a percent sign into your prompt, wrigsThe default prompts are equivalent¥/%R%#
* for prompts 1 and 2, and>> * for prompt 3.

Note: This feature was shamelessly plagiarized from tcsh.

Command-Line Editing

psql supports the Readline library for convenient line editing and retrieval. The command history is
stored in a file namegbsql_history in your home directory and is reloaded when psq|l starts up.
Tab-completion is also supported, although the completion logic makes no claim to be an SQL parser.
When available, psql is automatically built to use these features. If for some reason you do not like the
tab completion, you can turn if off by putting this in a file namiagutrc  in your home directory:

$if psql
set disable-completion on
$endif

(This is not a psql but a readline feature. Read its documentation for further details.)

Environment

HOME
Directory for initialization file (psglrc ) and command history filefsql_history ).
PAGER

If the query results do not fit on the screen, they are piped through this command. Typical values
aremore or less . The default is platform-dependent. The use of the pager can be disabled by
using theipset command.

PGDATABASE
Default database to connect to

PGHOST
PGPORT
PGUSER

Default connection parameters

PSQL_EDITOR
EDITOR
VISUAL

Editor used by thée command. The variables are examined in the order listed; the first that is
set is used.

SHELL

Command executed by the command.

64



psql

TMPDIR

Directory for storing temporary files. The defaulttisp .

Files

- Before starting up, psql attempts to read and execute commands from tpledileE/ . psqlrc . It
could be used to set up the client or the server to taste (usingethe andSET commands).

- The command-line history is stored in the fl6dOME/.psq|_history

Notes

- In an earlier life psql allowed the first argument of a single-letter backslash command to start
directly after the command, without intervening whitespace. For compatibility this is still supported
to some extent, but | am not going to explain the details here as this use is discouraged. If you get
strange messages, keep this in mind. For example

testdb=> \foo
Field separator is "00",

which is perhaps not what one would expect.

« psgl only works smoothly with servers of the same version. That does not mean other combinations
will fail outright, but subtle and not-so-subtle problems might come up. Backslash commands are
particularly likely to fail if the server is of a different version.

» Pressing Control-C during a “copy in” (data sent to the server) doesn’t show the most ideal of
behaviors. If you get a message such as “COPY state must be terminated first”, simply reset the
connection by entering - -

Examples

Note: This section only shows a few examples specific to psql. If you want to learn SQL or get
familiar with PostgreSQL, you might wish to read the Tutorial that is included in the distribution.

The first example shows how to spread a query over several lines of input. Notice the changing prompt:

testdb=> CREATE TABLE my_table (

testdb(> first integer not null default O,
testdb(> second text

testdb-> );

CREATE

Now look at the table definition again:

testdb=> \d my_table
Table "my_table"
Attribute | Type | Modifier

+
1

65



first | integer | not null default O

second | text [

At this point you decide to change the prompt to something more interesting:

testdb=> \set PROMPT1 '%n@%m %~%R%# °’

peter@localhost testdb=>

Let's assume you have filled the table with data and want to take a look at it:

peter@localhost testdb=> SELECT * FROM my_table;

first | second

_______ Fomm————
1| one
2 | two
3 | three
4 | four
(4 rows)

You can make this table look differently by using theet command:

peter@localhost testdb=>
Border style is 2.
peter@localhost testdb=>

R IR E— +
| first | second |

B B — +

| 1| one |
I 2 | two I
| 3 | three |
| 4 | four |
R IR E— +

(4 rows)

peter@localhost testdb=>
Border style is 0.
peter@localhost testdb=>
first second

2 two

3 three

4 four
(4 rows)

peter@localhost testdb=>
Border style is 1.
peter@localhost testdb=>
Output format is unaligned.
peter@localhost testdb=>
Field separator is ",".
peter@localhost testdb=>
Showing only tuples.
peter@localhost testdb=>
one,1

two,2

\pset border 2

SELECT * FROM my_table;

\pset border 0

SELECT * FROM my_table;

\pset border 1
\pset format unaligned
\pset fieldsep ","

\pset tuples_only

SELECT second, first FROM my_table;

psql

66



three,3
four,4

Alternatively, use the short commands:

peter@localhost testdb=> \a \t \x
Output format is aligned.

Tuples only is off.

Expanded display is on.
peter@localhost testdb=> SELECT * FROM my_table;
-l RECORD 1 ]-

first | 1

second | one

-l RECORD 2 ]-

first | 2

second | two

-l RECORD 3 ]-

first | 3

second | three

-[ RECORD 4 J-

first | 4

second | four

psql

67



pgtclsh

Name
pgtclsh  — PostgreSQL Tcl shell client

Synopsis

pgtclsh  [filename [arguments ...]]

Description

patclsh is a Tcl shell interface extended with PostgreSQL database access functions. (Essentially,
itistclsh with libpgtcl  loaded.) Like with the regular Tcl shell, the first command line argument

is a script file, any remaining arguments are passed to the script. If no script file is named, the shell is
interactive.

A Tcl shell with Tk and PostgreSQL functions is availablepgtksh

See Also
pgtksh PostgreSQL Programmer’s Guiddescription ofibpgtcl ), tclsh

68



pgtksh

Name
pgtksh — PostgreSQL Tcl/Tk shell client

Synopsis

pgtksh [filename  [arguments ..]]

Description

pgtksh is a Tcl/Tk shell interface extended with PostgreSQL database access functions. (Essentially,
it is wish with libpgtcl loaded.) Like withwish , the regular Tcl/Tk shell, the first command line
argument is a script file, any remaining arguments are passed to the script. Special options may be
processed by the X Window System libraries instead. If no script file is named, the shell is interactive.

A plain Tcl shell with PostgreSQL functions is availablepagclsh

See Also
pgtclsh PostgreSQL Programmer’s Guiddescription ofibpgtcl ), tclsh, wish

69



vacuumdb

Name

vacuumdb — garbage-collect and analyze a PostgreSQL database

Synopsis

vacuumdb [connection-options ...] [--full | -f] [--verbose | -v] [--analyze | -z] [--table | -t
'table  [( column [,...])]'][ dbname]

vacuumdb [connection-options ...] [--all | -a] [--full | -f] [--verbose | -v] [--analyze | -z]
Description

vacuumdb is a utility for cleaning a PostgreSQL database. vacuumdb will also generate internal statis-
tics used by the PostgreSQL query optimizer.

vacuumdb is a shell script wrapper around the backend comMAGUUM via the PostgreSQL
interactive terminapsqgl There is no effective difference between vacuuming databases via this or
other methods. psqgl must be found by the script and a database server must be running at the targeted
host. Also, any default settings and environment variables available to psql and the libpq front-end
library do apply.

vacuumdb might need to connect several times to the PostgreSQL server, asking for a password each
time. It is convenient to have®HOME/.pgpass file in such cases.

Options

vacuumdb accepts the following command-line arguments:

[[d] dbname
[--dbname]  dbname

Specifies the name of the database to be cleaned or analyzed. If this is not specifeed@nd
--all ) is not used, the database name is read from the environment vapPi@abksTABASEIf
that is not set, the user name specified for the connection is used.

-a
--all

Vacuum all databases.

-e
--echo

Echo the commands that vacuumdb generates and sends to the server.

-f
--ful

Perform “full” vacuuming.

70



vacuumdb
-q
--quiet
Do not display a response.

-t table [ ( column [,...]) ]
--table table [ ( column [,..]) ]

Clean or analyz¢able only. Column names may be specified only in conjunction with the
--analyze  option.

Tip: If you specify columns to vacuum, you probably have to escape the parentheses from
the shell.

-V
--verbose

Print detailed information during processing.

-z
--analyze

Calculate statistics for use by the optimizer.

vacuumdb also accepts the following command-line arguments for connection parameters:
-h host
--host  host

Specifies the host name of the machine on which the server is running. If host begins with a
slash, it is used as the directory for the Unix domain socket.

-p port
--port  port

Specifies the Internet TCP/IP port or local Unix domain socket file extension on which the server
is listening for connections.

-U username
--username  username

User name to connect as

-W
--password

Force password prompt.

Diagnostics

VACUUM

Everything went well.

71



vacuumdb

vacuumdb: Vacuum failed.

Something went wrong. vacuumdb is only a wrapper script\@€aUUMandpsqlfor a detailed
discussion of error messages and potential problems.

Environment

PGDATABASE
PGHOST
PGPORT
PGUSER

Default connection parameters.

Examples

To clean the databasest :

$ vacuumdb test

To clean and analyze for the optimizer a database néuiged :

$ vacuumdb --analyze bigdb

To clean a single tablieo in a database nameglzzy , and analyze a single colunbar of the table
for the optimizer:

$ vacuumdb --analyze --verbose --table 'foo(bar)’ xyzzy

See Also
VACUUM

72



lll. PostgreSQL Server
Applications

This part contains reference information for PostgreSQL server applications and support utilities.
These commands can only be run usefully on the host where the database server resides. Other utility
programs are listed iReference l1PostgreSQL Client Applications

73



initdb

Name

initdb — create a new PostgreSQL database cluster

Synopsis

initdb  [options...] --pgdata | -@irectory

Description

initdb  creates a new PostgreSQL database cluster (or database system). A database cluster is a
collection of databases that are managed by a single server instance.

Creating a database system consists of creating the directories in which the database data will live,
generating the shared catalog tables (tables that belong to the whole cluster rather than to any particu-
lar database), and creating tieenplatel database. When you create a new database, everything in
thetemplatel database is copied. It contains catalog tables filled in for things like the built-in types.

initdb initializes the database cluster’s default locale and character set encoding. Some locale cate-
gories are fixed for the lifetime of the cluster, so it is important to make the right choice when running
initdb . Other locale categories can be changed later when the server is stardbd. will write

those locale settings into thmstgresgl.conf configuration file so they are the default, but they

can be changed by editing that file. To set the locale itli@b  uses, see the description of the
--locale  option. The character set encoding can be set separately for each database as it is created.
initdb  determines the encoding for tkenplatel database, which will serve as the default for all

other databases. To alter the default encoding usedheoding  option.

initdo  must be run as the user that will own the server process, because the server needs to have
access to the files and directories théttlb  creates. Since the server may not be run as root, you
must not rurinitdb  as root either. (It will in fact refuse to do so.)

Althoughinitdb  will attempt to create the specified data directory, often it won’t have permission
to do so, since the parent of the desired data directory is often a root-owned directory. To set up an
arrangement like this, create an empty data directory as root, theshage to hand over ownership

of that directory to the database user account, theto become the database user, and finally run
initdb  as the database user.

Options

-D directory
--pgdata= directory

This option specifies the directory where the database system should be stored. This is the only
information required bynitdb , but you can avoid writing it by setting tH&DATAenvironment
variable, which can be convenient since the database sengiméster ) can find the database
directory later by the same variable.

74



initdb
-E encoding
--encoding=  encoding

Selects the encoding of the template database. This will also be the default encoding of any
database you create later, unless you override it there. To use the encoding feature, you must
have enabled it at build time, at which time you also select the default for this option.

--locale= locale

Sets the default locale for the database cluster. If this option is not specified, the locale is inherited
from the environment thatitdb  runs in.

--lc-collate= locale
--lc-ctype= locale
--lc-messages=  locale
--lc-monetary= locale
--lc-numeric= locale
--lc-time= locale

Like --locale , but only sets the locale in the specified category.

-U username
--username= username

Selects the user name of the database superuser. This defaults to the name of the effective user
runninginitdb . It is really not important what the superuser’s name is, but one might choose
to keep the customary name postgres, even if the operating system user’s name is different.

-W
--pwprompt
Makesinitdb  prompt for a password to give the database superuser. If you don’t plan on using

password authentication, this is not important. Otherwise you won't be able to use password
authentication until you have a password set up.

Other, less commonly used, parameters are also available:

-d

--debug
Print debugging output from the bootstrap backend and a few other messages of lesser interest
for the general public. The bootstrap backend is the progmadh  uses to create the catalog
tables. This option generates a tremendous amount of extremely boring output.

-L directory
Specifies wherénitdb  should find its input files to initialize the database system. This is nor-
mally not necessary. You will be told if you need to specify their location explicitly.

-n

--noclean

By default, wheninitdb  determines that an error prevented it from completely creating the
database system, it removes any files it may have created before discovering that it can't finish
the job. This option inhibits tidying-up and is thus useful for debugging.

75



initdb
Environment

PGDATA

Specifies the directory where the database system is to be stored; may be overridden using the
-D option.

See Also
postgrespostmasterPostgreSQL Administrator’s Guide

76



initlocation

Name

initlocation — create a secondary PostgreSQL database storage area
Synopsis

initlocation directory

Description

initlocation creates a new PostgreSQL secondary database storage area. See the discussion under
CREATE DATABASEbout how to manage and use secondary storage areas. If the argument does
not contain a slash and is not valid as a path, it is assumed to be an environment variable, which is
referenced. See the examples at the end.

In order to use this command you must be logged in (usindor example) as the database superuser.

Examples

To create a database in an alternate location, using an environment variable:
$ export PGDATA2=/opt/postgres/data

Stop and start postmaster so it seeRB®ATAZNvironment variable. The system must be configured
so the postmaster seB&DATAZvery time it starts. Finally:

$ initlocation PGDATA2
$ createdb -D PGDATA2 testdb

Alternatively, if you allow absolute paths you could write:

$ initlocation /opt/postgres/data
$ createdb -D /opt/postgres/data/testdb testdb

See Also
PostgreSQL Administrator's Guide

77



ipcclean

Name

ipcclean — remove shared memory and semaphores from an aborted PostgreSQL server

Synopsis

ipcclean

Description

ipcclean  removes all shared memory segments and semaphore sets owned by the current user.
It is intended to be used for cleaning up after a crashed PostgreSQL seogéméster Note that
immediately restarting the server will also clean up shared memory and semaphores, so this command
is of little real utility.

Only the database administrator should execute this program as it can cause bizarre behavior (i.e.,
crashes) if run during multiuser execution. If this command is executed while a postmaster is running,
the shared memory and semaphores allocated by the postmaster will be deleted. This will result in a
general failure of the backend servers started by that postmaster.

Notes

This script is a hack, but in the many years since it was written, no one has come up with an equally
effective and portable solution. Since the postmaster can now clean up by itself, it is unlikely that
ipcclean  will be improved upon in the future.

The script makes assumption about the format of output of the ipcs utility which may not be true
across different operating systems. Therefore, it may not work on your particular OS.

78



pg_ctl

Name

pg_ctl — start, stop, or restart a PostgreSQL server

Synopsis

pg_ctl start [-w] [-s] [-D datadir ] [-I flename ][-0 options ][-p path ]

pg_ctl stop [-W][-s] [-D datadir ][-m s[mart] | flast] | immediate] ]

pg_ctl restart [-w] [-s] [-Ddatadir ][-m s[mart] | flast] | immediate] ] [-@ptions ]
pg_ctl reload [-s] [-Ddatadir ]

pg_ctl status [-Ddatadir ]

Description

pg_ctl is a utility for starting, stopping, or restartipgstmasterthe PostgreSQL backend server, or
displaying the status of a running postmaster. Although the postmaster can be started manually, pg_ctl
encapsulates tasks such as redirecting log output, properly detaching from the terminal and process
group, and it provides convenient options for controlled shutdown.

In start mode, a new postmaster is launched. The server is started in the background, the standard
input attached tédev/null . The standard output and standard error are either appended to a log file,

if the -1 option is used, or are redirected to pg_ctl's standard output (not standard error). If no log
file is chosen, the standard output of pg_ctl should be redirected to a file or piped to another process,
for example a log rotating program, otherwise the postmaster will write its output the the controlling
terminal (from the background) and will not leave the shell’'s process group.

In stop mode, the postmaster that is running in the specified data directory is shut down. Three
different shutdown methods can be selected withitheption: “Smart” mode waits for all the clients

to disconnect. This is the default. “Fast” mode does not wait for clients to disconnect. All active
transactions are rolled back and clients are forcibly disconnected, then the database is shut down.
“Immediate” mode will abort all server processes without clean shutdown. This will lead to a recovery
run on restart.

restart mode effectively executes a stop followed by a start. This allows the changing of postmaster
command line options.

reload mode simply sends the postmaster a SIGHUP signal, causing it to reread its configuration
files (postgresgl.conf , pg_hba.conf , etc.). This allows changing of configuration-file options
that do not require a complete restart to take effect.

status mode checks whether a postmaster is running and if so displays the PID and the command
line options that were used to invoke it.

Options
-D datadir

Specifies the file system location of the database files. If this is omitted, the environment variable
PGDATAS used.

79



pg_ctl

-| filename

Append the server log output filename . If the file does not exist, it is created. The umask is
setto 077, so access to the log file from other users is disallowed by default.

-m mode

Specifies the shutdown mod®ode may besmart , fast , orimmediate , or the first letter of
one of these three.

-0 options
Specifies options to be passed directly to postmaster.

The parameters are usually surrounded by single or double quotes to ensure that they are passed
through as a group.

-p path

Specifies the location of thestmaster  executable. By default the postmaster is taken from the
same directory asg_ctl , or failing that, the hard-wired installation directory. Itis not necessary

to use this option unless you are doing something unusual and get errors that the postmaster was
not found.

Only print errors, no informational messages.

Wait for the start or shutdown to complete. Times out after 60 seconds. This is the default for
shutdowns.

Do not wait for start or shutdown to complete. This is the default for starts and restarts.

Environment

PGDATA

Default data direction location

For others, sepostmaster

Files

If the file postmaster.opts.default exists in the data directory, the contents of the file will be
passed as options to the postmaster, unless overridden hy thyion.

Notes

Waiting for complete start is not a well-defined operation and may fail if access control is set up so
that a local client cannot connect without manual interaction. It should be avoided.

80



pg_ctl

Examples

Starting the postmaster

To start up a postmaster:

$ pg_ctl start

An example of starting the postmaster, blocking until the postmaster comes up is:

$ pg_ctl -w start

For a postmaster using port 5433, and running withigutc , use:

$ pg_ctl -0 "-F -p 5433" start

Stopping the postmaster

$ pg_ctl stop

stops the postmaster. Using the switch allows one to contrdglowthe backend shuts down.

Restarting the postmaster

This is almost equivalent to stopping the postmaster and starting it again excepd_thht saves
and reuses the command line options that were passed to the previously running instance. To restart
the postmaster in the simplest form:

$ pg_ctl restart

To restart postmaster, waiting for it to shut down and to come up:

$ pg_ctl -w restart

To restart using port 5433 and disabliisgnc after restarting:

$ pg_ctl -0 "-F -p 5433" restart

Showing postmaster status

Here is a sample status output from pg_ctl:
$ pg_ctl status

pg_ctl: postmaster is running (pid: 13718)
Command line was:

81



pg_ctl

lusr/local/pgsql/bin/postmaster '-D’ ’/usr/local/pgsql/data’ '-p’ '5433" '-B’ '128’

This is the command line that would be invoked in restart mode.

See Also

postmasterPostgreSQL Administrator’'s Guide

82



pg_controldata

Name

pg_controldata — display server-wide control information

Synopsis

pg_controldata [datadir ]

Description

pg_controldata  returns information initialized during initdb, such as the catalog version and server
locale. It also shows information about write-ahead logging and checkpoint processing. This infor-
mation is server-wide, and not specific to any one database.

This utility may only be run by the user who installed the server because it requires read access to the
datadir . You can specify the data directory on the command line, or use the environment variable
PGDATA

Environment

PGDATA

Default data directory location

83



pg_resetxlog

Name

pg_resetxlog  — reset write-ahead log and pg_control contents

Synopsis

pg_resetxlog [-f][-n][-0 oid ][-x xid ][-I fileid ,seg ] datadir

Description

pg_resetxlog  clears the write-ahead log and optionally resets some fields ipgttentrol ~ file.
This function is sometimes needed if these files have become corrupted. It should be used only as a
last resort, when the server will not start due to such corruption.

After running this command, it should be possible to start the server, but bear in mind that the database
may contain inconsistent data due to partially-committed transactions. You should immediately dump
your data, run initdb, and reload. After reload, check for inconsistencies and repair as needed.

This utility can only be run by the user who installed the server, because it requires read/write ac-
cess to thelatadir . For safety reasons, you must specify the data directory on the command line.
pg_resetxlog  does not use the environment variabl@DATA

If pg_resetxlog ~ complains that it cannot determine valid dataggrcontrol , you can force it to

proceed anyway by specifying thie (force) switch. In this case plausible values will be substituted

for the missing data. Most of the fields can be expected to match, but manual assistance may be
needed for the next OID, next transaction ID, WAL starting address, and database locale fields. The
first three of these can be set using the switches discussed bgloesetxlog ’s own environment

is the source for its guess at the locale fields; take caregnGand so forth match the environment

that initdb was run in. If you are not able to determine correct values for all these fteldan still be

used, but the recovered database must be treated with even more suspicion than usual --- an immediate
dump and reload is imperativBo notexecute any data-modifying operations in the database before

you dump, as any such action is likely to make the corruption worse.

The-o,-x ,and-I switches allow the next OID, next transaction ID, and WAL starting address values
to be set manually. These are only needed whemesetxlog  is unable to determine appropriate
values by readingg_control . A safe value for the next transaction ID may be determined by look-
ing for the largest file name i9PGDATA/pg_clog , adding one, and then multiplying by 1048576.
Note that the file names are in hexadecimal. It is usually easiest to specify the switch value in hex-
adecimal too. For example, 0011 is the largest entry ipg_clog , -x 0x1200000 will work (five

trailing zeroes provide the proper multiplier). The WAL starting address should be larger than any
file number currently existing iBPGDATA/pg_xlog . These also are in hex, and have two parts. For
example, if000000FFO000003A is the largest entry ipg_xlog , -1 0xFF,0x3B  will work. There

is no comparably easy way to determine a next OID that's beyond the largest one in the database, but
fortunately it is not critical to get the next-OID setting right.

The -n (no operation) switch instructpg_resetxlog to print the values reconstructed from
pg_control  and then exit without modifying anything. This is mainly a debugging tool, but may be
useful as a sanity check before allowipg) resetxlog  to proceed for real.

84



pg_resetxlog

Notes

This command must not be used when the postmaster is rummingsetxlog  will refuse to start
up if it finds a postmaster lock file in thiatadir . If the postmaster crashed then a lock file may have

been left behind; in that case you can remove the lock file to gipwesetxlog  to run. But before
you do so, make doubly certain that there is no postmaster nor any backend server process still alive.

85



postgres

Name

postgres — run a PostgreSQL server in single-user mode

Synopsis

postgres [-A 0| 1][-B nbuffers ][-c name=value ][-d debug-level ][-D datadir ][-
el [-El[-fs|ilt]n]|m]|h][F][i][N][ofilename ][-O] [-P][-s|-tpa]pl]|ex][-S
sort-mem ] [-W seconds ] [--name=value ] database

postgres [-A 0| 1][-B nbuffers ][-c name=value ][-d debug-level ][-D datadir ][-
e][-fs|i|t|n]|m]|h][-F][-][-ofilename ][-O][-p database ][-P][-s|-tpa|pl|ex][-S
sort-mem ] [-v protocol-version ] [-W seconds ] [--name=value ]

Description

Thepostgres executable is the actual PostgreSQL server process that processes queries. It is nor-
mally not called directly; instead@ostmastemultiuser server is started.

The second form above is how postgres is invoked bypthemastefonly conceptually, since both
postmaster andpostgres are in fact the same program); it should not be invoked directly this
way. The first form invokes the server directly in interactive single-user mode. The primary use for
this mode is during bootstrapping byitdb. Sometimes it is used for debugging or disaster recovery.

When invoked in interactive mode from the shell, the user can enter queries and the results will
be printed to the screen, but in a form that is more useful for developers than end users. But note
that running a single-user backend is not truly suitable for debugging the server since no realistic
interprocess communication and locking will happen.

When running a stand-alone backend, the session user will be set to the user with ID 1. This user does
not actually have to exist, so a stand-alone backend can be used to manually recover from certain
kinds of accidental damage to the system catalogs. Implicit superuser powers are granted to the user
with ID 1 in stand-alone mode.

Options
When postgres is started bypastmastethen it inherits all options set by the latter. Additionally,
postgres-specific options can be passed from the postmaster with svatch.

You can avoid having to type these options by setting up a configuration file. SAdhaistrator’s
Guidefor details. Some (safe) options can also be set from the connecting client in an application-
dependent way. For example, if the environment vari@@©PTIONSs set, then libpg-based clients

will pass that string to the server, which will interpret it as postgres command-line options.

General Purpose

The optionsA, -B, -c, -d, -D, -F, and--name have the same meanings as gustmasteexcept
that-d 0 prevents the debugging level of the postmaster from being propagated to the backend.

86



postgres

-e
Sets the default date style to “European”, which means that the “day before month” (rather than
month before day) rule is used to interpret ambiguous date input, and that the day is printed
before the month in certain date output formats. SeePiwigreSQL User's Guidér more
information.

-0 filename
Sends all debugging and error outpufitename . If the backend is running under the post-
master, this option is ignored, and the stderr inherited from the postmaster is used.

-P
Ignore system indexes while scanning/updating system tuplesREINDEXcommand for sys-
tem tables/indexes requires this option to be used.

-s
Print time information and other statistics at the end of each query. This is useful for benchmark-
ing or for use in tuning the number of buffers.

-S sort-mem

Specifies the amount of memory to be used by internal sorts and hashes before resorting to
temporary disk files. The value is specified in kilobytes, and defaults to 512 kilobytes. Note that
for a complex query, several sorts and/or hashes might be running in parallel, and each one will
be allowed to use as much asrt-mem kilobytes before it starts to put data into temporary
files.

Options for stand-alone mode

database

Specifies the name of the database to be accessed. If it is omitted it defaults to the user name.

Echo all queries.

Disables use of newline as a query delimiter.

Semi-internal Options

There are several other options that may be specified, used mainly for debugging purposes. These are
listed here only for the use by PostgreSQL system developkses of any of these options is highly
discouragedFurthermore, any of these options may disappear or change in a future release without
notice.

f{s|i|m|n|h}

Forbids the use of particular scan and join methadsndi disable sequential and index scans
respectively, whilen, m andh disable nested-loop, merge and hash joins respectively.

Note: Neither sequential scans nor nested-loop joins can be disabled completely; the -fs
and -fn  options simply discourage the optimizer from using those plan types if it has any

87



postgres

other alternative.

Prevents query execution, but shows the plan tree.

Allows the structure of system tables to be modified. This is used by initdb.
-p database

Indicates that this server has been started by a postmaster and makes different assumptions about
buffer pool management, file descriptors, etc.

-t pa[rser] | pl[anner] | e[xecutor]

Print timing statistics for each query relating to each of the major system modules. This option
cannot be used together with the option.

-v protocol

Specifies the version number of the frontend/backend protocol to be used for this particular
session.

-W seconds

As soon as this option is encountered, the process sleeps for the specified amount of seconds.
This gives developers time to attach a debugger to the backend process.

Environment

PGDATA

Default data direction location

For others, which have little influence during single-user modepsstmaster

Notes

To stop a running query use tB&INT signal. To tell postgres to reread the config file, uséGHUP
signal. The postmaster us8s§GTERMto tell a postgres process to quit normally a®iGQUIT to
terminate without the normal cleanup. Thes®uld notbe used by users.

Usage

Start a stand-alone backend with a command like
postgres -D $PGDATA other-options my_database

Provide the correct path to the database area wiiithor make sure that the environment variable
PGDATA: set. Also specify the name of the particular database you want to work in.

88



postgres

Normally, the stand-alone backend treats newline as the command entry terminator; there is no intel-
ligence about semicolons, as there is in psql. To continue a command across multiple lines, you must
type backslash just before each newline except the last one.

But if you use theN command line switch, then newline does not terminate command entry. The
backend will read the standard input until the end-of-file (EOF) marker, then process the input as a
single query string. Backslash-newline is not treated specially in this case.

To quit the session, type EOE¢ntrol+D, usually). If you've usedN, two consecutive EOFs are
needed to exit.

Note that the stand-alone backend does not provide sophisticated line-editing features (no command
history, for example).

See Also

initdb, ipcclean postmaster

89



postmaster

Name

postmaster — PostgreSQL multiuser database server

Synopsis

postmaster [-A 0|1][-B nbuffers ][-c name=value ][-d debug-level ][-D datadir ][-
F] [-h hostname ][-i] [-k directory  ][-]][-N max-connections ][-0 extra-options 1[-p
port ][-S][--name=value ][-n|-s]

Description

postmaster is the PostgreSQL multiuser database server. In order for a client application to access a
database it connects (over a network or locally) to a running postmaster. The postmaster then starts
a separate server procespdstgre®) to handle the connection. The postmaster also manages the
communication among server processes.

By default the postmaster starts in the foreground and prints log messages to the standard output. In
practical applications the postmaster should be started as a background process, perhaps at boot time.

One postmaster always manages the data from exactly one database cluster. A database cluster is a
collection of databases that is stored at a common file system location. When the postmaster starts it
needs to know the location of the database cluster files (“data area”). This is done withitiveca-

tion option or thePGDATAenvironment variable; there is no default. More than one postmaster process
can run on a system at one time, as long as they use different data areas and different communication
ports (see below). A data area is created wittdb.

Options

postmaster accepts the following command line arguments. For a detailed discussion of the options
consult theAdministrator’s Guide You can also save typing most of these options by setting up a
configuration file.

-A 0|1

Enables run-time assert checks, which is a debugging aid to detect programming mistakes. This
is only available if it was enabled during compilation. If so, the default is on.

-B nbuffers

Sets the number of shared buffers for use by the server processes. This value defaults to 64
buffers, where each buffer is 8 kB.

-c name=value

Sets a named run-time parameter. Consult&tiministrator’'s Guidédor a list and descriptions.
Most of the other command line options are in fact short forms of such a parameter assignment.
-c can appear multiple times to set multiple parameters.

90



postmaster

-d debug-level

Sets the debug level. The higher this value is set, the more debugging output is written to the
server log. Values are from 1 to 5.

-D datadir

Specifies the file system location of the data directory. See discussion above.

-F
Disablesfsync calls for performance improvement, at the risk of data corruption in event of
a system crash. This parameter corresponds to sd#yjng=false in postgresgl.conf
Read the detailed documentation before using this!
--fsync=true has the opposite effect of this option.
-h hostname
Specifies the TCP/IP host name or address on which the postmaster is to listen for connections
from client applications. Defaults to listening on all configured addresses (including localhost).
-i
Allows clients to connect via TCP/IP (Internet domain) connections. Without this option,
only local Unix domain socket connections are accepted. This option corresponds to setting
tcpip_socket=true in postgresgl.conf
--tcpip_socket=false has the opposite effect of this option.
-k directory

Specifies the directory of the Unix-domain socket on which the postmaster is to listen for con-
nections from client applications. The default is normaityp , but can be changed at build
time.

Enables secure connections using SSL. Theption is also required. You must have compiled
with SSL enabled to use this option.

-N max-connections

Sets the maximum number of client connections that this postmaster will accept. By default, this
value is 32, but it can be set as high as your system will support. (NoteBthetequired to be at

least twice-N. See theAdministrator's Guiddor a discussion of system resource requirements
for large numbers of client connections.)

-0 extra-options

The command line-style options specifieditra-options are passed to all backend server
processes started by this postmaster. @estgredor possibilities. If the option string contains
any spaces, the entire string must be quoted.

-p port

Specifies the TCP/IP port or local Unix domain socket file extension on which the postmaster is
to listen for connections from client applications. Defaults to the value oP@GfORTenviron-

ment variable, or iPGPORTSs not set, then defaults to the value established during compilation
(normally 5432). If you specify a port other than the default port, then all client applications must
specify the same port using either command-line optiorsGHORT

91



postmaster

-S
Specifies that the postmaster process should start up in silent mode. That is, it will disassociate
from the user’s (controlling) terminal, start its own process group, and redirect its standard output
and standard error tdev/null
Using this switch discards all logging output, which is probably not what you want, since it
makes it very difficult to troubleshoot problems. See below for a better way to start the postmaster
in the background.
--silent_mode=false has the opposite effect of this option.

--name=value

Sets a named run-time parameter; a shorter form of

Two additional command line options are available for debugging problems that cause a backend to
die abnormally. These options control the behavior of the postmaster in this situationeitimet
option is intended for use in ordinary operation

The ordinary strategy for this situation is to notify all other backends that they must terminate and
then reinitialize the shared memory and semaphores. This is because an errant backend could have
corrupted some shared state before terminating.

These special-case options are:

-n

postmaster will not reinitialize shared data structures. A knowledgeable system programmer can
then use a debugger to examine shared memory and semaphore state.

postmaster will stop all other backend processes by sending the Sig&irOP, but will not
cause them to terminate. This permits system programmers to collect core dumps from all back-
end processes by hand.

Environment

PGCLIENTENCODING

Default character encoding used by clients. (The clients may override this individually.) This
value can also be set in the configuration file.

PGDATA
Default data direction location
PGDATASTYLE

Default value of thedatestyle  run-time parameter. (The use of this environment variable is
deprecated.)

PGPORT

Default port (preferably set in the configuration file)

92



postmaster

TZ
Server time zone
others

Other environment variables may be used to designate alternative data storage locations. See the
Administrator's Guideior more information.

Diagnostics

semget: No space left on device

If you see this message, you should run the ipcclean command. After doing so, try starting

postmaster again. If this still doesn’t work, you probably need to configure your kernel for shared

memory and semaphores as described in the installation notes. If you run multiple instances of
postmaster on a single host, or have a kernel with particularly small shared memory and/or
semaphore limits, you may have to reconfigure your kernel to increase its shared memory or
semaphore parameters.

Tip: You may be able to postpone reconfiguring your kernel by decreasing -B to reduce
the shared memory consumption of PostgreSQL, and/or by reducing -N to reduce the
semaphore consumption.

StreamServerPort: cannot bind to port

If you see this message, you should make certain that there is no other postmaster process already
running on the same port number. The easiest way to determine this is by using the command

$ ps ax | grep postmaster
or

$ ps -e | grep postmaster
depending on your system.

If you are sure that no other postmaster processes are running and you still get this error, try
specifying a different port using the option. You may also get this error if you terminate the
postmaster and immediately restart it using the same port; in this case, you must simply wait a
few seconds until the operating system closes the port before trying again. Finally, you may get
this error if you specify a port number that your operating system considers to be reserved. For
example, many versions of Unix consider port numbers under 1024ttasiedand only permit

the Unix superuser to access them.

Notes

If at all possibledo notuseSIGKILL to kill the postmaster. This will prevent postmaster from freeing
the system resources (e.g., shared memory and semaphores) that it holds before terminating.

93



postmaster

To terminate the postmaster normally, the sigr®GTERM SIGINT , or SIGQUIT can be used. The
first will wait for all clients to terminate before quitting, the second will forcefully disconnect all
clients, and the third will quit immediately without proper shutdown, resulting in a recovery run
during restart.

The utility commangg_ctlcan be used to start and shut down the postmaster safely and comfortably.

The-- options will not work on FreeBSD or OpenBSD. Useinstead. This is a bug in the affected
operating systems; a future release of PostgreSQL will provide a workaround if this is not fixed.

Examples

To start postmaster in the background using default values, type:

$ nohup postmaster >lodfile 2 >&1 </dev/null &

To start postmaster with a specific port:
$ postmaster -p 1234

This command will start up postmaster communicating through the port 1234. In order to connect to
this postmaster using psql, you would need to run it as

$ psqgl -p 1234
or set the environment variabf&GPORT

$ export PGPORT=1234
$ psql

Named run-time parameters can be set in either of these styles:

$ postmaster -c sort_mem=1234
$ postmaster --sort-mem=1234

Either form overrides whatever setting might exist§ort_mem in postgresgl.conf . Notice that
underscores in parameter names can be written as either underscore or dash on the command line.

Tip: Except for short-term experiments, it's probably better practice to edit the setting in post-
gresgl.conf  than to rely on a command-line switch to set a parameter.

See Also
initdb, pg_ctl

94



	PostgreSQL 7.3.2 Reference Manual
	Table of Contents
	Preface
	I. SQL Commands
	ABORT
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92


	ALTER DATABASE
	Name
	Synopsis
	Description
	Parameters

	Diagnostics
	Notes
	Examples
	Compatibility
	See Also

	ALTER GROUP
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage
	Compatibility
	SQL92


	ALTER TABLE
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92


	ALTER TRIGGER 
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92


	ALTER USER
	Name
	Synopsis
	Description
	Parameters

	Diagnostics
	Notes
	Examples
	Compatibility
	See Also

	ANALYZE
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Compatibility
	SQL92


	BEGIN
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92


	CHECKPOINT
	Name
	Synopsis
	Description
	See Also
	Compatibility

	CLOSE
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92


	CLUSTER
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92


	COMMENT
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage
	Compatibility
	SQL92


	COMMIT
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92


	COPY
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	File Formats
	Text Format
	Binary Format
	File Header
	Tuples
	File Trailer


	Usage
	Compatibility
	SQL92


	CREATE AGGREGATE
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92


	CREATE CAST
	Name
	Synopsis
	Description
	Parameters

	Notes
	Examples
	Compatibility
	See Also

	CREATE CONSTRAINT TRIGGER
	Name
	Synopsis
	Inputs
	Outputs

	Description

	CREATE CONVERSION
	Name
	Synopsis
	Description
	Parameters

	Notes
	Examples
	Compatibility
	See Also

	CREATE DATABASE
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92


	CREATE DOMAIN 
	Name
	Synopsis
	Parameters
	Outputs

	Description
	Examples
	Compatibility
	See Also

	CREATE FUNCTION
	Name
	Synopsis
	Description
	Parameters

	Notes
	Examples
	Compatibility
	See Also

	CREATE GROUP
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage
	Compatibility
	SQL92


	CREATE INDEX
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92


	CREATE LANGUAGE
	Name
	Synopsis
	Description
	Parameters
	Diagnostics
	Notes
	Examples
	Compatibility
	History
	See Also

	CREATE OPERATOR
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92


	CREATE OPERATOR CLASS
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92


	CREATE RULE
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Rules and Views
	Notes

	Compatibility
	SQL92


	CREATE SCHEMA
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Examples
	Compatibility
	SQL92


	CREATE SEQUENCE
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92


	CREATE TABLE
	Name
	Synopsis
	Description
	Parameters
	Diagnostics
	Notes
	Examples
	Compatibility
	Temporary Tables
	NULL Constraint
	Assertions
	Inheritance
	Object IDs

	See Also

	CREATE TABLE AS
	Name
	Synopsis
	Description
	Parameters
	Diagnostics
	Notes
	Compatibility
	History
	See Also

	CREATE TRIGGER
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes
	Examples
	Compatibility
	See Also

	CREATE TYPE
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Base Types
	Composite Types
	Array Types

	Notes
	Examples
	Compatibility
	See Also

	CREATE USER
	Name
	Synopsis
	Description
	Parameters

	Diagnostics
	Notes
	Examples
	Compatibility
	See Also

	CREATE VIEW
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92


	DEALLOCATE
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Compatibility
	SQL92


	DECLARE
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92


	DELETE
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage
	Compatibility
	SQL92


	DROP AGGREGATE
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92


	DROP CAST
	Name
	Synopsis
	Description
	Parameters

	Notes
	Examples
	Compatibility
	See Also

	DROP CONVERSION
	Name
	Synopsis
	Description
	Parameters

	Notes
	Examples
	Compatibility
	See Also

	DROP DATABASE
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Compatibility
	SQL92


	DROP DOMAIN 
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Examples
	Compatibility
	SQL92

	See Also

	DROP FUNCTION
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes
	Examples
	Compatibility
	See Also

	DROP GROUP
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage
	Compatibility
	SQL92


	DROP INDEX
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92


	DROP LANGUAGE
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92


	DROP OPERATOR
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92


	DROP OPERATOR CLASS
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92


	DROP RULE
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92


	DROP SCHEMA
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92


	DROP SEQUENCE
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92


	DROP TABLE
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92


	DROP TRIGGER
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Examples
	Compatibility
	See Also

	DROP TYPE
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Examples
	Compatibility
	See Also

	DROP USER
	Name
	Synopsis
	Description
	Parameters

	Diagnostics
	Notes
	Examples
	Compatibility
	See Also

	DROP VIEW
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92


	END
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92


	EXECUTE
	Name
	Synopsis
	Inputs

	Description
	Compatibility
	SQL92


	EXPLAIN
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92


	FETCH
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92


	GRANT
	Name
	Synopsis
	Description
	Notes
	Examples
	Compatibility
	SQL92

	See Also

	INSERT
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage
	Compatibility
	SQL92


	LISTEN
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92


	LOAD
	Name
	Synopsis
	Description
	Compatibility
	See Also

	LOCK
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92


	MOVE
	Name
	Synopsis
	Description
	Notes

	Usage
	Compatibility
	SQL92


	NOTIFY
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92


	PREPARE
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Compatibility
	SQL92


	REINDEX
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage
	Compatibility
	SQL92


	RESET
	Name
	Synopsis
	Inputs

	Description
	Diagnostics
	Examples
	Compatibility

	REVOKE
	Name
	Synopsis
	Description
	Notes
	Examples
	Compatibility
	SQL92

	See Also

	ROLLBACK
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92


	SELECT
	Name
	Synopsis
	Inputs
	Outputs

	Description
	FROM Clause
	WHERE Clause
	GROUP BY Clause
	HAVING Clause
	ORDER BY Clause
	UNION Clause
	INTERSECT Clause
	EXCEPT Clause
	LIMIT Clause
	FOR UPDATE Clause

	Usage
	Compatibility
	Extensions
	SQL92
	SELECT Clause
	UNION/INTERSECT/EXCEPT Clause



	SELECT INTO
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Compatibility

	SET
	Name
	Synopsis
	Inputs

	Description
	Diagnostics
	Examples
	Compatibility
	SQL92

	See Also

	SET CONSTRAINTS
	Name
	Synopsis
	Description
	Compatibility
	SQL92, SQL99


	SET SESSION AUTHORIZATION
	Name
	Synopsis
	Description
	Examples
	Compatibility

	SET TRANSACTION
	Name
	Synopsis
	Description
	Notes
	Compatibility
	SQL92, SQL99


	SHOW
	Name
	Synopsis
	Inputs

	Description
	Diagnostics
	Examples
	Compatibility
	See Also

	START TRANSACTION
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes
	Compatibility
	SQL99


	TRUNCATE
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage
	Compatibility
	SQL92


	UNLISTEN
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92


	UPDATE
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Usage
	Compatibility
	SQL92


	VACUUM
	Name
	Synopsis
	Inputs
	Outputs

	Description
	Notes

	Usage
	Compatibility
	SQL92



	II. PostgreSQL Client Applications
	clusterdb
	Name
	Synopsis
	Description
	Options
	Diagnostics
	Environment
	Examples
	See Also

	createdb
	Name
	Synopsis
	Description
	Options
	Diagnostics
	Environment
	Examples
	See Also

	createlang
	Name
	Synopsis
	Description
	Options
	Environment
	Diagnostics
	Notes
	Examples
	See Also

	createuser
	Name
	Synopsis
	Description
	Options
	Environment
	Diagnostics
	Examples
	See Also

	dropdb
	Name
	Synopsis
	Description
	Options
	Diagnostics
	Environment
	Examples
	See Also

	droplang
	Name
	Synopsis
	Description
	Options
	Environment
	Diagnostics
	Notes
	Examples
	See Also

	dropuser
	Name
	Synopsis
	Description
	Options
	Environment
	Diagnostics
	Examples
	See Also

	ecpg
	Name
	Synopsis
	Description
	Options
	Notes
	Examples
	See Also

	pgconfig
	Name
	Synopsis
	Description
	Options
	Notes
	History
	See Also

	pgdump
	Name
	Synopsis
	Description
	Options
	Environment
	Diagnostics
	Notes
	Examples
	History
	See Also

	pgdumpall
	Name
	Synopsis
	Description
	Options
	Environment
	Notes
	Examples
	See Also

	pgrestore
	Name
	Synopsis
	Description
	Options
	Environment
	Diagnostics
	Notes
	Examples
	History
	See Also

	psql
	Name
	Synopsis
	Description
	Options
	Exit Status
	Usage
	Connecting To A Database
	Entering Queries
	MetaCommands
	Advanced features
	Variables
	SQL Interpolation
	Prompting
	CommandLine Editing


	Environment
	Files
	Notes
	Examples

	pgtclsh
	Name
	Synopsis
	Description
	See Also

	pgtksh
	Name
	Synopsis
	Description
	See Also

	vacuumdb
	Name
	Synopsis
	Description
	Options
	Diagnostics
	Environment
	Examples
	See Also


	III. PostgreSQL Server Applications
	initdb
	Name
	Synopsis
	Description
	Options
	Environment
	See Also

	initlocation
	Name
	Synopsis
	Description
	Examples
	See Also

	ipcclean
	Name
	Synopsis
	Description
	Notes

	pgctl
	Name
	Synopsis
	Description
	Options
	Environment
	Files
	Notes
	Examples
	Starting the postmaster
	Stopping the postmaster
	Restarting the postmaster
	Showing postmaster status

	See Also

	pgcontroldata
	Name
	Synopsis
	Description
	Environment

	pgresetxlog
	Name
	Synopsis
	Description
	Notes

	postgres
	Name
	Synopsis
	Description
	Options
	General Purpose
	Options for standalone mode
	Semiinternal Options

	Environment
	Notes
	Usage
	See Also

	postmaster
	Name
	Synopsis
	Description
	Options
	Environment
	Diagnostics
	Notes
	Examples
	See Also



