
PostgreSQL 7.2 Tutorial

The PostgreSQL Global Development Group

PostgreSQL 7.2 Tutorial
by The PostgreSQL Global Development Group
Copyright © 1996-2001 by The PostgreSQL Global Development Group

Legal Notice

PostgreSQL is Copyright © 1996-2001 by the PostgreSQL Global Development Group and is distributed under the terms of the license of the
University of California below.

Postgres95 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written
agreement is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in all
copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE
AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PRO-
VIDED HEREUNDER IS ON AN “AS-IS” BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents
Welcome.. iv

Preface...v

1. What is PostgreSQL?..v
2. A Short History of PostgreSQL..v

2.1. The Berkeley POSTGRES Project..vi
2.2. Postgres95..vi
2.3. PostgreSQL...vii

3. Documentation Resources...vii
4. Terminology and Notation...viii
5. Bug Reporting Guidelines..ix

5.1. Identifying Bugs..ix
5.2. What to report...x
5.3. Where to report bugs...xi

6. Y2K Statement..xii

1. Getting Started..1

1.1. Installation..1
1.2. Architectural Fundamentals...1
1.3. Creating a Database...2
1.4. Accessing a Database...3

2. The SQL Language...5

2.1. Introduction..5
2.2. Concepts...5
2.3. Creating a New Table...5
2.4. Populating a Table With Rows...6
2.5. Querying a Table..7
2.6. Joins Between Tables...8
2.7. Aggregate Functions..10
2.8. Updates...12
2.9. Deletions..12

3. Advanced Features..14

3.1. Introduction..14
3.2. Views..14
3.3. Foreign Keys..14
3.4. Transactions...15
3.5. Inheritance..16
3.6. Conclusion...18

Bibliography ..19

Index...21

iii

Welcome
Welcome to PostgreSQL and thePostgreSQL Tutorial. The following few chapters are intended to
give a simple introduction to PostgreSQL, relational database concepts, and the SQL language to
those who are new to any one of these aspects. We only assume some general knowledge about how
to use computers. No particular Unix or programming experience is required.

After you have worked through this tutorial you might want to move on to reading theUser’s Guide
to gain a more formal knowledge of the SQL language, or theProgrammer’s Guidefor information
about developing applications for PostgreSQL.

We hope you have a pleasant experience with PostgreSQL.

iv

Preface

1. What is PostgreSQL?
PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES,
Version 4.21, developed at the University of California at Berkeley Computer Science Department.
The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Ad-
vanced Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science
Foundation (NSF), and ESL, Inc.

PostgreSQL is an open-source descendant of this original Berkeley code. It provides SQL92/SQL99
language support and other modern features.

POSTGRES pioneered many of the object-relational concepts now becoming available in some com-
mercial databases. Traditional relational database management systems (RDBMS) support a data
model consisting of a collection of named relations, containing attributes of a specific type. In current
commercial systems, possible types include floating point numbers, integers, character strings, money,
and dates. It is commonly recognized that this model is inadequate for future data-processing appli-
cations. The relational model successfully replaced previous models in part because of its “Spartan
simplicity”. However, this simplicity makes the implementation of certain applications very difficult.
PostgreSQL offers substantial additional power by incorporating the following additional concepts in
such a way that users can easily extend the system:

• inheritance
• data types
• functions

Other features provide additional power and flexibility:

• constraints
• triggers
• rules
• transactional integrity

These features put PostgreSQL into the category of databases referred to asobject-relational. Note
that this is distinct from those referred to asobject-oriented, which in general are not as well suited
to supporting traditional relational database languages. So, although PostgreSQL has some object-
oriented features, it is firmly in the relational database world. In fact, some commercial databases
have recently incorporated features pioneered by PostgreSQL.

2. A Short History of PostgreSQL
The object-relational database management system now known as PostgreSQL (and briefly called
Postgres95) is derived from the POSTGRES package written at the University of California at Berke-
ley. With over a decade of development behind it, PostgreSQL is the most advanced open-source
database available anywhere, offering multiversion concurrency control, supporting almost all SQL

1. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/postgres.html

v

Preface

constructs (including subselects, transactions, and user-defined types and functions), and having a
wide range of language bindings available (including C, C++, Java, Perl, Tcl, and Python).

2.1. The Berkeley POSTGRES Project

Implementation of the POSTGRES DBMS began in 1986. The initial concepts for the system were
presented inThe design of POSTGRESand the definition of the initial data model appeared inThe
POSTGRES data model. The design of the rule system at that time was described inThe design of the
POSTGRES rules system. The rationale and architecture of the storage manager were detailed inThe
design of the POSTGRES storage system.

Postgres has undergone several major releases since then. The first “demoware” system became op-
erational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in
The implementation of POSTGRES, was released to a few external users in June 1989. In response
to a critique of the first rule system (A commentary on the POSTGRES rules system), the rule system
was redesigned (On Rules, Procedures, Caching and Views in Database Systems) and Version 2 was
released in June 1990 with the new rule system. Version 3 appeared in 1991 and added support for
multiple storage managers, an improved query executor, and a rewritten rewrite rule system. For the
most part, subsequent releases until Postgres95 (see below) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These
include: a financial data analysis system, a jet engine performance monitoring package, an aster-
oid tracking database, a medical information database, and several geographic information systems.
POSTGRES has also been used as an educational tool at several universities. Finally, Illustra Infor-
mation Technologies (later merged into Informix2, which is now owned by IBM3.) picked up the code
and commercialized it. POSTGRES became the primary data manager for the Sequoia 20004 scientific
computing project in late 1992.

The size of the external user community nearly doubled during 1993. It became increasingly obvious
that maintenance of the prototype code and support was taking up large amounts of time that should
have been devoted to database research. In an effort to reduce this support burden, the Berkeley
POSTGRES project officially ended with Version 4.2.

2.2. Postgres95

In 1994, Andrew Yu and Jolly Chen added a SQL language interpreter to POSTGRES. Postgres95
was subsequently released to the Web to find its own way in the world as an open-source descendant
of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes im-
proved performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the
Wisconsin Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following
were the major enhancements:

• The query language PostQUEL was replaced with SQL (implemented in the server). Subqueries
were not supported until PostgreSQL (see below), but they could be imitated in Postgres95 with
user-defined SQL functions. Aggregates were re-implemented. Support for the GROUP BY query
clause was also added. Thelibpq interface remained available for C programs.

• In addition to the monitor program, a new program (psql) was provided for interactive SQL queries
using GNU Readline.

2. http://www.informix.com/
3. http://www.ibm.com/
4. http://meteora.ucsd.edu/s2k/s2k_home.html

vi

Preface

• A new front-end library,libpgtcl , supported Tcl-based clients. A sample shell,pgtclsh, provided
new Tcl commands to interface Tcl programs with the Postgres95 backend.

• The large-object interface was overhauled. The Inversion large objects were the only mechanism
for storing large objects. (The Inversion file system was removed.)

• The instance-level rule system was removed. Rules were still available as rewrite rules.

• A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed
with the source code

• GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled
with an unpatched GCC (data alignment of doubles was fixed).

2.3. PostgreSQL

By 1996, it became clear that the name “Postgres95” would not stand the test of time. We chose a new
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent
versions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting
the numbers back into the sequence originally begun by the Berkeley POSTGRES project.

The emphasis during development of Postgres95 was on identifying and understanding existing prob-
lems in the backend code. With PostgreSQL, the emphasis has shifted to augmenting features and
capabilities, although work continues in all areas.

Major enhancements in PostgreSQL include:

• Table-level locking has been replaced by multiversion concurrency control, which allows readers
to continue reading consistent data during writer activity and enables hot backups from pg_dump
while the database stays available for queries.

• Important backend features, including subselects, defaults, constraints, and triggers, have been im-
plemented.

• Additional SQL92-compliant language features have been added, including primary keys, quoted
identifiers, literal string type coercion, type casting, and binary and hexadecimal integer input.

• Built-in types have been improved, including new wide-range date/time types and additional geo-
metric type support.

• Overall backend code speed has been increased by approximately 20-40%, and backend start-up
time has decreased by 80% since version 6.0 was released.

3. Documentation Resources
This manual set is organized into several parts:

Tutorial

An informal introduction for new users

User’s Guide

Documents the SQL query language environment, including data types and functions.

vii

Preface

Programmer’s Guide

Advanced information for application programmers. Topics include type and function extensi-
bility, library interfaces, and application design issues.

Administrator’s Guide

Installation and server management information

Reference Manual

Reference pages for SQL command syntax and client and server programs

Developer’s Guide

Information for PostgreSQL developers. This is intended for those who are contributing to the
PostgreSQL project; application development information appears in theProgrammer’s Guide.

In addition to this manual set, there are other resources to help you with PostgreSQL installation and
use:

man pages

TheReference Manual’s pages in the traditional Unix man format.

FAQs

Frequently Asked Questions (FAQ) lists document both general issues and some
platform-specific issues.

READMEs

README files are available for some contributed packages.

Web Site

The PostgreSQL web site5 carries details on the latest release, upcoming features, and other
information to make your work or play with PostgreSQL more productive.

Mailing Lists

The mailing lists are a good place to have your questions answered, to share experiences with
other users, and to contact the developers. Consult the User’s Lounge6 section of the PostgreSQL
web site for details.

Yourself!

PostgreSQL is an open-source effort. As such, it depends on the user community for ongoing
support. As you begin to use PostgreSQL, you will rely on others for help, either through the
documentation or through the mailing lists. Consider contributing your knowledge back. If you
learn something which is not in the documentation, write it up and contribute it. If you add
features to the code, contribute them.

Even those without a lot of experience can provide corrections and minor changes in the docu-
mentation, and that is a good way to start. The <pgsql-docs@postgresql.org > mailing list
is the place to get going.

5. http://www.postgresql.org
6. http://www.postgresql.org/users-lounge/

viii

Preface

4. Terminology and Notation
The terms “PostgreSQL” and “Postgres” will be used interchangeably to refer to the software that
accompanies this documentation.

An administratoris generally a person who is in charge of installing and running the server. Auser
could be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms should
not be interpreted too narrowly; this documentation set does not have fixed presumptions about system
administration procedures.

We use /usr/local/pgsql/ as the root directory of the installation and
/usr/local/pgsql/data as the directory with the database files. These directories may vary on
your site, details can be derived in theAdministrator’s Guide.

In a command synopsis, brackets ([and]) indicate an optional phrase or keyword. Anything in braces
({ and}) and containing vertical bars (|) indicates that you must choose one alternative.

Examples will show commands executed from various accounts and programs. Commands executed
from a Unix shell may be preceded with a dollar sign (“$”). Commands executed from particular
user accounts such as root or postgres are specially flagged and explained. SQL commands may be
preceded with “=>” or will have no leading prompt, depending on the context.

Note: The notation for flagging commands is not universally consistent throughout
the documentation set. Please report problems to the documentation mailing list
<pgsql-docs@postgresql.org >.

5. Bug Reporting Guidelines
When you find a bug in PostgreSQL we want to hear about it. Your bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part
of PostgreSQL will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No one is required to follow them but it tends to be to everyone’s advantage.

We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a lot of users,
chances are good that someone will look into it. It could also happen that we tell you to update to a
newer version to see if the bug happens there. Or we might decide that the bug cannot be fixed before
some major rewrite we might be planning is done. Or perhaps it is simply too hard and there are
more important things on the agenda. If you need help immediately, consider obtaining a commercial
support contract.

5.1. Identifying Bugs

Before you report a bug, please read and re-read the documentation to verify that you can really do
whatever it is you are trying. If it is not clear from the documentation whether you can do something
or not, please report that too; it is a bug in the documentation. If it turns out that the program does
something different from what the documentation says, that is a bug. That might include, but is not
limited to, the following circumstances:

• A program terminates with a fatal signal or an operating system error message that would point to
a problem in the program. (A counterexample might be a “disk full” message, since you have to fix
that yourself.)

ix

Preface

• A program produces the wrong output for any given input.

• A program refuses to accept valid input (as defined in the documentation).

• A program accepts invalid input without a notice or error message. But keep in mind that your idea
of invalid input might be our idea of an extension or compatibility with traditional practice.

• PostgreSQL fails to compile, build, or install according to the instructions on supported platforms.

Here “program” refers to any executable, not only the backend server.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of
the mailing lists for help in tuning your applications. Failing to comply to the SQL standard is not
necessarily a bug either, unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to see if your bug is already known.
If you cannot decode the information on the TODO list, report your problem. The least we can do is
make the TODO list clearer.

5.2. What to report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do
not speculate what you think went wrong, what “it seemed to do”, or which part of the program has a
fault. If you are not familiar with the implementation you would probably guess wrong and not help
us a bit. And even if you are, educated explanations are a great supplement to but no substitute for
facts. If we are going to fix the bug we still have to see it happen for ourselves first. Reporting the bare
facts is relatively straightforward (you can probably copy and paste them from the screen) but all too
often important details are left out because someone thought it does not matter or the report would be
understood anyway.

The following items should be contained in every bug report:

• The exact sequence of stepsfrom program start-upnecessary to reproduce the problem. This should
be self-contained; it is not enough to send in a bare select statement without the preceding create
table and insert statements, if the output should depend on the data in the tables. We do not have the
time to reverse-engineer your database schema, and if we are supposed to make up our own data
we would probably miss the problem. The best format for a test case for query-language related
problems is a file that can be run through the psql frontend that shows the problem. (Be sure to
not have anything in your~/.psqlrc start-up file.) An easy start at this file is to use pg_dump to
dump out the table declarations and data needed to set the scene, then add the problem query. You
are encouraged to minimize the size of your example, but this is not absolutely necessary. If the
bug is reproducible, we will find it either way.

If your application uses some other client interface, such as PHP, then please try to isolate the
offending queries. We will probably not set up a web server to reproduce your problem. In any case
remember to provide the exact input files, do not guess that the problem happens for “large files”
or “mid-size databases”, etc. since this information is too inexact to be of use.

• The output you got. Please do not say that it “didn’t work” or “crashed”. If there is an error message,
show it, even if you do not understand it. If the program terminates with an operating system error,
say which. If nothing at all happens, say so. Even if the result of your test case is a program crash
or otherwise obvious it might not happen on our platform. The easiest thing is to copy the output
from the terminal, if possible.

x

Preface

Note: In case of fatal errors, the error message reported by the client might not contain all the
information available. Please also look at the log output of the database server. If you do not
keep your server’s log output, this would be a good time to start doing so.

• The output you expected is very important to state. If you just write “This command gives me that
output.” or “This is not what I expected.”, we might run it ourselves, scan the output, and think it
looks OK and is exactly what we expected. We should not have to spend the time to decode the
exact semantics behind your commands. Especially refrain from merely saying that “This is not
what SQL says/Oracle does.” Digging out the correct behavior from SQL is not a fun undertaking,
nor do we all know how all the other relational databases out there behave. (If your problem is a
program crash, you can obviously omit this item.)

• Any command line options and other start-up options, including concerned environment variables
or configuration files that you changed from the default. Again, be exact. If you are using a prepack-
aged distribution that starts the database server at boot time, you should try to find out how that is
done.

• Anything you did at all differently from the installation instructions.

• The PostgreSQL version. You can run the commandSELECT version(); to find out the version
of the server you are connected to. Most executable programs also support a--version option; at
leastpostmaster --version andpsql --version should work. If the function or the options
do not exist then your version is more than old enough to warrant an upgrade. You can also look
into theREADMEfile in the source directory or at the name of your distribution file or package name.
If you run a prepackaged version, such as RPMs, say so, including any subversion the package may
have. If you are talking about a CVS snapshot, mention that, including its date and time.

If your version is older than 7.2 we will almost certainly tell you to upgrade. There are tons of bug
fixes in each new release, that is why we make new releases.

• Platform information. This includes the kernel name and version, C library, processor, memory
information. In most cases it is sufficient to report the vendor and version, but do not assume
everyone knows what exactly “Debian” contains or that everyone runs on Pentiums. If you have
installation problems then information about compilers, make, etc. is also necessary.

Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your
input files are huge, it is fair to ask first whether somebody is interested in looking into it.

Do not spend all your time to figure out which changes in the input make the problem go away. This
will probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still
have time to find and share your work-around. Also, once again, do not waste your time guessing why
the bug exists. We will find that out soon enough.

When writing a bug report, please choose non-confusing terminology. The software package in to-
tal is called “PostgreSQL”, sometimes “Postgres” for short. If you are specifically talking about the
backend server, mention that, do not just say “PostgreSQL crashes”. A crash of a single backend
server process is quite different from crash of the parent “postmaster” process; please don’t say “the
postmaster crashed” when you mean a single backend went down, nor vice versa. Also, client pro-
grams such as the interactive frontend “psql” are completely separate from the backend. Please try to
be specific about whether the problem is on the client or server side.

xi

Preface

5.3. Where to report bugs

In general, send bug reports to the bug report mailing list at <pgsql-bugs@postgresql.org >. You
are requested to use a descriptive subject for your email message, perhaps parts of the error message.

Another method is to fill in the bug report web-form available at the project’s web site
http://www.postgresql.org/. Entering a bug report this way causes it to be mailed to the
<pgsql-bugs@postgresql.org > mailing list.

Do not send bug reports to any of the user mailing lists, such as <pgsql-sql@postgresql.org >
or <pgsql-general@postgresql.org >. These mailing lists are for answering user questions and
their subscribers normally do not wish to receive bug reports. More importantly, they are unlikely to
fix them.

Also, please do not send reports to the developers’ mailing list <pgsql-

hackers@postgresql.org >. This list is for discussing the development of PostgreSQL and it
would be nice if we could keep the bug reports separate. We might choose to take up a discussion
about your bug report onpgsql-hackers , if the problem needs more review.

If you have a problem with the documentation, the best place to report it is the documentation mailing
list <pgsql-docs@postgresql.org >. Please be specific about what part of the documentation you
are unhappy with.

If your bug is a portability problem on a non-supported platform, send mail to
<pgsql-ports@postgresql.org >, so we (and you) can work on porting PostgreSQL to your
platform.

Note: Due to the unfortunate amount of spam going around, all of the above email addresses
are closed mailing lists. That is, you need to be subscribed to a list to be allowed to post on it.
(You need not be subscribed to use the bug report web-form, however.) If you would like to send
mail but do not want to receive list traffic, you can subscribe and set your subscription option to
nomail . For more information send mail to <majordomo@postgresql.org > with the single word
help in the body of the message.

6. Y2K Statement

Author: Written by Thomas Lockhart (<lockhart@fourpalms.org >) on 1998-10-22. Updated
2000-03-31.

The PostgreSQL Global Development Group provides the PostgreSQL software code tree as a public
service, without warranty and without liability for its behavior or performance. However, at the time
of writing:

• The author of this statement, a volunteer on the PostgreSQL support team since November, 1996,
is not aware of any problems in the PostgreSQL code base related to time transitions around Jan 1,
2000 (Y2K).

• The author of this statement is not aware of any reports of Y2K problems uncovered in regression
testing or in other field use of recent or current versions of PostgreSQL. We might have expected
to hear about problems if they existed, given the installed base and the active participation of users
on the support mailing lists.

xii

Preface

• To the best of the author’s knowledge, the assumptions PostgreSQL makes about dates specified
with a two-digit year are documented in the currentUser’s Guidein the chapter on data types. For
two-digit years, the significant transition year is 1970, not 2000; e.g.70-01-01 is interpreted as
1970-01-01, whereas69-01-01 is interpreted as 2069-01-01.

• Any Y2K problems in the underlying OS related to obtaining the “current time” may propagate
into apparent Y2K problems in PostgreSQL.

Refer to The GNU Project8 and The Perl Institute9 for further discussion of Y2K issues, particularly
as it relates to open source, no fee software.

8. http://www.gnu.org/software/year2000.html
9. http://language.perl.com/news/y2k.html

xiii

Chapter 1. Getting Started

1.1. Installation
Before you can use PostgreSQL you need to install it, of course. It is possible that PostgreSQL is
already installed at your site, either because it was included in your operating system distribution
or because the system administrator already installed it. If that is the case, you should obtain infor-
mation from the operating system documentation or your system administrator about how to access
PostgreSQL.

If you are not sure whether PostgreSQL is already available or whether you can use it for your ex-
perimentation then you can install it yourself. Doing so is not hard and it can be a good exercise.
PostgreSQL can be installed by any unprivileged user, no superuser (root) access is required.

If you are installing PostgreSQL yourself, then refer to theAdministrator’s Guidefor instructions on
installation, and return to this guide when the installation is complete. Be sure to follow closely the
section about setting up the appropriate environment variables.

If your site administrator has not set things up in the default way, you may have some more work
to do. For example, if the database server machine is a remote machine, you will need to set the
PGHOSTenvironment variable to the name of the database server machine. The environment variable
PGPORTmay also have to be set. The bottom line is this: if you try to start an application program and
it complains that it cannot connect to the database, you should consult your site administrator or, if
that is you, the documentation to make sure that your environment is properly set up. If you did not
understand the preceding paragraph then read the next section.

1.2. Architectural Fundamentals
Before we proceed, you should understand the basic PostgreSQL system architecture. Understanding
how the parts of PostgreSQL interact will make this chapter somewhat clearer.

In database jargon, PostgreSQL uses a client/server model. A PostgreSQL session consists of the
following cooperating processes (programs):

• A server process, which manages the database files, accepts connections to the database from client
applications, and performs actions on the database on behalf of the clients. The database server
program is calledpostmaster .

• The user’s client (frontend) application that wants to perform database operations. Client applica-
tions can be very diverse in nature: They could be a text-oriented tool, a graphical application, a
web server that accesses the database to display web pages, or a specialized database maintenance
tool. Some client applications are supplied with the PostgreSQL distribution, most are developed
by users.

As is typical of client/server applications, the client and the server can be on different hosts. In that
case they communicate over a TCP/IP network connection. You should keep this in mind, because
the files that can be accessed on a client machine might not be accessible (or might only be accessible
using a different file name) on the database server machine.

The PostgreSQL server can handle multiple concurrent connections from clients. For that purpose
it starts (“forks”) a new process for each connection. From that point on, the client and the new
server process communicate without intervention by the originalpostmaster process. Thus, the

1

Chapter 1. Getting Started

postmaster is always running, waiting for client connections, whereas client and associated server
processes come and go. (All of this is of course invisible to the user. We only mention it here for
completeness.)

1.3. Creating a Database
The first test to see whether you can access the database server is to try to create a database. A running
PostgreSQL server can manage many databases. Typically, a separate database is used for each project
or for each user.

Possibly, your site administrator has already created a database for your use. He should have told you
what the name of your database is. In this case you can omit this step and skip ahead to the next
section.

To create a new database, in this example namedmydb, you use the following command:

$ createdb mydb

This should produce as response:

CREATE DATABASE

If so, this step was successful and you can skip over the remainder of this section.

If you see a message similar to

createdb: command not found

then PostgreSQL was not installed properly. Either it was not installed at all or the search path was
not set correctly. Try calling the command with an absolute path instead:

$ /usr/local/pgsql/bin/createdb mydb

The path at your site might be different. Contact your site administrator or check back in the installa-
tion instructions to correct the situation.

Another response could be this:

psql: could not connect to server: Connection refused
Is the server running locally and accepting
connections on Unix domain socket "/tmp/.s.PGSQL.5432"?

createdb: database creation failed

This means that the server was not started, or it was not started wherecreatedbexpected it. Again,
check the installation instructions or consult the administrator.

If you do not have the privileges required to create a database, you will see the following:

ERROR: CREATE DATABASE: permission denied
createdb: database creation failed

Not every user has authorization to create new databases. If PostgreSQL refuses to create databases
for you then the site administrator needs to grant you permission to create databases. Consult your
site administrator if this occurs. If you installed PostgreSQL yourself then you should log in for the
purposes of this tutorial under the user account that you started the server as.1

1. As an explanation for why this works: PostgreSQL user names are separate from operating system user accounts. If you
connect to a database, you can choose what PostgreSQL user name to connect as; if you don’t, it will default to the same name

2

Chapter 1. Getting Started

You can also create databases with other names. PostgreSQL allows you to create any number of
databases at a given site. Database names must have an alphabetic first character and are limited to 31
characters in length. A convenient choice is to create a database with the same name as your current
user name. Many tools assume that database name as the default, so it can save you some typing. To
create that database, simply type

$ createdb

If you don’t want to use your database anymore you can remove it. For example, if you are the owner
(creator) of the databasemydb, you can destroy it using the following command:

$ dropdb mydb

(For this command, the database name does not default to the user account name. You always need to
specify it.) This action physically removes all files associated with the database and cannot be undone,
so this should only be done with a great deal of forethought.

1.4. Accessing a Database
Once you have created a database, you can access it by:

• Running the PostgreSQL interactive terminal program, calledpsql, which allows you to interac-
tively enter, edit, and execute SQL commands.

• Using an existing graphical frontend tool like PgAccess or ApplixWare (via ODBC) to create and
manipulate a database. These possibilities are not covered in this tutorial.

• Writing a custom application, using one of the several available language bindings. These possibil-
ities are discussed further inThe PostgreSQL Programmer’s Guide.

You probably want to start uppsql, to try out the examples in this tutorial. It can be activated for the
mydb database by typing the command:

$ psql mydb

If you leave off the database name then it will default to your user account name. You already discov-
ered this scheme in the previous section.

In psql, you will be greeted with the following message:

Welcome to psql, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
\h for help with SQL commands
\? for help on internal slash commands
\g or terminate with semicolon to execute query
\q to quit

mydb=>

The last line could also be

as your current operating system account. As it happens, there will always be a PostgreSQL user account that has the same
name as the operating system user that started the server, and it also happens that that user always has permission to create
databases. Instead of logging in as that user you can also specify the-U option everywhere to select a PostgreSQL user name
to connect as.

3

Chapter 1. Getting Started

mydb=#

That would mean you are a database superuser, which is most likely the case if you installed Post-
greSQL yourself. Being a superuser means that you are not subject to access controls. For the purpose
of this tutorial this is not of importance.

If you have encountered problems startingpsql then go back to the previous section. The diagnostics
of psql andcreatedbare similar, and if the latter worked the former should work as well.

The last line printed out bypsql is the prompt, and it indicates thatpsql is listening to you and that
you can type SQL queries into a work space maintained bypsql. Try out these commands:

mydb=> SELECT version();
version

--
PostgreSQL 7.2devel on i586-pc-linux-gnu, compiled by GCC 2.96

(1 row)

mydb=> SELECT current_date;
date

2001-08-31

(1 row)

mydb=> SELECT 2 + 2;
?column?

4

(1 row)

Thepsql program has a number of internal commands that are not SQL commands. They begin with
the backslash character, “\ ”. Some of these commands were listed in the welcome message. For
example, you can get help on the syntax of various PostgreSQL SQL commands by typing:

mydb=> \h

To get out ofpsql, type

mydb=> \q

andpsql will quit and return you to your command shell. (For more internal commands, type\? at the
psql prompt.) The full capabilities ofpsql are documented in theReference Manual. If PostgreSQL
is installed correctly you can also typeman psql at the operating system shell prompt to see the
documentation. In this tutorial we will not use these features explicitly, but you can use them yourself
when you see fit.

4

Chapter 2. The SQL Language

2.1. Introduction
This chapter provides an overview of how to use SQL to perform simple operations. This tutorial
is only intended to give you an introduction and is in no way a complete tutorial on SQL. Numer-
ous books have been written on SQL92, includingUnderstanding the New SQLandA Guide to the
SQL Standard. You should be aware that some PostgreSQL language features are extensions to the
standard.

In the examples that follow, we assume that you have created a database namedmydb, as described in
the previous chapter, and have started psql.

Examples in this manual can also be found in the PostgreSQL source distribution in the directory
src/tutorial/ . Refer to theREADMEfile in that directory for how to use them. To start the tutorial,
do the following:

$ cd /src/tutorial
$ psql -s mydb
...

mydb=> \i basics.sql

The \i command reads in commands from the specified file. The-s option puts you in single step
mode which pauses before sending each query to the server. The commands used in this section are
in the filebasics.sql .

2.2. Concepts
PostgreSQL is arelational database management system(RDBMS). That means it is a system for
managing data stored inrelations. Relation is essentially a mathematical term fortable. The notion
of storing data in tables is so commonplace today that it might seem inherently obvious, but there
are a number of other ways of organizing databases. Files and directories on Unix-like operating
systems form an example of a hierarchical database. A more modern development is the object-
oriented database.

Each table is a named collection ofrows. Each row of a given table has the same set of named
columns, and each column is of a specific data type. Whereas columns have a fixed order in each row,
it is important to remember that SQL does not guarantee the order of the rows within the table in any
way (although they can be explicitly sorted for display).

Tables are grouped into databases, and a collection of databases managed by a single PostgreSQL
server instance constitutes a databasecluster.

2.3. Creating a New Table
You can create a new table by specifying the table name, along with all column names and their types:

CREATE TABLE weather (
city varchar(80),
temp_lo int, -- low temperature
temp_hi int, -- high temperature

5

Chapter 2. The SQL Language

prcp real, -- precipitation
date date

);

You can enter this intopsql with the line breaks.psql will recognize that the command is not termi-
nated until the semicolon.

White space (i.e., spaces, tabs, and newlines) may be used freely in SQL commands. That means
you can type the command aligned differently than above, or even all on one line. Two dashes (“-

- ”) introduce comments. Whatever follows them is ignored up to the end of the line. SQL is case
insensitive about key words and identifiers, except when identifiers are double-quoted to preserve the
case (not done above).

varchar(80) specifies a data type that can store arbitrary character strings up to 80 characters in
length.int is the normal integer type.real is a type for storing single precision floating-point num-
bers.date should be self-explanatory. (Yes, the column of typedate is also nameddate . This may
be convenient or confusing -- you choose.)

PostgreSQL supports the usual SQL typesint , smallint , real , double precision , char(N) ,
varchar(N) , date , time , timestamp , andinterval , as well as other types of general utility and
a rich set of geometric types. PostgreSQL can be customized with an arbitrary number of user-defined
data types. Consequently, type names are not syntactical keywords, except where required to support
special cases in the SQL standard.

The second example will store cities and their associated geographical location:

CREATE TABLE cities (
name varchar(80),
location point

);

Thepoint type is an example of a PostgreSQL-specific data type.

Finally, it should be mentioned that if you don’t need a table any longer or want to recreate it differ-
ently you can remove it using the following command:

DROP TABLEtablename ;

2.4. Populating a Table With Rows
TheINSERT statement is used to populate a table with rows:

INSERT INTO weather VALUES (’San Francisco’, 46, 50, 0.25, ’1994-11-27’);

Note that all data types use rather obvious input formats. Constants that are not simple numeric values
usually must be surrounded by single quotes (’), as in the example. Thedate column is actually quite
flexible in what it accepts, but for this tutorial we will stick to the unambiguous format shown here.

Thepoint type requires a coordinate pair as input, as shown here:

INSERT INTO cities VALUES (’San Francisco’, ’(-194.0, 53.0)’);

The syntax used so far requires you to remember the order of the columns. An alternative syntax
allows you to list the columns explicitly:

6

Chapter 2. The SQL Language

INSERT INTO weather (city, temp_lo, temp_hi, prcp, date)
VALUES (’San Francisco’, 43, 57, 0.0, ’1994-11-29’);

You can list the columns in a different order if you wish or even omit some columns, e.g., if the
precipitation is unknown:

INSERT INTO weather (date, city, temp_hi, temp_lo)
VALUES (’1994-11-29’, ’Hayward’, 54, 37);

Many developers consider explicitly listing the columns better style than relying on the order implic-
itly.

Please enter all the commands shown above so you have some data to work with in the following
sections.

You could also have usedCOPY to load large amounts of data from flat-text files. This is usually
faster because theCOPY command is optimized for this application while allowing less flexibility
thanINSERT. An example would be:

COPY weather FROM ’/home/user/weather.txt’;

where the file name for the source file must be available to the backend server machine, not the client,
since the backend server reads the file directly. You can read more about theCOPY command in the
Reference Manual.

2.5. Querying a Table
To retrieve data from a table, the table isqueried. An SQLSELECT statement is used to do this. The
statement is divided into a select list (the part that lists the columns to be returned), a table list (the
part that lists the tables from which to retrieve the data), and an optional qualification (the part that
specifies any restrictions). For example, to retrieve all the rows of tableweather , type:

SELECT * FROM weather;

(here* means “all columns”) and the output should be:

city | temp_lo | temp_hi | prcp | date
---------------+---------+---------+------+------------

San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 43 | 57 | 0 | 1994-11-29
Hayward | 37 | 54 | | 1994-11-29

(3 rows)

You may specify any arbitrary expressions in the target list. For example, you can do:

SELECT city, (temp_hi+temp_lo)/2 AS temp_avg, date FROM weather;

This should give:

city | temp_avg | date
---------------+----------+------------

San Francisco | 48 | 1994-11-27
San Francisco | 50 | 1994-11-29
Hayward | 45 | 1994-11-29

(3 rows)

7

Chapter 2. The SQL Language

Notice how theASclause is used to relabel the output column. (It is optional.)

Arbitrary Boolean operators (AND, OR, andNOT) are allowed in the qualification of a query. For exam-
ple, the following retrieves the weather of San Francisco on rainy days:

SELECT * FROM weather
WHERE city = ’San Francisco’
AND prcp > 0.0;

Result:

city | temp_lo | temp_hi | prcp | date
---------------+---------+---------+------+------------

San Francisco | 46 | 50 | 0.25 | 1994-11-27
(1 row)

As a final note, you can request that the results of a select can be returned in sorted order or with
duplicate rows removed. (Just to make sure the following won’t confuse you,DISTINCT andORDER

BYcan be used separately.)

SELECT DISTINCT city
FROM weather
ORDER BY city;

city

Hayward
San Francisco

(2 rows)

2.6. Joins Between Tables
Thus far, our queries have only accessed one table at a time. Queries can access multiple tables at
once, or access the same table in such a way that multiple rows of the table are being processed at the
same time. A query that accesses multiple rows of the same or different tables at one time is called a
join query. As an example, say you wish to list all the weather records together with the location of
the associated city. To do that, we need to compare the city column of each row of the weather table
with the name column of all rows in the cities table, and select the pairs of rows where these values
match.

Note: This is only a conceptual model. The actual join may be performed in a more efficient
manner, but this is invisible to the user.

This would be accomplished by the following query:

SELECT *
FROM weather, cities
WHERE city = name;

city | temp_lo | temp_hi | prcp | date | name | lo-
cation
---------------+---------+---------+------+------------+---------------+---

8

Chapter 2. The SQL Language

San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-
194,53)

San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-
194,53)
(2 rows)

Observe two things about the result set:

• There is no result row for the city of Hayward. This is because there is no matching entry in the
cities table for Hayward, so the join ignores the unmatched rows in the weather table. We will
see shortly how this can be fixed.

• There are two columns containing the city name. This is correct because the lists of columns of the
weather and thecities table are concatenated. In practice this is undesirable, though, so you
will probably want to list the output columns explicitly rather than using* :

SELECT city, temp_lo, temp_hi, prcp, date, location
FROM weather, cities
WHERE city = name;

Exercise: Attempt to find out the semantics of this query when theWHEREclause is omitted.

Since the columns all had different names, the parser automatically found out which table they belong
to, but it is good style to fully qualify column names in join queries:

SELECT weather.city, weather.temp_lo, weather.temp_hi,
weather.prcp, weather.date, cities.location

FROM weather, cities
WHERE cities.name = weather.city;

Join queries of the kind seen thus far can also be written in this alternative form:

SELECT *
FROM weather INNER JOIN cities ON (weather.city = cities.name);

This syntax is not as commonly used as the one above, but we show it here to help you understand the
following topics.

Now we will figure out how we can get the Hayward records back in. What we want the query to do
is to scan theweather table and for each row to find the matchingcities row. If no matching row
is found we want some “empty values” to be substituted for thecities table’s columns. This kind
of query is called anouter join. (The joins we have seen so far are inner joins.) The command looks
like this:

SELECT *
FROM weather LEFT OUTER JOIN cities ON (weather.city = cities.name);

city | temp_lo | temp_hi | prcp | date | name | location
---------------+---------+---------+------+------------+---------------+---

Hayward | 37 | 54 | | 1994-11-29 | |
San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-

194,53)

9

Chapter 2. The SQL Language

San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-
194,53)
(3 rows)

This query is called aleft outer joinbecause the table mentioned on the left of the join operator will
have each of its rows in the output at least once, whereas the table on the right will only have those
rows output that match some row of the left table. When outputting a left-table row for which there is
no right-table match, empty (NULL) values are substituted for the right-table columns.

Exercise: There are also right outer joins and full outer joins. Try to find out what those do.

We can also join a table against itself. This is called aself join. As an example, suppose we wish to
find all the weather records that are in the temperature range of other weather records. So we need to
compare thetemp_lo and temp_hi columns of eachweather row to thetemp_lo and temp_hi

columns of all otherweather rows. We can do this with the following query:

SELECT W1.city, W1.temp_lo AS low, W1.temp_hi AS high,
W2.city, W2.temp_lo AS low, W2.temp_hi AS high
FROM weather W1, weather W2
WHERE W1.temp_lo < W2.temp_lo
AND W1.temp_hi > W2.temp_hi;

city | low | high | city | low | high
---------------+-----+------+---------------+-----+------

San Francisco | 43 | 57 | San Francisco | 46 | 50
Hayward | 37 | 54 | San Francisco | 46 | 50

(2 rows)

Here we have relabeled the weather table asW1andW2to be able to distinguish the left and right side
of the join. You can also use these kinds of aliases in other queries to save some typing, e.g.:

SELECT *
FROM weather w, cities c
WHERE w.city = c.name;

You will encounter this style of abbreviating quite frequently.

2.7. Aggregate Functions
Like most other relational database products, PostgreSQL supports aggregate functions. An aggregate
function computes a single result from multiple input rows. For example, there are aggregates to
compute thecount , sum, avg (average),max (maximum) andmin (minimum) over a set of rows.

As an example, we can find the highest low-temperature reading anywhere with

SELECT max(temp_lo) FROM weather;

max

46
(1 row)

If we want to know what city (or cities) that reading occurred in, we might try

SELECT city FROM weather WHERE temp_lo = max(temp_lo); WRONG

10

Chapter 2. The SQL Language

but this will not work since the aggregatemax cannot be used in theWHEREclause. (This restriction
exists because theWHEREclause determines the rows that will go into the aggregation stage; so it has
to be evaluated before aggregate functions are computed.) However, as is often the case the query can
be restated to accomplish the intended result; here by using asubquery:

SELECT city FROM weather
WHERE temp_lo = (SELECT max(temp_lo) FROM weather);

city

San Francisco
(1 row)

This is OK because the sub-select is an independent computation that computes its own aggregate
separately from what is happening in the outer select.

Aggregates are also very useful in combination withGROUP BYclauses. For example, we can get the
maximum low temperature observed in each city with

SELECT city, max(temp_lo)
FROM weather
GROUP BY city;

city | max
---------------+-----

Hayward | 37
San Francisco | 46

(2 rows)

which gives us one output row per city. Each aggregate result is computed over the table rows match-
ing that city. We can filter these grouped rows usingHAVING:

SELECT city, max(temp_lo)
FROM weather
GROUP BY city
HAVING max(temp_lo) < 40;

city | max
---------+-----

Hayward | 37
(1 row)

which gives us the same results for only the cities that have alltemp_lo values below 40. Finally, if
we only care about cities whose names begin with “S”, we might do

SELECT city, max(temp_lo)
FROM weather
WHERE city LIKE ’S%’
GROUP BY city
HAVING max(temp_lo) < 40;

It is important to understand the interaction between aggregates and SQL’sWHEREand HAVING

clauses. The fundamental difference betweenWHEREandHAVING is this: WHEREselects input rows
before groups and aggregates are computed (thus, it controls which rows go into the aggregate com-
putation), whereasHAVINGselects group rows after groups and aggregates are computed. Thus, the
WHEREclause must not contain aggregate functions; it makes no sense to try to use an aggregate to

11

Chapter 2. The SQL Language

determine which rows will be inputs to the aggregates. On the other hand,HAVINGclauses always
contain aggregate functions. (Strictly speaking, you are allowed to write aHAVINGclause that doesn’t
use aggregates, but it’s wasteful: The same condition could be used more efficiently at theWHERE

stage.)

Observe that we can apply the city name restriction inWHERE, since it needs no aggregate. This is more
efficient than adding the restriction toHAVING, because we avoid doing the grouping and aggregate
calculations for all rows that fail theWHEREcheck.

2.8. Updates
You can update existing rows using theUPDATE command. Suppose you discover the temperature
readings are all off by 2 degrees as of November 28, you may update the data as follows:

UPDATE weather
SET temp_hi = temp_hi - 2, temp_lo = temp_lo - 2
WHERE date > ’1994-11-28’;

Look at the new state of the data:

SELECT * FROM weather;

city | temp_lo | temp_hi | prcp | date
---------------+---------+---------+------+------------

San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29
Hayward | 35 | 52 | | 1994-11-29

(3 rows)

2.9. Deletions
Suppose you are no longer interested in the weather of Hayward, then you can do the following to
delete those rows from the table. Deletions are performed using theDELETE command:

DELETE FROM weather WHERE city = ’Hayward’;

All weather records belonging to Hayward are removed.

SELECT * FROM weather;

city | temp_lo | temp_hi | prcp | date
---------------+---------+---------+------+------------

San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29

(2 rows)

One should be wary of queries of the form

DELETE FROMtablename ;

12

Chapter 2. The SQL Language

Without a qualification,DELETE will removeall rows from the given table, leaving it empty. The
system will not request confirmation before doing this!

13

Chapter 3. Advanced Features

3.1. Introduction
In the previous chapter we have covered the basics of using SQL to store and access your data in
PostgreSQL. We will now discuss some more advanced features of SQL that simplify management
and prevent loss or corruption of your data. Finally, we will look at some PostgreSQL extensions.

This chapter will on occasion refer to examples found inChapter 2to change or improve them, so it
will be of advantage if you have read that chapter. Some examples from this chapter can also be found
in advanced.sql in the tutorial directory. This file also contains some example data to load, which
is not repeated here. (Refer toSection 2.1for how to use the file.)

3.2. Views
Refer back to the queries inSection 2.6. Suppose the combined listing of weather records and city
location is of particular interest to your application, but you don’t want to type the query each time
you need it. You can create aviewover the query, which gives a name to the query that you can refer
to like an ordinary table.

CREATE VIEW myview AS
SELECT city, temp_lo, temp_hi, prcp, date, location

FROM weather, cities
WHERE city = name;

SELECT * FROM myview;

Making liberal use of views is a key aspect of good SQL database design. Views allow you to en-
capsulate the details of the structure of your tables, which may change as your application evolves,
behind consistent interfaces.

Views can be used in almost any place a real table can be used. Building views upon other views is
not uncommon.

3.3. Foreign Keys
Recall theweather andcities tables fromChapter 2. Consider the following problem: You want
to make sure that no one can insert rows in theweather table that do not have a matching entry
in the cities table. This is called maintaining thereferential integrityof your data. In simplistic
database systems this would be implemented (if at all) by first looking at thecities table to check
if a matching record exists, and then inserting or rejecting the newweather records. This approach
has a number of problems and is very inconvenient, so PostgreSQL can do this for you.

The new declaration of the tables would look like this:

CREATE TABLE cities (
name varchar(80) primary key,
location point

);

14

Chapter 3. Advanced Features

CREATE TABLE weather (
city varchar(80) references weather,
temp_lo int,
temp_hi int,
prcp real,
date date

);

Now try inserting an invalid record:

INSERT INTO weather VALUES (’Berkeley’, 45, 53, 0.0, ’1994-11-28’);

ERROR: <unnamed> referential integrity violation - key referenced from weather not found in cities

The behavior of foreign keys can be finely tuned to your application. We will not go beyond this
simple example in this tutorial, but just refer you to theReference Manualfor more information.
Making correct use of foreign keys will definitely improve the quality of your database applications,
so you are strongly encouraged to learn about them.

3.4. Transactions
Transactionsare a fundamental concept of all database systems. The essential point of a transaction is
that it bundles multiple steps into a single, all-or-nothing operation. The intermediate states between
the steps are not visible to other concurrent transactions, and if some failure occurs that prevents the
transaction from completing, then none of the steps affect the database at all.

For example, consider a bank database that contains balances for various customer accounts, as well
as total deposit balances for branches. Suppose that we want to record a payment of $100.00 from
Alice’s account to Bob’s account. Simplifying outrageously, the SQL commands for this might look
like

UPDATE accounts SET balance = balance - 100.00
WHERE name = ’Alice’;

UPDATE branches SET balance = balance - 100.00
WHERE name = (SELECT branch_name FROM accounts WHERE name = ’Alice’);

UPDATE accounts SET balance = balance + 100.00
WHERE name = ’Bob’;

UPDATE branches SET balance = balance + 100.00
WHERE name = (SELECT branch_name FROM accounts WHERE name = ’Bob’);

The details of these commands are not important here; the important point is that there are several
separate updates involved to accomplish this rather simple operation. Our bank’s officers will want to
be assured that either all these updates happen, or none of them happen. It would certainly not do for
a system failure to result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice
long remain a happy customer if she was debited without Bob being credited. We need a guarantee
that if something goes wrong partway through the operation, none of the steps executed so far will
take effect. Grouping the updates into atransactiongives us this guarantee. A transaction is said to
beatomic: from the point of view of other transactions, it either happens completely or not at all.

We also want a guarantee that once a transaction is completed and acknowledged by the database
system, it has indeed been permanently recorded and won’t be lost even if a crash ensues shortly
thereafter. For example, if we are recording a cash withdrawal by Bob, we do not want any chance
that the debit to his account will disappear in a crash just as he walks out the bank door. A transactional

15

Chapter 3. Advanced Features

database guarantees that all the updates made by a transaction are logged in permanent storage (i.e.,
on disk) before the transaction is reported complete.

Another important property of transactional databases is closely related to the notion of atomic up-
dates: when multiple transactions are running concurrently, each one should not be able to see the
incomplete changes made by others. For example, if one transaction is busy totalling all the branch
balances, it would not do for it to include the debit from Alice’s branch but not the credit to Bob’s
branch, nor vice versa. So transactions must be all-or-nothing not only in terms of their permanent
effect on the database, but also in terms of their visibility as they happen. The updates made so far by
an open transaction are invisible to other transactions until the transaction completes, whereupon all
the updates become visible simultaneously.

In PostgreSQL, a transaction is set up by surrounding the SQL commands of the transaction with
BEGIN andCOMMIT commands. So our banking transaction would actually look like

BEGIN;
UPDATE accounts SET balance = balance - 100.00

WHERE name = ’Alice’;
-- etc etc
COMMIT;

If, partway through the transaction, we decide we don’t want to commit (perhaps we just noticed that
Alice’s balance went negative), we can issue the commandROLLBACK instead ofCOMMIT , and
all our updates so far will be canceled.

PostgreSQL actually treats every SQL statement as being executed within a transaction. If you don’t
issue aBEGIN command, then each individual statement has an implicitBEGIN and (if success-
ful) COMMIT wrapped around it. A group of statements surrounded byBEGIN andCOMMIT is
sometimes called atransaction block.

Note: Some client libraries issue BEGIN and COMMIT commands automatically, so that you may
get the effect of transaction blocks without asking. Check the documentation for the interface you
are using.

3.5. Inheritance
Inheritance is a concept from object-oriented databases. It opens up interesting new possibilities of
database design.

Let’s create two tables: A tablecities and a tablecapitals . Naturally, capitals are also cities, so
you want some way to show the capitals implicitly when you list all cities. If you’re really clever you
might invent some scheme like this:

CREATE TABLE capitals (
name text,
population real,
altitude int, -- (in ft)
state char(2)

);

CREATE TABLE non_capitals (
name text,
population real,
altitude int -- (in ft)

16

Chapter 3. Advanced Features

);

CREATE VIEW cities AS
SELECT name, population, altitude FROM capitals

UNION
SELECT name, population, altitude FROM non_capitals;

This works OK as far as querying goes, but it gets ugly when you need to update several rows, to
name one thing.

A better solution is this:

CREATE TABLE cities (
name text,
population real,
altitude int -- (in ft)

);

CREATE TABLE capitals (
state char(2)

) INHERITS (cities);

In this case, a row ofcapitals inheritsall columns (name, population , andaltitude) from its
parent, cities . The type of the columnname is text , a native PostgreSQL type for variable length
character strings. State capitals have an extra column, state, that shows their state. In PostgreSQL, a
table can inherit from zero or more other tables.

For example, the following query finds the names of all cities, including state capitals, that are located
at an altitude over 500 ft.:

SELECT name, altitude
FROM cities
WHERE altitude > 500;

which returns:

name | altitude
-----------+----------

Las Vegas | 2174
Mariposa | 1953
Madison | 845

(3 rows)

On the other hand, the following query finds all the cities that are not state capitals and are situated at
an altitude of 500 ft. or higher:

SELECT name, altitude
FROM ONLY cities
WHERE altitude > 500;

name | altitude
-----------+----------

Las Vegas | 2174
Mariposa | 1953

(2 rows)

17

Chapter 3. Advanced Features

Here theONLYbeforecities indicates that the query should be run over only thecities table, and
not tables belowcities in the inheritance hierarchy. Many of the commands that we have already
discussed --SELECT, UPDATE andDELETE -- support thisONLYnotation.

3.6. Conclusion
PostgreSQL has many features not touched upon in this tutorial introduction, which has been oriented
toward newer users of SQL. These features are discussed in more detail in both theUser’s Guideand
theProgrammer’s Guide.

If you feel you need more introductory material, please visit the PostgreSQL web site1 for links to
more resources.

1. http://www.postgresql.org

18

Bibliography
Selected references and readings for SQL and PostgreSQL.

Some white papers and technical reports from the original POSTGRES development team are avail-
able at the University of California, Berkeley, Computer Science Department web site1

SQL Reference Books

Judith Bowman, Sandra Emerson, and Marcy Darnovsky,The Practical SQL Handbook: Using Struc-
tured Query Language, Third Edition, Addison-Wesley, ISBN 0-201-44787-8, 1996.

C. J. Date and Hugh Darwen,A Guide to the SQL Standard: A user’s guide to the standard database
language SQL, Fourth Edition, Addison-Wesley, ISBN 0-201-96426-0, 1997.

C. J. Date,An Introduction to Database Systems, Volume 1, Sixth Edition, Addison-Wesley, 1994.

Ramez Elmasri and Shamkant Navathe,Fundamentals of Database Systems, 3rd Edition, Addison-
Wesley, ISBN 0-805-31755-4, August 1999.

Jim Melton and Alan R. Simon,Understanding the New SQL: A complete guide, Morgan Kaufmann,
ISBN 1-55860-245-3, 1993.

Jeffrey D. Ullman,Principles of Database and Knowledge: Base Systems, Volume 1, Computer Sci-
ence Press, 1988.

PostgreSQL-Specific Documentation

Stefan Simkovics,Enhancement of the ANSI SQL Implementation of PostgreSQL, Department of
Information Systems, Vienna University of Technology, November 29, 1998.

Discusses SQL history and syntax, and describes the addition ofINTERSECTandEXCEPTcon-
structs into PostgreSQL. Prepared as a Master’s Thesis with the support of O. Univ. Prof. Dr.
Georg Gottlob and Univ. Ass. Mag. Katrin Seyr at Vienna University of Technology.

A. Yu and J. Chen, The POSTGRES Group,The Postgres95 User Manual, University of California,
Sept. 5, 1995.

Zelaine Fong,The design and implementation of the POSTGRES query optimizer2, University of
California, Berkeley, Computer Science Department.

1. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/
2. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/UCB-MS-zfong.pdf

19

Bibliography

Proceedings and Articles

Nels Olson,Partial indexing in POSTGRES: research project, University of California, UCB Engin
T7.49.1993 O676, 1993.

L. Ong and J. Goh, “A Unified Framework for Version Modeling Using Production Rules in a
Database System”,ERL Technical Memorandum M90/33, University of California, April, 1990.

L. Rowe and M. Stonebraker, “The POSTGRES data model3”, Proc. VLDB Conference, Sept. 1987.

P. Seshadri and A. Swami, “Generalized Partial Indexes4 ”, Proc. Eleventh International Conference
on Data Engineering, 6-10 March 1995, IEEE Computer Society Press, Cat. No.95CH35724,
1995, p. 420-7.

M. Stonebraker and L. Rowe, “The design of POSTGRES5”, Proc. ACM-SIGMOD Conference on
Management of Data, May 1986.

M. Stonebraker, E. Hanson, and C. H. Hong, “The design of the POSTGRES rules system”, Proc.
IEEE Conference on Data Engineering, Feb. 1987.

M. Stonebraker, “The design of the POSTGRES storage system6”, Proc. VLDB Conference, Sept.
1987.

M. Stonebraker, M. Hearst, and S. Potamianos, “A commentary on the POSTGRES rules system7”,
SIGMOD Record 18(3), Sept. 1989.

M. Stonebraker, “The case for partial indexes8”, SIGMOD Record 18(4), Dec. 1989, p. 4-11.

M. Stonebraker, L. A. Rowe, and M. Hirohama, “The implementation of POSTGRES9”, Transactions
on Knowledge and Data Engineering 2(1), IEEE, March 1990.

M. Stonebraker, A. Jhingran, J. Goh, and S. Potamianos, “On Rules, Procedures, Caching and Views
in Database Systems10”, Proc. ACM-SIGMOD Conference on Management of Data, June 1990.

3. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/ERL-M87-13.pdf
4. http://simon.cs.cornell.edu/home/praveen/papers/partindex.de95.ps.Z
5. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/ERL-M85-95.pdf
6. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/ERL-M87-06.pdf
7. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/ERL-M89-82.pdf
8. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/ERL-M89-17.pdf
9. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/ERL-M90-34.pdf
10. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/ERL-M90-36.pdf

20

Index

A
aggregate,10

alias

for table name in query,10

average,10

C
cluster,5

column,5

COPY,7

count,10

CREATE TABLE,5

createdb,2

D
database

creating,2

DELETE,12

DISTINCT, 8

DROP TABLE,6

duplicate,8

F
foreign key,14

G
GROUP BY,11

H
HAVING, 11

hierarchical database,5

I
inheritance,16

INSERT,6

J

join, 8

outer,9

self,10

M

max,10

min, 10

O

object-oriented database,5

ORDER BY,8

P

postmaster,1

psql,3

Q

query,7

R

referential integrity,14

relation,5

relational database,5

row, 5

S

SELECT,7

subquery,10

sum,10

superuser,3

T

table,5

transactions,15

21

Index

U
UPDATE,12

V
version,4

view, 14

22

	PostgreSQL 7.2 Tutorial
	Table of Contents
	Welcome
	Preface
	1. What is PostgreSQL?
	2. A Short History of PostgreSQL
	2.1. The Berkeley POSTGRES Project
	2.2. Postgres95
	2.3. PostgreSQL

	3. Documentation Resources
	4. Terminology and Notation
	5. Bug Reporting Guidelines
	5.1. Identifying Bugs
	5.2. What to report
	5.3. Where to report bugs

	6. Y2K Statement

	Chapter 1. Getting Started
	1.1. Installation
	1.2. Architectural Fundamentals
	1.3. Creating a Database
	1.4. Accessing a Database

	Chapter 2. The SQL Language
	2.1. Introduction
	2.2. Concepts
	2.3. Creating a New Table
	2.4. Populating a Table With Rows
	2.5. Querying a Table
	2.6. Joins Between Tables
	2.7. Aggregate Functions
	2.8. Updates
	2.9. Deletions

	Chapter 3. Advanced Features
	3.1. Introduction
	3.2. Views
	3.3. Foreign Keys
	3.4. Transactions
	3.5. Inheritance
	3.6. Conclusion

	Bibliography
	SQL Reference Books
	PostgreSQLSpecific Documentation
	Proceedings and Articles

	Index
	A
	C
	D
	F
	G
	H
	I
	J
	M
	O
	P
	Q
	R
	S
	T
	U
	V

