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Preface

1. What is PostgreSQL?
PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES,
Version 4.21, developed at the University of California at Berkeley Computer Science Department.
The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Ad-
vanced Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science
Foundation (NSF), and ESL, Inc.

PostgreSQL is an open-source descendant of this original Berkeley code. It provides SQL92/SQL99
language support and other modern features.

POSTGRES pioneered many of the object-relational concepts now becoming available in some com-
mercial databases. Traditional relational database management systems (RDBMS) support a data
model consisting of a collection of named relations, containing attributes of a specific type. In current
commercial systems, possible types include floating point numbers, integers, character strings, money,
and dates. It is commonly recognized that this model is inadequate for future data-processing appli-
cations. The relational model successfully replaced previous models in part because of its “Spartan
simplicity”. However, this simplicity makes the implementation of certain applications very difficult.
PostgreSQL offers substantial additional power by incorporating the following additional concepts in
such a way that users can easily extend the system:

• inheritance
• data types
• functions

Other features provide additional power and flexibility:

• constraints
• triggers
• rules
• transactional integrity

These features put PostgreSQL into the category of databases referred to asobject-relational. Note
that this is distinct from those referred to asobject-oriented, which in general are not as well suited
to supporting traditional relational database languages. So, although PostgreSQL has some object-
oriented features, it is firmly in the relational database world. In fact, some commercial databases
have recently incorporated features pioneered by PostgreSQL.

2. A Short History of PostgreSQL
The object-relational database management system now known as PostgreSQL (and briefly called
Postgres95) is derived from the POSTGRES package written at the University of California at Berke-
ley. With over a decade of development behind it, PostgreSQL is the most advanced open-source
database available anywhere, offering multiversion concurrency control, supporting almost all SQL

1. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/postgres.html
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constructs (including subselects, transactions, and user-defined types and functions), and having a
wide range of language bindings available (including C, C++, Java, Perl, Tcl, and Python).

2.1. The Berkeley POSTGRES Project

Implementation of the POSTGRES DBMS began in 1986. The initial concepts for the system were
presented inThe design of POSTGRESand the definition of the initial data model appeared inThe
POSTGRES data model. The design of the rule system at that time was described inThe design of the
POSTGRES rules system. The rationale and architecture of the storage manager were detailed inThe
design of the POSTGRES storage system.

Postgres has undergone several major releases since then. The first “demoware” system became op-
erational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in
The implementation of POSTGRES, was released to a few external users in June 1989. In response
to a critique of the first rule system (A commentary on the POSTGRES rules system), the rule system
was redesigned (On Rules, Procedures, Caching and Views in Database Systems) and Version 2 was
released in June 1990 with the new rule system. Version 3 appeared in 1991 and added support for
multiple storage managers, an improved query executor, and a rewritten rewrite rule system. For the
most part, subsequent releases until Postgres95 (see below) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These
include: a financial data analysis system, a jet engine performance monitoring package, an aster-
oid tracking database, a medical information database, and several geographic information systems.
POSTGRES has also been used as an educational tool at several universities. Finally, Illustra Infor-
mation Technologies (later merged into Informix2, which is now owned by IBM3.) picked up the code
and commercialized it. POSTGRES became the primary data manager for the Sequoia 20004 scientific
computing project in late 1992.

The size of the external user community nearly doubled during 1993. It became increasingly obvious
that maintenance of the prototype code and support was taking up large amounts of time that should
have been devoted to database research. In an effort to reduce this support burden, the Berkeley
POSTGRES project officially ended with Version 4.2.

2.2. Postgres95

In 1994, Andrew Yu and Jolly Chen added a SQL language interpreter to POSTGRES. Postgres95
was subsequently released to the Web to find its own way in the world as an open-source descendant
of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes im-
proved performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the
Wisconsin Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following
were the major enhancements:

• The query language PostQUEL was replaced with SQL (implemented in the server). Subqueries
were not supported until PostgreSQL (see below), but they could be imitated in Postgres95 with
user-defined SQL functions. Aggregates were re-implemented. Support for the GROUP BY query
clause was also added. Thelibpq interface remained available for C programs.

• In addition to the monitor program, a new program (psql) was provided for interactive SQL queries
using GNU Readline.

2. http://www.informix.com/
3. http://www.ibm.com/
4. http://meteora.ucsd.edu/s2k/s2k_home.html
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• A new front-end library,libpgtcl , supported Tcl-based clients. A sample shell,pgtclsh , pro-
vided new Tcl commands to interface Tcl programs with the Postgres95 backend.

• The large-object interface was overhauled. The Inversion large objects were the only mechanism
for storing large objects. (The Inversion file system was removed.)

• The instance-level rule system was removed. Rules were still available as rewrite rules.

• A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed
with the source code

• GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled
with an unpatched GCC (data alignment of doubles was fixed).

2.3. PostgreSQL

By 1996, it became clear that the name “Postgres95” would not stand the test of time. We chose a new
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent
versions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting
the numbers back into the sequence originally begun by the Berkeley POSTGRES project.

The emphasis during development of Postgres95 was on identifying and understanding existing prob-
lems in the backend code. With PostgreSQL, the emphasis has shifted to augmenting features and
capabilities, although work continues in all areas.

Major enhancements in PostgreSQL include:

• Table-level locking has been replaced by multiversion concurrency control, which allows readers
to continue reading consistent data during writer activity and enables hot backups from pg_dump
while the database stays available for queries.

• Important backend features, including subselects, defaults, constraints, and triggers, have been im-
plemented.

• Additional SQL92-compliant language features have been added, including primary keys, quoted
identifiers, literal string type coercion, type casting, and binary and hexadecimal integer input.

• Built-in types have been improved, including new wide-range date/time types and additional geo-
metric type support.

• Overall backend code speed has been increased by approximately 20-40%, and backend start-up
time has decreased by 80% since version 6.0 was released.

3. What’s In This Book
This book describes the use of the SQL language in PostgreSQL. We start with describing the general
syntax of SQL, then explain how to create the structures to hold data, how to populate the database,
and how to query it. The middle part lists the available data types and functions for use in SQL data
commands. The rest of the book treats several aspects that are important for tuning a database for
optimal performance.

The information in this book is arranged so that a novice user can follow it start to end to gain a full
understanding of the topics without having to refer forward too many times. The chapters are intended
to be self-contained, so that advanced users can read the chapters individually as they choose. The
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information in this book is presented in a narrative fashion in topical units. Readers looking for a
complete description of a particular command should look into thePostgreSQL Reference Manual.

Readers of this book should know how to connect to a PostgreSQL database and issue SQL com-
mands. Readers that are unfamiliar with these issues are encouraged to read thePostgreSQL Tutorial
first. SQL commands are typically entered using the PostgreSQL interactive terminal psql, but other
programs that have similar functionality can be used as well.

This book covers PostgreSQL 7.3.2 only. For information on other versions, please read the docu-
mentation that accompanies that release.

4. Overview of Documentation Resources
The PostgreSQL documentation is organized into several books:

PostgreSQL Tutorial

An informal introduction for new users.

PostgreSQL User’s Guide

Documents the SQL query language environment, including data types and functions, as well as
user-level performance tuning. Every PostgreSQL user should read this.

PostgreSQL Administrator’s Guide

Installation and server management information. Everyone who runs a PostgreSQL server, either
for personal use or for other users, needs to read this.

PostgreSQL Programmer’s Guide

Advanced information for application programmers. Topics include type and function extensi-
bility, library interfaces, and application design issues.

PostgreSQL Reference Manual

Reference pages for SQL command syntax, and client and server programs. This book is auxil-
iary to the User’s, Administrator’s, and Programmer’s Guides.

PostgreSQL Developer’s Guide

Information for PostgreSQL developers. This is intended for those who are contributing to the
PostgreSQL project; application development information appears in theProgrammer’s Guide.

In addition to this manual set, there are other resources to help you with PostgreSQL installation and
use:

man pages

The Reference Manual’s pages in the traditional Unix man format. There is no difference in
content.

FAQs

Frequently Asked Questions (FAQ) lists document both general issues and some
platform-specific issues.

READMEs

README files are available for some contributed packages.

iv
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Web Site

The PostgreSQL web site5 carries details on the latest release, upcoming features, and other
information to make your work or play with PostgreSQL more productive.

Mailing Lists

The mailing lists are a good place to have your questions answered, to share experiences with
other users, and to contact the developers. Consult the User’s Lounge6 section of the PostgreSQL
web site for details.

Yourself!

PostgreSQL is an open-source effort. As such, it depends on the user community for ongoing
support. As you begin to use PostgreSQL, you will rely on others for help, either through the
documentation or through the mailing lists. Consider contributing your knowledge back. If you
learn something which is not in the documentation, write it up and contribute it. If you add
features to the code, contribute them.

Even those without a lot of experience can provide corrections and minor changes in the docu-
mentation, and that is a good way to start. The <pgsql-docs@postgresql.org > mailing list
is the place to get going.

5. Terminology and Notation
An administratoris generally a person who is in charge of installing and running the server. Auser
could be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms should
not be interpreted too narrowly; this documentation set does not have fixed presumptions about system
administration procedures.

We use /usr/local/pgsql/ as the root directory of the installation and
/usr/local/pgsql/data as the directory with the database files. These directories may vary on
your site, details can be derived in theAdministrator’s Guide.

In a command synopsis, brackets ([ and] ) indicate an optional phrase or keyword. Anything in braces
({ and} ) and containing vertical bars (| ) indicates that you must choose one alternative.

Examples will show commands executed from various accounts and programs. Commands executed
from a Unix shell may be preceded with a dollar sign (“$”). Commands executed from particular
user accounts such as root or postgres are specially flagged and explained. SQL commands may be
preceded with “=>” or will have no leading prompt, depending on the context.

Note: The notation for flagging commands is not universally consistent throughout
the documentation set. Please report problems to the documentation mailing list
<pgsql-docs@postgresql.org >.

5. http://www.postgresql.org
6. http://www.postgresql.org/users-lounge/
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6. Bug Reporting Guidelines
When you find a bug in PostgreSQL we want to hear about it. Your bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part
of PostgreSQL will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No one is required to follow them but it tends to be to everyone’s advantage.

We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a lot of users,
chances are good that someone will look into it. It could also happen that we tell you to update to a
newer version to see if the bug happens there. Or we might decide that the bug cannot be fixed before
some major rewrite we might be planning is done. Or perhaps it is simply too hard and there are
more important things on the agenda. If you need help immediately, consider obtaining a commercial
support contract.

6.1. Identifying Bugs

Before you report a bug, please read and re-read the documentation to verify that you can really do
whatever it is you are trying. If it is not clear from the documentation whether you can do something
or not, please report that too; it is a bug in the documentation. If it turns out that the program does
something different from what the documentation says, that is a bug. That might include, but is not
limited to, the following circumstances:

• A program terminates with a fatal signal or an operating system error message that would point to
a problem in the program. (A counterexample might be a “disk full” message, since you have to fix
that yourself.)

• A program produces the wrong output for any given input.

• A program refuses to accept valid input (as defined in the documentation).

• A program accepts invalid input without a notice or error message. But keep in mind that your idea
of invalid input might be our idea of an extension or compatibility with traditional practice.

• PostgreSQL fails to compile, build, or install according to the instructions on supported platforms.

Here “program” refers to any executable, not only the backend server.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of
the mailing lists for help in tuning your applications. Failing to comply to the SQL standard is not
necessarily a bug either, unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to see if your bug is already known.
If you cannot decode the information on the TODO list, report your problem. The least we can do is
make the TODO list clearer.

6.2. What to report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do
not speculate what you think went wrong, what “it seemed to do”, or which part of the program has a
fault. If you are not familiar with the implementation you would probably guess wrong and not help
us a bit. And even if you are, educated explanations are a great supplement to but no substitute for
facts. If we are going to fix the bug we still have to see it happen for ourselves first. Reporting the bare
facts is relatively straightforward (you can probably copy and paste them from the screen) but all too
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often important details are left out because someone thought it does not matter or the report would be
understood anyway.

The following items should be contained in every bug report:

• The exact sequence of stepsfrom program start-upnecessary to reproduce the problem. This should
be self-contained; it is not enough to send in a bare select statement without the preceding create
table and insert statements, if the output should depend on the data in the tables. We do not have the
time to reverse-engineer your database schema, and if we are supposed to make up our own data
we would probably miss the problem. The best format for a test case for query-language related
problems is a file that can be run through the psql frontend that shows the problem. (Be sure to
not have anything in your~/.psqlrc start-up file.) An easy start at this file is to use pg_dump to
dump out the table declarations and data needed to set the scene, then add the problem query. You
are encouraged to minimize the size of your example, but this is not absolutely necessary. If the
bug is reproducible, we will find it either way.

If your application uses some other client interface, such as PHP, then please try to isolate the
offending queries. We will probably not set up a web server to reproduce your problem. In any case
remember to provide the exact input files, do not guess that the problem happens for “large files”
or “mid-size databases”, etc. since this information is too inexact to be of use.

• The output you got. Please do not say that it “didn’t work” or “crashed”. If there is an error message,
show it, even if you do not understand it. If the program terminates with an operating system error,
say which. If nothing at all happens, say so. Even if the result of your test case is a program crash
or otherwise obvious it might not happen on our platform. The easiest thing is to copy the output
from the terminal, if possible.

Note: In case of fatal errors, the error message reported by the client might not contain all the
information available. Please also look at the log output of the database server. If you do not
keep your server’s log output, this would be a good time to start doing so.

• The output you expected is very important to state. If you just write “This command gives me that
output.” or “This is not what I expected.”, we might run it ourselves, scan the output, and think it
looks OK and is exactly what we expected. We should not have to spend the time to decode the
exact semantics behind your commands. Especially refrain from merely saying that “This is not
what SQL says/Oracle does.” Digging out the correct behavior from SQL is not a fun undertaking,
nor do we all know how all the other relational databases out there behave. (If your problem is a
program crash, you can obviously omit this item.)

• Any command line options and other start-up options, including concerned environment variables
or configuration files that you changed from the default. Again, be exact. If you are using a prepack-
aged distribution that starts the database server at boot time, you should try to find out how that is
done.

• Anything you did at all differently from the installation instructions.

• The PostgreSQL version. You can run the commandSELECT version(); to find out the version
of the server you are connected to. Most executable programs also support a--version option; at
leastpostmaster --version andpsql --version should work. If the function or the options
do not exist then your version is more than old enough to warrant an upgrade. You can also look
into theREADMEfile in the source directory or at the name of your distribution file or package name.
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If you run a prepackaged version, such as RPMs, say so, including any subversion the package may
have. If you are talking about a CVS snapshot, mention that, including its date and time.

If your version is older than 7.3.2 we will almost certainly tell you to upgrade. There are tons of
bug fixes in each new release, that is why we make new releases.

• Platform information. This includes the kernel name and version, C library, processor, memory
information. In most cases it is sufficient to report the vendor and version, but do not assume
everyone knows what exactly “Debian” contains or that everyone runs on Pentiums. If you have
installation problems then information about compilers, make, etc. is also necessary.

Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your
input files are huge, it is fair to ask first whether somebody is interested in looking into it.

Do not spend all your time to figure out which changes in the input make the problem go away. This
will probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still
have time to find and share your work-around. Also, once again, do not waste your time guessing why
the bug exists. We will find that out soon enough.

When writing a bug report, please choose non-confusing terminology. The software package in to-
tal is called “PostgreSQL”, sometimes “Postgres” for short. If you are specifically talking about the
backend server, mention that, do not just say “PostgreSQL crashes”. A crash of a single backend
server process is quite different from crash of the parent “postmaster” process; please don’t say “the
postmaster crashed” when you mean a single backend went down, nor vice versa. Also, client pro-
grams such as the interactive frontend “psql” are completely separate from the backend. Please try to
be specific about whether the problem is on the client or server side.

6.3. Where to report bugs

In general, send bug reports to the bug report mailing list at <pgsql-bugs@postgresql.org >. You
are requested to use a descriptive subject for your email message, perhaps parts of the error message.

Another method is to fill in the bug report web-form available at the project’s web site
http://www.postgresql.org/. Entering a bug report this way causes it to be mailed to the
<pgsql-bugs@postgresql.org > mailing list.

Do not send bug reports to any of the user mailing lists, such as <pgsql-sql@postgresql.org >
or <pgsql-general@postgresql.org >. These mailing lists are for answering user questions and
their subscribers normally do not wish to receive bug reports. More importantly, they are unlikely to
fix them.

Also, please do not send reports to the developers’ mailing list <pgsql-

hackers@postgresql.org >. This list is for discussing the development of PostgreSQL and it
would be nice if we could keep the bug reports separate. We might choose to take up a discussion
about your bug report onpgsql-hackers , if the problem needs more review.

If you have a problem with the documentation, the best place to report it is the documentation mailing
list <pgsql-docs@postgresql.org >. Please be specific about what part of the documentation you
are unhappy with.

If your bug is a portability problem on a non-supported platform, send mail to
<pgsql-ports@postgresql.org >, so we (and you) can work on porting PostgreSQL to your
platform.
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Note: Due to the unfortunate amount of spam going around, all of the above email addresses
are closed mailing lists. That is, you need to be subscribed to a list to be allowed to post on it.
(You need not be subscribed to use the bug report web-form, however.) If you would like to send
mail but do not want to receive list traffic, you can subscribe and set your subscription option to
nomail . For more information send mail to <majordomo@postgresql.org > with the single word
help in the body of the message.
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Chapter 1. SQL Syntax
This chapter describes the syntax of SQL. It forms the foundation for understanding the following
chapters which will go into detail about how the SQL commands are applied to define and modify
data.

We also advise users who are already familiar with SQL to read this chapter carefully because there
are several rules and concepts that are implemented inconsistently among SQL databases or that are
specific to PostgreSQL.

1.1. Lexical Structure
SQL input consists of a sequence ofcommands. A command is composed of a sequence oftokens,
terminated by a semicolon (“;”). The end of the input stream also terminates a command. Which
tokens are valid depends on the syntax of the particular command.

A token can be akey word, an identifier, a quoted identifier, a literal (or constant), or a special
character symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not
be if there is no ambiguity (which is generally only the case if a special character is adjacent to some
other token type).

Additionally, commentscan occur in SQL input. They are not tokens, they are effectively equivalent
to whitespace.

For example, the following is (syntactically) valid SQL input:

SELECT * FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
INSERT INTO MY_TABLE VALUES (3, ’hi there’);

This is a sequence of three commands, one per line (although this is not required; more than one
command can be on a line, and commands can usefully be split across lines).

The SQL syntax is not very consistent regarding what tokens identify commands and which are
operands or parameters. The first few tokens are generally the command name, so in the above ex-
ample we would usually speak of a “SELECT”, an “UPDATE”, and an “INSERT” command. But for
instance theUPDATEcommand always requires aSET token to appear in a certain position, and this
particular variation ofINSERT also requires aVALUESin order to be complete. The precise syntax
rules for each command are described in thePostgreSQL Reference Manual.

1.1.1. Identifiers and Key Words

Tokens such asSELECT, UPDATE, or VALUESin the example above are examples ofkey words, that
is, words that have a fixed meaning in the SQL language. The tokensMY_TABLEandA are exam-
ples of identifiers. They identify names of tables, columns, or other database objects, depending on
the command they are used in. Therefore they are sometimes simply called “names”. Key words and
identifiers have the same lexical structure, meaning that one cannot know whether a token is an iden-
tifier or a key word without knowing the language. A complete list of key words can be found in
Appendix B.

SQL identifiers and key words must begin with a letter (a-z , but also letters with diacritical marks
and non-Latin letters) or an underscore (_). Subsequent characters in an identifier or key word can
be letters, digits (0-9), or underscores, although the SQL standard will not define a key word that
contains digits or starts or ends with an underscore.

1



Chapter 1. SQL Syntax

The system uses no more thanNAMEDATALEN-1 characters of an identifier; longer names can be
written in commands, but they will be truncated. By default,NAMEDATALENis 64 so the maxi-
mum identifier length is 63 (but at the time PostgreSQL is built,NAMEDATALENcan be changed in
src/include/postgres_ext.h ).

Identifier and key word names are case insensitive. Therefore

UPDATE MY_TABLE SET A = 5;

can equivalently be written as

uPDaTE my_TabLE SeT a = 5;

A convention often used is to write key words in upper case and names in lower case, e.g.,

UPDATE my_table SET a = 5;

There is a second kind of identifier: thedelimited identifieror quoted identifier. It is formed by en-
closing an arbitrary sequence of characters in double-quotes (" ). A delimited identifier is always an
identifier, never a key word. So"select" could be used to refer to a column or table named “select”,
whereas an unquotedselect would be taken as a key word and would therefore provoke a parse
error when used where a table or column name is expected. The example can be written with quoted
identifiers like this:

UPDATE "my_table" SET "a" = 5;

Quoted identifiers can contain any character other than a double quote itself. To include a double
quote, write two double quotes. This allows constructing table or column names that would otherwise
not be possible, such as ones containing spaces or ampersands. The length limitation still applies.

Quoting an identifier also makes it case-sensitive, whereas unquoted names are always folded to lower
case. For example, the identifiersFOO, foo and"foo" are considered the same by PostgreSQL, but
"Foo" and"FOO" are different from these three and each other.1

1.1.2. Constants

There are three kinds ofimplicitly-typed constantsin PostgreSQL: strings, bit strings, and numbers.
Constants can also be specified with explicit types, which can enable more accurate representation and
more efficient handling by the system. The implicit constants are described below; explicit constants
are discussed afterwards.

1.1.2.1. String Constants

A string constant in SQL is an arbitrary sequence of characters bounded by single quotes (“’”), e.g.,
’This is a string’ . SQL allows single quotes to be embedded in strings by typing two adjacent
single quotes (e.g.,’Dianne”s horse’ ). In PostgreSQL single quotes may alternatively be escaped
with a backslash (“\”, e.g.,’Dianne\’s horse’ ).

C-style backslash escapes are also available:\b is a backspace,\f is a form feed,\n is a newline,
\r is a carriage return,\t is a tab, and\ xxx , wherexxx is an octal number, is the character with

1. The folding of unquoted names to lower case in PostgreSQL is incompatible with the SQL standard, which says that
unquoted names should be folded to upper case. Thus,foo should be equivalent to"FOO" not"foo" according to the standard.
If you want to write portable applications you are advised to always quote a particular name or never quote it.
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the corresponding ASCII code. Any other character following a backslash is taken literally. Thus, to
include a backslash in a string constant, type two backslashes.

The character with the code zero cannot be in a string constant.

Two string constants that are only separated by whitespacewith at least one newlineare concatenated
and effectively treated as if the string had been written in one constant. For example:

SELECT ’foo’
’bar’;

is equivalent to

SELECT ’foobar’;

but

SELECT ’foo’ ’bar’;

is not valid syntax. (This slightly bizarre behavior is specified by SQL; PostgreSQL is following the
standard.)

1.1.2.2. Bit-String Constants

Bit-string constants look like string constants with aB (upper or lower case) immediately before the
opening quote (no intervening whitespace), e.g.,B’1001’ . The only characters allowed within bit-
string constants are0 and1.

Alternatively, bit-string constants can be specified in hexadecimal notation, using a leadingX (upper
or lower case), e.g.,X’1FF’ . This notation is equivalent to a bit-string constant with four binary digits
for each hexadecimal digit.

Both forms of bit-string constant can be continued across lines in the same way as regular string
constants.

1.1.2.3. Numeric Constants

Numeric constants are accepted in these general forms:

digits
digits .[ digits ][e[+-] digits ]
[ digits ]. digits [e[+-] digits ]
digits e[+-] digits

wheredigits is one or more decimal digits (0 through 9). At least one digit must be before or after
the decimal point, if one is used. At least one digit must follow the exponent marker (e), if one is
present. There may not be any spaces or other characters embedded in the constant. Note that any
leading plus or minus sign is not actually considered part of the constant; it is an operator applied to
the constant.

These are some examples of valid numeric constants:

42
3.5
4.
.001
5e2
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1.925e-3

A numeric constant that contains neither a decimal point nor an exponent is initially presumed to be
type integer if its value fits in typeinteger (32 bits); otherwise it is presumed to be typebigint

if its value fits in typebigint (64 bits); otherwise it is taken to be typenumeric . Constants that
contain decimal points and/or exponents are always initially presumed to be typenumeric .

The initially assigned data type of a numeric constant is just a starting point for the type resolution
algorithms. In most cases the constant will be automatically coerced to the most appropriate type de-
pending on context. When necessary, you can force a numeric value to be interpreted as a specific data
type by casting it. For example, you can force a numeric value to be treated as typereal (float4 )
by writing

REAL ’1.23’ -- string style
1.23::REAL -- PostgreSQL (historical) style

1.1.2.4. Constants of Other Types

A constant of anarbitrary type can be entered using any one of the following notations:

type ’ string ’
’ string ’:: type
CAST ( ’ string ’ AS type )

The string’s text is passed to the input conversion routine for the type calledtype . The result is a
constant of the indicated type. The explicit type cast may be omitted if there is no ambiguity as to
the type the constant must be (for example, when it is passed as an argument to a non-overloaded
function), in which case it is automatically coerced.

It is also possible to specify a type coercion using a function-like syntax:

typename ( ’ string ’ )

but not all type names may be used in this way; seeSection 1.2.6for details.

The :: , CAST() , and function-call syntaxes can also be used to specify run-time type conversions of
arbitrary expressions, as discussed inSection 1.2.6. But the formtype ’string ’ can only be used
to specify the type of a literal constant. Another restriction ontype ’string ’ is that it does not
work for array types; use:: or CAST() to specify the type of an array constant.

1.1.2.5. Array constants

The general format of an array constant is the following:

’{ val1 delim val2 delim ... }’

wheredelim is the delimiter character for the type, as recorded in itspg_type entry. (For all built-in
types, this is the comma character “, ”.) Eachval is either a constant of the array element type, or a
subarray. An example of an array constant is

’{{1,2,3},{4,5,6},{7,8,9}}’

This constant is a two-dimensional, 3-by-3 array consisting of three subarrays of integers.
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Individual array elements can be placed between double-quote marks (" ) to avoid ambiguity problems
with respect to whitespace. Without quote marks, the array-value parser will skip leading whitespace.

(Array constants are actually only a special case of the generic type constants discussed in the previous
section. The constant is initially treated as a string and passed to the array input conversion routine.
An explicit type specification might be necessary.)

1.1.3. Operators

An operator is a sequence of up toNAMEDATALEN-1 (63 by default) characters from the following list:

+ - * / < > = ~ ! @ # % ^ & | ‘ ? $

There are a few restrictions on operator names, however:

• $ (dollar) cannot be a single-character operator, although it can be part of a multiple-character
operator name.

• -- and/* cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

• A multiple-character operator name cannot end in+ or - , unless the name also contains at least one
of these characters:

~ ! @ # % ^ & | ‘ ? $

For example,@- is an allowed operator name, but*- is not. This restriction allows PostgreSQL to
parse SQL-compliant queries without requiring spaces between tokens.

When working with non-SQL-standard operator names, you will usually need to separate adjacent
operators with spaces to avoid ambiguity. For example, if you have defined a left unary operator
named@, you cannot writeX*@Y; you must writeX* @Yto ensure that PostgreSQL reads it as two
operator names not one.

1.1.4. Special Characters

Some characters that are not alphanumeric have a special meaning that is different from being an
operator. Details on the usage can be found at the location where the respective syntax element is
described. This section only exists to advise the existence and summarize the purposes of these char-
acters.

• A dollar sign ($) followed by digits is used to represent the positional parameters in the body of a
function definition. In other contexts the dollar sign may be part of an operator name.

• Parentheses (() ) have their usual meaning to group expressions and enforce precedence. In some
cases parentheses are required as part of the fixed syntax of a particular SQL command.

• Brackets ([] ) are used to select the elements of an array. SeeSection 5.12for more information on
arrays.

• Commas (, ) are used in some syntactical constructs to separate the elements of a list.
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• The semicolon (; ) terminates an SQL command. It cannot appear anywhere within a command,
except within a string constant or quoted identifier.

• The colon (: ) is used to select “slices” from arrays. (SeeSection 5.12.) In certain SQL dialects
(such as Embedded SQL), the colon is used to prefix variable names.

• The asterisk (* ) has a special meaning when used in theSELECTcommand or with theCOUNT

aggregate function.

• The period (. ) is used in floating-point constants, and to separate schema, table, and column names.

1.1.5. Comments

A comment is an arbitrary sequence of characters beginning with double dashes and extending to the
end of the line, e.g.:

-- This is a standard SQL92 comment

Alternatively, C-style block comments can be used:

/* multiline comment
* with nesting: /* nested block comment */
*/

where the comment begins with/* and extends to the matching occurrence of*/ . These block com-
ments nest, as specified in SQL99 but unlike C, so that one can comment out larger blocks of code
that may contain existing block comments.

A comment is removed from the input stream before further syntax analysis and is effectively replaced
by whitespace.

1.1.6. Lexical Precedence

Table 1-1shows the precedence and associativity of the operators in PostgreSQL. Most operators
have the same precedence and are left-associative. The precedence and associativity of the operators is
hard-wired into the parser. This may lead to non-intuitive behavior; for example the Boolean operators
< and> have a different precedence than the Boolean operators<= and>=. Also, you will sometimes
need to add parentheses when using combinations of binary and unary operators. For instance

SELECT 5 ! - 6;

will be parsed as

SELECT 5 ! (- 6);

because the parser has no idea -- until it is too late -- that! is defined as a postfix operator, not an infix
one. To get the desired behavior in this case, you must write

SELECT (5 !) - 6;

This is the price one pays for extensibility.
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Table 1-1. Operator Precedence (decreasing)

Operator/Element Associativity Description

. left table/column name separator

:: left PostgreSQL-style typecast

[ ] left array element selection

- right unary minus

^ left exponentiation

* / % left multiplication, division, modulo

+ - left addition, subtraction

IS IS TRUE, IS FALSE, IS

UNKNOWN, IS NULL

ISNULL test for null

NOTNULL test for not null

(any other) left all other native and user-defined
operators

IN set membership

BETWEEN containment

OVERLAPS time interval overlap

LIKE ILIKE SIMILAR string pattern matching

< > less than, greater than

= right equality, assignment

NOT right logical negation

AND left logical conjunction

OR left logical disjunction

Note that the operator precedence rules also apply to user-defined operators that have the same names
as the built-in operators mentioned above. For example, if you define a “+” operator for some custom
data type it will have the same precedence as the built-in “+” operator, no matter what yours does.

When a schema-qualified operator name is used in theOPERATORsyntax, as for example in

SELECT 3 OPERATOR(pg_catalog.+) 4;

theOPERATORconstruct is taken to have the default precedence shown inTable 1-1for “any other”
operator. This is true no matter which specific operator name appears insideOPERATOR().

1.2. Value Expressions
Value expressions are used in a variety of contexts, such as in the target list of theSELECTcommand,
as new column values inINSERT or UPDATE, or in search conditions in a number of commands. The
result of a value expression is sometimes called ascalar, to distinguish it from the result of a table
expression (which is a table). Value expressions are therefore also calledscalar expressions(or even
simplyexpressions). The expression syntax allows the calculation of values from primitive parts using
arithmetic, logical, set, and other operations.

A value expression is one of the following:
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• A constant or literal value; seeSection 1.1.2.

• A column reference.

• A positional parameter reference, in the body of a function declaration.

• An operator invocation.

• A function call.

• An aggregate expression.

• A type cast.

• A scalar subquery.

• Another value expression in parentheses, useful to group subexpressions and override precedence.

In addition to this list, there are a number of constructs that can be classified as an expression but do
not follow any general syntax rules. These generally have the semantics of a function or operator and
are explained in the appropriate location inChapter 6. An example is theIS NULL clause.

We have already discussed constants inSection 1.1.2. The following sections discuss the remaining
options.

1.2.1. Column References

A column can be referenced in the form

correlation . columnname

or

correlation . columnname [ subscript ]

(Here, the brackets[ ] are meant to appear literally.)

correlation is the name of a table (possibly qualified), or an alias for a table defined by means
of a FROMclause, or the key wordsNEWor OLD. (NEWandOLDcan only appear in rewrite rules, while
other correlation names can be used in any SQL statement.) The correlation name and separating dot
may be omitted if the column name is unique across all the tables being used in the current query.
(See alsoChapter 4.)

If column is of an array type, then the optionalsubscript selects a specific element or elements
in the array. If no subscript is provided, then the whole array is selected. (SeeSection 5.12for more
about arrays.)

1.2.2. Positional Parameters

A positional parameter reference is used to indicate a parameter that is supplied externally to an SQL
statement. Parameters are used in SQL function definitions and in prepared queries. The form of a
parameter reference is:

$number

For example, consider the definition of a function,dept , as
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CREATE FUNCTION dept(text) RETURNS dept
AS ’SELECT * FROM dept WHERE name = $1’
LANGUAGE SQL;

Here the$1 will be replaced by the first function argument when the function is invoked.

1.2.3. Operator Invocations

There are three possible syntaxes for an operator invocation:

expression operator expression (binary infix operator)
operator expression (unary prefix operator)
expression operator (unary postfix operator)

where theoperator token follows the syntax rules ofSection 1.1.3, or is one of the keywordsAND,
OR, andNOT, or is a qualified operator name

OPERATOR(schema . operatorname )

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the user.Chapter 6describes the built-in operators.

1.2.4. Function Calls

The syntax for a function call is the name of a function (possibly qualified with a schema name),
followed by its argument list enclosed in parentheses:

function ([ expression [, expression ... ]] )

For example, the following computes the square root of 2:

sqrt(2)

The list of built-in functions is inChapter 6. Other functions may be added by the user.

1.2.5. Aggregate Expressions

An aggregate expressionrepresents the application of an aggregate function across the rows selected
by a query. An aggregate function reduces multiple inputs to a single output value, such as the sum or
average of the inputs. The syntax of an aggregate expression is one of the following:

aggregate_name ( expression )
aggregate_name (ALL expression )
aggregate_name (DISTINCT expression )
aggregate_name ( * )

whereaggregate_name is a previously defined aggregate (possibly a qualified name), andex-
pression is any value expression that does not itself contain an aggregate expression.

The first form of aggregate expression invokes the aggregate across all input rows for which the given
expression yields a non-null value. (Actually, it is up to the aggregate function whether to ignore null
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values or not --- but all the standard ones do.) The second form is the same as the first, sinceALL

is the default. The third form invokes the aggregate for all distinct non-null values of the expression
found in the input rows. The last form invokes the aggregate once for each input row regardless of
null or non-null values; since no particular input value is specified, it is generally only useful for the
count() aggregate function.

For example,count(*) yields the total number of input rows;count(f1) yields the number of input
rows in whichf1 is non-null;count(distinct f1) yields the number of distinct non-null values
of f1 .

The predefined aggregate functions are described inSection 6.14. Other aggregate functions may be
added by the user.

1.2.6. Type Casts

A type cast specifies a conversion from one data type to another. PostgreSQL accepts two equivalent
syntaxes for type casts:

CAST ( expression AS type )
expression :: type

TheCASTsyntax conforms to SQL; the syntax with:: is historical PostgreSQL usage.

When a cast is applied to a value expression of a known type, it represents a run-time type conversion.
The cast will succeed only if a suitable type conversion function is available. Notice that this is subtly
different from the use of casts with constants, as shown inSection 1.1.2.4. A cast applied to an
unadorned string literal represents the initial assignment of a type to a literal constant value, and so it
will succeed for any type (if the contents of the string literal are acceptable input syntax for the data
type).

An explicit type cast may usually be omitted if there is no ambiguity as to the type that a value expres-
sion must produce (for example, when it is assigned to a table column); the system will automatically
apply a type cast in such cases. However, automatic casting is only done for casts that are marked
“OK to apply implicitly” in the system catalogs. Other casts must be invoked with explicit casting
syntax. This restriction is intended to prevent surprising conversions from being applied silently.

It is also possible to specify a type cast using a function-like syntax:

typename ( expression )

However, this only works for types whose names are also valid as function names. For example,dou-

ble precision can’t be used this way, but the equivalentfloat8 can. Also, the namesinterval ,
time , andtimestamp can only be used in this fashion if they are double-quoted, because of syntactic
conflicts. Therefore, the use of the function-like cast syntax leads to inconsistencies and should prob-
ably be avoided in new applications. (The function-like syntax is in fact just a function call. When
one of the two standard cast syntaxes is used to do a run-time conversion, it will internally invoke
a registered function to perform the conversion. By convention, these conversion functions have the
same name as their output type, but this is not something that a portable application should rely on.)

1.2.7. Scalar Subqueries

A scalar subquery is an ordinarySELECTquery in parentheses that returns exactly one row with one
column. (SeeChapter 4for information about writing queries.) TheSELECTquery is executed and
the single returned value is used in the surrounding value expression. It is an error to use a query that
returns more than one row or more than one column as a scalar subquery. (But if, during a particular
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execution, the subquery returns no rows, there is no error; the scalar result is taken to be null.) The
subquery can refer to variables from the surrounding query, which will act as constants during any
one evaluation of the subquery. See alsoSection 6.15.

For example, the following finds the largest city population in each state:

SELECT name, (SELECT max(pop) FROM cities WHERE cities.state = states.name)
FROM states;

1.2.8. Expression Evaluation

The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or
function are not necessarily evaluated left-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote

SELECT true OR somefunc();

thensomefunc() would (probably) not be called at all. The same would be the case if one wrote

SELECT somefunc() OR true;

Note that this is not the same as the left-to-right “short-circuiting” of Boolean operators that is found
in some programming languages.

As a consequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerous to rely on side effects or evaluation order inWHEREandHAVINGclauses, since
those clauses are extensively reprocessed as part of developing an execution plan. Boolean expressions
(AND/OR/NOTcombinations) in those clauses may be reorganized in any manner allowed by the laws
of Boolean algebra.

When it is essential to force evaluation order, aCASEconstruct (seeSection 6.12) may be used. For
example, this is an untrustworthy way of trying to avoid division by zero in aWHEREclause:

SELECT ... WHERE x <> 0 AND y/x > 1.5;

But this is safe:

SELECT ... WHERE CASE WHEN x<> 0 THEN y/x > 1.5 ELSE false END;

A CASEconstruct used in this fashion will defeat optimization attempts, so it should only be done
when necessary.
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Chapter 2. Data Definition
This chapter covers how one creates the database structures that will hold one’s data. In a relational
database, the raw data is stored in tables, so the majority of this chapter is devoted to explaining how
tables are created and modified and what features are available to control what data is stored in the
tables. Subsequently, we discuss how tables can be organized into schemas, and how privileges can
be assigned to tables. Finally, we will briefly look at other features that affect the data storage, such
as views, functions, and triggers. Detailed information on these topics is found in thePostgreSQL
Programmer’s Guide.

2.1. Table Basics
A table in a relational database is much like a table on paper: It consists of rows and columns. The
number and order of the columns is fixed, and each column has a name. The number of rows is
variable -- it reflects how much data is stored at a given moment. SQL does not make any guarantees
about the order of the rows in a table. When a table is read, the rows will appear in random order,
unless sorting is explicitly requested. This is covered inChapter 4. Furthermore, SQL does not assign
unique identifiers to rows, so it is possible to have several completely identical rows in a table. This
is a consequence of the mathematical model that underlies SQL but is usually not desirable. Later in
this chapter we will see how to deal with this issue.

Each column has a data type. The data type constrains the set of possible values that can be assigned
to a column and assigns semantics to the data stored in the column so that it can be used for com-
putations. For instance, a column declared to be of a numerical type will not accept arbitrary text
strings, and the data stored in such a column can be used for mathematical computations. By contrast,
a column declared to be of a character string type will accept almost any kind of data but it does not
lend itself to mathematical calculations, although other operations such as string concatenation are
available.

PostgreSQL includes a sizable set of built-in data types that fit many applications. Users can also
define their own data types. Most built-in data types have obvious names and semantics, so we defer
a detailed explanation toChapter 5. Some of the frequently used data types areinteger for whole
numbers,numeric for possibly fractional numbers,text for character strings,date for dates,time

for time-of-day values, andtimestamp for values containing both date and time.

To create a table, you use the aptly namedCREATE TABLEcommand. In this command you specify
at least a name for the new table, the names of the columns and the data type of each column. For
example:

CREATE TABLE my_first_table (
first_column text,
second_column integer

);

This creates a table namedmy_first_table with two columns. The first column is named
first_column and has a data type oftext ; the second column has the namesecond_column and
the typeinteger . The table and column names follow the identifier syntax explained inSection
1.1.1. The type names are usually also identifiers, but there are some exceptions. Note that the
column list is comma-separated and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give names to your
tables and columns that convey what kind of data they store. So let’s look at a more realistic example:

CREATE TABLE products (
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product_no integer,
name text,
price numeric

);

(Thenumeric type can store fractional components, as would be typical of monetary amounts.)

Tip: When you create many interrelated tables it is wise to choose a consistent naming pattern
for the tables and columns. For instance, there is a choice of using singular or plural nouns for
table names, both of which are favored by some theorist or other.

There is a limit on how many columns a table can contain. Depending on the column types, it is
between 250 and 1600. However, defining a table with anywhere near this many columns is highly
unusual and often a questionable design.

If you don’t need a table anymore, you can remove it using theDROP TABLEcommand. For example:

DROP TABLE my_first_table;
DROP TABLE products;

Attempting to drop a table that does not exist is an error. Nevertheless, it is common in SQL script
files to unconditionally try to drop each table before creating it, ignoring the error messages.

If you need to modify a table that already exists look intoSection 2.6later in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding features to the table definition to ensure data integrity, security, or convenience.
If you are eager to fill your tables with data now you can skip ahead toChapter 3and read the rest of
this chapter later.

2.2. System Columns
Every table has severalsystem columnsthat are implicitly defined by the system. Therefore, these
names cannot be used as names of user-defined columns. (Note that these restrictions are separate
from whether the name is a key word or not; quoting a name will not allow you to escape these
restrictions.) You do not really need to be concerned about these columns, just know they exist.

oid

The object identifier (object ID) of a row. This is a serial number that is automatically added by
PostgreSQL to all table rows (unless the table was createdWITHOUT OIDS, in which case this
column is not present). This column is of typeoid (same name as the column); seeSection 5.10
for more information about the type.

tableoid

The OID of the table containing this row. This attribute is particularly handy for queries that
select from inheritance hierarchies, since without it, it’s difficult to tell which individual table a
row came from. Thetableoid can be joined against theoid column ofpg_class to obtain
the table name.

xmin

The identity (transaction ID) of the inserting transaction for this tuple. (Note: In this context, a
tuple is an individual state of a row; each update of a row creates a new tuple for the same logical
row.)
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cmin

The command identifier (starting at zero) within the inserting transaction.

xmax

The identity (transaction ID) of the deleting transaction, or zero for an undeleted tuple. It is
possible for this field to be nonzero in a visible tuple: That usually indicates that the deleting
transaction hasn’t committed yet, or that an attempted deletion was rolled back.

cmax

The command identifier within the deleting transaction, or zero.

ctid

The physical location of the tuple within its table. Note that although thectid can be used to
locate the tuple very quickly, a row’sctid will change each time it is updated or moved by
VACUUM FULL. Thereforectid is useless as a long-term row identifier. The OID, or even better
a user-defined serial number, should be used to identify logical rows.

2.3. Default Values
A column can be assigned a default value. When a new row is created and no values are specified for
some of the columns, the columns will be filled with their respective default values. A data manipu-
lation command can also request explicitly that a column be set to its default value, without knowing
what this value is. (Details about data manipulation commands are inChapter 3.)

If no default value is declared explicitly, the null value is the default value. This usually makes sense
because a null value can be thought to represent unknown data.

In a table definition, default values are listed after the column data type. For example:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric DEFAULT 9.99

);

The default value may be a scalar expression, which will be evaluated whenever the default value is
inserted (not when the table is created).

2.4. Constraints
Data types are a way to limit the kind of data that can be stored in a table. For many applications,
however, the constraint they provide is too coarse. For example, a column containing a product price
should probably only accept positive values. But there is no data type that accepts only positive num-
bers. Another issue is that you might want to constrain column data with respect to other columns or
rows. For example, in a table containing product information, there should only be one row for each
product number.

To that end, SQL allows you to define constraints on columns and tables. Constraints give you as
much control over the data in your tables as you wish. If a user attempts to store data in a column
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that would violate a constraint, an error is raised. This applies even if the value came from the default
value definition.

2.4.1. Check Constraints

A check constraint is the most generic constraint type. It allows you to specify that the value in a
certain column must satisfy an arbitrary expression. For instance, to require positive product prices,
you could use:

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0)

);

As you see, the constraint definition comes after the data type, just like default value definitions.
Default values and constraints can be listed in any order. A check constraint consists of the key word
CHECKfollowed by an expression in parentheses. The check constraint expression should involve the
column thus constrained, otherwise the constraint would not make too much sense.

You can also give the constraint a separate name. This clarifies error messages and allows you to refer
to the constraint when you need to change it. The syntax is:

CREATE TABLE products (
product_no integer,
name text,
price numeric CONSTRAINT positive_price CHECK (price > 0)

);

So, to specify a named constraint, use the key wordCONSTRAINTfollowed by an identifier followed
by the constraint definition.

A check constraint can also refer to several columns. Say you store a regular price and a discounted
price, and you want to ensure that the discounted price is lower than the regular price.

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0),
discounted_price numeric CHECK (discounted_price > 0),
CHECK (price > discounted_price)

);

The first two constraints should look familiar. The third one uses a new syntax. It is not attached to a
particular column, instead it appears as a separate item in the comma-separated column list. Column
definitions and these constraint definitions can be listed in mixed order.

We say that the first two constraints are column constraints, whereas the third one is a table constraint
because it is written separately from the column definitions. Column constraints can also be written
as table constraints, while the reverse is not necessarily possible. The above example could also be
written as

CREATE TABLE products (
product_no integer,
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name text,
price numeric,
CHECK (price > 0),
discounted_price numeric,
CHECK (discounted_price > 0),
CHECK (price > discounted_price)

);

or even

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0),
discounted_price numeric,
CHECK (discounted_price > 0 AND price > discounted_price)

);

It’s a matter of taste.

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the
null value. Since most expressions will evaluate to the null value if one operand is null they will not
prevent null values in the constrained columns. To ensure that a column does not contain null values,
the not-null constraint described in the next section should be used.

2.4.2. Not-Null Constraints

A not-null constraint simply specifies that a column must not assume the null value. A syntax example:

CREATE TABLE products (
product_no integer NOT NULL,
name text NOT NULL,
price numeric

);

A not-null constraint is always written as a column constraint. A not-null constraint is function-
ally equivalent to creating a check constraintCHECK (column_name IS NOT NULL), but in Post-
greSQL creating an explicit not-null constraint is more efficient. The drawback is that you cannot give
explicit names to not-null constraints created that way.

Of course, a column can have more than one constraint. Just write the constraints after one another:

CREATE TABLE products (
product_no integer NOT NULL,
name text NOT NULL,
price numeric NOT NULL CHECK (price > 0)

);

The order doesn’t matter. It does not necessarily affect in which order the constraints are checked.

The NOT NULLconstraint has an inverse: theNULL constraint. This does not mean that the column
must be null, which would surely be useless. Instead, this simply defines the default behavior that
the column may be null. TheNULL constraint is not defined in the SQL standard and should not be
used in portable applications. (It was only added to PostgreSQL to be compatible with other database
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systems.) Some users, however, like it because it makes it easy to toggle the constraint in a script file.
For example, you could start with

CREATE TABLE products (
product_no integer NULL,
name text NULL,
price numeric NULL

);

and then insert theNOTkey word where desired.

Tip: In most database designs the majority of columns should be marked not null.

2.4.3. Unique Constraints

Unique constraints ensure that the data contained in a column or a group of columns is unique with
respect to all the rows in the table. The syntax is

CREATE TABLE products (
product_no integer UNIQUE,
name text,
price numeric

);

when written as a column constraint, and

CREATE TABLE products (
product_no integer,
name text,
price numeric,
UNIQUE (product_no)

);

when written as a table constraint.

If a unique constraint refers to a group of columns, the columns are listed separated by commas:

CREATE TABLE example (
a integer,
b integer,
c integer,
UNIQUE (a, c)

);

It is also possible to assign names to unique constraints:

CREATE TABLE products (
product_no integer CONSTRAINT must_be_different UNIQUE,
name text,
price numeric

);
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In general, a unique constraint is violated when there are (at least) two rows in the table where the
values of each of the corresponding columns that are part of the constraint are equal. However, null
values are not considered equal in this consideration. That means, in the presence of a multicolumn
unique constraint it is possible to store an unlimited number of rows that contain a null value in at
least one of the constrained columns. This behavior conforms to the SQL standard, but we have heard
that other SQL databases may not follow this rule. So be careful when developing applications that
are intended to be portable.

2.4.4. Primary Keys

Technically, a primary key constraint is simply a combination of a unique constraint and a not-null
constraint. So, the following two table definitions accept the same data:

CREATE TABLE products (
product_no integer UNIQUE NOT NULL,
name text,
price numeric

);

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

);

Primary keys can also constrain more than one column; the syntax is similar to unique constraints:

CREATE TABLE example (
a integer,
b integer,
c integer,
PRIMARY KEY (a, c)

);

A primary key indicates that a column or group of columns can be used as a unique identifier for
rows in the table. (This is a direct consequence of the definition of a primary key. Note that a unique
constraint does not, in fact, provide a unique identifier because it does not exclude null values.) This
is useful both for documentation purposes and for client applications. For example, a GUI application
that allows modifying row values probably needs to know the primary key of a table to be able to
identify rows uniquely.

A table can have at most one primary key (while it can have many unique and not-null constraints).
Relational database theory dictates that every table must have a primary key. This rule is not enforced
by PostgreSQL, but it is usually best to follow it.

2.4.5. Foreign Keys

A foreign key constraint specifies that the values in a column (or a group of columns) must match the
values appearing in some row of another table. We say this maintains thereferential integritybetween
two related tables.

Say you have the product table that we have used several times already:
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CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

);

Let’s also assume you have a table storing orders of those products. We want to ensure that the orders
table only contains orders of products that actually exist. So we define a foreign key constraint in the
orders table that references the products table:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products (product_no) ,
quantity integer

);

Now it is impossible to create orders withproduct_no entries that do not appear in the products
table.

We say that in this situation the orders table is thereferencingtable and the products table is the
referencedtable. Similarly, there are referencing and referenced columns.

You can also shorten the above command to

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products,
quantity integer

);

because in absence of a column list the primary key of the referenced table is used as referenced
column.

A foreign key can also constrain and reference a group of columns. As usual, it then needs to be
written in table constraint form. Here is a contrived syntax example:

CREATE TABLE t1 (
a integer PRIMARY KEY,
b integer,
c integer,
FOREIGN KEY (b, c) REFERENCES other_table (c1, c2)

);

Of course, the number and type of the constrained columns needs to match the number and type of
the referenced columns.

A table can contain more than one foreign key constraint. This is used to implement many-to-many
relationships between tables. Say you have tables about products and orders, but now you want to
allow one order to contain possibly many products (which the structure above did not allow). You
could use this table structure:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

);

CREATE TABLE orders (
order_id integer PRIMARY KEY,
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shipping_address text,
...

);

CREATE TABLE order_items (
product_no integer REFERENCES products,
order_id integer REFERENCES orders,
quantity integer,
PRIMARY KEY (product_no, order_id)

);

Note also that the primary key overlaps with the foreign keys in the last table.

We know that the foreign keys disallow creation of orders that don’t relate to any products. But what
if a product is removed after an order is created that references it? SQL allows you to specify that as
well. Intuitively, we have a few options:

• Disallow deleting a referenced product
• Delete the orders as well
• Something else?

To illustrate this, let’s implement the following policy on the many-to-many relationship example
above: When someone wants to remove a product that is still referenced by an order (via
order_items ), we disallow it. If someone removes an order, the order items are removed as well.

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

);

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,
...

);

CREATE TABLE order_items (
product_no integer REFERENCES products ON DELETE RESTRICT,
order_id integer REFERENCES orders ON DELETE CASCADE,
quantity integer,
PRIMARY KEY (product_no, order_id)

);

Restricting and cascading deletes are the two most common options.RESTRICTcan also be written
asNO ACTIONand it’s also the default if you don’t specify anything. There are two other options
for what should happen with the foreign key columns when a primary key is deleted:SET NULLand
SET DEFAULT. Note that these do not excuse you from observing any constraints. For example, if an
action specifiesSET DEFAULTbut the default value would not satisfy the foreign key, the deletion of
the primary key will fail.

Analogous toON DELETEthere is alsoON UPDATEwhich is invoked when a primary key is changed
(updated). The possible actions are the same.
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More information about updating and deleting data is inChapter 3.

Finally, we should mention that a foreign key must reference columns that are either a primary key or
form a unique constraint. If the foreign key references a unique constraint, there are some additional
possibilities regarding how null values are matched. These are explained in theCREATE TABLEentry
in thePostgreSQL Reference Manual.

2.5. Inheritance
Let’s create two tables. The capitals table contains state capitals which are also cities. Naturally, the
capitals table should inherit from cities.

CREATE TABLE cities (
name text,
population float,
altitude int -- (in ft)

);

CREATE TABLE capitals (
state char(2)

) INHERITS (cities);

In this case, a row of capitalsinheritsall attributes (name, population, and altitude) from its parent,
cities. The type of the attribute name istext , a native PostgreSQL type for variable length ASCII
strings. The type of the attribute population isfloat , a native PostgreSQL type for double precision
floating-point numbers. State capitals have an extra attribute, state, that shows their state. In Post-
greSQL, a table can inherit from zero or more other tables, and a query can reference either all rows
of a table or all rows of a table plus all of its descendants.

Note: The inheritance hierarchy is actually a directed acyclic graph.

For example, the following query finds the names of all cities, including state capitals, that are located
at an altitude over 500ft:

SELECT name, altitude
FROM cities
WHERE altitude > 500;

which returns:

name | altitude
-----------+----------

Las Vegas | 2174
Mariposa | 1953
Madison | 845

On the other hand, the following query finds all the cities that are not state capitals and are situated at
an altitude over 500ft:

SELECT name, altitude
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FROM ONLY cities
WHERE altitude > 500;

name | altitude
-----------+----------

Las Vegas | 2174
Mariposa | 1953

Here the “ONLY” before cities indicates that the query should be run over only cities and not tables
below cities in the inheritance hierarchy. Many of the commands that we have already discussed --
SELECT, UPDATEandDELETE-- support this “ONLY” notation.

In some cases you may wish to know which table a particular tuple originated from. There is a system
column calledTABLEOID in each table which can tell you the originating table:

SELECT c.tableoid, c.name, c.altitude
FROM cities c
WHERE c.altitude > 500;

which returns:

tableoid | name | altitude
----------+-----------+----------

139793 | Las Vegas | 2174
139793 | Mariposa | 1953
139798 | Madison | 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing a join
with pg_class you can see the actual table names:

SELECT p.relname, c.name, c.altitude
FROM cities c, pg_class p
WHERE c.altitude > 500 and c.tableoid = p.oid;

which returns:

relname | name | altitude
----------+-----------+----------

cities | Las Vegas | 2174
cities | Mariposa | 1953
capitals | Madison | 845

Deprecated: In previous versions of PostgreSQL, the default was not to get access to child tables.
This was found to be error prone and is also in violation of the SQL standard. Under the old syntax,
to get the sub-tables you append * to the table name. For example

SELECT * from cities*;

You can still explicitly specify scanning child tables by appending * , as well as explicitly specify
not scanning child tables by writing “ONLY”. But beginning in version 7.1, the default behavior for
an undecorated table name is to scan its child tables too, whereas before the default was not to
do so. To get the old default behavior, set the configuration option SQL_Inheritance to off, e.g.,

SET SQL_Inheritance TO OFF;
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or add a line in your postgresql.conf file.

A limitation of the inheritance feature is that indexes (including unique constraints) and foreign key
constraints only apply to single tables, not to their inheritance children. Thus, in the above example,
specifying that another table’s columnREFERENCES cities(name) would allow the other table
to contain city names but not capital names. This deficiency will probably be fixed in some future
release.

2.6. Modifying Tables
When you create a table and you realize that you made a mistake, or the requirements of the applica-
tion changed, then you can drop the table and create it again. But this is not a convenient option if the
table is already filled with data, or if the table is referenced by other database objects (for instance a
foreign key constraint). Therefore PostgreSQL provides a family of commands to make modifications
on existing tables.

You can

• Add columns,
• Remove columns,
• Add constraints,
• Remove constraints,
• Change default values,
• Rename columns,
• Rename tables.

All these actions are performed using theALTER TABLEcommand.

2.6.1. Adding a Column

To add a column, use this command:

ALTER TABLE products ADD COLUMN description text;

The new column will initially be filled with null values in the existing rows of the table.

You can also define a constraint on the column at the same time, using the usual syntax:

ALTER TABLE products ADD COLUMN description text CHECK (description <> ”);

A new column cannot have a not-null constraint since the column initially has to contain null values.
But you can add a not-null constraint later. Also, you cannot define a default value on a new column.
According to the SQL standard, this would have to fill the new columns in the existing rows with the
default value, which is not implemented yet. But you can adjust the column default later on.

2.6.2. Removing a Column

To remove a column, use this command:

ALTER TABLE products DROP COLUMN description;
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2.6.3. Adding a Constraint

To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (name <> ”);
ALTER TABLE products ADD CONSTRAINT some_name UNIQUE (product_no);
ALTER TABLE products ADD FOREIGN KEY (product_group_id) REFERENCES prod-

uct_groups;

To add a not-null constraint, which cannot be written as a table constraint, use this syntax:

ALTER TABLE products ALTER COLUMN product_no SET NOT NULL;

The constraint will be checked immediately, so the table data must satisfy the constraint before it can
be added.

2.6.4. Removing a Constraint

To remove a constraint you need to know its name. If you gave it a name then that’s easy. Otherwise
the system assigned a generated name, which you need to find out. The psql command\d table-

name can be helpful here; other interfaces might also provide a way to inspect table details. Then the
command is:

ALTER TABLE products DROP CONSTRAINT some_name;

This works the same for all constraint types except not-null constraints. To drop a not null constraint
use

ALTER TABLE products ALTER COLUMN product_no DROP NOT NULL;

(Recall that not-null constraints do not have names.)

2.6.5. Changing the Default

To set a new default for a column, use a command like this:

ALTER TABLE products ALTER COLUMN price SET DEFAULT 7.77;

To remove any default value, use

ALTER TABLE products ALTER COLUMN price DROP DEFAULT;

This is equivalent to setting the default to null, at least in PostgreSQL. As a consequence, it is not an
error to drop a default where one hadn’t been defined, because the default is implicitly the null value.

2.6.6. Renaming a Column

To rename a column:

ALTER TABLE products RENAME COLUMN product_no TO product_number;

24



Chapter 2. Data Definition

2.6.7. Renaming a Table

To rename a table:

ALTER TABLE products RENAME TO items;

2.7. Privileges
When you create a database object, you become its owner. By default, only the owner of an object can
do anything with the object. In order to allow other users to use it,privilegesmust be granted. (There
are also users that have the superuser privilege. Those users can always access any object.)

Note: To change the owner of a table, index, sequence, or view, use the ALTER TABLEcommand.

There are several different privileges:SELECT, INSERT, UPDATE, DELETE, RULE, REFERENCES,
TRIGGER, CREATE, TEMPORARY, EXECUTE, USAGE, andALL PRIVILEGES. For complete informa-
tion on the different types of privileges supported by PostgreSQL, refer to theGRANTreference page.
The following sections and chapters will also show you how those privileges are used.

The right to modify or destroy an object is always the privilege of the owner only.

To assign privileges, theGRANTcommand is used. So, ifjoe is an existing user, andaccounts is an
existing table, the privilege to update the table can be granted with

GRANT UPDATE ON accounts TO joe;

The user executing this command must be the owner of the table. To grant a privilege to a group, use

GRANT SELECT ON accounts TO GROUP staff;

The special “user” namePUBLIC can be used to grant a privilege to every user on the system. Writing
ALL in place of a specific privilege specifies that all privileges will be granted.

To revoke a privilege, use the fittingly namedREVOKEcommand:

REVOKE ALL ON accounts FROM PUBLIC;

The special privileges of the table owner (i.e., the right to doDROP, GRANT, REVOKE, etc) are always
implicit in being the owner, and cannot be granted or revoked. But the table owner can choose to
revoke his own ordinary privileges, for example to make a table read-only for himself as well as
others.

2.8. Schemas
A PostgreSQL database cluster (installation) contains one or more named databases. Users and groups
of users are shared across the entire cluster, but no other data is shared across databases. Any given
client connection to the server can access only the data in a single database, the one specified in the
connection request.
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Note: Users of a cluster do not necessarily have the privilege to access every database in the
cluster. Sharing of user names means that there cannot be different users named, say, joe in
two databases in the same cluster; but the system can be configured to allow joe access to only
some of the databases.

A database contains one or more namedschemas, which in turn contain tables. Schemas also contain
other kinds of named objects, including data types, functions, and operators. The same object name
can be used in different schemas without conflict; for example, bothschema1 andmyschema may
contain tables namedmytable . Unlike databases, schemas are not rigidly separated: a user may
access objects in any of the schemas in the database he is connected to, if he has privileges to do so.

There are several reasons why one might want to use schemas:

• To allow many users to use one database without interfering with each other.

• To organize database objects into logical groups to make them more manageable.

• Third-party applications can be put into separate schemas so they cannot collide with the names of
other objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be
nested.

2.8.1. Creating a Schema

To create a separate schema, use the commandCREATE SCHEMA. Give the schema a name of your
choice. For example:

CREATE SCHEMA myschema;

To create or access objects in a schema, write aqualified nameconsisting of the schema name and
table name separated by a dot:

schema . table

Actually, the even more general syntax

database . schema . table

can be used too, but at present this is just for pro-forma compliance with the SQL standard; if you
write a database name it must be the same as the database you are connected to.

So to create a table in the new schema, use

CREATE TABLE myschema.mytable (
...

);

This works anywhere a table name is expected, including the table modification commands and the
data access commands discussed in the following chapters.

To drop a schema if it’s empty (all objects in it have been dropped), use

DROP SCHEMA myschema;

To drop a schema including all contained objects, use
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DROP SCHEMA myschema CASCADE;

SeeSection 2.10for a description of the general mechanism behind this.

Often you will want to create a schema owned by someone else (since this is one of the ways to
restrict the activities of your users to well-defined namespaces). The syntax for that is:

CREATE SCHEMAschemaname AUTHORIZATION username ;

You can even omit the schema name, in which case the schema name will be the same as the user
name. SeeSection 2.8.6for how this can be useful.

Schema names beginning withpg_ are reserved for system purposes and may not be created by users.

2.8.2. The Public Schema

In the previous sections we created tables without specifying any schema names. By default, such
tables (and other objects) are automatically put into a schema named “public”. Every new database
contains such a schema. Thus, the following are equivalent:

CREATE TABLE products ( ... );

and

CREATE TABLE public.products ( ... );

2.8.3. The Schema Search Path

Qualified names are tedious to write, and it’s often best not to wire a particular schema name into
applications anyway. Therefore tables are often referred to byunqualified names, which consist of
just the table name. The system determines which table is meant by following asearch path, which is
a list of schemas to look in. The first matching table in the search path is taken to be the one wanted.
If there is no match in the search path, an error is reported, even if matching table names exist in other
schemas in the database.

The first schema named in the search path is called the current schema. Aside from being the first
schema searched, it is also the schema in which new tables will be created if theCREATE TABLE

command does not specify a schema name.

To show the current search path, use the following command:

SHOW search_path;

In the default setup this returns:

search_path
--------------

$user,public

The first element specifies that a schema with the same name as the current user is to be searched.
Since no such schema exists yet, this entry is ignored. The second element refers to the public schema
that we have seen already.

The first schema in the search path that exists is the default location for creating new objects. That
is the reason that by default objects are created in the public schema. When objects are referenced
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in any other context without schema qualification (table modification, data modification, or query
commands) the search path is traversed until a matching object is found. Therefore, in the default
configuration, any unqualified access again can only refer to the public schema.

To put our new schema in the path, we use

SET search_path TO myschema,public;

(We omit the$user here because we have no immediate need for it.) And then we can access the
table without schema qualification:

DROP TABLE mytable;

Also, sincemyschema is the first element in the path, new objects would by default be created in it.

We could also have written

SET search_path TO myschema;

Then we no longer have access to the public schema without explicit qualification. There is nothing
special about the public schema except that it exists by default. It can be dropped, too.

See alsoSection 6.13for other ways to access the schema search path.

The search path works in the same way for data type names, function names, and operator names as it
does for table names. Data type and function names can be qualified in exactly the same way as table
names. If you need to write a qualified operator name in an expression, there is a special provision:
you must write

OPERATOR(schema . operator )

This is needed to avoid syntactic ambiguity. An example is

SELECT 3 OPERATOR(pg_catalog.+) 4;

In practice one usually relies on the search path for operators, so as not to have to write anything so
ugly as that.

2.8.4. Schemas and Privileges

By default, users cannot see the objects in schemas they do not own. To allow that, the owner of the
schema needs to grant theUSAGEprivilege on the schema. To allow users to make use of the objects
in the schema, additional privileges may need to be granted, as appropriate for the object.

A user can also be allowed to create objects in someone else’s schema. To allow that, theCREATE

privilege on the schema needs to be granted. Note that by default, everyone has theCREATEprivilege
on the schemapublic . This allows all users that manage to connect to a given database to create
objects there. If you do not want to allow that, you can revoke that privilege:

REVOKE CREATE ON public FROM PUBLIC;

(The first “public” is the schema, the second “public” means “every user”. In the first sense it is
an identifier, in the second sense it is a reserved word, hence the different capitalization; recall the
guidelines fromSection 1.1.1.)
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2.8.5. The System Catalog Schema

In addition topublic and user-created schemas, each database contains apg_catalog schema,
which contains the system tables and all the built-in data types, functions, and operators.pg_catalog

is always effectively part of the search path. If it is not named explicitly in the path then it is implicitly
searchedbeforesearching the path’s schemas. This ensures that built-in names will always be findable.
However, you may explicitly placepg_catalog at the end of your search path if you prefer to have
user-defined names override built-in names.

In PostgreSQL versions before 7.3, table names beginning withpg_ were reserved. This is no longer
true: you may create such a table name if you wish, in any non-system schema. However, it’s best
to continue to avoid such names, to ensure that you won’t suffer a conflict if some future version
defines a system catalog named the same as your table. (With the default search path, an unqualified
reference to your table name would be resolved as the system catalog instead.) System catalogs will
continue to follow the convention of having names beginning withpg_ , so that they will not conflict
with unqualified user-table names so long as users avoid thepg_ prefix.

2.8.6. Usage Patterns

Schemas can be used to organize your data in many ways. There are a few usage patterns that are
recommended and are easily supported by the default configuration:

• If you do not create any schemas then all users access the public schema implicitly. This simu-
lates the situation where schemas are not available at all. This setup is mainly recommended when
there is only a single user or a few cooperating users in a database. This setup also allows smooth
transition from the non-schema-aware world.

• You can create a schema for each user with the same name as that user. Recall that the default
search path starts with$user , which resolves to the user name. Therefore, if each user has a
separate schema, they access their own schemas by default.

If you use this setup then you might also want to revoke access to the public schema (or drop it
altogether), so users are truly constrained to their own schemas.

• To install shared applications (tables to be used by everyone, additional functions provided by third
parties, etc.), put them into separate schemas. Remember to grant appropriate privileges to allow
the other users to access them. Users can then refer to these additional objects by qualifying the
names with a schema name, or they can put the additional schemas into their path, as they choose.

2.8.7. Portability

In the SQL standard, the notion of objects in the same schema being owned by different users does
not exist. Moreover, some implementations don’t allow you to create schemas that have a different
name than their owner. In fact, the concepts of schema and user are nearly equivalent in a database
system that implements only the basic schema support specified in the standard. Therefore, many
users consider qualified names to really consist ofusername . tablename . This is how PostgreSQL
will effectively behave if you create a per-user schema for every user.

Also, there is no concept of apublic schema in the SQL standard. For maximum conformance to
the standard, you should not use (perhaps even remove) thepublic schema.
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Of course, some SQL database systems might not implement schemas at all, or provide namespace
support by allowing (possibly limited) cross-database access. If you need to work with those systems,
then maximum portability would be achieved by not using schemas at all.

2.9. Other Database Objects
Tables are the central objects in a relational database structure, because they hold your data. But they
are not the only objects that exist in a database. Many other kinds of objects can be created to make the
use and management of the data more efficient or convenient. They are not discussed in this chapter,
but we give you a list here so that you are aware of what is possible.

• Views

• Functions, operators, data types, domains

• Triggers and rewrite rules

2.10. Dependency Tracking
When you create complex database structures involving many tables with foreign key constraints,
views, triggers, functions, etc. you will implicitly create a net of dependencies between the objects.
For instance, a table with a foreign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, PostgreSQL makes sure that you cannot drop
objects that other objects still depend on. For example, attempting to drop the products table we had
considered inSection 2.4.5, with the orders table depending on it, would result in an error message
such as this:

DROP TABLE products;
NOTICE: constraint $1 on table orders depends on table products
ERROR: Cannot drop table products because other objects depend on it

Use DROP ... CASCADE to drop the dependent objects too

The error message contains a useful hint: If you don’t want to bother deleting all the dependent objects
individually, you can run

DROP TABLE products CASCADE;

and all the dependent objects will be removed. In this case, it doesn’t remove the orders table, it only
removes the foreign key constraint. (If you want to check whatDROP ... CASCADE will do, run
DROPwithout CASCADEand read theNOTICEmessages.)

All drop commands in PostgreSQL support specifyingCASCADE. Of course, the nature of the possible
dependencies varies with the type of the object. You can also writeRESTRICTinstead ofCASCADEto
get the default behavior which is to restrict drops of objects that other objects depend on.

Note: According to the SQL standard, specifying either RESTRICT or CASCADEis required. No
database system actually implements it that way, but whether the default behavior is RESTRICTor
CASCADEvaries across systems.
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Note: Foreign key constraint dependencies and serial column dependencies from PostgreSQL
versions prior to 7.3 are not maintained or created during the upgrade process. All other depen-
dency types will be properly created during an upgrade.
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The previous chapter discussed how to create tables and other structures to hold your data. Now it is
time to fill the tables with data. This chapter covers how to insert, update, and delete table data. We
also introduce ways to effect automatic data changes when certain events occur: triggers and rewrite
rules. The chapter after this will finally explain how to extract your long-lost data back out of the
database.

3.1. Inserting Data
When a table is created, it contains no data. The first thing to do before a database can be of much use
is to insert data. Data is conceptually inserted one row at a time. Of course you can also insert more
than one row, but there is no way to insert less than one row at a time. Even if you know only some
column values, a complete row must be created.

To create a new row, use theINSERT command. The command requires the table name and a value
for each of the columns of the table. For example, consider the products table fromChapter 2:

CREATE TABLE products (
product_no integer,
name text,
price numeric

);

An example command to insert a row would be:

INSERT INTO products VALUES (1, ’Cheese’, 9.99);

The data values are listed in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columns in the table. To
avoid that you can also list the columns explicitly. For example, both of the following commands have
the same effect as the one above:

INSERT INTO products (product_no, name, price) VALUES (1, ’Cheese’, 9.99);
INSERT INTO products (name, price, product_no) VALUES (’Cheese’, 9.99, 1);

Many users consider it good practice to always list the column names.

If you don’t have values for all the columns, you can omit some of them. In that case, the columns
will be filled with their default values. For example,

INSERT INTO products (product_no, name) VALUES (1, ’Cheese’);
INSERT INTO products VALUES (1, ’Cheese’);

The second form is a PostgreSQL extension. It fills the columns from the left with as many values as
are given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columns or for the entire row:

INSERT INTO products (product_no, name, price) VALUES (1, ’Cheese’, DE-
FAULT);

INSERT INTO products DEFAULT VALUES;
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Tip: To do “bulk loads”, that is, inserting a lot of data, take a look at the COPYcommand (see
PostgreSQL Reference Manual). It is not as flexible as the INSERT command, but more efficient.

3.2. Updating Data
The modification of data that is already in the database is referred to as updating. You can update
individual rows, all the rows in a table, or a subset of all rows. Each column can be updated separately;
the other columns are not affected.

To perform an update, you need three pieces of information:

1. The name of the table and column to update,
2. The new value of the column,
3. Which row(s) to update.

Recall fromChapter 2that SQL does not, in general, provide a unique identifier for rows. Therefore
it is not necessarily possible to directly specify which row to update. Instead, you specify which
conditions a row must meet in order to be updated. Only if you have a primary key in the table
(no matter whether you declared it or not) can you reliably address individual rows, by choosing a
condition that matches the primary key. Graphical database access tools rely on this fact to allow you
to update rows individually.

For example, this command updates all products that have a price of 5 to have a price of 10:

UPDATE products SET price = 10 WHERE price = 5;

This may cause zero, one, or many rows to be updated. It is not an error to attempt an update that does
not match any rows.

Let’s look at that command in detail: First is the key wordUPDATEfollowed by the table name. As
usual, the table name may be schema-qualified, otherwise it is looked up in the path. Next is the key
word SET followed by the column name, an equals sign and the new column value. The new column
value can be any scalar expression, not just a constant. For example, if you want to raise the price of
all products by 10% you could use:

UPDATE products SET price = price * 1.10;

As you see, the expression for the new value can also refer to the old value. We also left out theWHERE

clause. If it is omitted, it means that all rows in the table are updated. If it is present, only those rows
that match the condition after theWHEREare updated. Note that the equals sign in theSETclause is an
assignment while the one in theWHEREclause is a comparison, but this does not create any ambiguity.
Of course, the condition does not have to be an equality test. Many other operators are available (see
Chapter 6). But the expression needs to evaluate to a Boolean result.

You can also update more than one column in anUPDATEcommand by listing more than one assign-
ment in theSETclause. For example:

UPDATE mytable SET a = 5, b = 3, c = 1 WHERE a > 0;
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3.3. Deleting Data
So far we have explained how to add data to tables and how to change data. What remains is to
discuss how to remove data that is no longer needed. Just as adding data is only possible in whole
rows, you can only remove entire rows from a table. In the previous section we discussed that SQL
does not provide a way to directly address individual rows. Therefore, removing rows can only be
done by specifying conditions that the rows to be removed have to match. If you have a primary key
in the table then you can specify the exact row. But you can also remove groups of rows matching a
condition, or you can remove all rows in the table at once.

You use theDELETEcommand to remove rows; the syntax is very similar to theUPDATEcommand.
For instance, to remove all rows from the products table that have a price of 10, use

DELETE FROM products WHERE price = 10;

If you simply write

DELETE FROM products;

then all rows in the table will be deleted! Caveat programmer.
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Chapter 4. Queries
The previous chapters explained how to create tables, how to fill them with data, and how to manipu-
late that data. Now we finally discuss how to retrieve the data out of the database.

4.1. Overview
The process of retrieving or the command to retrieve data from a database is called aquery. In SQL
theSELECTcommand is used to specify queries. The general syntax of theSELECTcommand is

SELECT select_list FROMtable_expression [ sort_specification ]

The following sections describe the details of the select list, the table expression, and the sort specifi-
cation.

The simplest kind of query has the form

SELECT * FROM table1;

Assuming that there is a table calledtable1 , this command would retrieve all rows and all columns
from table1 . (The method of retrieval depends on the client application. For example, the psql
program will display an ASCII-art table on the screen, while client libraries will offer functions to
retrieve individual rows and columns.) The select list specification* means all columns that the table
expression happens to provide. A select list can also select a subset of the available columns or make
calculations using the columns. For example, iftable1 has columns nameda, b, andc (and perhaps
others) you can make the following query:

SELECT a, b + c FROM table1;

(assuming thatb andc are of a numerical data type). SeeSection 4.3for more details.

FROM table1 is a particularly simple kind of table expression: it reads just one table. In general,
table expressions can be complex constructs of base tables, joins, and subqueries. But you can also
omit the table expression entirely and use theSELECTcommand as a calculator:

SELECT 3 * 4;

This is more useful if the expressions in the select list return varying results. For example, you could
call a function this way:

SELECT random();

4.2. Table Expressions
A table expressioncomputes a table. The table expression contains aFROMclause that is optionally
followed byWHERE, GROUP BY, andHAVINGclauses. Trivial table expressions simply refer to a table
on disk, a so-called base table, but more complex expressions can be used to modify or combine base
tables in various ways.

The optionalWHERE, GROUP BY, andHAVING clauses in the table expression specify a pipeline of
successive transformations performed on the table derived in theFROMclause. All these transforma-
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tions produce a virtual table that provides the rows that are passed to the select list to compute the
output rows of the query.

4.2.1. The FROM Clause

The FROMclause derives a table from one or more other tables given in a comma-separated table
reference list.

FROMtable_reference [, table_reference [, ...]]

A table reference may be a table name (possibly schema-qualified), or a derived table such as a
subquery, a table join, or complex combinations of these. If more than one table reference is listed in
theFROMclause they are cross-joined (see below) to form the intermediate virtual table that may then
be subject to transformations by theWHERE, GROUP BY, andHAVINGclauses and is finally the result
of the overall table expression.

When a table reference names a table that is the supertable of a table inheritance hierarchy, the table
reference produces rows of not only that table but all of its subtable successors, unless the keyword
ONLYprecedes the table name. However, the reference produces only the columns that appear in the
named table --- any columns added in subtables are ignored.

4.2.1.1. Joined Tables

A joined table is a table derived from two other (real or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available.

Join Types

Cross join

T1 CROSS JOIN T2

For each combination of rows fromT1 andT2, the derived table will contain a row consisting of
all columns inT1 followed by all columns inT2. If the tables have N and M rows respectively,
the joined table will have N * M rows. A cross join is equivalent to anINNER JOIN ON TRUE.

Tip: FROMT1 CROSS JOIN T2 is equivalent to FROMT1, T2.

Qualified joins

T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 ON boolean_expression
T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 USING ( join col-

umn list )
T1 NATURAL { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2

The wordsINNER andOUTERare optional in all forms.INNER is the default;LEFT, RIGHT, and
FULL imply an outer join.

The join condition is specified in theONor USING clause, or implicitly by the wordNATURAL.
The join condition determines which rows from the two source tables are considered to “match”,
as explained in detail below.

TheONclause is the most general kind of join condition: it takes a Boolean value expression of
the same kind as is used in aWHEREclause. A pair of rows fromT1 andT2 match if theON

expression evaluates to true for them.
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USINGis a shorthand notation: it takes a comma-separated list of column names, which the joined
tables must have in common, and forms a join condition specifying equality of each of these pairs
of columns. Furthermore, the output of aJOIN USING has one column for each of the equated
pairs of input columns, followed by all of the other columns from each table. Thus,USING (a,

b, c) is equivalent toON (t1.a = t2.a AND t1.b = t2.b AND t1.c = t2.c) with the
exception that ifONis used there will be two columnsa, b, andc in the result, whereas with
USING there will be only one of each.

Finally, NATURALis a shorthand form ofUSING: it forms aUSING list consisting of exactly those
column names that appear in both input tables. As withUSING, these columns appear only once
in the output table.

The possible types of qualified join are:

INNER JOIN

For each row R1 of T1, the joined table has a row for each row in T2 that satisfies the join
condition with R1.

LEFT OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join
condition with any row in T2, a joined row is added with null values in columns of T2.
Thus, the joined table unconditionally has at least one row for each row in T1.

RIGHT OUTER JOIN

First, an inner join is performed. Then, for each row in T2 that does not satisfy the join
condition with any row in T1, a joined row is added with null values in columns of T1. This
is the converse of a left join: the result table will unconditionally have a row for each row
in T2.

FULL OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join
condition with any row in T2, a joined row is added with null values in columns of T2.
Also, for each row of T2 that does not satisfy the join condition with any row in T1, a
joined row with null values in the columns of T1 is added.

Joins of all types can be chained together or nested: either or both ofT1 andT2 may be joined tables.
Parentheses may be used aroundJOIN clauses to control the join order. In the absence of parentheses,
JOIN clauses nest left-to-right.

To put this together, assume we have tablest1

num | name
-----+------

1 | a
2 | b
3 | c

andt2

num | value
-----+-------

1 | xxx
3 | yyy
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5 | zzz

then we get the following results for the various joins:

=> SELECT * FROM t1 CROSS JOIN t2;
num | name | num | value

-----+------+-----+-------
1 | a | 1 | xxx
1 | a | 3 | yyy
1 | a | 5 | zzz
2 | b | 1 | xxx
2 | b | 3 | yyy
2 | b | 5 | zzz
3 | c | 1 | xxx
3 | c | 3 | yyy
3 | c | 5 | zzz

(9 rows)

=> SELECT * FROM t1 INNER JOIN t2 ON t1.num = t2.num;
num | name | num | value

-----+------+-----+-------
1 | a | 1 | xxx
3 | c | 3 | yyy

(2 rows)

=> SELECT * FROM t1 INNER JOIN t2 USING (num);
num | name | value

-----+------+-------
1 | a | xxx
3 | c | yyy

(2 rows)

=> SELECT * FROM t1 NATURAL INNER JOIN t2;
num | name | value

-----+------+-------
1 | a | xxx
3 | c | yyy

(2 rows)

=> SELECT * FROM t1 LEFT JOIN t2 ON t1.num = t2.num;
num | name | num | value

-----+------+-----+-------
1 | a | 1 | xxx
2 | b | |
3 | c | 3 | yyy

(3 rows)

=> SELECT * FROM t1 LEFT JOIN t2 USING (num);
num | name | value

-----+------+-------
1 | a | xxx
2 | b |
3 | c | yyy

(3 rows)

=> SELECT * FROM t1 RIGHT JOIN t2 ON t1.num = t2.num;
num | name | num | value
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-----+------+-----+-------
1 | a | 1 | xxx
3 | c | 3 | yyy

| | 5 | zzz
(3 rows)

=> SELECT * FROM t1 FULL JOIN t2 ON t1.num = t2.num;
num | name | num | value

-----+------+-----+-------
1 | a | 1 | xxx
2 | b | |
3 | c | 3 | yyy

| | 5 | zzz
(4 rows)

The join condition specified withONcan also contain conditions that do not relate directly to the join.
This can prove useful for some queries but needs to be thought out carefully. For example:

=> SELECT * FROM t1 LEFT JOIN t2 ON t1.num = t2.num AND t2.value = ’xxx’;
num | name | num | value

-----+------+-----+-------
1 | a | 1 | xxx
2 | b | |
3 | c | |

(3 rows)

4.2.1.2. Table and Column Aliases

A temporary name can be given to tables and complex table references to be used for references to
the derived table in further processing. This is called atable alias.

To create a table alias, write

FROMtable_reference AS alias

or

FROMtable_reference alias

TheASkey word is noise.alias can be any identifier.

A typical application of table aliases is to assign short identifiers to long table names to keep the join
clauses readable. For example:

SELECT * FROM some_very_long_table_name s JOIN another_fairly_long_name a ON s.id = a.num;

The alias becomes the new name of the table reference for the current query -- it is no longer possible
to refer to the table by the original name. Thus

SELECT * FROM my_table AS m WHERE my_table.a > 5;
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is not valid SQL syntax. What will actually happen (this is a PostgreSQL extension to the standard)
is that an implicit table reference is added to theFROMclause, so the query is processed as if it were
written as

SELECT * FROM my_table AS m, my_table AS my_table WHERE my_table.a > 5;

which will result in a cross join, which is usually not what you want.

Table aliases are mainly for notational convenience, but it is necessary to use them when joining a
table to itself, e.g.,

SELECT * FROM my_table AS a CROSS JOIN my_table AS b ...

Additionally, an alias is required if the table reference is a subquery (seeSection 4.2.1.3).

Parentheses are used to resolve ambiguities. The following statement will assign the aliasb to the
result of the join, unlike the previous example:

SELECT * FROM (my_table AS a CROSS JOIN my_table) AS b ...

Another form of table aliasing also gives temporary names to the columns of the table:

FROMtable_reference [AS] alias ( column1 [, column2 [, ...]] )

If fewer column aliases are specified than the actual table has columns, the remaining columns are not
renamed. This syntax is especially useful for self-joins or subqueries.

When an alias is applied to the output of aJOIN clause, using any of these forms, the alias hides the
original names within theJOIN . For example,

SELECT a.* FROM my_table AS a JOIN your_table AS b ON ...

is valid SQL, but

SELECT a.* FROM (my_table AS a JOIN your_table AS b ON ...) AS c

is not valid: the table aliasa is not visible outside the aliasc .

4.2.1.3. Subqueries

Subqueries specifying a derived table must be enclosed in parentheses andmustbe assigned a table
alias name. (SeeSection 4.2.1.2.) For example:

FROM (SELECT * FROM table1) AS alias_name

This example is equivalent toFROM table1 AS alias_name . More interesting cases, which can’t
be reduced to a plain join, arise when the subquery involves grouping or aggregation.

4.2.2. The WHERE Clause

The syntax of theWHEREclause is

WHEREsearch_condition
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wheresearch_condition is any value expression as defined inSection 1.2that returns a value
of typeboolean .

After the processing of theFROMclause is done, each row of the derived virtual table is checked
against the search condition. If the result of the condition is true, the row is kept in the output table,
otherwise (that is, if the result is false or null) it is discarded. The search condition typically references
at least some column in the table generated in theFROMclause; this is not required, but otherwise the
WHEREclause will be fairly useless.

Note: Before the implementation of the JOIN syntax, it was necessary to put the join condition of
an inner join in the WHEREclause. For example, these table expressions are equivalent:

FROM a, b WHERE a.id = b.id AND b.val > 5

and

FROM a INNER JOIN b ON (a.id = b.id) WHERE b.val > 5

or perhaps even

FROM a NATURAL JOIN b WHERE b.val> 5

Which one of these you use is mainly a matter of style. The JOIN syntax in the FROMclause is
probably not as portable to other SQL database products. For outer joins there is no choice in any
case: they must be done in the FROMclause. An ON/USINGclause of an outer join is not equivalent
to a WHEREcondition, because it determines the addition of rows (for unmatched input rows) as
well as the removal of rows from the final result.

Here are some examples ofWHEREclauses:

SELECT ... FROM fdt WHERE c1 > 5

SELECT ... FROM fdt WHERE c1 IN (1, 2, 3)

SELECT ... FROM fdt WHERE c1 IN (SELECT c1 FROM t2)

SELECT ... FROM fdt WHERE c1 IN (SELECT c3 FROM t2 WHERE c2 = fdt.c1 + 10)

SELECT ... FROM fdt WHERE c1 BETWEEN (SELECT c3 FROM t2 WHERE c2 = fdt.c1 + 10) AND 100

SELECT ... FROM fdt WHERE EXISTS (SELECT c1 FROM t2 WHERE c2 > fdt.c1)

fdt is the table derived in theFROMclause. Rows that do not meet the search condition of theWHERE

clause are eliminated fromfdt . Notice the use of scalar subqueries as value expressions. Just like
any other query, the subqueries can employ complex table expressions. Notice howfdt is referenced
in the subqueries. Qualifyingc1 asfdt.c1 is only necessary ifc1 is also the name of a column in
the derived input table of the subquery. Qualifying the column name adds clarity even when it is not
needed. This shows how the column naming scope of an outer query extends into its inner queries.

4.2.3. The GROUP BY and HAVING Clauses

After passing theWHEREfilter, the derived input table may be subject to grouping, using theGROUP

BYclause, and elimination of group rows using theHAVINGclause.

SELECT select_list
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FROM ...
[WHERE ...]
GROUP BYgrouping_column_reference [, grouping_column_reference ]...

TheGROUP BYclause is used to group together rows in a table that share the same values in all the
columns listed. The order in which the columns are listed does not matter. The purpose is to reduce
each group of rows sharing common values into one group row that is representative of all rows in
the group. This is done to eliminate redundancy in the output and/or compute aggregates that apply
to these groups. For instance:

=> SELECT * FROM test1;
x | y

---+---
a | 3
c | 2
b | 5
a | 1

(4 rows)

=> SELECT x FROM test1 GROUP BY x;
x

---
a
b
c

(3 rows)

In the second query, we could not have writtenSELECT * FROM test1 GROUP BY x, because
there is no single value for the columny that could be associated with each group. The grouped-
by columns can be referenced in the select list since they have a known constant value per group.

In general, if a table is grouped, columns that are not used in the grouping cannot be referenced except
in aggregate expressions. An example with aggregate expressions is:

=> SELECT x, sum(y) FROM test1 GROUP BY x;
x | sum

---+-----
a | 4
b | 5
c | 2

(3 rows)

Heresum() is an aggregate function that computes a single value over the entire group. More infor-
mation about the available aggregate functions can be found inSection 6.14.

Tip: Grouping without aggregate expressions effectively calculates the set of distinct values in a
column. This can also be achieved using the DISTINCT clause (see Section 4.3.3).

Here is another example:sum(sales) on a table grouped by product code gives the total sales for
each product, not the total sales on all products.

SELECT product_id, p.name, (sum(s.units) * p.price) AS sales
FROM products p LEFT JOIN sales s USING (product_id)
GROUP BY product_id, p.name, p.price;
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In this example, the columnsproduct_id , p.name , andp.price must be in theGROUP BYclause
since they are referenced in the query select list. (Depending on how exactly the products table is
set up, name and price may be fully dependent on the product ID, so the additional groupings could
theoretically be unnecessary, but this is not implemented yet.) The columns.units does not have
to be in theGROUP BYlist since it is only used in an aggregate expression (sum() ), which represents
the group of sales of a product. For each product, a summary row is returned about all sales of the
product.

In strict SQL,GROUP BYcan only group by columns of the source table but PostgreSQL extends this
to also allowGROUP BYto group by columns in the select list. Grouping by value expressions instead
of simple column names is also allowed.

If a table has been grouped using aGROUP BYclause, but then only certain groups are of interest, the
HAVINGclause can be used, much like aWHEREclause, to eliminate groups from a grouped table. The
syntax is:

SELECT select_list FROM ... [WHERE ...] GROUP BY ... HAVING boolean_expression

Expressions in theHAVINGclause can refer both to grouped expressions and to ungrouped expressions
(which necessarily involve an aggregate function).

Example:

=> SELECT x, sum(y) FROM test1 GROUP BY x HAVING sum(y) > 3;
x | sum

---+-----
a | 4
b | 5

(2 rows)

=> SELECT x, sum(y) FROM test1 GROUP BY x HAVING x < ’c’;
x | sum

---+-----
a | 4
b | 5

(2 rows)

Again, a more realistic example:

SELECT product_id, p.name, (sum(s.units) * (p.price - p.cost)) AS profit
FROM products p LEFT JOIN sales s USING (product_id)
WHERE s.date > CURRENT_DATE - INTERVAL ’4 weeks’
GROUP BY product_id, p.name, p.price, p.cost
HAVING sum(p.price * s.units) > 5000;

In the example above, theWHEREclause is selecting rows by a column that is not grouped, while the
HAVINGclause restricts the output to groups with total gross sales over 5000. Note that the aggregate
expressions do not necessarily need to be the same everywhere.

4.3. Select Lists
As shown in the previous section, the table expression in theSELECTcommand constructs an inter-
mediate virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This table
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is finally passed on to processing by theselect list. The select list determines whichcolumnsof the
intermediate table are actually output.

4.3.1. Select-List Items

The simplest kind of select list is* which emits all columns that the table expression produces.
Otherwise, a select list is a comma-separated list of value expressions (as defined inSection 1.2). For
instance, it could be a list of column names:

SELECT a, b, c FROM ...

The columns namesa, b, andc are either the actual names of the columns of tables referenced in the
FROMclause, or the aliases given to them as explained inSection 4.2.1.2. The name space available in
the select list is the same as in theWHEREclause, unless grouping is used, in which case it is the same
as in theHAVINGclause.

If more than one table has a column of the same name, the table name must also be given, as in

SELECT tbl1.a, tbl2.b, tbl1.c FROM ...

(See alsoSection 4.2.2.)

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to
the returned table. The value expression is evaluated once for each retrieved row, with the row’s values
substituted for any column references. But the expressions in the select list do not have to reference
any columns in the table expression of theFROMclause; they could be constant arithmetic expressions
as well, for instance.

4.3.2. Column Labels

The entries in the select list can be assigned names for further processing. The “further processing” in
this case is an optional sort specification and the client application (e.g., column headers for display).
For example:

SELECT a AS value, b + c AS sum FROM ...

If no output column name is specified via AS, the system assigns a default name. For simple column
references, this is the name of the referenced column. For function calls, this is the name of the
function. For complex expressions, the system will generate a generic name.

Note: The naming of output columns here is different from that done in the FROMclause (see
Section 4.2.1.2). This pipeline will in fact allow you to rename the same column twice, but the
name chosen in the select list is the one that will be passed on.

4.3.3. DISTINCT

After the select list has been processed, the result table may optionally be subject to the elimination
of duplicates. TheDISTINCT key word is written directly after theSELECTto enable this:

SELECT DISTINCT select_list ...
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(Instead ofDISTINCT the wordALL can be used to select the default behavior of retaining all rows.)

Obviously, two rows are considered distinct if they differ in at least one column value. Null values are
considered equal in this comparison.

Alternatively, an arbitrary expression can determine what rows are to be considered distinct:

SELECT DISTINCT ON (expression [, expression ...]) select_list ...

Hereexpression is an arbitrary value expression that is evaluated for all rows. A set of rows for
which all the expressions are equal are considered duplicates, and only the first row of the set is kept
in the output. Note that the “first row” of a set is unpredictable unless the query is sorted on enough
columns to guarantee a unique ordering of the rows arriving at theDISTINCT filter. (DISTINCT ON

processing occurs afterORDER BYsorting.)

The DISTINCT ON clause is not part of the SQL standard and is sometimes considered bad style
because of the potentially indeterminate nature of its results. With judicious use ofGROUP BYand
subselects inFROMthe construct can be avoided, but it is often the most convenient alternative.

4.4. Combining Queries
The results of two queries can be combined using the set operations union, intersection, and differ-
ence. The syntax is

query1 UNION [ALL] query2
query1 INTERSECT [ALL] query2
query1 EXCEPT [ALL] query2

query1 andquery2 are queries that can use any of the features discussed up to this point. Set
operations can also be nested and chained, for example

query1 UNION query2 UNION query3

which really says

( query1 UNION query2 ) UNION query3

UNIONeffectively appends the result ofquery2 to the result ofquery1 (although there is no guar-
antee that this is the order in which the rows are actually returned). Furthermore, it eliminates all
duplicate rows, in the sense ofDISTINCT , unlessUNION ALL is used.

INTERSECT returns all rows that are both in the result ofquery1 and in the result ofquery2 .
Duplicate rows are eliminated unlessINTERSECT ALLis used.

EXCEPTreturns all rows that are in the result ofquery1 but not in the result ofquery2 . (This is
sometimes called thedifferencebetween two queries.) Again, duplicates are eliminated unlessEX-

CEPT ALLis used.

In order to calculate the union, intersection, or difference of two queries, the two queries must be
“union compatible”, which means that they both return the same number of columns, and that the
corresponding columns have compatible data types, as described inSection 7.5.
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4.5. Sorting Rows
After a query has produced an output table (after the select list has been processed) it can optionally
be sorted. If sorting is not chosen, the rows will be returned in random order. The actual order in that
case will depend on the scan and join plan types and the order on disk, but it must not be relied on. A
particular output ordering can only be guaranteed if the sort step is explicitly chosen.

TheORDER BYclause specifies the sort order:

SELECT select_list
FROMtable_expression
ORDER BYcolumn1 [ASC | DESC] [, column2 [ASC | DESC] ...]

column1 , etc., refer to select list columns. These can be either the output name of a column (see
Section 4.3.2) or the number of a column. Some examples:

SELECT a, b FROM table1 ORDER BY a;
SELECT a + b AS sum, c FROM table1 ORDER BY sum;
SELECT a, sum(b) FROM table1 GROUP BY a ORDER BY 1;

As an extension to the SQL standard, PostgreSQL also allows ordering by arbitrary expressions:

SELECT a, b FROM table1 ORDER BY a + b;

References to column names in theFROMclause that are renamed in the select list are also allowed:

SELECT a AS b FROM table1 ORDER BY a;

But these extensions do not work in queries involvingUNION, INTERSECT, or EXCEPT, and are not
portable to other SQL databases.

Each column specification may be followed by an optionalASCor DESCto set the sort direction to
ascending or descending.ASCorder is the default. Ascending order puts smaller values first, where
“smaller” is defined in terms of the< operator. Similarly, descending order is determined with the>

operator.

If more than one sort column is specified, the later entries are used to sort rows that are equal under
the order imposed by the earlier sort columns.

4.6. LIMIT and OFFSET
LIMIT andOFFSETallow you to retrieve just a portion of the rows that are generated by the rest of
the query:

SELECT select_list
FROMtable_expression
[LIMIT { number | ALL }] [OFFSET number ]

If a limit count is given, no more than that many rows will be returned (but possibly less, if the query
itself yields less rows).LIMIT ALL is the same as omitting theLIMIT clause.

OFFSETsays to skip that many rows before beginning to return rows to the client.OFFSET 0 is
the same as omitting theOFFSETclause. If bothOFFSETandLIMIT appear, thenOFFSETrows are
skipped before starting to count theLIMIT rows that are returned.
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When usingLIMIT , it is a good idea to use anORDER BYclause that constrains the result rows into a
unique order. Otherwise you will get an unpredictable subset of the query’s rows---you may be asking
for the tenth through twentieth rows, but tenth through twentieth in what ordering? The ordering is
unknown, unless you specifiedORDER BY.

The query optimizer takesLIMIT into account when generating a query plan, so you are very likely
to get different plans (yielding different row orders) depending on what you give forLIMIT and
OFFSET. Thus, using differentLIMIT /OFFSETvalues to select different subsets of a query resultwill
give inconsistent resultsunless you enforce a predictable result ordering withORDER BY. This is not
a bug; it is an inherent consequence of the fact that SQL does not promise to deliver the results of a
query in any particular order unlessORDER BYis used to constrain the order.
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PostgreSQL has a rich set of native data types available to users. Users may add new types to Post-
greSQL using theCREATE TYPEcommand.

Table 5-1shows all general-purpose data types included in the standard distribution. Most of the
alternative names listed in the “Aliases” column are the names used internally by PostgreSQL for
historical reasons. In addition, some internally used or deprecated types are available, but they are not
listed here.

Table 5-1. Data Types

Type Name Aliases Description

bigint int8 signed eight-byte integer

bigserial serial8 autoincrementing eight-byte
integer

bit fixed-length bit string

bit varying( n) varbit( n) variable-length bit string

boolean bool logical Boolean (true/false)

box rectangular box in 2D plane

bytea binary data

character varying( n) varchar( n) variable-length character string

character( n) char( n) fixed-length character string

cidr IP network address

circle circle in 2D plane

date calendar date (year, month, day)

double precision float8 double precision floating-point
number

inet IP host address

integer int , int4 signed four-byte integer

interval( p) general-use time span

line infinite line in 2D plane (not
implemented)

lseg line segment in 2D plane

macaddr MAC address

money currency amount

numeric [ ( p, s ) ] decimal [ ( p, s ) ] exact numeric with selectable
precision

path open and closed geometric path
in 2D plane

point geometric point in 2D plane

polygon closed geometric path in 2D
plane

real float4 single precision floating-point
number

smallint int2 signed two-byte integer
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Type Name Aliases Description

serial serial4 autoincrementing four-byte
integer

text variable-length character string

time [ ( p) ] [ without

time zone ]

time of day

time [ ( p) ] with time

zone

timetz time of day, including time zone

timestamp [ ( p) ]

without time zone

timestamp date and time

timestamp [ ( p) ] [ with

time zone ]

timestamptz date and time, including time
zone

Compatibility: The following types (or spellings thereof) are specified by SQL: bit , bit varying ,
boolean , char , character varying , character , varchar , date , double precision , integer ,
interval , numeric , decimal , real , smallint , time , timestamp (both with or without time zone).

Each data type has an external representation determined by its input and output functions. Many of
the built-in types have obvious external formats. However, several types are either unique to Post-
greSQL, such as open and closed paths, or have several possibilities for formats, such as the date
and time types. Most of the input and output functions corresponding to the base types (e.g., integers
and floating-point numbers) do some error-checking. Some of the input and output functions are not
invertible. That is, the result of an output function may lose precision when compared to the original
input.

Some of the operators and functions (e.g., addition and multiplication) do not perform run-time error-
checking in the interests of improving execution speed. On some systems, for example, the numeric
operators for some data types may silently underflow or overflow.

5.1. Numeric Types
Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte floating-point num-
bers, and fixed-precision decimals.Table 5-2lists the available types.

Table 5-2. Numeric Types

Type name Storage size Description Range

smallint 2 bytes small range
fixed-precision

-32768 to +32767

integer 4 bytes usual choice for
fixed-precision

-2147483648 to
+2147483647

bigint 8 bytes large range
fixed-precision

-
9223372036854775808
to
9223372036854775807
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Type name Storage size Description Range

decimal variable user-specified precision,
exact

no limit

numeric variable user-specified precision,
exact

no limit

real 4 bytes variable-precision,
inexact

6 decimal digits
precision

double precision 8 bytes variable-precision,
inexact

15 decimal digits
precision

serial 4 bytes autoincrementing
integer

1 to 2147483647

bigserial 8 bytes large autoincrementing
integer

1 to
9223372036854775807

The syntax of constants for the numeric types is described inSection 1.1.2. The numeric types have a
full set of corresponding arithmetic operators and functions. Refer toChapter 6for more information.
The following sections describe the types in detail.

5.1.1. The Integer Types

The typessmallint , integer , bigint store whole numbers, that is, numbers without fractional
components, of various ranges. Attempts to store values outside of the allowed range will result in an
error.

The typeinteger is the usual choice, as it offers the best balance between range, storage size, and
performance. Thesmallint type is generally only used if disk space is at a premium. Thebigint

type should only be used if theinteger range is not sufficient, because the latter is definitely faster.

Thebigint type may not function correctly on all platforms, since it relies on compiler support for
eight-byte integers. On a machine without such support,bigint acts the same asinteger (but still
takes up eight bytes of storage). However, we are not aware of any reasonable platform where this is
actually the case.

SQL only specifies the integer typesinteger (or int ) andsmallint . The typebigint , and the
type namesint2 , int4 , andint8 are extensions, which are shared with various other SQL database
systems.

Note: If you have a column of type smallint or bigint with an index, you may encounter prob-
lems getting the system to use that index. For instance, a clause of the form

... WHERE smallint_column = 42

will not use an index, because the system assigns type integer to the constant 42, and Post-
greSQL currently cannot use an index when two different data types are involved. A workaround
is to single-quote the constant, thus:

... WHERE smallint_column = ’42’

This will cause the system to delay type resolution and will assign the right type to the constant.
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5.1.2. Arbitrary Precision Numbers

The typenumeric can store numbers with up to 1,000 digits of precision and perform calculations
exactly. It is especially recommended for storing monetary amounts and other quantities where ex-
actness is required. However, thenumeric type is very slow compared to the floating-point types
described in the next section.

In what follows we use these terms: Thescaleof a numeric is the count of decimal digits in the
fractional part, to the right of the decimal point. Theprecisionof a numeric is the total count of
significant digits in the whole number, that is, the number of digits to both sides of the decimal point.
So the number 23.5141 has a precision of 6 and a scale of 4. Integers can be considered to have a
scale of zero.

Both the precision and the scale of the numeric type can be configured. To declare a column of type
numeric use the syntax

NUMERIC(precision , scale )

The precision must be positive, the scale zero or positive. Alternatively,

NUMERIC(precision )

selects a scale of 0. Specifying

NUMERIC

without any precision or scale creates a column in which numeric values of any precision and scale
can be stored, up to the implementation limit on precision. A column of this kind will not coerce
input values to any particular scale, whereasnumeric columns with a declared scale will coerce input
values to that scale. (The SQL standard requires a default scale of 0, i.e., coercion to integer precision.
We find this a bit useless. If you’re concerned about portability, always specify the precision and scale
explicitly.)

If the precision or scale of a value is greater than the declared precision or scale of a column, the
system will attempt to round the value. If the value cannot be rounded so as to satisfy the declared
limits, an error is raised.

The typesdecimal andnumeric are equivalent. Both types are part of the SQL standard.

5.1.3. Floating-Point Types

The data typesreal anddouble precision are inexact, variable-precision numeric types. In prac-
tice, these types are usually implementations of IEEE Standard 754 for Binary Floating-Point Arith-
metic (single and double precision, respectively), to the extent that the underlying processor, operating
system, and compiler support it.

Inexact means that some values cannot be converted exactly to the internal format and are stored as
approximations, so that storing and printing back out a value may show slight discrepancies. Man-
aging these errors and how they propagate through calculations is the subject of an entire branch of
mathematics and computer science and will not be discussed further here, except for the following
points:

• If you require exact storage and calculations (such as for monetary amounts), use thenumeric

type instead.
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• If you want to do complicated calculations with these types for anything important, especially
if you rely on certain behavior in boundary cases (infinity, underflow), you should evaluate the
implementation carefully.

• Comparing two floating-point values for equality may or may not work as expected.

Normally, thereal type has a range of at least -1E+37 to +1E+37 with a precision of at least 6 decimal
digits. Thedouble precision type normally has a range of around -1E+308 to +1E+308 with a
precision of at least 15 digits. Values that are too large or too small will cause an error. Rounding
may take place if the precision of an input number is too high. Numbers too close to zero that are not
representable as distinct from zero will cause an underflow error.

5.1.4. The Serial Types

The serial data type is not a true type, but merely a notational convenience for setting up identi-
fier columns (similar to theAUTO_INCREMENTproperty supported by some other databases). In the
current implementation, specifying

CREATE TABLEtablename (
colname SERIAL

);

is equivalent to specifying:

CREATE SEQUENCEtablename _colname _seq;
CREATE TABLEtablename (

colname integer DEFAULT nextval(’ tablename _colname _seq’) NOT NULL
);

Thus, we have created an integer column and arranged for its default values to be assigned from a
sequence generator. ANOT NULLconstraint is applied to ensure that a null value cannot be explicitly
inserted, either. In most cases you would also want to attach aUNIQUEor PRIMARY KEYconstraint
to prevent duplicate values from being inserted by accident, but this is not automatic.

To use aserial column to insert the next value of the sequence into the table, specify that theserial

column should be assigned the default value. This can be done either be excluding from the column
from the list of columns in theINSERT statement, or through the use of theDEFAULTkeyword.

The type namesserial andserial4 are equivalent: both createinteger columns. The type names
bigserial andserial8 work just the same way, except that they create abigint column.bigse-

rial should be used if you anticipate the use of more than 231 identifiers over the lifetime of the table.

The sequence created by aserial type is automatically dropped when the owning column is dropped,
and cannot be dropped otherwise. (This was not true in PostgreSQL releases before 7.3. Note that this
automatic drop linkage will not occur for a sequence created by reloading a dump from a pre-7.3
database; the dump file does not contain the information needed to establish the dependency link.)
Furthermore, this dependency between sequence and column is made only for theserial column
itself; if any other columns reference the sequence (perhaps by manually calling thenextval() )
function), they may be broken if the sequence is removed. Usingserial columns in fashion is
considered bad form.

Note: Prior to PostgreSQL 7.3, serial implied UNIQUE. This is no longer automatic. If you wish
a serial column to be UNIQUEor a PRIMARY KEYit must now be specified, just as with any other
data type.
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5.2. Monetary Type

Note: The money type is deprecated. Use numeric or decimal instead, in combination with the
to_char function. The money type may become a locale-aware layer over the numeric type in a
future release.

Themoney type stores a currency amount with fixed decimal point representation; seeTable 5-3. The
output format is locale-specific.

Input is accepted in a variety of formats, including integer and floating-point literals, as well as “typ-
ical” currency formatting, such as’$1,000.00’ . Output is in the latter form.

Table 5-3. Monetary Types

Type Name Storage Description Range

money 4 bytes currency amount -21474836.48 to
+21474836.47

5.3. Character Types

Table 5-4. Character Types

Type name Description

character varying( n) , varchar( n) variable-length with limit

character( n) , char( n) fixed-length, blank padded

text variable unlimited length

Table 5-4shows the general-purpose character types available in PostgreSQL.

SQL defines two primary character types:character varying( n) andcharacter( n) , wheren
is a positive integer. Both of these types can store strings up ton characters in length. An attempt to
store a longer string into a column of these types will result in an error, unless the excess characters are
all spaces, in which case the string will be truncated to the maximum length. (This somewhat bizarre
exception is required by the SQL standard.) If the string to be stored is shorter than the declared
length, values of typecharacter will be space-padded; values of typecharacter varying will
simply store the shorter string.

Note: If one explicitly casts a value to character varying( n) or character( n) , then an over-
length value will be truncated to n characters without raising an error. (This too is required by the
SQL standard.)

Note: Prior to PostgreSQL 7.2, strings that were too long were always truncated without raising
an error, in either explicit or implicit casting contexts.
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The notationsvarchar( n) andchar( n) are aliases forcharacter varying( n) andcharac-

ter( n) , respectively.character without length specifier is equivalent tocharacter(1) ; if char-

acter varying is used without length specifier, the type accepts strings of any size. The latter is a
PostgreSQL extension.

In addition, PostgreSQL supports the more generaltext type, which stores strings of any length.
Unlike character varying , text does not require an explicit declared upper limit on the size of
the string. Although the typetext is not in the SQL standard, many other RDBMS packages have it
as well.

The storage requirement for data of these types is 4 bytes plus the actual string, and in case ofchar-

acter plus the padding. Long strings are compressed by the system automatically, so the physical
requirement on disk may be less. Long values are also stored in background tables so they don’t
interfere with rapid access to the shorter column values. In any case, the longest possible character
string that can be stored is about 1 GB. (The maximum value that will be allowed forn in the data
type declaration is less than that. It wouldn’t be very useful to change this because with multibyte
character encodings the number of characters and bytes can be quite different anyway. If you desire
to store long strings with no specific upper limit, usetext or character varying without a length
specifier, rather than making up an arbitrary length limit.)

Tip: There are no performance differences between these three types, apart from the increased
storage size when using the blank-padded type.

Refer toSection 1.1.2.1for information about the syntax of string literals, and toChapter 6for infor-
mation about available operators and functions.

Example 5-1. Using the character types

CREATE TABLE test1 (a character(4));
INSERT INTO test1 VALUES (’ok’);
SELECT a, char_length(a) FROM test1; -- ➊

a | char_length

------+-------------

ok | 4

CREATE TABLE test2 (b varchar(5));
INSERT INTO test2 VALUES (’ok’);
INSERT INTO test2 VALUES (’good ’);
INSERT INTO test2 VALUES (’too long’);
ERROR: value too long for type character varying(5)

INSERT INTO test2 VALUES (’too long’::varchar(5)); -- explicit truncation
SELECT b, char_length(b) FROM test2;

b | char_length

-------+-------------

ok | 2

good | 5

too l | 5

➊ Thechar_length function is discussed inSection 6.4.
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There are two other fixed-length character types in PostgreSQL, shown inTable 5-5. Thename type
existsonly for storage of internal catalog names and is not intended for use by the general user. Its
length is currently defined as 64 bytes (63 usable characters plus terminator) but should be referenced
using the constantNAMEDATALEN. The length is set at compile time (and is therefore adjustable for
special uses); the default maximum length may change in a future release. The type"char" (note the
quotes) is different fromchar(1) in that it only uses one byte of storage. It is internally used in the
system catalogs as a poor-man’s enumeration type.

Table 5-5. Specialty Character Types

Type Name Storage Description

"char" 1 byte single character internal type

name 64 bytes sixty-three character internal
type

5.4. Binary Strings
Thebytea data type allows storage of binary strings; seeTable 5-6.

Table 5-6. Binary String Types

Type Name Storage Description

bytea 4 bytes plus the actual binary
string

Variable (not specifically
limited) length binary string

A binary string is a sequence of octets (or bytes). Binary strings are distinguished from characters
strings by two characteristics: First, binary strings specifically allow storing octets of zero value and
other “non-printable” octets. Second, operations on binary strings process the actual bytes, whereas
the encoding and processing of character strings depends on locale settings.

When enteringbytea values, octets of certain valuesmustbe escaped (but all octet valuesmaybe
escaped) when used as part of a string literal in an SQL statement. In general, to escape an octet, it is
converted into the three-digit octal number equivalent of its decimal octet value, and preceded by two
backslashes. Some octet values have alternate escape sequences, as shown inTable 5-7.

Table 5-7.bytea Literal Escaped Octets

Decimal Octet
Value

Description Input Escaped
Representation

Example Printed Result

0 zero octet ’\\000’ SELECT

’\\000’::bytea;

\000

39 single quote ’\” or ’\\047’ SELECT

’\”::bytea;

’

92 backslash ’\\\\’ or
’\\134’

SELECT

’\\\\’::bytea;

\\

Note that the result in each of the examples inTable 5-7was exactly one octet in length, even though
the output representation of the zero octet and backslash are more than one character.Bytea out-
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put octets are also escaped. In general, each “non-printable” octet decimal value is converted into its
equivalent three digit octal value, and preceded by one backslash. Most “printable” octets are repre-
sented by their standard representation in the client character set. The octet with decimal value 92
(backslash) has a special alternate output representation. Details are inTable 5-8.

Table 5-8.bytea Output Escaped Octets

Decimal Octet
Value

Description Output Escaped
Representation

Example Printed Result

92 backslash \\ SELECT

’\\134’::bytea;

\\

0 to 31 and 127 to
255

“non-printable”
octets

\### (octal

value)

SELECT

’\\001’::bytea;

\001

32 to 126 “printable” octets ASCII
representation

SELECT

’\\176’::bytea;

~

To use thebytea escaped octet notation, string literals (input strings) must contain two backslashes
because they must pass through two parsers in the PostgreSQL server. The first backslash is inter-
preted as an escape character by the string-literal parser, and therefore is consumed, leaving the char-
acters that follow. The remaining backslash is recognized by thebytea input function as the prefix
of a three digit octal value. For example, a string literal passed to the backend as’\\001’ becomes
’\001’ after passing through the string-literal parser. The’\001’ is then sent to thebytea input
function, where it is converted to a single octet with a decimal value of 1.

For a similar reason, a backslash must be input as’\\\\’ (or ’\\134’ ). The first and third back-
slashes are interpreted as escape characters by the string-literal parser, and therefore are consumed,
leaving two backslashes in the string passed to thebytea input function, which interprets them as
representing a single backslash. For example, a string literal passed to the server as’\\\\’ becomes
’\\’ after passing through the string-literal parser. The’\\’ is then sent to thebytea input function,
where it is converted to a single octet with a decimal value of 92.

A single quote is a bit different in that it must be input as’\” (or ’\\047’ ), not as ’\\” . This is
because, while the literal parser interprets the single quote as a special character, and will consume
the single backslash, thebytea input function doesnot recognize a single quote as a special octet.
Therefore a string literal passed to the backend as’\” becomes”’ after passing through the string-
literal parser. The”’ is then sent to thebytea input function, where it is retains its single octet
decimal value of 39.

Depending on the front end to PostgreSQL you use, you may have additional work to do in terms
of escaping and unescapingbytea strings. For example, you may also have to escape line feeds and
carriage returns if your interface automatically translates these. Or you may have to double up on
backslashes if the parser for your language or choice also treats them as an escape character.

The SQL standard defines a different binary string type, calledBLOBor BINARY LARGE OBJECT.
The input format is different compared tobytea , but the provided functions and operators are mostly
the same.

5.5. Date/Time Types
PostgreSQL supports the full set of SQL date and time types, shown inTable 5-9.
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Table 5-9. Date/Time Types

Type Description Storage Earliest Latest Resolution

timestamp [

( p) ] [

without

time zone ]

both date and
time

8 bytes 4713 BC AD 1465001 1 microsecond /
14 digits

timestamp [

( p) ] with

time zone

both date and
time

8 bytes 4713 BC AD 1465001 1 microsecond /
14 digits

interval [

( p) ]

time intervals 12 bytes -178000000
years

178000000
years

1 microsecond

date dates only 4 bytes 4713 BC 32767 AD 1 day

time [ ( p)

] [ without

time zone ]

times of day
only

8 bytes 00:00:00.00 23:59:59.99 1 microsecond

time [ ( p)

] with time

zone

times of day
only

12 bytes 00:00:00.00+1223:59:59.99-121 microsecond

time , timestamp , andinterval accept an optional precision valuep which specifies the number
of fractional digits retained in the seconds field. By default, there is no explicit bound on precision.
The allowed range ofp is from 0 to 6 for thetimestamp andinterval types.

Note: When timestamp values are stored as double precision floating-point numbers (currently
the default), the effective limit of precision may be less than 6, since timestamp values are stored
as seconds since 2000-01-01. Microsecond precision is achieved for dates within a few years of
2000-01-01, but the precision degrades for dates further away. When timestamps are stored as
eight-byte integers (a compile-time option), microsecond precision is available over the full range
of values.

For thetime types, the allowed range ofp is from 0 to 6 when eight-byte integer storage is used, or
from 0 to 10 when floating-point storage is used.

Time zones, and time-zone conventions, are influenced by political decisions, not just earth geometry.
Time zones around the world became somewhat standardized during the 1900’s, but continue to be
prone to arbitrary changes. PostgreSQL uses your operating system’s underlying features to provide
output time-zone support, and these systems usually contain information for only the time period
1902 through 2038 (corresponding to the full range of conventional Unix system time).timestamp

with time zone andtime with time zone will use time zone information only within that year
range, and assume that times outside that range are in UTC.

The typetime with time zone is defined by the SQL standard, but the definition exhibits prop-
erties which lead to questionable usefulness. In most cases, a combination ofdate , time , times-

tamp without time zone andtimestamp with time zone should provide a complete range
of date/time functionality required by any application.

The typesabstime andreltime are lower precision types which are used internally. You are dis-
couraged from using these types in new applications and are encouraged to move any old ones over
when appropriate. Any or all of these internal types might disappear in a future release.
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5.5.1. Date/Time Input

Date and time input is accepted in almost any reasonable format, including ISO 8601,
SQL-compatible, traditional PostgreSQL, and others. For some formats, ordering of month and
day in date input can be ambiguous and there is support for specifying the expected ordering of
these fields. The commandSET DateStyle TO ’US’ or SET DateStyle TO ’NonEuropean’

specifies the variant “month before day”, the commandSET DateStyle TO ’European’ sets the
variant “day before month”.

PostgreSQL is more flexible in handling date/time than the SQL standard requires. SeeAppendix A
for the exact parsing rules of date/time input and for the recognized text fields including months, days
of the week, and time zones.

Remember that any date or time literal input needs to be enclosed in single quotes, like text strings.
Refer toSection 1.1.2.4for more information. SQL requires the following syntax

type [ ( p) ] ’ value ’

wherep in the optional precision specification is an integer corresponding to the number of fractional
digits in the seconds field. Precision can be specified fortime , timestamp , andinterval types.

5.5.1.1. Dates

Table 5-10shows some possible inputs for thedate type.

Table 5-10. Date Input

Example Description

January 8, 1999 unambiguous

1999-01-08 ISO-8601 format, preferred

1/8/1999 U.S.; read as August 1 in European mode

8/1/1999 European; read as August 1 in U.S. mode

1/18/1999 U.S.; read as January 18 in any mode

19990108 ISO-8601 year, month, day

990108 ISO-8601 year, month, day

1999.008 year and day of year

99008 year and day of year

J2451187 Julian day

January 8, 99 BC year 99 before the Common Era

5.5.1.2. Times

The time type can be specified astime or astime without time zone . The optional precision
p should be between 0 and 6, and defaults to the precision of the input time literal.

Table 5-11shows the validtime inputs.

Table 5-11. Time Input

Example Description

04:05:06.789 ISO 8601
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Example Description

04:05:06 ISO 8601

04:05 ISO 8601

040506 ISO 8601

04:05 AM same as 04:05; AM does not affect value

04:05 PM same as 16:05; input hour must be <= 12

allballs same as 00:00:00

The typetime with time zone accepts all input also legal for thetime type, appended with a
legal time zone, as shown inTable 5-12.

Table 5-12. Time With Time Zone Input

Example Description

04:05:06.789-8 ISO 8601

04:05:06-08:00 ISO 8601

04:05-08:00 ISO 8601

040506-08 ISO 8601

Refer toTable 5-13for more examples of time zones.

5.5.1.3. Time stamps

The time stamp types aretimestamp [ ( p) ] without time zone andtimestamp [ ( p) ]

with time zone . Writing just timestamp is equivalent totimestamp without time zone .

Note: Prior to PostgreSQL 7.3, writing just timestamp was equivalent to timestamp with time

zone . This was changed for SQL spec compliance.

Valid input for the time stamp types consists of a concatenation of a date and a time, followed by an
optionalADor BC, followed by an optional time zone. (SeeTable 5-13.) Thus

1999-01-08 04:05:06

and

1999-01-08 04:05:06 -8:00

are valid values, which follow the ISO 8601 standard. In addition, the wide-spread format

January 8 04:05:06 1999 PST

is supported.

The optional precisionp should be between 0 and 6, and defaults to the precision of the inputtimes-

tamp literal.

For timestamp without time zone , any explicit time zone specified in the input is silently ig-
nored. That is, the resulting date/time value is derived from the explicit date/time fields in the input
value, and is not adjusted for time zone.
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For timestamp with time zone , the internally stored value is always in UTC (GMT). An input
value that has an explicit time zone specified is converted to UTC using the appropriate offset for
that time zone. If no time zone is stated in the input string, then it is assumed to be in the time zone
indicated by the system’sTimeZone parameter, and is converted to UTC using the offset for the
TimeZone zone.

When atimestamp with time zone value is output, it is always converted from UTC to the
currentTimeZone zone, and displayed as local time in that zone. To see the time in another time
zone, either changeTimeZone or use theAT TIME ZONEconstruct (seeSection 6.8.3).

Conversions betweentimestamp without time zone andtimestamp with time zone nor-
mally assume that thetimestamp without time zone value should be taken or given asTime-

Zone local time. A different zone reference can be specified for the conversion usingAT TIME ZONE.

Table 5-13. Time Zone Input

Time Zone Description

PST Pacific Standard Time

-8:00 ISO-8601 offset for PST

-800 ISO-8601 offset for PST

-8 ISO-8601 offset for PST

5.5.1.4. Intervals

interval values can be written with the following syntax:

Quantity Unit [Quantity Unit...] [Direction]
@ Quantity Unit [Quantity Unit...] [Direction]

where:Quantity is a number (possibly signed),Unit is second , minute , hour , day , week, month ,
year , decade , century , millennium , or abbreviations or plurals of these units;Direction can
beago or empty. The at sign (@) is optional noise. The amounts of different units are implicitly added
up with appropriate sign accounting.

Quantities of days, hours, minutes, and seconds can be specified without explicit unit markings. For
example,’1 12:59:10’ is read the same as’1 day 12 hours 59 min 10 sec’ .

The optional precisionp should be between 0 and 6, and defaults to the precision of the input literal.

5.5.1.5. Special values

The following SQL-compatible functions can be used as date or time values for the corresponding data
type: CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP. The latter two accept an optional
precision specification. (See alsoSection 6.8.4.)

PostgreSQL also supports several special date/time input values for convenience, as shown inTable
5-14. The valuesinfinity and-infinity are specially represented inside the system and will be
displayed the same way; but the others are simply notational shorthands that will be converted to
ordinary date/time values when read.

Table 5-14. Special Date/Time Inputs

Input string Description
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Input string Description

epoch 1970-01-01 00:00:00+00 (Unix system time
zero)

infinity later than all other timestamps (not available for
typedate )

-infinity earlier than all other timestamps (not available
for typedate )

now current transaction time

today midnight today

tomorrow midnight tomorrow

yesterday midnight yesterday

zulu , allballs , z 00:00:00.00 GMT

5.5.2. Date/Time Output

Output formats can be set to one of the four styles ISO 8601, SQL (Ingres), traditional PostgreSQL,
and German, using theSET DateStyle . The default is the ISO format. (The SQL standard requires
the use of the ISO 8601 format. The name of the “SQL” output format is a historical accident.)Table
5-15shows examples of each output style. The output of thedate andtime types is of course only
the date or time part in accordance with the given examples.

Table 5-15. Date/Time Output Styles

Style Specification Description Example

ISO ISO 8601/SQL standard 1997-12-17 07:37:16-08

SQL traditional style 12/17/1997 07:37:16.00 PST

PostgreSQL original style Wed Dec 17 07:37:16 1997 PST

German regional style 17.12.1997 07:37:16.00 PST

The SQL style has European and non-European (U.S.) variants, which determines whether month
follows day or vice versa. (SeeSection 5.5.1for how this setting also affects interpretation of input
values.)Table 5-16shows an example.

Table 5-16. Date Order Conventions

Style Specification Description Example

European day /month /year 17/12/1997 15:37:16.00 MET

US month /day /year 12/17/1997 07:37:16.00 PST

interval output looks like the input format, except that units likeweek or century are converted
to years and days. In ISO mode the output looks like

[ Quantity Units [ ... ] ] [ Days ] Hours:Minutes [ ago ]

The date/time styles can be selected by the user using theSET DATESTYLEcommand, thedat-

estyle parameter in thepostgresql.conf configuration file, and thePGDATESTYLEenvironment
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variable on the server or client. The formatting functionto_char (seeSection 6.7) is also available
as a more flexible way to format the date/time output.

5.5.3. Time Zones

PostgreSQL endeavors to be compatible with the SQL standard definitions for typical usage. However,
the SQL standard has an odd mix of date and time types and capabilities. Two obvious problems are:

• Although thedate type does not have an associated time zone, thetime type can. Time zones in
the real world can have no meaning unless associated with a date as well as a time since the offset
may vary through the year with daylight-saving time boundaries.

• The default time zone is specified as a constant integer offset from GMT/UTC. It is not possible to
adapt to daylight-saving time when doing date/time arithmetic across DST boundaries.

To address these difficulties, we recommend using date/time types that contain both date and time
when using time zones. We recommendnot using the typetime with time zone (though it is
supported by PostgreSQL for legacy applications and for compatibility with other SQL implementa-
tions). PostgreSQL assumes your local time zone for any type containing only date or time. Further,
time zone support is derived from the underlying operating system time-zone capabilities, and hence
can handle daylight-saving time and other expected behavior.

PostgreSQL obtains time-zone support from the underlying operating system for dates between 1902
and 2038 (near the typical date limits for Unix-style systems). Outside of this range, all dates are
assumed to be specified and used in Universal Coordinated Time (UTC).

All dates and times are stored internally in UTC, traditionally known as Greenwich Mean Time
(GMT). Times are converted to local time on the database server before being sent to the client fron-
tend, hence by default are in the server time zone.

There are several ways to select the time zone used by the server:

• TheTZ environment variable on the server host is used by the server as the default time zone, if no
other is specified.

• The timezone configuration parameter can be set inpostgresql.conf .

• The PGTZenvironment variable, if set at the client, is used by libpq applications to send aSET

TIME ZONEcommand to the server upon connection.

• The SQL commandSET TIME ZONEsets the time zone for the session.

Note: If an invalid time zone is specified, the time zone becomes UTC (on most systems anyway).

Refer toAppendix Afor a list of available time zones.
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5.5.4. Internals

PostgreSQL uses Julian dates for all date/time calculations. They have the nice property of correctly
predicting/calculating any date more recent than 4713 BC to far into the future, using the assumption
that the length of the year is 365.2425 days.

Date conventions before the 19th century make for interesting reading, but are not consistent enough
to warrant coding into a date/time handler.

5.6. Boolean Type
PostgreSQL provides the standard SQL typeboolean . boolean can have one of only two states:
“true” or “false”. A third state, “unknown”, is represented by the SQL null value.

Valid literal values for the “true” state are:

TRUE

’t’

’true’

’y’

’yes’

’1’

For the “false” state, the following values can be used:

FALSE

’f’

’false’

’n’

’no’

’0’

Using the key wordsTRUEandFALSE is preferred (and SQL-compliant).

Example 5-2. Using theboolean type

CREATE TABLE test1 (a boolean, b text);
INSERT INTO test1 VALUES (TRUE, ’sic est’);
INSERT INTO test1 VALUES (FALSE, ’non est’);
SELECT * FROM test1;

a | b
---+---------

t | sic est
f | non est

SELECT * FROM test1 WHERE a;
a | b

---+---------
t | sic est

Example 5-2shows thatboolean values are output using the letterst andf .

Tip: Values of the boolean type cannot be cast directly to other types (e.g., CAST (boolval

AS integer) does not work). This can be accomplished using the CASEexpression: CASE WHEN

boolval THEN ’value if true’ ELSE ’value if false’ END . See also Section 6.12.
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boolean uses 1 byte of storage.

5.7. Geometric Types
Geometric data types represent two-dimensional spatial objects.Table 5-17shows the geometric types
available in PostgreSQL. The most fundamental type, the point, forms the basis for all of the other
types.

Table 5-17. Geometric Types

Geometric Type Storage Representation Description

point 16 bytes (x,y) Point in space

line 32 bytes ((x1,y1),(x2,y2)) Infinite line (not fully
implemented)

lseg 32 bytes ((x1,y1),(x2,y2)) Finite line segment

box 32 bytes ((x1,y1),(x2,y2)) Rectangular box

path 16+16n bytes ((x1,y1),...) Closed path (similar to
polygon)

path 16+16n bytes [(x1,y1),...] Open path

polygon 40+16n bytes ((x1,y1),...) Polygon (similar to
closed path)

circle 24 bytes <(x,y),r> Circle (center and
radius)

A rich set of functions and operators is available to perform various geometric operations such as
scaling, translation, rotation, and determining intersections. They are explained inSection 6.9.

5.7.1. Point

Points are the fundamental two-dimensional building block for geometric types.point is specified
using the following syntax:

( x , y )
x , y

where the arguments are

x

the x-axis coordinate as a floating-point number

y

the y-axis coordinate as a floating-point number
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5.7.2. Line Segment

Line segments (lseg ) are represented by pairs of points.lseg is specified using the following syntax:

( ( x1 , y1 ) , ( x2 , y2 ) )
( x1 , y1 ) , ( x2 , y2 )

x1 , y1 , x2 , y2

where the arguments are

(x1 ,y1 )
(x2 ,y2 )

the end points of the line segment

5.7.3. Box

Boxes are represented by pairs of points that are opposite corners of the box.box is specified using
the following syntax:

( ( x1 , y1 ) , ( x2 , y2 ) )
( x1 , y1 ) , ( x2 , y2 )

x1 , y1 , x2 , y2

where the arguments are

(x1 ,y1 )
(x2 ,y2 )

opposite corners of the box

Boxes are output using the first syntax. The corners are reordered on input to store the upper right
corner, then the lower left corner. Other corners of the box can be entered, but the lower left and upper
right corners are determined from the input and stored corners.

5.7.4. Path

Paths are represented by connected sets of points. Paths can beopen, where the first and last points
in the set are not connected, andclosed, where the first and last point are connected. Functions
popen(p) and pclose(p) are supplied to force a path to be open or closed, and functions
isopen(p) andisclosed(p) are supplied to test for either type in a query.

path is specified using the following syntax:

( ( x1 , y1 ) , ... , ( xn , yn ) )
[ ( x1 , y1 ) , ... , ( xn , yn ) ]

( x1 , y1 ) , ... , ( xn , yn )
( x1 , y1 , ... , xn , yn )

x1 , y1 , ... , xn , yn
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where the arguments are

(x ,y )

End points of the line segments comprising the path. A leading square bracket ([ ) indicates an
open path, while a leading parenthesis (( ) indicates a closed path.

Paths are output using the first syntax.

5.7.5. Polygon

Polygons are represented by sets of points. Polygons should probably be considered equivalent to
closed paths, but are stored differently and have their own set of support routines.

polygon is specified using the following syntax:

( ( x1 , y1 ) , ... , ( xn , yn ) )
( x1 , y1 ) , ... , ( xn , yn )
( x1 , y1 , ... , xn , yn )

x1 , y1 , ... , xn , yn

where the arguments are

(x ,y )

End points of the line segments comprising the boundary of the polygon

Polygons are output using the first syntax.

5.7.6. Circle

Circles are represented by a center point and a radius.circle is specified using the following syntax:

< ( x , y ) , r >

( ( x , y ) , r )
( x , y ) , r

x , y , r

where the arguments are

(x ,y )

center of the circle

r

radius of the circle
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Circles are output using the first syntax.

5.8. Network Address Data Types
PostgreSQL offers data types to store IP and MAC addresses, shown inTable 5-18. It is preferable
to use these types over plain text types, because these types offer input error checking and several
specialized operators and functions.

Table 5-18. Network Address Data Types

Name Storage Description Range

cidr 12 bytes IP networks valid IPv4 networks

inet 12 bytes IP hosts and networks valid IPv4 hosts or
networks

macaddr 6 bytes MAC addresses customary formats

IPv6 is not yet supported.

5.8.1. inet

The inet type holds an IP host address, and optionally the identity of the subnet it is in, all in one
field. The subnet identity is represented by the number of bits in the network part of the address (the
“netmask”). If the netmask is 32, then the value does not indicate a subnet, only a single host. Note
that if you want to accept networks only, you should use thecidr type rather thaninet .

The input format for this type isx.x.x.x/y wherex.x.x.x is an IP address andy is the number
of bits in the netmask. If the/y part is left off, then the netmask is 32, and the value represents just a
single host. On display, the/y portion is suppressed if the netmask is 32.

5.8.2. cidr

Thecidr type holds an IP network specification. Input and output formats follow Classless Internet
Domain Routing conventions. The format for specifying classless networks isx.x.x.x/y where
x.x.x.x is the network andy is the number of bits in the netmask. Ify is omitted, it is calculated
using assumptions from the older classful numbering system, except that it will be at least large
enough to include all of the octets written in the input.

Table 5-19shows some examples.

Table 5-19.cidr Type Input Examples

CIDR Input CIDR Displayed abbrev (CIDR)

192.168.100.128/25 192.168.100.128/25 192.168.100.128/25

192.168/24 192.168.0.0/24 192.168.0/24

192.168/25 192.168.0.0/25 192.168.0.0/25

192.168.1 192.168.1.0/24 192.168.1/24

192.168 192.168.0.0/24 192.168.0/24

128.1 128.1.0.0/16 128.1/16
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CIDR Input CIDR Displayed abbrev (CIDR)

128 128.0.0.0/16 128.0/16

128.1.2 128.1.2.0/24 128.1.2/24

10.1.2 10.1.2.0/24 10.1.2/24

10.1 10.1.0.0/16 10.1/16

10 10.0.0.0/8 10/8

5.8.3. inet vs cidr

The essential difference betweeninet andcidr data types is thatinet accepts values with nonzero
bits to the right of the netmask, whereascidr does not.

Tip: If you do not like the output format for inet or cidr values, try the host (), text (), and
abbrev () functions.

5.8.4. macaddr

Themacaddr type stores MAC addresses, i.e., Ethernet card hardware addresses (although MAC ad-
dresses are used for other purposes as well). Input is accepted in various customary formats, including

’08002b:010203’

’08002b-010203’

’0800.2b01.0203’

’08-00-2b-01-02-03’

’08:00:2b:01:02:03’

which would all specify the same address. Upper and lower case is accepted for the digitsa through
f . Output is always in the last of the shown forms.

The directorycontrib/mac in the PostgreSQL source distribution contains tools that can be used to
map MAC addresses to hardware manufacturer names.

5.9. Bit String Types
Bit strings are strings of 1’s and 0’s. They can be used to store or visualize bit masks. There are two
SQL bit types:BIT( n) andBIT VARYING( n) , wheren is a positive integer.

BIT type data must match the lengthn exactly; it is an error to attempt to store shorter or longer bit
strings.BIT VARYING data is of variable length up to the maximum lengthn; longer strings will be
rejected. WritingBIT without a length is equivalent toBIT(1) , whileBIT VARYING without a length
specification means unlimited length.

Note: If one explicitly casts a bit-string value to BIT( n) , it will be truncated or zero-padded on the
right to be exactly n bits, without raising an error. Similarly, if one explicitly casts a bit-string value
to BIT VARYING( n) , it will be truncated on the right if it is more than n bits.
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Note: Prior to PostgreSQL 7.2, BIT data was always silently truncated or zero-padded on the
right, with or without an explicit cast. This was changed to comply with the SQL standard.

Refer toSection 1.1.2.2for information about the syntax of bit string constants. Bit-logical operators
and string manipulation functions are available; seeChapter 6.

Example 5-3. Using the bit string types

CREATE TABLE test (a BIT(3), b BIT VARYING(5));
INSERT INTO test VALUES (B’101’, B’00’);
INSERT INTO test VALUES (B’10’, B’101’);
ERROR: Bit string length 2 does not match type BIT(3)

INSERT INTO test VALUES (B’10’::bit(3), B’101’);
SELECT * FROM test;

a | b

-----+-----

101 | 00

100 | 101

5.10. Object Identifier Types
Object identifiers (OIDs) are used internally by PostgreSQL as primary keys for various system tables.
Also, an OID system column is added to user-created tables (unlessWITHOUT OIDSis specified at
table creation time). Typeoid represents an object identifier. There are also several aliases foroid :
regproc , regprocedure , regoper , regoperator , regclass , andregtype . Table 5-20shows
an overview.

The oid type is currently implemented as an unsigned four-byte integer. Therefore, it is not large
enough to provide database-wide uniqueness in large databases, or even in large individual tables. So,
using a user-created table’s OID column as a primary key is discouraged. OIDs are best used only for
references to system tables.

Theoid type itself has few operations beyond comparison (which is implemented as unsigned com-
parison). It can be cast to integer, however, and then manipulated using the standard integer operators.
(Beware of possible signed-versus-unsigned confusion if you do this.)

The oid alias types have no operations of their own except for specialized input and output rou-
tines. These routines are able to accept and display symbolic names for system objects, rather than
the raw numeric value that typeoid would use. The alias types allow simplified lookup of OID
values for objects: for example, one may write’mytable’::regclass to get the OID of table
mytable , rather thanSELECT oid FROM pg_class WHERE relname = ’mytable’ . (In reality,
a much more complicatedSELECTwould be needed to deal with selecting the right OID when there
are multiple tables namedmytable in different schemas.)

Table 5-20. Object Identifier Types

Type name References Description Value example

oid any numeric object
identifier

564182
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Type name References Description Value example

regproc pg_proc function name sum

regprocedure pg_proc function with argument
types

sum(int4)

regoper pg_operator operator name +

regoperator pg_operator operator with argument
types

*(integer,integer)

or -(NONE,integer)

regclass pg_class relation name pg_type

regtype pg_type type name integer

All of the OID alias types accept schema-qualified names, and will display schema-qualified names
on output if the object would not be found in the current search path without being qualified. The
regproc and regoper alias types will only accept input names that are unique (not overloaded),
so they are of limited use; for most usesregprocedure or regoperator is more appropriate. For
regoperator , unary operators are identified by writingNONEfor the unused operand.

OIDs are 32-bit quantities and are assigned from a single cluster-wide counter. In a large or long-
lived database, it is possible for the counter to wrap around. Hence, it is bad practice to assume that
OIDs are unique, unless you take steps to ensure that they are unique. Recommended practice when
using OIDs for row identification is to create a unique constraint on the OID column of each table for
which the OID will be used. Never assume that OIDs are unique across tables; use the combination
of tableoid and row OID if you need a database-wide identifier. (Future releases of PostgreSQL are
likely to use a separate OID counter for each table, so thattableoid mustbe included to arrive at a
globally unique identifier.)

Another identifier type used by the system isxid , or transaction (abbreviated xact) identifier. This is
the data type of the system columnsxmin andxmax. Transaction identifiers are 32-bit quantities. In a
long-lived database it is possible for transaction IDs to wrap around. This is not a fatal problem given
appropriate maintenance procedures; see thePostgreSQL Administrator’s Guidefor details. However,
it is unwise to depend on uniqueness of transaction IDs over the long term (more than one billion
transactions).

A third identifier type used by the system iscid , or command identifier. This is the data type of
the system columnscmin andcmax. Command identifiers are also 32-bit quantities. This creates a
hard limit of 232 (4 billion) SQL commands within a single transaction. In practice this limit is not a
problem --- note that the limit is on number of SQL commands, not number of tuples processed.

A final identifier type used by the system istid , or tuple identifier. This is the data type of the system
columnctid . A tuple ID is a pair (block number, tuple index within block) that identifies the physical
location of the tuple within its table.

5.11. Pseudo-Types
The PostgreSQL type system contains a number of special-purpose entries that are collectively called
pseudo-types. A pseudo-type cannot be used as a column data type, but it can be used to declare a
function’s argument or result type. Each of the available pseudo-types is useful in situations where a
function’s behavior does not correspond to simply taking or returning a value of a specific SQL data
type.Table 5-21lists the existing pseudo-types.

Table 5-21. Pseudo-Types

Type name Description
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Type name Description

record Identifies a function returning an unspecified row
type

any Indicates that a function accepts any input data
type whatever

anyarray Indicates that a function accepts any array data
type

void Indicates that a function returns no value

trigger A trigger function is declared to returntrigger

language_handler A procedural language call handler is declared to
returnlanguage_handler

cstring Indicates that a function accepts or returns a
null-terminated C string

internal Indicates that a function accepts or returns a
server-internal data type

opaque An obsolete type name that formerly served all
the above purposes

Functions coded in C (whether built-in or dynamically loaded) may be declared to accept or return
any of these pseudo data types. It is up to the function author to ensure that the function will behave
safely when a pseudo-type is used as an argument type.

Functions coded in procedural languages may use pseudo-types only as allowed by their implementa-
tion languages. At present the procedural languages all forbid use of a pseudo-type as argument type,
and allow onlyvoid as a result type (plustrigger when the function is used as a trigger).

The internal pseudo-type is used to declare functions that are meant only to be called internally
by the database system, and not by direct invocation in a SQL query. If a function has at least one
internal -type argument then it cannot be called from SQL. To preserve the type safety of this
restriction it is important to follow this coding rule: do not create any function that is declared to
returninternal unless it has at least oneinternal argument.

5.12. Arrays
PostgreSQL allows columns of a table to be defined as variable-length multidimensional arrays. Ar-
rays of any built-in type or user-defined type can be created. To illustrate their use, we create this
table:

CREATE TABLE sal_emp (
name text,
pay_by_quarter integer[],
schedule text[][]

);

As shown, an array data type is named by appending square brackets ([] ) to the data type name of the
array elements. The above command will create a table namedsal_emp with columns including a
text string (name), a one-dimensional array of typeinteger (pay_by_quarter ), which represents
the employee’s salary by quarter, and a two-dimensional array oftext (schedule ), which represents
the employee’s weekly schedule.
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Now we do someINSERTs. Observe that to write an array value, we enclose the element values within
curly braces and separate them by commas. If you know C, this is not unlike the syntax for initializing
structures. (More details appear below.)

INSERT INTO sal_emp
VALUES (’Bill’,
’{10000, 10000, 10000, 10000}’,
’{{"meeting", "lunch"}, {}}’);

INSERT INTO sal_emp
VALUES (’Carol’,
’{20000, 25000, 25000, 25000}’,
’{{"talk", "consult"}, {"meeting"}}’);

Now, we can run some queries onsal_emp . First, we show how to access a single element of an array
at a time. This query retrieves the names of the employees whose pay changed in the second quarter:

SELECT name FROM sal_emp WHERE pay_by_quarter[1] <> pay_by_quarter[2];

name
-------

Carol
(1 row)

The array subscript numbers are written within square brackets. By default PostgreSQL uses the one-
based numbering convention for arrays, that is, an array ofn elements starts witharray[1] and ends
with array[ n] .

This query retrieves the third quarter pay of all employees:

SELECT pay_by_quarter[3] FROM sal_emp;

pay_by_quarter
----------------

10000
25000

(2 rows)

We can also access arbitrary rectangular slices of an array, or subarrays. An array slice is denoted
by writing lower-bound : upper-bound for one or more array dimensions. This query retrieves the
first item on Bill’s schedule for the first two days of the week:

SELECT schedule[1:2][1:1] FROM sal_emp WHERE name = ’Bill’;

schedule
--------------------

{{meeting},{""}}
(1 row)

We could also have written

SELECT schedule[1:2][1] FROM sal_emp WHERE name = ’Bill’;
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with the same result. An array subscripting operation is taken to represent an array slice if any of the
subscripts are written in the formlower : upper . A lower bound of 1 is assumed for any subscript
where only one value is specified.

An array value can be replaced completely:

UPDATE sal_emp SET pay_by_quarter = ’{25000,25000,27000,27000}’
WHERE name = ’Carol’;

or updated at a single element:

UPDATE sal_emp SET pay_by_quarter[4] = 15000
WHERE name = ’Bill’;

or updated in a slice:

UPDATE sal_emp SET pay_by_quarter[1:2] = ’{27000,27000}’
WHERE name = ’Carol’;

An array can be enlarged by assigning to an element adjacent to those already present, or by assigning
to a slice that is adjacent to or overlaps the data already present. For example, if an array value cur-
rently has 4 elements, it will have five elements after an update that assigns toarray[5] . Currently,
enlargement in this fashion is only allowed for one-dimensional arrays, not multidimensional arrays.

Array slice assignment allows creation of arrays that do not use one-based subscripts. For example
one might assign toarray[-2:7] to create an array with subscript values running from -2 to 7.

The syntax forCREATE TABLEallows fixed-length arrays to be defined:

CREATE TABLE tictactoe (
squares integer[3][3]

);

However, the current implementation does not enforce the array size limits --- the behavior is the same
as for arrays of unspecified length.

Actually, the current implementation does not enforce the declared number of dimensions either.
Arrays of a particular element type are all considered to be of the same type, regardless of size or
number of dimensions. So, declaring number of dimensions or sizes inCREATE TABLEis simply
documentation, it does not affect runtime behavior.

The current dimensions of any array value can be retrieved with thearray_dims function:

SELECT array_dims(schedule) FROM sal_emp WHERE name = ’Carol’;

array_dims
------------

[1:2][1:1]
(1 row)

array_dims produces atext result, which is convenient for people to read but perhaps not so
convenient for programs.

To search for a value in an array, you must check each value of the array. This can be done by hand
(if you know the size of the array):

SELECT * FROM sal_emp WHERE pay_by_quarter[1] = 10000 OR
pay_by_quarter[2] = 10000 OR
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pay_by_quarter[3] = 10000 OR
pay_by_quarter[4] = 10000;

However, this quickly becomes tedious for large arrays, and is not helpful if the size of the array
is unknown. Although it is not part of the primary PostgreSQL distribution, there is an extension
available that defines new functions and operators for iterating over array values. Using this, the
above query could be:

SELECT * FROM sal_emp WHERE pay_by_quarter[1:4] *= 10000;

To search the entire array (not just specified columns), you could use:

SELECT * FROM sal_emp WHERE pay_by_quarter *= 10000;

In addition, you could find rows where the array had all values equal to 10 000 with:

SELECT * FROM sal_emp WHERE pay_by_quarter **= 10000;

To install this optional module, look in thecontrib/array directory of the PostgreSQL source
distribution.

Tip: Arrays are not sets; using arrays in the manner described in the previous paragraph is often
a sign of database misdesign. The array field should generally be split off into a separate table.
Tables can obviously be searched easily.

Note: A limitation of the present array implementation is that individual elements of an array
cannot be SQL null values. The entire array can be set to null, but you can’t have an array with
some elements null and some not. Fixing this is on the to-do list.

Array input and output syntax. The external representation of an array value consists of items
that are interpreted according to the I/O conversion rules for the array’s element type, plus decoration
that indicates the array structure. The decoration consists of curly braces ({ and} ) around the array
value plus delimiter characters between adjacent items. The delimiter character is usually a comma
(, ) but can be something else: it is determined by thetypdelim setting for the array’s element type.
(Among the standard data types provided in the PostgreSQL distribution, typebox uses a semicolon
(; ) but all the others use comma.) In a multidimensional array, each dimension (row, plane, cube,
etc.) gets its own level of curly braces, and delimiters must be written between adjacent curly-braced
entities of the same level. You may write whitespace before a left brace, after a right brace, or before
any individual item string. Whitespace after an item is not ignored, however: after skipping leading
whitespace, everything up to the next right brace or delimiter is taken as the item value.

Quoting array elements. As shown above, when writing an array value you may write double quotes
around any individual array element. Youmustdo so if the element value would otherwise confuse the
array-value parser. For example, elements containing curly braces, commas (or whatever the delimiter
character is), double quotes, backslashes, or leading white space must be double-quoted. To put a
double quote or backslash in an array element value, precede it with a backslash. Alternatively, you
can use backslash-escaping to protect all data characters that would otherwise be taken as array syntax
or ignorable white space.

The array output routine will put double quotes around element values if they are empty strings
or contain curly braces, delimiter characters, double quotes, backslashes, or white space. Double
quotes and backslashes embedded in element values will be backslash-escaped. For numeric data
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types it is safe to assume that double quotes will never appear, but for textual data types one should be
prepared to cope with either presence or absence of quotes. (This is a change in behavior from pre-7.2
PostgreSQL releases.)

Tip: Remember that what you write in an SQL command will first be interpreted as a string literal,
and then as an array. This doubles the number of backslashes you need. For example, to insert a
text array value containing a backslash and a double quote, you’d need to write

INSERT ... VALUES (’{"\\\\","\\""}’);

The string-literal processor removes one level of backslashes, so that what arrives at the array-
value parser looks like {"\\","\""} . In turn, the strings fed to the text data type’s input routine
become \ and " respectively. (If we were working with a data type whose input routine also treated
backslashes specially, bytea for example, we might need as many as eight backslashes in the
command to get one backslash into the stored array element.)
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PostgreSQL provides a large number of functions and operators for the built-in data types. Users can
also define their own functions and operators, as described in thePostgreSQL Programmer’s Guide.
The psql commands\df and\do can be used to show the list of all actually available functions and
operators, respectively.

If you are concerned about portability then take note that most of the functions and operators de-
scribed in this chapter, with the exception of the most trivial arithmetic and comparison operators and
some explicitly marked functions, are not specified by the SQL standard. Some of this extended func-
tionality is present in other SQL implementations, and in many cases this functionality is compatible
and consistent between various products.

6.1. Logical Operators
The usual logical operators are available:

AND
OR
NOT

SQL uses a three-valued Boolean logic where the null value represents “unknown”. Observe the
following truth tables:

a b a AND b a OR b

TRUE TRUE TRUE TRUE

TRUE FALSE FALSE TRUE

TRUE NULL NULL TRUE

FALSE FALSE FALSE FALSE

FALSE NULL FALSE NULL

NULL NULL NULL NULL

a NOT a

TRUE FALSE

FALSE TRUE

NULL NULL

6.2. Comparison Operators
The usual comparison operators are available, shown inTable 6-1.

Table 6-1. Comparison Operators

Operator Description

< less than
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Operator Description

> greater than

<= less than or equal to

>= greater than or equal to

= equal

<> or != not equal

Note: The != operator is converted to <> in the parser stage. It is not possible to implement !=

and <> operators that do different things.

Comparison operators are available for all data types where this makes sense. All comparison oper-
ators are binary operators that return values of typeboolean ; expressions like1 < 2 < 3 are not
valid (because there is no< operator to compare a Boolean value with3).

In addition to the comparison operators, the specialBETWEENconstruct is available.

a BETWEENx AND y

is equivalent to

a >= x AND a <= y

Similarly,

a NOT BETWEENx AND y

is equivalent to

a < x OR a > y

There is no difference between the two respective forms apart from the CPU cycles required to rewrite
the first one into the second one internally.

To check whether a value is or is not null, use the constructs

expression IS NULL
expression IS NOT NULL

or the equivalent, but nonstandard, constructs

expression ISNULL
expression NOTNULL

Do not write expression = NULLbecauseNULL is not “equal to”NULL. (The null value represents
an unknown value, and it is not known whether two unknown values are equal.)

Some applications may (incorrectly) require thatexpression = NULL returns true if
expression evaluates to the null value. To support these applications, the run-time option
transform_null_equals can be turned on (e.g.,SET transform_null_equals TO ON; ).
PostgreSQL will then convertx = NULL clauses tox IS NULL . This was the default behavior in
releases 6.5 through 7.1.

Boolean values can also be tested using the constructs
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expression IS TRUE
expression IS NOT TRUE
expression IS FALSE
expression IS NOT FALSE
expression IS UNKNOWN
expression IS NOT UNKNOWN

These are similar toIS NULL in that they will always return true or false, never a null value, even
when the operand is null. A null input is treated as the logical value “unknown”.

6.3. Mathematical Functions and Operators
Mathematical operators are provided for many PostgreSQL types. For types without common math-
ematical conventions for all possible permutations (e.g., date/time types) we describe the actual be-
havior in subsequent sections.

Table 6-2shows the available mathematical operators.

Table 6-2. Mathematical Operators

Name Description Example Result

+ addition 2 + 3 5

- subtraction 2 - 3 -1

* multiplication 2 * 3 6

/ division (integer
division truncates
results)

4 / 2 2

% modulo (remainder) 5 % 4 1

^ exponentiation 2.0 ^ 3.0 8

|/ square root |/ 25.0 5

||/ cube root ||/ 27.0 3

! factorial 5 ! 120

!! factorial (prefix
operator)

!! 5 120

@ absolute value @ -5.0 5

& binary AND 91 & 15 11

| binary OR 32 | 3 35

# binary XOR 17 # 5 20

~ binary NOT ~1 -2

<< binary shift left 1 << 4 16

>> binary shift right 8 >> 2 2

The “binary” operators are also available for the bit string typesBIT andBIT VARYING, as shown in
Table 6-3. Bit string arguments to&, | , and# must be of equal length. When bit shifting, the original
length of the string is preserved, as shown in the table.

Table 6-3. Bit String Binary Operators
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Example Result

B’10001’ & B’01101’ 00001

B’10001’ | B’01101’ 11101

B’10001’ # B’01101’ 11110

~ B’10001’ 01110

B’10001’ << 3 01000

B’10001’ >> 2 00100

Table 6-4shows the available mathematical functions. In the table,dp indicatesdouble precision .
Many of these functions are provided in multiple forms with different argument types. Except where
noted, any given form of a function returns the same datatype as its argument. The functions work-
ing with double precision data are mostly implemented on top of the host system’s C library;
accuracy and behavior in boundary cases may therefore vary depending on the host system.

Table 6-4. Mathematical Functions

Function Return Type Description Example Result

abs (x ) (same asx ) absolute value abs(-17.4) 17.4

cbrt (dp) dp cube root cbrt(27.0) 3

ceil (dp or
numeric )

(same as input) smallest integer
not less than
argument

ceil(-42.8) -42

degrees (dp) dp radians to degreesdegrees(0.5) 28.6478897565412

exp (dp or
numeric )

(same as input) exponential exp(1.0) 2.71828182845905

floor (dp or
numeric )

(same as input) largest integer not
greater than
argument

floor(-42.8) -43

ln (dp or
numeric )

(same as input) natural logarithm ln(2.0) 0.693147180559945

log (dp or
numeric )

(same as input) base 10 logarithm log(100.0) 2

log (b numeric , x
numeric )

numeric logarithm to baseb log(2.0, 64.0) 6.0000000000

mod(y , x ) (same as argument
types)

remainder ofy /x mod(9,4) 1

pi () dp “Pi” constant pi() 3.14159265358979

pow(x dp, e dp) dp raise a number to
exponente

pow(9.0, 3.0) 729

pow(x numeric , e
numeric )

numeric raise a number to
exponente

pow(9.0, 3.0) 729

radians (dp) dp degrees to radiansradians(45.0) 0.785398163397448
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Function Return Type Description Example Result

random () dp random value
between 0.0 and
1.0

random()

round (dp or
numeric )

(same as input) round to nearest
integer

round(42.4) 42

round (v
numeric , s
integer )

numeric round tos decimal
places

round(42.4382,

2)

42.44

sign (dp or
numeric )

(same as input) sign of the
argument (-1, 0,
+1)

sign(-8.4) -1

sqrt (dp or
numeric )

(same as input) square root sqrt(2.0) 1.4142135623731

trunc (dp or
numeric )

(same as input) truncate toward
zero

trunc(42.8) 42

trunc (v
numeric , s
integer )

numeric truncate tos
decimal places

trunc(42.4382,

2)

42.43

Finally, Table 6-5shows the available trigonometric functions. All trigonometric functions take argu-
ments and return values of typedouble precision .

Table 6-5. Trigonometric Functions

Function Description

acos (x ) inverse cosine

asin (x ) inverse sine

atan (x ) inverse tangent

atan2 (x , y ) inverse tangent ofx /y

cos (x ) cosine

cot (x ) cotangent

sin (x ) sine

tan (x ) tangent

6.4. String Functions and Operators
This section describes functions and operators for examining and manipulating string values. Strings
in this context include values of all the typesCHARACTER, CHARACTER VARYING, andTEXT. Unless
otherwise noted, all of the functions listed below work on all of these types, but be wary of potential
effects of the automatic padding when using theCHARACTERtype. Generally, the functions described
here also work on data of non-string types by converting that data to a string representation first. Some
functions also exist natively for bit-string types.

SQL defines some string functions with a special syntax where certain key words rather than commas
are used to separate the arguments. Details are inTable 6-6. These functions are also implemented
using the regular syntax for function invocation. (SeeTable 6-7.)
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Table 6-6. SQL String Functions and Operators

Function Return Type Description Example Result

string ||

string
text String

concatenation
’Post’ ||

’greSQL’

PostgreSQL

bit_length (string )integer Number of bits in
string

bit_length(’jose’) 32

char_length (string )
or charac-

ter_length (string )

integer Number of
characters in string

char_length(’jose’) 4

convert (string
usingconver-
sion_name )

text Change encoding
using specified
conversion name.
Conversions can be
defined byCREATE

CONVERSION.
Also there are
some pre-defined
conversion names.
SeeTable 6-8for
available
conversion names.

convert(’PostgreSQL’

using

iso_8859_1_to_utf_8)

’PostgreSQL’ in
Unicode (UTF-8)
encoding

lower (string ) text Convert string to
lower case

lower(’TOM’) tom

octet_length (string )integer Number of bytes in
string

octet_length(’jose’) 4

overlay (string
placingstring
from integer [for
integer ])

text Insert substring overlay(’Txxxxas’

placing ’hom’

from 2 for 4)

Thomas

position (substring
in string )

integer Location of
specified substring

position(’om’

in ’Thomas’)

3

substring (string
[from integer ]
[for integer ])

text Extract substring substring(’Thomas’

from 2 for 3)

hom

substring (string
from pattern )

text Extract substring
matching POSIX
regular expression

substring(’Thomas’

from ’...$’)

mas

substring (string
from pattern
for escape )

text Extract substring
matching SQL
regular expression

substring(’Thomas’

from

’%#"o_a#"_’

for ’#’)

oma
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Function Return Type Description Example Result

trim ([leading |
trailing | both]
[characters ]
from string )

text Remove the
longest string
containing only the
characters (a
space by default)
from the
beginning/end/both
ends of the
string

trim(both ’x’

from ’xTomxx’)

Tom

upper (string ) text Convert string to
upper case

upper(’tom’) TOM

Additional string manipulation functions are available and are listed inTable 6-7. Some of them are
used internally to implement the SQL-standard string functions listed inTable 6-6.

Table 6-7. Other String Functions

Function Return Type Description Example Result

ascii (text ) integer ASCII code of the
first character of
the argument.

ascii(’x’) 120

btrim (string
text , trim
text )

text Remove (trim) the
longest string
consisting only of
characters intrim
from the start and
end ofstring

btrim(’xyxtrimyyx’,’xy’)trim

chr (integer ) text Character with the
given ASCII code

chr(65) A

convert (string
text ,
[src_encoding
name,]
dest_encoding
name)

text Convert string to
dest_encoding .
The original
encoding is
specified by
src_encoding .
If
src_encoding
is omitted,
database encoding
is assumed.

convert(’text_in_unicode’,

’UNICODE’,

’LATIN1’)

text_in_unicode

represented in ISO
8859-1

decode (string
text , type
text )

bytea Decode binary
data fromstring
previously encoded
with encode() .
Parameter type is
same as in
encode() .

decode(’MTIzAAE=’,

’base64’)

123\000\001

82



Chapter 6. Functions and Operators

Function Return Type Description Example Result

encode (data
bytea , type
text )

text Encode binary
data to ASCII-only
representation.
Supported types
are: base64, hex,
escape.

encode(’123\\000\\001’,

’base64’)

MTIzAAE=

initcap (text ) text Convert first letter
of each word
(whitespace
separated) to upper
case

initcap(’hi

thomas’)

Hi Thomas

length (string ) integer Length of string length(’jose’) 4

lpad (string
text , length
integer [, fill
text ])

text Fill up the
string to length
length by
prepending the
charactersfill (a
space by default).
If the string is
already longer than
length then it is
truncated (on the
right).

lpad(’hi’, 5,

’xy’)

xyxhi

ltrim (string
text , text
text )

text Remove the
longest string
containing only
characters from
trim from the
start of the string.

ltrim(’zzzytrim’,’xyz’) trim

pg_client_encoding ()name Current client
encoding name.

pg_client_encoding()SQL_ASCII

quote_ident (string
text)

text Return the given
string suitably
quoted to be used
as an identifier in
an SQL query
string. Quotes are
added only if
necessary (i.e., if
the string contains
non-identifier
characters or
would be
case-folded).
Embedded quotes
are properly
doubled.

quote_ident(’Foo’) "Foo"
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Function Return Type Description Example Result

quote_literal (string
text)

text Return the given
string suitably
quoted to be used
as a literal in an
SQL query string.
Embedded quotes
and backslashes
are properly
doubled.

quote_literal(’O\’Reilly’)’O”Reilly’

repeat (text ,
integer )

text Repeat text a
number of times

repeat(’Pg’,

4)

PgPgPgPg

replace (string
text , from text ,
to text )

text Replace all
occurrences in
string of
substringfrom
with substringto

replace(’abcdefabcdef’,

’cd’, ’XX’)

abXXefabXXef

rpad (string
text , length
integer [, fill
text ])

text Fill up the
string to length
length by
appending the
charactersfill (a
space by default).
If the string is
already longer than
length then it is
truncated.

rpad(’hi’, 5,

’xy’)

hixyx

rtrim (string
text, trim text)

text Remove the
longest string
containing only
characters from
trim from the end
of the string.

rtrim(’trimxxxx’,’x’) trim

split_part (string
text ,
delimiter
text , column
integer )

text Split string on
delimiter
returning the
resulting (one
based)column
number.

split_part(’abc~@~def~@~ghi’,’~@~’,2)def

strpos (string ,
substring )

text Locate specified
substring (same as
posi-

tion( substring

in string ) , but
note the reversed
argument order)

strpos(’high’,’ig’) 2
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Function Return Type Description Example Result

substr (string ,
from [, count ])

text Extract specified
substring (same as
sub-

string( string

from from for

count ) )

substr(’alphabet’,

3, 2)

ph

to_ascii (text [,
encoding ])

text Convert text to
ASCII from other
encodinga

to_ascii(’Karel’) Karel

to_hex (number
integer or
bigint )

text Convertnumber
to its equivalent
hexadecimal
representation

to_hex(9223372036854775807::bigint)7fffffffffffffff

trans-

late (string
text , from text ,
to text )

text Any character in
string that
matches a
character in the
from set is
replaced by the
corresponding
character in theto
set.

translate(’12345’,

’14’, ’ax’)

a23x5

Notes:
a. The to_ascii function supports conversion fromLATIN1 , LATIN2 , andWIN1250 only.

Table 6-8. Built-in Conversions

Conversion Name a Source Encoding Destination Encoding

ascii_to_mic SQL_ASCII MULE_INTERNAL

ascii_to_utf_8 SQL_ASCII UNICODE

big5_to_euc_tw BIG5 EUC_TW

big5_to_mic BIG5 MULE_INTERNAL

big5_to_utf_8 BIG5 UNICODE

euc_cn_to_mic EUC_CN MULE_INTERNAL

euc_cn_to_utf_8 EUC_CN UNICODE

euc_jp_to_mic EUC_JP MULE_INTERNAL

euc_jp_to_sjis EUC_JP SJIS

euc_jp_to_utf_8 EUC_JP UNICODE

euc_kr_to_mic EUC_KR MULE_INTERNAL

euc_kr_to_utf_8 EUC_KR UNICODE

euc_tw_to_big5 EUC_TW BIG5

euc_tw_to_mic EUC_TW MULE_INTERNAL

euc_tw_to_utf_8 EUC_TW UNICODE

gb18030_to_utf_8 GB18030 UNICODE

gbk_to_utf_8 GBK UNICODE
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Conversion Name a Source Encoding Destination Encoding

iso_8859_10_to_utf_8 LATIN6 UNICODE

iso_8859_13_to_utf_8 LATIN7 UNICODE

iso_8859_14_to_utf_8 LATIN8 UNICODE

iso_8859_15_to_utf_8 LATIN9 UNICODE

iso_8859_16_to_utf_8 LATIN10 UNICODE

iso_8859_1_to_mic LATIN1 MULE_INTERNAL

iso_8859_1_to_utf_8 LATIN1 UNICODE

iso_8859_2_to_mic LATIN2 MULE_INTERNAL

iso_8859_2_to_utf_8 LATIN2 UNICODE

iso_8859_2_to_windows_1250 LATIN2 WIN1250

iso_8859_3_to_mic LATIN3 MULE_INTERNAL

iso_8859_3_to_utf_8 LATIN3 UNICODE

iso_8859_4_to_mic LATIN4 MULE_INTERNAL

iso_8859_4_to_utf_8 LATIN4 UNICODE

iso_8859_5_to_koi8_r ISO_8859_5 KOI8

iso_8859_5_to_mic ISO_8859_5 MULE_INTERNAL

iso_8859_5_to_utf_8 ISO_8859_5 UNICODE

iso_8859_5_to_windows_1251 ISO_8859_5 WIN

iso_8859_5_to_windows_866 ISO_8859_5 ALT

iso_8859_6_to_utf_8 ISO_8859_6 UNICODE

iso_8859_7_to_utf_8 ISO_8859_7 UNICODE

iso_8859_8_to_utf_8 ISO_8859_8 UNICODE

iso_8859_9_to_utf_8 LATIN5 UNICODE

johab_to_utf_8 JOHAB UNICODE

koi8_r_to_iso_8859_5 KOI8 ISO_8859_5

koi8_r_to_mic KOI8 MULE_INTERNAL

koi8_r_to_utf_8 KOI8 UNICODE

koi8_r_to_windows_1251 KOI8 WIN

koi8_r_to_windows_866 KOI8 ALT

mic_to_ascii MULE_INTERNAL SQL_ASCII

mic_to_big5 MULE_INTERNAL BIG5

mic_to_euc_cn MULE_INTERNAL EUC_CN

mic_to_euc_jp MULE_INTERNAL EUC_JP

mic_to_euc_kr MULE_INTERNAL EUC_KR

mic_to_euc_tw MULE_INTERNAL EUC_TW

mic_to_iso_8859_1 MULE_INTERNAL LATIN1

mic_to_iso_8859_2 MULE_INTERNAL LATIN2

mic_to_iso_8859_3 MULE_INTERNAL LATIN3

mic_to_iso_8859_4 MULE_INTERNAL LATIN4
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Conversion Name a Source Encoding Destination Encoding

mic_to_iso_8859_5 MULE_INTERNAL ISO_8859_5

mic_to_koi8_r MULE_INTERNAL KOI8

mic_to_sjis MULE_INTERNAL SJIS

mic_to_windows_1250 MULE_INTERNAL WIN1250

mic_to_windows_1251 MULE_INTERNAL WIN

mic_to_windows_866 MULE_INTERNAL ALT

sjis_to_euc_jp SJIS EUC_JP

sjis_to_mic SJIS MULE_INTERNAL

sjis_to_utf_8 SJIS UNICODE

tcvn_to_utf_8 TCVN UNICODE

uhc_to_utf_8 UHC UNICODE

utf_8_to_ascii UNICODE SQL_ASCII

utf_8_to_big5 UNICODE BIG5

utf_8_to_euc_cn UNICODE EUC_CN

utf_8_to_euc_jp UNICODE EUC_JP

utf_8_to_euc_kr UNICODE EUC_KR

utf_8_to_euc_tw UNICODE EUC_TW

utf_8_to_gb18030 UNICODE GB18030

utf_8_to_gbk UNICODE GBK

utf_8_to_iso_8859_1 UNICODE LATIN1

utf_8_to_iso_8859_10 UNICODE LATIN6

utf_8_to_iso_8859_13 UNICODE LATIN7

utf_8_to_iso_8859_14 UNICODE LATIN8

utf_8_to_iso_8859_15 UNICODE LATIN9

utf_8_to_iso_8859_16 UNICODE LATIN10

utf_8_to_iso_8859_2 UNICODE LATIN2

utf_8_to_iso_8859_3 UNICODE LATIN3

utf_8_to_iso_8859_4 UNICODE LATIN4

utf_8_to_iso_8859_5 UNICODE ISO_8859_5

utf_8_to_iso_8859_6 UNICODE ISO_8859_6

utf_8_to_iso_8859_7 UNICODE ISO_8859_7

utf_8_to_iso_8859_8 UNICODE ISO_8859_8

utf_8_to_iso_8859_9 UNICODE LATIN5

utf_8_to_johab UNICODE JOHAB

utf_8_to_koi8_r UNICODE KOI8

utf_8_to_sjis UNICODE SJIS

utf_8_to_tcvn UNICODE TCVN

utf_8_to_uhc UNICODE UHC

utf_8_to_windows_1250 UNICODE WIN1250

utf_8_to_windows_1251 UNICODE WIN

utf_8_to_windows_1256 UNICODE WIN1256

utf_8_to_windows_866 UNICODE ALT
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Conversion Name a Source Encoding Destination Encoding

utf_8_to_windows_874 UNICODE WIN874

windows_1250_to_iso_8859_2 WIN1250 LATIN2

windows_1250_to_mic WIN1250 MULE_INTERNAL

windows_1250_to_utf_8 WIN1250 UNICODE

windows_1251_to_iso_8859_5 WIN ISO_8859_5

windows_1251_to_koi8_r WIN KOI8

windows_1251_to_mic WIN MULE_INTERNAL

windows_1251_to_utf_8 WIN UNICODE

windows_1251_to_windows_866 WIN ALT

windows_1256_to_utf_8 WIN1256 UNICODE

windows_866_to_iso_8859_5 ALT ISO_8859_5

windows_866_to_koi8_r ALT KOI8

windows_866_to_mic ALT MULE_INTERNAL

windows_866_to_utf_8 ALT UNICODE

windows_866_to_windows_1251 ALT WIN

windows_874_to_utf_8 WIN874 UNICODE

Notes:
a. The conversion names follow a standard naming scheme: The official name of the source
encoding with all non-alphanumeric characters replaced by underscores followed by_to_ followed
by the equally processed destination encoding name. Therefore the names might deviate from the
customary encoding names.

6.5. Binary String Functions and Operators
This section describes functions and operators for examining and manipulating binary string values.
Strings in this context mean values of the typeBYTEA.

SQL defines some string functions with a special syntax where certain key words rather than commas
are used to separate the arguments. Details are inTable 6-9. Some functions are also implemented
using the regular syntax for function invocation. (SeeTable 6-10.)

Table 6-9. SQL Binary String Functions and Operators

Function Return Type Description Example Result

string ||

string
bytea String

concatenation
’\\\\Post’::bytea

||

’\\047greSQL\\000’::bytea

\\Post’greSQL\000

octet_length (string )integer Number of bytes in
binary string

octet_length(’jo\\000se’::bytea)5
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Function Return Type Description Example Result

position (substring
in string )

integer Location of
specified substring

position(’\\000om’::bytea

in

’Th\\000omas’::bytea)

3

substring (string
[from integer ]
[for integer ])

bytea Extract substring substring(’Th\\000omas’::bytea

from 2 for 3)

h\000o

trim ([both]
characters
from string )

bytea Remove the
longest string
containing only the
characters
from the
beginning/end/both
ends of the
string

trim(’\\000’::bytea

from

’\\000Tom\\000’::bytea)

Tom

get_byte (string ,
offset )

integer Extract byte from
string.

get_byte(’Th\\000omas’::bytea,

4)

109

set_byte (string ,
offset ,
newvalue )

bytea Set byte in string. set_byte(’Th\\000omas’::bytea,

4, 64)

Th\000o@as

get_bit (string ,
offset )

integer Extract bit from
string.

get_bit(’Th\\000omas’::bytea,

45)

1

set_bit (string ,
offset ,
newvalue )

bytea Set bit in string. set_bit(’Th\\000omas’::bytea,

45, 0)

Th\000omAs

Additional binary string manipulation functions are available and are listed inTable 6-10. Some of
them are used internally to implement the SQL-standard string functions listed inTable 6-9.

Table 6-10. Other Binary String Functions

Function Return Type Description Example Result

btrim (string
bytea trim
bytea )

bytea Remove (trim) the
longest string
consisting only of
characters intrim
from the start and
end ofstring .

btrim(’\\000trim\\000’::bytea,’\\000’::bytea)trim

length (string ) integer Length of binary
string

length(’jo\\000se’::bytea)5

encode (string
bytea , type
text )

text Encode binary
string to
ASCII-only
representation.
Supported types
are: base64, hex,
escape.

encode(’123\\000456’::bytea,

’escape’)

123\000456
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Function Return Type Description Example Result

decode (string
text , type
text )

bytea Decode binary
string from
string
previously encoded
with encode() .
Parameter type is
same as in
encode() .

decode(’123\\000456’,

’escape’)

123\000456

6.6. Pattern Matching
There are three separate approaches to pattern matching provided by PostgreSQL: the traditional
SQLLIKE operator, the more recent SQL99SIMILAR TO operator, and POSIX-style regular expres-
sions. Additionally, a pattern matching function,SUBSTRING, is available, using either SQL99-style
or POSIX-style regular expressions.

Tip: If you have pattern matching needs that go beyond this, consider writing a user-defined
function in Perl or Tcl.

6.6.1. LIKE

string LIKE pattern [ESCAPE escape-character ]
string NOT LIKE pattern [ESCAPE escape-character ]

Everypattern defines a set of strings. TheLIKE expression returns true if thestring is contained
in the set of strings represented bypattern . (As expected, theNOT LIKE expression returns false
if LIKE returns true, and vice versa. An equivalent expression isNOT (string LIKE pattern ) .)

If pattern does not contain percent signs or underscore, then the pattern only represents the string
itself; in that caseLIKE acts like the equals operator. An underscore (_) in pattern stands for
(matches) any single character; a percent sign (%) matches any string of zero or more characters.

Some examples:

’abc’ LIKE ’abc’ true
’abc’ LIKE ’a%’ true
’abc’ LIKE ’_b_’ true
’abc’ LIKE ’c’ false

LIKE pattern matches always cover the entire string. To match a pattern anywhere within a string, the
pattern must therefore start and end with a percent sign.

To match a literal underscore or percent sign without matching other characters, the respective char-
acter inpattern must be preceded by the escape character. The default escape character is the
backslash but a different one may be selected by using theESCAPEclause. To match the escape char-
acter itself, write two escape characters.

Note that the backslash already has a special meaning in string literals, so to write a pattern constant
that contains a backslash you must write two backslashes in the query. Thus, writing a pattern that
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actually matches a literal backslash means writing four backslashes in the query. You can avoid this
by selecting a different escape character withESCAPE; then backslash is not special toLIKE anymore.
(But it is still special to the string literal parser, so you still need two of them.)

It’s also possible to select no escape character by writingESCAPE ”. This effectively disables the
escape mechanism, which makes it impossible to turn off the special meaning of underscore and
percent signs in the pattern.

The keywordILIKE can be used instead ofLIKE to make the match case insensitive according to the
active locale. This is not in the SQL standard but is a PostgreSQL extension.

The operator~~ is equivalent toLIKE , and~~* corresponds toILIKE . There are also!~~ and!~~*

operators that representNOT LIKE andNOT ILIKE . All of these operators are PostgreSQL-specific.

6.6.2. SIMILAR TO and SQL99 Regular Expressions

string SIMILAR TO pattern [ESCAPE escape-character ]
string NOT SIMILAR TO pattern [ESCAPE escape-character ]

The SIMILAR TO operator returns true or false depending on whether its pattern matches the given
string. It is much likeLIKE , except that it interprets the pattern using SQL99’s definition of a regular
expression. SQL99’s regular expressions are a curious cross betweenLIKE notation and common
regular expression notation.

Like LIKE , the SIMILAR TO operator succeeds only if its pattern matches the entire string; this is
unlike common regular expression practice, wherein the pattern may match any part of the string.
Also like LIKE , SIMILAR TO uses%and_ as wildcard characters denoting any string and any single
character, respectively (these are comparable to.* and. in POSIX regular expressions).

In addition to these facilities borrowed fromLIKE , SIMILAR TO supports these pattern-matching
metacharacters borrowed from POSIX regular expressions:

• | denotes alternation (either of two alternatives).

• * denotes repetition of the previous item zero or more times.

• + denotes repetition of the previous item one or more times.

• Parentheses() may be used to group items into a single logical item.

• A bracket expression[...] specifies a character class, just as in POSIX regular expressions.

Notice that bounded repetition (? and{...} ) are not provided, though they exist in POSIX. Also, dot
(. ) is not a metacharacter.

As with LIKE , a backslash disables the special meaning of any of these metacharacters; or a different
escape character can be specified withESCAPE.

Some examples:

’abc’ SIMILAR TO ’abc’ true
’abc’ SIMILAR TO ’a’ false
’abc’ SIMILAR TO ’%(b|d)%’ true
’abc’ SIMILAR TO ’(b|c)%’ false

The SUBSTRINGfunction with three parameters,SUBSTRING(string FROMpattern FOR es-

cape ) , provides extraction of a substring that matches a SQL99 regular expression pattern. As with
SIMILAR TO, the specified pattern must match to the entire data string, else the function fails and

91



Chapter 6. Functions and Operators

returns null. To indicate the part of the pattern that should be returned on success, SQL99 specifies
that the pattern must contain two occurrences of the escape character followed by double quote (" ).
The text matching the portion of the pattern between these markers is returned.

Some examples:

SUBSTRING(’foobar’ FROM ’%#"o_b#"%’ FOR ’#’) oob
SUBSTRING(’foobar’ FROM ’#"o_b#"%’ FOR ’#’) NULL

6.6.3. POSIX Regular Expressions

Table 6-11lists the available operators for pattern matching using POSIX regular expressions.

Table 6-11. Regular Expression Match Operators

Operator Description Example

~ Matches regular expression,
case sensitive

’thomas’ ~ ’.*thomas.*’

~* Matches regular expression,
case insensitive

’thomas’ ~* ’.*Thomas.*’

!~ Does not match regular
expression, case sensitive

’thomas’ !~ ’.*Thomas.*’

!~* Does not match regular
expression, case insensitive

’thomas’ !~* ’.*vadim.*’

POSIX regular expressions provide a more powerful means for pattern matching than theLIKE and
SIMILAR TO operators. Many Unix tools such asegrep , sed , orawk use a pattern matching language
that is similar to the one described here.

A regular expression is a character sequence that is an abbreviated definition of a set of strings (a
regular set). A string is said to match a regular expression if it is a member of the regular set described
by the regular expression. As withLIKE , pattern characters match string characters exactly unless
they are special characters in the regular expression language --- but regular expressions use different
special characters thanLIKE does. UnlikeLIKE patterns, a regular expression is allowed to match
anywhere within a string, unless the regular expression is explicitly anchored to the beginning or end
of the string.

Some examples:

’abc’ ~ ’abc’ true
’abc’ ~ ’^a’ true
’abc’ ~ ’(b|d)’ true
’abc’ ~ ’^(b|c)’ false

The SUBSTRINGfunction with two parameters,SUBSTRING(string FROMpattern ) , provides
extraction of a substring that matches a POSIX regular expression pattern. It returns null if there is
no match, otherwise the portion of the text that matched the pattern. But if the pattern contains any
parentheses, the portion of the text that matched the first parenthesized subexpression (the one whose
left parenthesis comes first) is returned. You can always put parentheses around the whole expression
if you want to use parentheses within it without triggering this exception.
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Some examples:

SUBSTRING(’foobar’ FROM ’o.b’) oob
SUBSTRING(’foobar’ FROM ’o(.)b’) o

Regular expressions (REs), as defined in POSIX 1003.2, come in two forms: modern REs (roughly
those ofegrep ; 1003.2 calls these “extended” REs) and obsolete REs (roughly those ofed; 1003.2
“basic” REs). PostgreSQL implements the modern form.

A (modern) RE is one or more non-emptybranches, separated by| . It matches anything that matches
one of the branches.

A branch is one or morepieces, concatenated. It matches a match for the first, followed by a match
for the second, etc.

A piece is anatompossibly followed by a single* , +, ?, or bound. An atom followed by* matches a
sequence of 0 or more matches of the atom. An atom followed by+ matches a sequence of 1 or more
matches of the atom. An atom followed by? matches a sequence of 0 or 1 matches of the atom.

A bound is { followed by an unsigned decimal integer, possibly followed by, possibly followed
by another unsigned decimal integer, always followed by} . The integers must lie between 0 and
RE_DUP_MAX(255) inclusive, and if there are two of them, the first may not exceed the second. An
atom followed by a bound containing one integeri and no comma matches a sequence of exactlyi
matches of the atom. An atom followed by a bound containing one integeri and a comma matches a
sequence ofi or more matches of the atom. An atom followed by a bound containing two integersi
andj matches a sequence ofi throughj (inclusive) matches of the atom.

Note: A repetition operator (?, * , +, or bounds) cannot follow another repetition operator. A repe-
tition operator cannot begin an expression or subexpression or follow ^ or | .

An atom is a regular expression enclosed in() (matching a match for the regular expression), an
empty set of() (matching the null string), abracket expression(see below),. (matching any single
character),̂ (matching the null string at the beginning of the input string),$ (matching the null string
at the end of the input string), a\ followed by one of the characters^.[$()|*+?{\ (matching that
character taken as an ordinary character), a\ followed by any other character (matching that character
taken as an ordinary character, as if the\ had not been present), or a single character with no other
significance (matching that character). A{ followed by a character other than a digit is an ordinary
character, not the beginning of a bound. It is illegal to end an RE with\ .

Note that the backslash (\ ) already has a special meaning in string literals, so to write a pattern
constant that contains a backslash you must write two backslashes in the query.

A bracket expressionis a list of characters enclosed in[] . It normally matches any single character
from the list (but see below). If the list begins with^ , it matches any single character (but see below)
not from the rest of the list. If two characters in the list are separated by- , this is shorthand for the
full range of characters between those two (inclusive) in the collating sequence, e.g.[0-9] in ASCII
matches any decimal digit. It is illegal for two ranges to share an endpoint, e.g.a-c-e . Ranges are
very collating-sequence-dependent, and portable programs should avoid relying on them.

To include a literal] in the list, make it the first character (following a possible^ ). To include a literal
- , make it the first or last character, or the second endpoint of a range. To use a literal- as the first
endpoint of a range, enclose it in[. and .] to make it a collating element (see below). With the
exception of these and some combinations using[ (see next paragraphs), all other special characters,
including \ , lose their special significance within a bracket expression.
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Within a bracket expression, a collating element (a character, a multiple-character sequence that col-
lates as if it were a single character, or a collating-sequence name for either) enclosed in[. and.]

stands for the sequence of characters of that collating element. The sequence is a single element of
the bracket expression’s list. A bracket expression containing a multiple-character collating element
can thus match more than one character, e.g. if the collating sequence includes ach collating element,
then the RE[[.ch.]]*c matches the first five characters ofchchcc .

Within a bracket expression, a collating element enclosed in[= and=] is an equivalence class, stand-
ing for the sequences of characters of all collating elements equivalent to that one, including itself. (If
there are no other equivalent collating elements, the treatment is as if the enclosing delimiters were[.

and.] .) For example, ifo and^ are the members of an equivalence class, then[[=o=]] , [[=^=]] ,
and[o^] are all synonymous. An equivalence class may not be an endpoint of a range.

Within a bracket expression, the name of a character class enclosed in[: and :] stands for the list
of all characters belonging to that class. Standard character class names are:alnum , alpha , blank ,
cntrl , digit , graph , lower , print , punct , space , upper , xdigit . These stand for the character
classes defined in ctype. A locale may provide others. A character class may not be used as an endpoint
of a range.

There are two special cases of bracket expressions: the bracket expressions[[: <:]] and[[:>:]]

match the null string at the beginning and end of a word respectively. A word is defined as a sequence
of word characters which is neither preceded nor followed by word characters. A word character is
an alnum character (as defined by ctype) or an underscore. This is an extension, compatible with but
not specified by POSIX 1003.2, and should be used with caution in software intended to be portable
to other systems.

In the event that an RE could match more than one substring of a given string, the RE matches the
one starting earliest in the string. If the RE could match more than one substring starting at that
point, it matches the longest. Subexpressions also match the longest possible substrings, subject to
the constraint that the whole match be as long as possible, with subexpressions starting earlier in the
RE taking priority over ones starting later. Note that higher-level subexpressions thus take priority
over their lower-level component subexpressions.

Match lengths are measured in characters, not collating elements. A null string is considered
longer than no match at all. For example,bb* matches the three middle characters ofabbbc ,
(wee|week)(knights|nights) matches all ten characters ofweeknights , when (.*).* is
matched againstabc the parenthesized subexpression matches all three characters, and when(a*)*

is matched againstbc both the whole RE and the parenthesized subexpression match the null string.

If case-independent matching is specified, the effect is much as if all case distinctions had vanished
from the alphabet. When an alphabetic that exists in multiple cases appears as an ordinary character
outside a bracket expression, it is effectively transformed into a bracket expression containing both
cases, e.g.x becomes[xX] . When it appears inside a bracket expression, all case counterparts of it
are added to the bracket expression, so that (e.g.)[x] becomes[xX] and[^x] becomes[^xX] .

There is no particular limit on the length of REs, except insofar as memory is limited. Memory
usage is approximately linear in RE size, and largely insensitive to RE complexity, except
for bounded repetitions. Bounded repetitions are implemented by macro expansion, which is
costly in time and space if counts are large or bounded repetitions are nested. An RE like, say,
((((a{1,100}){1,100}){1,100}){1,100}){1,100} will (eventually) run almost any existing
machine out of swap space.1

1. This was written in 1994, mind you. The numbers have probably changed, but the problem persists.
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6.7. Data Type Formatting Functions
The PostgreSQL formatting functions provide a powerful set of tools for converting various data types
(date/time, integer, floating point, numeric) to formatted strings and for converting from formatted
strings to specific data types.Table 6-12lists them. These functions all follow a common calling
convention: the first argument is the value to be formatted and the second argument is a template that
defines the output or input format.

Table 6-12. Formatting Functions

Function Returns Description Example

to_char (timestamp ,
text )

text convert time stamp to
string

to_char(timestamp

’now’,’HH12:MI:SS’)

to_char (interval ,
text )

text convert interval to stringto_char(interval

’15h 2m

12s’,’HH24:MI:SS’)

to_char (int , text ) text convert integer to stringto_char(125,

’999’)

to_char (double

precision , text )
text convert real/double

precision to string
to_char(125.8,

’999D9’)

to_char (numeric ,
text )

text convert numeric to
string

to_char(numeric

’-125.8’,

’999D99S’)

to_date (text , text ) date convert string to date to_date(’05 Dec

2000’, ’DD Mon

YYYY’)

to_timestamp (text ,
text )

timestamp convert string to time
stamp

to_timestamp(’05

Dec 2000’, ’DD Mon

YYYY’)

to_number (text ,
text )

numeric convert string to
numeric

to_number(’12,454.8-

’, ’99G999D9S’)

In an output template string, there are certain patterns that are recognized and replaced with
appropriately-formatted data from the value to be formatted. Any text that is not a template pattern is
simply copied verbatim. Similarly, in an input template string, template patterns identify the parts of
the input data string to be looked at and the values to be found there.

Table 6-13shows the template patterns available for formatting date and time values.

Table 6-13. Template patterns for date/time conversions

Pattern Description

HH hour of day (01-12)

HH12 hour of day (01-12)

HH24 hour of day (00-23)

MI minute (00-59)

SS second (00-59)
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Pattern Description

MS millisecond (000-999)

US microsecond (000000-999999)

SSSS seconds past midnight (0-86399)

AMor A.M. or PMor P.M. meridian indicator (upper case)

amor a.m. or pmor p.m. meridian indicator (lower case)

Y,YYY year (4 and more digits) with comma

YYYY year (4 and more digits)

YYY last 3 digits of year

YY last 2 digits of year

Y last digit of year

BCor B.C. or ADor A.D. era indicator (upper case)

bc or b.c. or ad or a.d. era indicator (lower case)

MONTH full upper case month name (blank-padded to 9
chars)

Month full mixed case month name (blank-padded to 9
chars)

month full lower case month name (blank-padded to 9
chars)

MON abbreviated upper case month name (3 chars)

Mon abbreviated mixed case month name (3 chars)

mon abbreviated lower case month name (3 chars)

MM month number (01-12)

DAY full upper case day name (blank-padded to 9
chars)

Day full mixed case day name (blank-padded to 9
chars)

day full lower case day name (blank-padded to 9
chars)

DY abbreviated upper case day name (3 chars)

Dy abbreviated mixed case day name (3 chars)

dy abbreviated lower case day name (3 chars)

DDD day of year (001-366)

DD day of month (01-31)

D day of week (1-7; SUN=1)

W week of month (1-5) where first week start on the
first day of the month

WW week number of year (1-53) where first week
start on the first day of the year

IW ISO week number of year (The first Thursday of
the new year is in week 1.)

CC century (2 digits)

J Julian Day (days since January 1, 4712 BC)

Q quarter
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Pattern Description

RM month in Roman Numerals (I-XII; I=January) -
upper case

rm month in Roman Numerals (I-XII; I=January) -
lower case

TZ time-zone name - upper case

tz time-zone name - lower case

Certain modifiers may be applied to any template pattern to alter its behavior. For example,
“FMMonth” is the “Month ” pattern with the “FM” prefix. Table 6-14shows the modifier patterns for
date/time formatting.

Table 6-14. Template pattern modifiers for date/time conversions

Modifier Description Example

FMprefix fill mode (suppress padding
blanks and zeroes)

FMMonth

THsuffix add upper-case ordinal number
suffix

DDTH

th suffix add lower-case ordinal number
suffix

DDth

FX prefix fixed format global option (see
usage notes)

FX Month DD Day

SPsuffix spell mode (not yet
implemented)

DDSP

Usage notes for the date/time formatting:

• FMsuppresses leading zeroes and trailing blanks that would otherwise be added to make the output
of a pattern be fixed-width.

• to_timestamp andto_date skip multiple blank spaces in the input string if theFX option is not
used.FX must be specified as the first item in the template; for exampleto_timestamp(’2000

JUN’,’YYYY MON’) is right, butto_timestamp(’2000 JUN’,’FXYYYY MON’) returns an er-
ror, becauseto_timestamp expects one blank space only.

• If a backslash (“\ ”) is desired in a string constant, a double backslash (“\\ ”) must be entered; for
example’\\HH\\MI\\SS’ . This is true for any string constant in PostgreSQL.

• Ordinary text is allowed into_char templates and will be output literally. You can put a substring
in double quotes to force it to be interpreted as literal text even if it contains pattern keywords. For
example, in’"Hello Year "YYYY’ , theYYYYwill be replaced by the year data, but the singleY

in “Year” will not be.

• If you want to have a double quote in the output you must precede it with a backslash, for example
’\\"YYYY Month\\"’ .

• YYYYconversion from string totimestamp or date is restricted if you use a year with more than
4 digits. You must use some non-digit character or template afterYYYY, otherwise the year is al-
ways interpreted as 4 digits. For example (with year 20000):to_date(’200001131’, ’YYYYM-

MDD’) will be interpreted as a 4-digit year; better is to use a non-digit separator after the year, like
to_date(’20000-1131’, ’YYYY-MMDD’) or to_date(’20000Nov31’, ’YYYYMonDD’) .
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• MillisecondMSand microsecondUSvalues in a conversion from string to time stamp are used as
part of the seconds after the decimal point. For exampleto_timestamp(’12:3’, ’SS:MS’) is
not 3 milliseconds, but 300, because the conversion counts it as 12 + 0.3. This means for the format
SS:MS, the input values12:3 , 12:30 , and12:300 specify the same number of milliseconds. To
get three milliseconds, one must use12:003 , which the conversion counts as 12 + 0.003 = 12.003
seconds.

Here is a more complex example:to_timestamp(’15:12:02.020.001230’,’HH:MI:SS.MS.US’)

is 15 hours, 12 minutes, and 2 seconds + 20 milliseconds + 1230 microseconds = 2.021230
seconds.

Table 6-15shows the template patterns available for formatting numeric values.

Table 6-15. Template patterns for numeric conversions

Pattern Description

9 value with the specified number of digits

0 value with leading zeros

. (period) decimal point

, (comma) group (thousand) separator

PR negative value in angle brackets

S negative value with minus sign (uses locale)

L currency symbol (uses locale)

D decimal point (uses locale)

G group separator (uses locale)

MI minus sign in specified position (if number< 0)

PL plus sign in specified position (if number> 0)

SG plus/minus sign in specified position

RN roman numeral (input between 1 and 3999)

THor th convert to ordinal number

V shift n digits (see notes)

EEEE scientific notation (not implemented yet)

Usage notes for the numeric formatting:

• A sign formatted usingSG, PL, or MI is not an anchor in the number; for example,to_char(-12,

’S9999’) produces’ -12’ , but to_char(-12, ’MI9999’) produces’- 12’ . The Oracle im-
plementation does not allow the use ofMI ahead of9, but rather requires that9 precedeMI.

• 9 specifies a value with the same number of digits as there are9s. If a digit is not available it outputs
a space.

• THdoes not convert values less than zero and does not convert decimal numbers.

• PL, SG, andTHare PostgreSQL extensions.

• V effectively multiplies the input values by10^ n, wheren is the number of digits followingV.
to_char does not support the use ofV combined with a decimal point. (E.g.,99.9V99 is not
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allowed.)

Table 6-16shows some examples of the use of theto_char function.

Table 6-16.to_char Examples

Input Output

to_char(now(),’Day, DD HH12:MI:SS’) ’Tuesday , 06 05:39:18’

to_char(now(),’FMDay, FMDD

HH12:MI:SS’)

’Tuesday, 6 05:39:18’

to_char(-0.1,’99.99’) ’ -.10’

to_char(-0.1,’FM9.99’) ’-.1’

to_char(0.1,’0.9’) ’ 0.1’

to_char(12,’9990999.9’) ’ 0012.0’

to_char(12,’FM9990999.9’) ’0012’

to_char(485,’999’) ’ 485’

to_char(-485,’999’) ’-485’

to_char(485,’9 9 9’) ’ 4 8 5’

to_char(1485,’9,999’) ’ 1,485’

to_char(1485,’9G999’) ’ 1 485’

to_char(148.5,’999.999’) ’ 148.500’

to_char(148.5,’999D999’) ’ 148,500’

to_char(3148.5,’9G999D999’) ’ 3 148,500’

to_char(-485,’999S’) ’485-’

to_char(-485,’999MI’) ’485-’

to_char(485,’999MI’) ’485’

to_char(485,’PL999’) ’+485’

to_char(485,’SG999’) ’+485’

to_char(-485,’SG999’) ’-485’

to_char(-485,’9SG99’) ’4-85’

to_char(-485,’999PR’) ’ <485>’

to_char(485,’L999’) ’DM 485

to_char(485,’RN’) ’ CDLXXXV’

to_char(485,’FMRN’) ’CDLXXXV’

to_char(5.2,’FMRN’) V

to_char(482,’999th’) ’ 482nd’

to_char(485, ’"Good number:"999’) ’Good number: 485’

to_char(485.8,’"Pre:"999" Post:"

.999’)

’Pre: 485 Post: .800’

to_char(12,’99V999’) ’ 12000’

to_char(12.4,’99V999’) ’ 12400’

to_char(12.45, ’99V9’) ’ 125’
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6.8. Date/Time Functions and Operators
Table 6-18shows the available functions for date/time value processing, with details appearing in
the following subsections.Table 6-17illustrates the behaviors of the basic arithmetic operators (+,
* , etc.). For formatting functions, refer toSection 6.7. You should be familiar with the background
information on date/time data types (seeSection 5.5).

All the functions and operators described below that take time or timestamp inputs actually come in
two variants: one that takes time or timestamp with time zone, and one that takes time or timestamp
without time zone. For brevity, these variants are not shown separately.

Table 6-17. Date/Time Operators

Name Example Result

+ timestamp ’2001-09-28

01:00’ + interval ’23

hours’

timestamp ’2001-09-29

00:00’

+ date ’2001-09-28’ +

interval ’1 hour’

timestamp ’2001-09-28

01:00’

+ time ’01:00’ + interval

’3 hours’

time ’04:00’

- timestamp ’2001-09-28

23:00’ - interval ’23

hours’

timestamp ’2001-09-28’

- date ’2001-09-28’ -

interval ’1 hour’

timestamp ’2001-09-27

23:00’

- time ’05:00’ - interval

’2 hours’

time ’03:00’

- interval ’2 hours’ -

time ’05:00’

time ’03:00:00’

* interval ’1 hour’ * int

’3’

interval ’03:00’

/ interval ’1 hour’ / int

’3’

interval ’00:20’

Table 6-18. Date/Time Functions

Name Return Type Description Example Result

age (timestamp ) interval Subtract from
today

age(timestamp

’1957-06-13’)

43 years 8

mons 3 days

age (timestamp ,
timestamp )

interval Subtract argumentsage(’2001-04-

10’, timestamp

’1957-06-13’)

43 years 9

mons 27 days

current_date date Today’s date; see
Section 6.8.4

current_time time with time

zone

Time of day; see
Section 6.8.4

current_timestamp timestamp with

time zone

Date and time; see
Section 6.8.4
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Name Return Type Description Example Result

date_part (text ,
timestamp )

double

precision

Get subfield
(equivalent to
extract ); see also
below

date_part(’hour’,

timestamp

’2001-02-16

20:38:40’)

20

date_part (text ,
interval )

double

precision

Get subfield
(equivalent to
extract ); see also
below

date_part(’month’,

interval ’2

years 3

months’)

3

date_trunc (text ,
timestamp )

timestamp Truncate to
specified precision;
see alsoSection
6.8.2

date_trunc(’hour’,

timestamp

’2001-02-16

20:38:40’)

2001-02-16

20:00:00+00

extract (field
from timestamp )

double

precision

Get subfield; see
alsoSection 6.8.1

extract(hour

from timestamp

’2001-02-16

20:38:40’)

20

extract (field
from interval )

double

precision

Get subfield; see
alsoSection 6.8.1

extract(month

from interval

’2 years 3

months’)

3

isfinite (timestamp )boolean Test for finite time
stamp (neither
invalid nor infinity)

isfinite(timestamp

’2001-02-16

21:28:30’)

true

isfinite (interval )boolean Test for finite
interval

isfinite(interval

’4 hours’)

true

localtime time Time of day; see
Section 6.8.4

localtimestamp timestamp Date and time; see
Section 6.8.4

now() timestamp with

time zone

Current date and
time (equivalent to
cur-

rent_timestamp );
seeSection 6.8.4

timeofday() text Current date and
time; seeSection
6.8.4

timeofday() Wed Feb 21

17:01:13.000126

2001 EST

6.8.1. EXTRACT, date_part

EXTRACT (field FROMsource )

The extract function retrieves subfields from date/time values, such as year or hour.source is
a value expression that evaluates to typetimestamp or interval . (Expressions of typedate or
time will be cast totimestamp and can therefore be used as well.)field is an identifier or string
that selects what field to extract from the source value. Theextract function returns values of type
double precision . The following are valid values:
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century

The year field divided by 100

SELECT EXTRACT(CENTURY FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 20

Note that the result for the century field is simply the year field divided by 100, and not the
conventional definition which puts most years in the 1900’s in the twentieth century.

day

The day (of the month) field (1 - 31)

SELECT EXTRACT(DAY FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 16

decade

The year field divided by 10

SELECT EXTRACT(DECADE FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 200

dow

The day of the week (0 - 6; Sunday is 0) (fortimestamp values only)

SELECT EXTRACT(DOW FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 5

doy

The day of the year (1 - 365/366) (fortimestamp values only)

SELECT EXTRACT(DOY FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 47

epoch

Fordate andtimestamp values, the number of seconds since 1970-01-01 00:00:00-00 (can be
negative); forinterval values, the total number of seconds in the interval

SELECT EXTRACT(EPOCH FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 982352320

SELECT EXTRACT(EPOCH FROM INTERVAL ’5 days 3 hours’);
Result: 442800

hour

The hour field (0 - 23)

SELECT EXTRACT(HOUR FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 20

microseconds

The seconds field, including fractional parts, multiplied by 1 000 000. Note that this includes full
seconds.

SELECT EXTRACT(MICROSECONDS FROM TIME ’17:12:28.5’);
Result: 28500000

millennium

The year field divided by 1000

SELECT EXTRACT(MILLENNIUM FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 2
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Note that the result for the millennium field is simply the year field divided by 1000, and not the
conventional definition which puts years in the 1900’s in the second millennium.

milliseconds

The seconds field, including fractional parts, multiplied by 1000. Note that this includes full
seconds.

SELECT EXTRACT(MILLISECONDS FROM TIME ’17:12:28.5’);
Result: 28500

minute

The minutes field (0 - 59)

SELECT EXTRACT(MINUTE FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 38

month

For timestamp values, the number of the month within the year (1 - 12) ; forinterval values
the number of months, modulo 12 (0 - 11)

SELECT EXTRACT(MONTH FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 2

SELECT EXTRACT(MONTH FROM INTERVAL ’2 years 3 months’);
Result: 3

SELECT EXTRACT(MONTH FROM INTERVAL ’2 years 13 months’);
Result: 1

quarter

The quarter of the year (1 - 4) that the day is in (fortimestamp values only)

SELECT EXTRACT(QUARTER FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 1

second

The seconds field, including fractional parts (0 - 592)

SELECT EXTRACT(SECOND FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 40

SELECT EXTRACT(SECOND FROM TIME ’17:12:28.5’);
Result: 28.5

timezone_hour

The hour component of the time zone offset.

timezone_minute

The minute component of the time zone offset.

week

From atimestamp value, calculate the number of the week of the year that the day is in. By
definition (ISO 8601), the first week of a year contains January 4 of that year. (The ISO week
starts on Monday.) In other words, the first Thursday of a year is in week 1 of that year.

SELECT EXTRACT(WEEK FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 7

60 if leap seconds are implemented by the operating system
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year

The year field

SELECT EXTRACT(YEAR FROM TIMESTAMP ’2001-02-16 20:38:40’);
Result: 2001

Theextract function is primarily intended for computational processing. For formatting date/time
values for display, seeSection 6.7.

Thedate_part function is modeled on the traditional Ingres equivalent to the SQL-standard function
extract :

date_part(’ field ’, source )

Note that here thefield parameter needs to be a string value, not a name. The valid field values for
date_part are the same as forextract .

SELECT date_part(’day’, TIMESTAMP ’2001-02-16 20:38:40’);
Result: 16

SELECT date_part(’hour’, INTERVAL ’4 hours 3 minutes’);
Result: 4

6.8.2. date_trunc

The functiondate_trunc is conceptually similar to thetrunc function for numbers.

date_trunc(’ field ’, source )

source is a value expression of typetimestamp (values of typedate andtime are cast automati-
cally). field selects to which precision to truncate the time stamp value. The return value is of type
timestamp with all fields that are less than the selected one set to zero (or one, for day and month).

Valid values forfield are:

microseconds
milliseconds
second
minute
hour
day
month
year
decade
century
millennium

Examples:

SELECT date_trunc(’hour’, TIMESTAMP ’2001-02-16 20:38:40’);
Result: 2001-02-16 20:00:00+00

104



Chapter 6. Functions and Operators

SELECT date_trunc(’year’, TIMESTAMP ’2001-02-16 20:38:40’);
Result: 2001-01-01 00:00:00+00

6.8.3. AT TIME ZONE

TheAT TIME ZONEconstruct allows conversions of timestamps to different timezones.

Table 6-19. AT TIME ZONE Variants

Expression Returns Description

timestamp without time

zone AT TIME ZONEzone
timestamp with time zone Convert local time in given

timezone to UTC

timestamp with time

zone AT TIME ZONEzone
timestamp without time

zone

Convert UTC to local time in
given timezone

time with time zone AT

TIME ZONEzone
time with time zone Convert local time across

timezones

In these expressions, the desired timezone can be specified either as a text string (e.g.,’PST’ ) or as
an interval (e.g.,INTERVAL ’-08:00’ ).

Examples (supposing thatTimeZone is PST8PDT):

SELECT TIMESTAMP ’2001-02-16 20:38:40’ AT TIME ZONE ’MST’;
Result: 2001-02-16 19:38:40-08

SELECT TIMESTAMP WITH TIME ZONE ’2001-02-16 20:38:40-05’ AT TIME ZONE ’MST’;
Result: 2001-02-16 18:38:40

The first example takes a zone-less timestamp and interprets it as MST time (GMT-7) to produce
a UTC timestamp, which is then rotated to PST (GMT-8) for display. The second example takes a
timestamp specified in EST (GMT-5) and converts it to local time in MST (GMT-7).

The functiontimezone (zone , timestamp ) is equivalent to the SQL-compliant constructtimes-
tamp AT TIME ZONEzone .

6.8.4. Current Date/Time

The following functions are available to obtain the current date and/or time:

CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_TIME ( precision )
CURRENT_TIMESTAMP (precision )
LOCALTIME
LOCALTIMESTAMP
LOCALTIME ( precision )
LOCALTIMESTAMP ( precision )

CURRENT_TIMEandCURRENT_TIMESTAMPdeliver values with time zone;LOCALTIMEandLOCAL-

TIMESTAMPdeliver values without time zone.
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CURRENT_TIME, CURRENT_TIMESTAMP, LOCALTIME, and LOCALTIMESTAMPcan optionally be
given a precision parameter, which causes the result to be rounded to that many fractional digits.
Without a precision parameter, the result is given to the full available precision.

Note: Prior to PostgreSQL 7.2, the precision parameters were unimplemented, and the result was
always given in integer seconds.

Some examples:

SELECT CURRENT_TIME;
14:39:53.662522-05

SELECT CURRENT_DATE;
2001-12-23

SELECT CURRENT_TIMESTAMP;
2001-12-23 14:39:53.662522-05

SELECT CURRENT_TIMESTAMP(2);
2001-12-23 14:39:53.66-05

SELECT LOCALTIMESTAMP;
2001-12-23 14:39:53.662522

The functionnow() is the traditional PostgreSQL equivalent toCURRENT_TIMESTAMP.

There is alsotimeofday() , which for historical reasons returns a text string rather than atimestamp

value:

SELECT timeofday();
Sat Feb 17 19:07:32.000126 2001 EST

It is important to realize thatCURRENT_TIMESTAMPand related functions return the start time of the
current transaction; their values do not change during the transaction.timeofday() returns the wall
clock time and does advance during transactions.

Note: Many other database systems advance these values more frequently.

All the date/time data types also accept the special literal valuenow to specify the current date and
time. Thus, the following three all return the same result:

SELECT CURRENT_TIMESTAMP;
SELECT now();
SELECT TIMESTAMP ’now’;

Note: You do not want to use the third form when specifying a DEFAULTclause while creating
a table. The system will convert now to a timestamp as soon as the constant is parsed, so that
when the default value is needed, the time of the table creation would be used! The first two forms
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will not be evaluated until the default value is used, because they are function calls. Thus they will
give the desired behavior of defaulting to the time of row insertion.

6.9. Geometric Functions and Operators
The geometric typespoint , box , lseg , line , path , polygon , andcircle have a large set of native
support functions and operators, shown inTable 6-20, Table 6-21, andTable 6-22.

Table 6-20. Geometric Operators

Operator Description Usage

+ Translation box ’((0,0),(1,1))’ +

point ’(2.0,0)’

- Translation box ’((0,0),(1,1))’ -

point ’(2.0,0)’

* Scaling/rotation box ’((0,0),(1,1))’ *

point ’(2.0,0)’

/ Scaling/rotation box ’((0,0),(2,2))’ /

point ’(2.0,0)’

# Intersection ’((1,-1),(-1,1))’ #

’((1,1),(-1,-1))’

# Number of points in path or
polygon

# ’((1,0),(0,1),(-1,0))’

## Point of closest proximity point ’(0,0)’ ## lseg

’((2,0),(0,2))’

&& Overlaps? box ’((0,0),(1,1))’ &&

box ’((0,0),(2,2))’

&< Overlaps to left? box ’((0,0),(1,1))’ & <

box ’((0,0),(2,2))’

&> Overlaps to right? box ’((0,0),(3,3))’ & >

box ’((0,0),(2,2))’

<-> Distance between circle ’((0,0),1)’ <- >

circle ’((5,0),1)’

<< Left of? circle ’((0,0),1)’ <<

circle ’((5,0),1)’

<^ Is below? circle ’((0,0),1)’ <^

circle ’((0,5),1)’

>> Is right of? circle ’((5,0),1)’ >>

circle ’((0,0),1)’

>^ Is above? circle ’((0,5),1)’ >^

circle ’((0,0),1)’

?# Intersects or overlaps lseg ’((-1,0),(1,0))’ ?#

box ’((-2,-2),(2,2))’
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Operator Description Usage

?- Is horizontal? point ’(1,0)’ ?- point

’(0,0)’

?-| Is perpendicular? lseg ’((0,0),(0,1))’ ?-|

lseg ’((0,0),(1,0))’

@-@ Length or circumference @-@ path ’((0,0),(1,0))’

?| Is vertical? point ’(0,1)’ ?| point

’(0,0)’

?|| Is parallel? lseg ’((-1,0),(1,0))’

?|| lseg

’((-1,2),(1,2))’

@ Contained or on point ’(1,1)’ @ circle

’((0,0),2)’

@@ Center of @@ circle ’((0,0),10)’

~= Same as polygon ’((0,0),(1,1))’

~= polygon

’((1,1),(0,0))’

Table 6-21. Geometric Functions

Function Returns Description Example

area (object) double precision area of item area(box

’((0,0),(1,1))’)

box (box, box) box intersection box box(box

’((0,0),(1,1))’,box

’((0.5,0.5),(2,2))’)

center (object) point center of item center(box

’((0,0),(1,2))’)

diameter (circle) double precision diameter of circle diameter(circle

’((0,0),2.0)’)

height (box) double precision vertical size of box height(box

’((0,0),(1,1))’)

isclosed (path) boolean a closed path? isclosed(path

’((0,0),(1,1),(2,0))’)

isopen (path) boolean an open path? isopen(path

’[(0,0),(1,1),(2,0)]’)

length (object) double precision length of item length(path

’((-1,0),(1,0))’)

npoints (path) integer number of points npoints(path

’[(0,0),(1,1),(2,0)]’)

npoints (polygon) integer number of points npoints(polygon

’((1,1),(0,0))’)
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Function Returns Description Example

pclose (path) path convert path to closed popen(path

’[(0,0),(1,1),(2,0)]’)

popen (path) path convert path to open
path

popen(path

’((0,0),(1,1),(2,0))’)

radius (circle) double precision radius of circle radius(circle

’((0,0),2.0)’)

width (box) double precision horizontal size width(box

’((0,0),(1,1))’)

Table 6-22. Geometric Type Conversion Functions

Function Returns Description Example

box (circle ) box circle to box box(circle

’((0,0),2.0)’)

box (point , point ) box points to box box(point ’(0,0)’,

point ’(1,1)’)

box (polygon ) box polygon to box box(polygon

’((0,0),(1,1),(2,0))’)

circle (box ) circle to circle circle(box

’((0,0),(1,1))’)

circle (point ,
double precision )

circle point to circle circle(point

’(0,0)’, 2.0)

lseg (box ) lseg box diagonal tolseg lseg(box

’((-1,0),(1,0))’)

lseg (point , point ) lseg points tolseg lseg(point

’(-1,0)’, point

’(1,0)’)

path (polygon ) point polygon to path path(polygon

’((0,0),(1,1),(2,0))’)

point (circle ) point center point(circle

’((0,0),2.0)’)

point (lseg , lseg ) point intersection point(lseg

’((-1,0),(1,0))’,

lseg

’((-2,-2),(2,2))’)

point (polygon ) point center point(polygon

’((0,0),(1,1),(2,0))’)

polygon (box ) polygon 4-point polygon polygon(box

’((0,0),(1,1))’)
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Function Returns Description Example

polygon (circle ) polygon 12-point polygon polygon(circle

’((0,0),2.0)’)

polygon (npts ,
circle )

polygon npts polygon polygon(12, circle

’((0,0),2.0)’)

polygon (path ) polygon path to polygon polygon(path

’((0,0),(1,1),(2,0))’)

It is possible to access the two component numbers of apoint as though it were an array with
subscripts 0, 1. For example, ift.p is apoint column thenSELECT p[0] FROM t retrieves the X
coordinate;UPDATE t SET p[1] = ... changes the Y coordinate. In the same way, abox or an
lseg may be treated as an array of twopoint s.

6.10. Network Address Type Functions
Table 6-23shows the operators available for theinet andcidr types. The operators<<, <<=, >>,
>>= test for subnet inclusion: they consider only the network parts of the two addresses, ignoring
any host part, and determine whether one network part is identical to or a subnet of the other.

Table 6-23.cidr and inet Operators

Operator Description Usage

< Less than inet ’192.168.1.5’ <

inet ’192.168.1.6’

<= Less than or equal inet ’192.168.1.5’ <=

inet ’192.168.1.5’

= Equals inet ’192.168.1.5’ =

inet ’192.168.1.5’

>= Greater or equal inet ’192.168.1.5’ >=

inet ’192.168.1.5’

> Greater inet ’192.168.1.5’ >

inet ’192.168.1.4’

<> Not equal inet ’192.168.1.5’ <>

inet ’192.168.1.4’

<< is contained within inet ’192.168.1.5’ <<

inet ’192.168.1/24’

<<= is contained within or equals inet ’192.168.1/24’ <<=

inet ’192.168.1/24’

>> contains inet’192.168.1/24’ >>

inet ’192.168.1.5’

>>= contains or equals inet ’192.168.1/24’ >>=

inet ’192.168.1/24’

Table 6-24shows the functions available for use with theinet andcidr types. Thehost() , text() ,
andabbrev() functions are primarily intended to offer alternative display formats. You can cast a
text field to inet using normal casting syntax:inet(expression) or colname::inet .
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Table 6-24.cidr and inet Functions

Function Returns Description Example Result

broadcast (inet ) inet broadcast address
for network

broadcast(’192.168.1.5/24’)192.168.1.255/24

host (inet ) text extract IP address
as text

host(’192.168.1.5/24’)192.168.1.5

masklen (inet ) integer extract netmask
length

masklen(’192.168.1.5/24’)24

set_masklen (inet ,integer )inet set netmask length
for inet value

set_masklen(’192.168.1.5/24’,16)192.168.1.5/16

netmask (inet ) inet construct netmask
for network

netmask(’192.168.1.5/24’)255.255.255.0

network (inet ) cidr extract network
part of address

network(’192.168.1.5/24’)192.168.1.0/24

text (inet ) text extract IP address
and masklen as
text

text(inet

’192.168.1.5’)

192.168.1.5/32

abbrev (inet ) text extract abbreviated
display as text

abbrev(cidr

’10.1.0.0/16’)

10.1/16

Table 6-25shows the functions available for use with themac type. The functiontrunc (macaddr )
returns a MAC address with the last 3 bytes set to 0. This can be used to associate the remaining prefix
with a manufacturer. The directorycontrib/mac in the source distribution contains some utilities to
create and maintain such an association table.

Table 6-25.macaddr Functions

Function Returns Description Example Result

trunc (macaddr ) macaddr set last 3 bytes to
zero

trunc(macaddr

’12:34:56:78:90:ab’)

12:34:56:00:00:00

The macaddr type also supports the standard relational operators (>, <=, etc.) for lexicographical
ordering.

6.11. Sequence-Manipulation Functions
This section describes PostgreSQL’s functions for operating onsequence objects. Sequence objects
(also called sequence generators or just sequences) are special single-row tables created withCRE-

ATE SEQUENCE. A sequence object is usually used to generate unique identifiers for rows of a table.
The sequence functions, listed inTable 6-26, provide simple, multiuser-safe methods for obtaining
successive sequence values from sequence objects.

Table 6-26. Sequence Functions

Function Returns Description
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Function Returns Description

nextval (text ) bigint Advance sequence and return
new value

currval (text ) bigint Return value most recently
obtained withnextval

setval (text ,bigint ) bigint Set sequence’s current value

setval (text ,bigint ,boolean )bigint Set sequence’s current value and
is_called flag

For largely historical reasons, the sequence to be operated on by a sequence-function call is specified
by a text-string argument. To achieve some compatibility with the handling of ordinary SQL names,
the sequence functions convert their argument to lower case unless the string is double-quoted. Thus

nextval(’foo’) operates on sequence foo

nextval(’FOO’) operates on sequence foo

nextval(’"Foo"’) operates on sequence Foo

The sequence name can be schema-qualified if necessary:

nextval(’myschema.foo’) operates on myschema.foo

nextval(’"myschema".foo’) same as above
nextval(’foo’) searches search path for foo

Of course, the text argument can be the result of an expression, not only a simple literal, which is
occasionally useful.

The available sequence functions are:

nextval

Advance the sequence object to its next value and return that value. This is done atomically: even
if multiple sessions executenextval concurrently, each will safely receive a distinct sequence
value.

currval

Return the value most recently obtained bynextval for this sequence in the current session.
(An error is reported ifnextval has never been called for this sequence in this session.) Notice
that because this is returning a session-local value, it gives a predictable answer even if other
sessions are executingnextval meanwhile.

setval

Reset the sequence object’s counter value. The two-parameter form sets the sequence’s
last_value field to the specified value and sets itsis_called field to true , meaning that
the nextnextval will advance the sequence before returning a value. In the three-parameter
form, is_called may be set eithertrue or false . If it’s set to false , the nextnextval will
return exactly the specified value, and sequence advancement commences with the following
nextval . For example,

SELECT setval(’foo’, 42); Next nextval() will return 43
SELECT setval(’foo’, 42, true); Same as above
SELECT setval(’foo’, 42, false); Next nextval() will return 42

The result returned bysetval is just the value of its second argument.
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Important: To avoid blocking of concurrent transactions that obtain numbers from the same se-
quence, a nextval operation is never rolled back; that is, once a value has been fetched it is con-
sidered used, even if the transaction that did the nextval later aborts. This means that aborted
transactions may leave unused “holes” in the sequence of assigned values. setval operations
are never rolled back, either.

If a sequence object has been created with default parameters,nextval() calls on it will return
successive values beginning with one. Other behaviors can be obtained by using special parameters
in theCREATE SEQUENCEcommand; see its command reference page for more information.

6.12. Conditional Expressions
This section describes the SQL-compliant conditional expressions available in PostgreSQL.

Tip: If your needs go beyond the capabilities of these conditional expressions you might want to
consider writing a stored procedure in a more expressive programming language.

6.12.1. CASE

CASE WHENcondition THEN result
[WHEN ...]
[ELSE result ]

END

The SQLCASEexpression is a generic conditional expression, similar to if/else statements in other
languages.CASEclauses can be used wherever an expression is valid.condition is an expression
that returns aboolean result. If the result is true then the value of theCASEexpression isresult .
If the result is false any subsequentWHENclauses are searched in the same manner. If noWHENcon-
dition is true then the value of the case expression is theresult in theELSEclause. If theELSE

clause is omitted and no condition matches, the result is null.

An example:

=> SELECT * FROM test;
a

---

1

2

3

=> SELECT a,
CASE WHEN a=1 THEN ’one’

WHEN a=2 THEN ’two’
ELSE ’other’

END
FROM test;

a | case

---+-------

1 | one

2 | two

3 | other
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The data types of all theresult expressions must be coercible to a single output type. SeeSection
7.5for more detail.

CASE expression
WHENvalue THEN result
[WHEN ...]
[ELSE result ]

END

This “simple”CASEexpression is a specialized variant of the general form above. Theexpression
is computed and compared to all thevalue s in theWHENclauses until one is found that is equal. If
no match is found, theresult in theELSEclause (or a null value) is returned. This is similar to the
switch statement in C.

The example above can be written using the simpleCASEsyntax:

=> SELECT a,
CASE a WHEN 1 THEN ’one’

WHEN 2 THEN ’two’
ELSE ’other’

END
FROM test;

a | case

---+-------

1 | one

2 | two

3 | other

6.12.2. COALESCE

COALESCE( value [, ...])

The COALESCEfunction returns the first of its arguments that is not null. This is often useful to
substitute a default value for null values when data is retrieved for display, for example:

SELECT COALESCE(description, short_description, ’(none)’) ...

6.12.3. NULLIF

NULLIF ( value1 , value2 )

TheNULLIF function returns a null value if and only ifvalue1 andvalue2 are equal. Otherwise it
returnsvalue1 . This can be used to perform the inverse operation of theCOALESCEexample given
above:

SELECT NULLIF(value, ’(none)’) ...
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Tip: COALESCEand NULLIF are just shorthand for CASEexpressions. They are actually converted
into CASEexpressions at a very early stage of processing, and subsequent processing thinks it is
dealing with CASE. Thus an incorrect COALESCEor NULLIF usage may draw an error message that
refers to CASE.

6.13. Miscellaneous Functions
Table 6-27shows several functions that extract session and system information.

Table 6-27. Session Information Functions

Name Return Type Description

current_database() name name of current database

current_schema() name name of current schema

current_schemas(boolean) name[] names of schemas in search path
optionally including implicit
schemas

current_user name user name of current execution
context

session_user name session user name

user name equivalent tocurrent_user

version() text PostgreSQL version information

The session_user is the user that initiated a database connection; it is fixed for the duration of
that connection. Thecurrent_user is the user identifier that is applicable for permission checking.
Normally, it is equal to the session user, but it changes during the execution of functions with the
attributeSECURITY DEFINER. In Unix parlance, the session user is the “real user” and the current
user is the “effective user”.

Note: current_user , session_user , and user have special syntactic status in SQL: they must
be called without trailing parentheses.

current_schema returns the name of the schema that is at the front of the search path (or a null
value if the search path is empty). This is the schema that will be used for any tables or other named
objects that are created without specifying a target schema.current_schemas(boolean) returns
an array of the names of all schemas presently in the search path. The boolean option determines
whether or not implicitly included system schemas such as pg_catalog are included in the search path
returned.

The search path may be altered by a run-time setting. The command to use isSET SEARCH_PATH

’ schema ’[,’ schema ’]...

version() returns a string describing the PostgreSQL server’s version.

Table 6-28shows the functions available to query and alter run-time configuration parameters.
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Table 6-28. Configuration Settings Information Functions

Name Return Type Description

cur-

rent_setting (setting_name )
text value of current setting

set_config( setting_name ,

new_value , is_local )

text new value of current setting

The current_setting is used to obtain the current value of thesetting_name setting, as a
query result. It is the equivalent to the SQLSHOWcommand. For example:

select current_setting(’DateStyle’);
current_setting

---------------------------------------
ISO with US (NonEuropean) conventions

(1 row)

set_config allows thesetting_name setting to be changed tonew_value . If is_local is
set totrue , the new value will only apply to the current transaction. If you want the new value to
apply for the current session, usefalse instead. It is the equivalent to the SQLSET command. For
example:

select set_config(’show_statement_stats’,’off’,’f’);
set_config

------------
off

(1 row)

Table 6-29lists functions that allow the user to query object access privileges programmatically. See
Section 2.7for more information about privileges.

Table 6-29. Access Privilege Inquiry Functions

Name Return Type Description

has_table_privilege (user ,
table , access )

boolean does user have access to table

has_table_privilege (table ,
access )

boolean does current user have access to
table

has_database_privilege (user ,
database , access )

boolean does user have access to
database

has_database_privilege (database ,
access )

boolean does current user have access to
database

has_function_privilege (user ,
function , access )

boolean does user have access to
function

has_function_privilege (function ,
access )

boolean does current user have access to
function
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Name Return Type Description

has_language_privilege (user ,
language , access )

boolean does user have access to
language

has_language_privilege (language ,
access )

boolean does current user have access to
language

has_schema_privilege (user ,
schema , access )

boolean does user have access to schema

has_schema_privilege (schema ,
access )

boolean does current user have access to
schema

has_table_privilege checks whether a user can access a table in a particular way. The user can
be specified by name or by ID (pg_user .usesysid ), or if the argument is omittedcurrent_user

is assumed. The table can be specified by name or by OID. (Thus, there are actually six variants of
has_table_privilege , which can be distinguished by the number and types of their arguments.)
When specifying by name, the name can be schema-qualified if necessary. The desired access type
is specified by a text string, which must evaluate to one of the valuesSELECT, INSERT, UPDATE,
DELETE, RULE, REFERENCES, or TRIGGER. (Case of the string is not significant, however.) An exam-
ple is:

SELECT has_table_privilege(’myschema.mytable’, ’select’);

has_database_privilege checks whether a user can access a database in a particular way. The
possibilities for its arguments are analogous tohas_table_privilege . The desired access type
must evaluate toCREATE, TEMPORARY, or TEMP(which is equivalent toTEMPORARY).

has_function_privilege checks whether a user can access a function in a particular way. The
possibilities for its arguments are analogous tohas_table_privilege . When specifying a function
by a text string rather than by OID, the allowed input is the same as for theregprocedure data type.
The desired access type must currently evaluate toEXECUTE.

has_language_privilege checks whether a user can access a procedural language in a particular
way. The possibilities for its arguments are analogous tohas_table_privilege . The desired access
type must currently evaluate toUSAGE.

has_schema_privilege checks whether a user can access a schema in a particular way. The pos-
sibilities for its arguments are analogous tohas_table_privilege . The desired access type must
evaluate toCREATEor USAGE.

Table 6-30shows functions that determine whether a certain object isvisible in the current schema
search path. A table is said to be visible if its containing schema is in the search path and no table
of the same name appears earlier in the search path. This is equivalent to the statement that the table
can be referenced by name without explicit schema qualification. For example, to list the names of all
visible tables:

SELECT relname FROM pg_class WHERE pg_table_is_visible(oid);

Table 6-30. Schema Visibility Inquiry Functions

Name Return Type Description
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Name Return Type Description

pg_table_is_visible (tableOID )boolean is table visible in search path

pg_type_is_visible (typeOID )boolean is type visible in search path

pg_function_is_visible (functionOID )boolean is function visible in search path

pg_operator_is_visible (operatorOID )boolean is operator visible in search path

pg_opclass_is_visible (opclassOID )boolean is operator class visible in search
path

pg_table_is_visible performs the check for tables (or views, or any other kind ofpg_class

entry). pg_type_is_visible , pg_function_is_visible , pg_operator_is_visible , and
pg_opclass_is_visible perform the same sort of visibility check for types, functions, operators,
and operator classes, respectively. For functions and operators, an object in the search path is visible
if there is no object of the same nameand argument data type(s)earlier in the path. For operator
classes, both name and associated index access method are considered.

All these functions require object OIDs to identify the object to be checked. If you want to test an
object by name, it is convenient to use the OID alias types (regclass , regtype , regprocedure ,
or regoperator ), for example

SELECT pg_type_is_visible(’myschema.widget’::regtype);

Note that it would not make much sense to test an unqualified name in this way --- if the name can be
recognized at all, it must be visible.

Table 6-31lists functions that extract information from the system catalogs.pg_get_viewdef() ,
pg_get_ruledef() , pg_get_indexdef() , andpg_get_constraintdef() respectively recon-
struct the creating command for a view, rule, index, or constraint. (Note that this is a decompiled
reconstruction, not the verbatim text of the command.) At presentpg_get_constraintdef() only
works for foreign-key constraints.pg_get_userbyid() extracts a user’s name given ausesysid

value.

Table 6-31. Catalog Information Functions

Name Return Type Description

pg_get_viewdef (viewname ) text GetCREATE VIEWcommand
for view (deprecated)

pg_get_viewdef (viewOID ) text GetCREATE VIEWcommand
for view

pg_get_ruledef (ruleOID ) text GetCREATE RULEcommand
for rule

pg_get_indexdef (indexOID )text GetCREATE INDEXcommand
for index

pg_get_constraintdef (constraintOID )text Get definition of a constraint

pg_get_userbyid (userid ) name Get user name with given ID

The function shown inTable 6-32extract comments previously stored with theCOMMENTcommand.
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A null value is returned if no comment can be found matching the specified parameters.

Table 6-32. Comment Information Functions

Name Return Type Description

obj_description (objectOID ,
tablename )

text Get comment for a database
object

obj_description (objectOID )text Get comment for a database
object (deprecated)

col_description (tableOID ,
columnnumber )

text Get comment for a table column

The two-parameter form ofobj_description() returns the comment for a database
object specified by its OID and the name of the containing system catalog. For example,
obj_description(123456,’pg_class’) would retrieve the comment for a table with OID
123456. The one-parameter form ofobj_description() requires only the object OID. It is now
deprecated since there is no guarantee that OIDs are unique across different system catalogs;
therefore, the wrong comment could be returned.

col_description() returns the comment for a table column, which is specified by the OID of its
table and its column number.obj_description() cannot be used for table columns since columns
do not have OIDs of their own.

6.14. Aggregate Functions
Aggregate functionscompute a single result value from a set of input values.Table 6-33show the
built-in aggregate functions. The special syntax considerations for aggregate functions are explained
in Section 1.2.5. Consult thePostgreSQL Tutorialfor additional introductory information.

Table 6-33. Aggregate Functions

Function Argument Type Return Type Description

avg( expression )

smallint ,
integer , bigint ,
real , double

precision ,
numeric , or
interval .

numeric for any
integer type
argument,double

precision for a
floating-point
argument,
otherwise the same
as the argument
data type

the average
(arithmetic mean)
of all input values

count(*) bigint number of input
values

count( expression )any bigint number of input
values for which
the value of
expression is
not null
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Function Argument Type Return Type Description

max( expression ) any numeric,
string, or date/time
type

same as argument
type

maximum value of
expression
across all input
values

min( expression ) any numeric,
string, or date/time
type

same as argument
type

minimum value of
expression
across all input
values

std-

dev( expression )

smallint ,
integer , bigint ,
real , double

precision , or
numeric .

double

precision for
floating-point
arguments,
otherwise
numeric .

sample standard
deviation of the
input values

sum( expression ) smallint ,
integer , bigint ,
real , double

precision ,
numeric , or
interval

bigint for
smallint or
integer

arguments,
numeric for
bigint

arguments,
double

precision for
floating-point
arguments,
otherwise the same
as the argument
data type

sum of
expression
across all input
values

vari-

ance (expression )
smallint ,
integer , bigint ,
real , double

precision , or
numeric .

double

precision for
floating-point
arguments,
otherwise
numeric .

sample variance of
the input values
(square of the
sample standard
deviation)

It should be noted that except forcount , these functions return a null value when no rows are selected.
In particular,sum of no rows returns null, not zero as one might expect. The functioncoalesce may
be used to substitute zero for null when necessary.

6.15. Subquery Expressions
This section describes the SQL-compliant subquery expressions available in PostgreSQL. All of the
expression forms documented in this section return Boolean (true/false) results.

6.15.1. EXISTS

EXISTS ( subquery )
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The argument ofEXISTS is an arbitrarySELECTstatement, orsubquery. The subquery is evaluated
to determine whether it returns any rows. If it returns at least one row, the result ofEXISTS is “true”;
if the subquery returns no rows, the result ofEXISTS is “false”.

The subquery can refer to variables from the surrounding query, which will act as constants during
any one evaluation of the subquery.

The subquery will generally only be executed far enough to determine whether at least one row is
returned, not all the way to completion. It is unwise to write a subquery that has any side effects (such
as calling sequence functions); whether the side effects occur or not may be difficult to predict.

Since the result depends only on whether any rows are returned, and not on the contents of those
rows, the output list of the subquery is normally uninteresting. A common coding convention is to
write all EXISTS tests in the formEXISTS(SELECT 1 WHERE ...) . There are exceptions to this
rule however, such as subqueries that useINTERSECT.

This simple example is like an inner join oncol2 , but it produces at most one output row for each
tab1 row, even if there are multiple matchingtab2 rows:

SELECT col1 FROM tab1
WHERE EXISTS(SELECT 1 FROM tab2 WHERE col2 = tab1.col2);

6.15.2. IN (scalar form)

expression IN ( value [, ...])

The right-hand side of this form ofIN is a parenthesized list of scalar expressions. The result is “true”
if the left-hand expression’s result is equal to any of the right-hand expressions. This is a shorthand
notation for

expression = value1
OR
expression = value2
OR
...

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least
one right-hand expression yields null, the result of theIN construct will be null, not false. This is in
accordance with SQL’s normal rules for Boolean combinations of null values.

Note: This form of IN is not truly a subquery expression, but it seems best to document it in the
same place as subquery IN .

6.15.3. IN (subquery form)

expression IN ( subquery )

The right-hand side of this form ofIN is a parenthesized subquery, which must return exactly one
column. The left-hand expression is evaluated and compared to each row of the subquery result. The
result ofIN is “true” if any equal subquery row is found. The result is “false” if no equal row is found
(including the special case where the subquery returns no rows).
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Note that if the left-hand expression yields null, or if there are no equal right-hand values and at
least one right-hand row yields null, the result of theIN construct will be null, not false. This is in
accordance with SQL’s normal rules for Boolean combinations of null values.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.

( expression [, expression ...]) IN ( subquery )

The right-hand side of this form ofIN is a parenthesized subquery, which must return exactly as
many columns as there are expressions in the left-hand list. The left-hand expressions are evaluated
and compared row-wise to each row of the subquery result. The result ofIN is “true” if any equal
subquery row is found. The result is “false” if no equal row is found (including the special case where
the subquery returns no rows).

As usual, null values in the expressions or subquery rows are combined per the normal rules of SQL
Boolean expressions. Two rows are considered equal if all their corresponding members are non-null
and equal; the rows are unequal if any corresponding members are non-null and unequal; otherwise
the result of that row comparison is unknown (null). If all the row results are either unequal or null,
with at least one null, then the result ofIN is null.

6.15.4. NOT IN (scalar form)

expression NOT IN ( value [, ...])

The right-hand side of this form ofNOT IN is a parenthesized list of scalar expressions. The result
is “true” if the left-hand expression’s result is unequal to all of the right-hand expressions. This is a
shorthand notation for

expression <> value1
AND
expression <> value2
AND
...

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least
one right-hand expression yields null, the result of theNOT IN construct will be null, not true as one
might naively expect. This is in accordance with SQL’s normal rules for Boolean combinations of null
values.

Tip: x NOT IN y is equivalent to NOT (x IN y) in all cases. However, null values are much more
likely to trip up the novice when working with NOT IN than when working with IN . It’s best to
express your condition positively if possible.

6.15.5. NOT IN (subquery form)

expression NOT IN ( subquery )

The right-hand side of this form ofNOT IN is a parenthesized subquery, which must return exactly
one column. The left-hand expression is evaluated and compared to each row of the subquery result.
The result ofNOT IN is “true” if only unequal subquery rows are found (including the special case
where the subquery returns no rows). The result is “false” if any equal row is found.
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Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least
one right-hand row yields null, the result of theNOT IN construct will be null, not true. This is in
accordance with SQL’s normal rules for Boolean combinations of null values.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.

( expression [, expression ...]) NOT IN ( subquery )

The right-hand side of this form ofNOT IN is a parenthesized subquery, which must return exactly as
many columns as there are expressions in the left-hand list. The left-hand expressions are evaluated
and compared row-wise to each row of the subquery result. The result ofNOT IN is “true” if only
unequal subquery rows are found (including the special case where the subquery returns no rows).
The result is “false” if any equal row is found.

As usual, null values in the expressions or subquery rows are combined per the normal rules of SQL
Boolean expressions. Two rows are considered equal if all their corresponding members are non-null
and equal; the rows are unequal if any corresponding members are non-null and unequal; otherwise
the result of that row comparison is unknown (null). If all the row results are either unequal or null,
with at least one null, then the result ofNOT IN is null.

6.15.6. ANY/SOME

expression operator ANY (subquery )
expression operator SOME (subquery )

The right-hand side of this form ofANY is a parenthesized subquery, which must return exactly one
column. The left-hand expression is evaluated and compared to each row of the subquery result using
the givenoperator , which must yield a Boolean result. The result ofANY is “true” if any true
result is obtained. The result is “false” if no true result is found (including the special case where the
subquery returns no rows).

SOMEis a synonym forANY. IN is equivalent to= ANY.

Note that if there are no successes and at least one right-hand row yields null for the operator’s result,
the result of theANYconstruct will be null, not false. This is in accordance with SQL’s normal rules
for Boolean combinations of null values.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.

( expression [, expression ...]) operator ANY (subquery )
( expression [, expression ...]) operator SOME (subquery )

The right-hand side of this form ofANY is a parenthesized subquery, which must return exactly as
many columns as there are expressions in the left-hand list. The left-hand expressions are evaluated
and compared row-wise to each row of the subquery result, using the givenoperator . Presently,
only = and<> operators are allowed in row-wiseANYqueries. The result ofANY is “true” if any
equal or unequal row is found, respectively. The result is “false” if no such row is found (including
the special case where the subquery returns no rows).

As usual, null values in the expressions or subquery rows are combined per the normal rules of SQL
Boolean expressions. Two rows are considered equal if all their corresponding members are non-null
and equal; the rows are unequal if any corresponding members are non-null and unequal; otherwise
the result of that row comparison is unknown (null). If there is at least one null row result, then the
result ofANYcannot be false; it will be true or null.
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6.15.7. ALL

expression operator ALL ( subquery )

The right-hand side of this form ofALL is a parenthesized subquery, which must return exactly one
column. The left-hand expression is evaluated and compared to each row of the subquery result using
the givenoperator , which must yield a Boolean result. The result ofALL is “true” if all rows yield
true (including the special case where the subquery returns no rows). The result is “false” if any false
result is found.

NOT IN is equivalent to<> ALL.

Note that if there are no failures but at least one right-hand row yields null for the operator’s result,
the result of theALL construct will be null, not true. This is in accordance with SQL’s normal rules
for Boolean combinations of null values.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.

( expression [, expression ...]) operator ALL ( subquery )

The right-hand side of this form ofALL is a parenthesized subquery, which must return exactly as
many columns as there are expressions in the left-hand list. The left-hand expressions are evaluated
and compared row-wise to each row of the subquery result, using the givenoperator . Presently,
only = and <> operators are allowed in row-wiseALL queries. The result ofALL is “true” if all
subquery rows are equal or unequal, respectively (including the special case where the subquery
returns no rows). The result is “false” if any row is found to be unequal or equal, respectively.

As usual, null values in the expressions or subquery rows are combined per the normal rules of SQL
Boolean expressions. Two rows are considered equal if all their corresponding members are non-null
and equal; the rows are unequal if any corresponding members are non-null and unequal; otherwise
the result of that row comparison is unknown (null). If there is at least one null row result, then the
result ofALL cannot be true; it will be false or null.

6.15.8. Row-wise Comparison

( expression [, expression ...]) operator ( subquery )
( expression [, expression ...]) operator ( expression [, expression ...])

The left-hand side is a list of scalar expressions. The right-hand side can be either a list of scalar
expressions of the same length, or a parenthesized subquery, which must return exactly as many
columns as there are expressions on the left-hand side. Furthermore, the subquery cannot return more
than one row. (If it returns zero rows, the result is taken to be null.) The left-hand side is evaluated and
compared row-wise to the single subquery result row, or to the right-hand expression list. Presently,
only = and<> operators are allowed in row-wise comparisons. The result is “true” if the two rows
are equal or unequal, respectively.

As usual, null values in the expressions or subquery rows are combined per the normal rules of SQL
Boolean expressions. Two rows are considered equal if all their corresponding members are non-null
and equal; the rows are unequal if any corresponding members are non-null and unequal; otherwise
the result of the row comparison is unknown (null).
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Chapter 7. Type Conversion
SQL queries can, intentionally or not, require mixing of different data types in the same expression.
PostgreSQL has extensive facilities for evaluating mixed-type expressions.

In many cases a user will not need to understand the details of the type conversion mechanism. How-
ever, the implicit conversions done by PostgreSQL can affect the results of a query. When necessary,
these results can be tailored by a user or programmer usingexplicit type coercion.

This chapter introduces the PostgreSQL type conversion mechanisms and conventions. Refer to the
relevant sections inChapter 5andChapter 6for more information on specific data types and allowed
functions and operators.

ThePostgreSQL Programmer’s Guidehas more details on the exact algorithms used for implicit type
conversion and coercion.

7.1. Overview
SQL is a strongly typed language. That is, every data item has an associated data type which deter-
mines its behavior and allowed usage. PostgreSQL has an extensible type system that is much more
general and flexible than other SQL implementations. Hence, most type conversion behavior in Post-
greSQL should be governed by general rules rather than byad hocheuristics, to allow mixed-type
expressions to be meaningful even with user-defined types.

The PostgreSQL scanner/parser decodes lexical elements into only five fundamental categories: inte-
gers, floating-point numbers, strings, names, and key words. Most extended types are first tokenized
into strings. The SQL language definition allows specifying type names with strings, and this mecha-
nism can be used in PostgreSQL to start the parser down the correct path. For example, the query

tgl=> SELECT text ’Origin’ AS "Label", point ’(0,0)’ AS "Value";
Label | Value

--------+-------
Origin | (0,0)

(1 row)

has two literal constants, of typetext andpoint . If a type is not specified for a string literal, then
the placeholder typeunknownis assigned initially, to be resolved in later stages as described below.

There are four fundamental SQL constructs requiring distinct type conversion rules in the PostgreSQL
parser:

Operators

PostgreSQL allows expressions with prefix and postfix unary (one-argument) operators, as well
as binary (two-argument) operators.

Function calls

Much of the PostgreSQL type system is built around a rich set of functions. Function calls have
one or more arguments which, for any specific query, must be matched to the functions available
in the system catalog. Since PostgreSQL permits function overloading, the function name alone
does not uniquely identify the function to be called; the parser must select the right function
based on the data types of the supplied arguments.
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Query targets

SQL INSERT andUPDATEstatements place the results of expressions into a table. The expres-
sions in the query must be matched up with, and perhaps converted to, the types of the target
columns.

UNIONandCASEconstructs

Since all select results from a unionizedSELECT statement must appear in a single set of
columns, the types of the results of eachSELECTclause must be matched up and converted to a
uniform set. Similarly, the result expressions of aCASEconstruct must be coerced to a common
type so that theCASEexpression as a whole has a known output type.

Many of the general type conversion rules use simple conventions built on the PostgreSQL function
and operator system tables. There are some heuristics included in the conversion rules to better support
conventions for the SQL standard native types such assmallint , integer , andreal .

The system catalogs store information about which conversions, calledcasts, between data types are
valid, and how to perform those conversions. Additional casts can be added by the user with the
CREATE CASTcommand. (This is usually done in conjunction with defining new data types. The set
of casts between the built-in types has been carefully crafted and should not be altered.)

An additional heuristic is provided in the parser to allow better guesses at proper behavior for SQL
standard types. There are several basictype categoriesdefined:boolean , numeric , string , bit-

string , datetime , timespan , geometric , network , and user-defined. Each category, with the
exception of user-defined, has apreferred typewhich is preferentially selected when there is ambigu-
ity. In the user-defined category, each type is its own preferred type. Ambiguous expressions (those
with multiple candidate parsing solutions) can often be resolved when there are multiple possible
built-in types, but they will raise an error when there are multiple choices for user-defined types.

All type conversion rules are designed with several principles in mind:

• Implicit conversions should never have surprising or unpredictable outcomes.

• User-defined types, of which the parser has noa priori knowledge, should be “higher” in the type
hierarchy. In mixed-type expressions, native types shall always be converted to a user-defined type
(of course, only if conversion is necessary).

• User-defined types are not related. Currently, PostgreSQL does not have information available to
it on relationships between types, other than hardcoded heuristics for built-in types and implicit
relationships based on available functions in the catalog.

• There should be no extra overhead from the parser or executor if a query does not need implicit type
conversion. That is, if a query is well formulated and the types already match up, then the query
should proceed without spending extra time in the parser and without introducing unnecessary
implicit conversion functions into the query.

Additionally, if a query usually requires an implicit conversion for a function, and if then the user
defines an explicit function with the correct argument types, the parser should use this new function
and will no longer do the implicit conversion using the old function.
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7.2. Operators
The operand types of an operator invocation are resolved following the procedure below. Note that
this procedure is indirectly affected by the precedence of the involved operators. SeeSection 1.1.6for
more information.

Operand Type Resolution

1. Select the operators to be considered from thepg_operator system catalog. If an unqualified
operator name is used (the usual case), the operators considered are those of the right name
and argument count that are visible in the current search path (seeSection 2.8.3). If a qualified
operator name was given, only operators in the specified schema are considered.

a. If the search path finds multiple operators of identical argument types, only the one
appearing earliest in the path is considered. But operators of different argument types
are considered on an equal footing regardless of search path position.

2. Check for an operator accepting exactly the input argument types. If one exists (there can be only
one exact match in the set of operators considered), use it.

a. If one argument of a binary operator isunknown type, then assume it is the same type
as the other argument for this check. Other cases involvingunknown will never find a
match at this step.

3. Look for the best match.

a. Discard candidate operators for which the input types do not match and cannot be co-
erced (using an implicit coercion function) to match.unknown literals are assumed to
be coercible to anything for this purpose. If only one candidate remains, use it; else
continue to the next step.

b. Run through all candidates and keep those with the most exact matches on input types.
Keep all candidates if none have any exact matches. If only one candidate remains, use
it; else continue to the next step.

c. Run through all candidates and keep those with the most exact or binary-compatible
matches on input types. Keep all candidates if none have any exact or binary-compatible
matches. If only one candidate remains, use it; else continue to the next step.

d. Run through all candidates and keep those that accept preferred types at the most posi-
tions where type coercion will be required. Keep all candidates if none accept preferred
types. If only one candidate remains, use it; else continue to the next step.

e. If any input arguments are “unknown”, check the type categories accepted at those
argument positions by the remaining candidates. At each position, select the "string"
category if any candidate accepts that category (this bias towards string is appropriate
since an unknown-type literal does look like a string). Otherwise, if all the remaining
candidates accept the same type category, select that category; otherwise fail because
the correct choice cannot be deduced without more clues. Also note whether any of
the candidates accept a preferred data type within the selected category. Now discard
operator candidates that do not accept the selected type category; furthermore, if any
candidate accepts a preferred type at a given argument position, discard candidates that
accept non-preferred types for that argument.

f. If only one candidate remains, use it. If no candidate or more than one candidate re-
mains, then fail.
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Examples

Example 7-1. Exponentiation Operator Type Resolution

There is only one exponentiation operator defined in the catalog, and it takes arguments of typedou-

ble precision . The scanner assigns an initial type ofinteger to both arguments of this query
expression:

tgl=> SELECT 2 ^ 3 AS "Exp";
Exp

-----
8

(1 row)

So the parser does a type conversion on both operands and the query is equivalent to
tgl=> SELECT CAST(2 AS double precision) ^ CAST(3 AS double precision) AS "Exp";

Exp
-----

8
(1 row)

or
tgl=> SELECT 2.0 ^ 3.0 AS "Exp";

Exp
-----

8
(1 row)

Note: This last form has the least overhead, since no functions are called to do implicit type
conversion. This is not an issue for small queries, but may have an impact on the performance of
queries involving large tables.

Example 7-2. String Concatenation Operator Type Resolution

A string-like syntax is used for working with string types as well as for working with complex ex-
tended types. Strings with unspecified type are matched with likely operator candidates.

An example with one unspecified argument:

tgl=> SELECT text ’abc’ || ’def’ AS "Text and Unknown";
Text and Unknown

------------------
abcdef

(1 row)

In this case the parser looks to see if there is an operator takingtext for both arguments. Since there
is, it assumes that the second argument should be interpreted as of typetext .

Concatenation on unspecified types:

tgl=> SELECT ’abc’ || ’def’ AS "Unspecified";
Unspecified

-------------
abcdef

(1 row)
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In this case there is no initial hint for which type to use, since no types are specified in the query.
So, the parser looks for all candidate operators and finds that there are candidates accepting both
string-category and bit-string-category inputs. Since string category is preferred when available, that
category is selected, and then the “preferred type” for strings,text , is used as the specific type to
resolve the unknown literals to.

Example 7-3. Absolute-Value and Factorial Operator Type Resolution

The PostgreSQL operator catalog has several entries for the prefix operator@, all of which implement
absolute-value operations for various numeric data types. One of these entries is for typefloat8 ,
which is the preferred type in the numeric category. Therefore, PostgreSQL will use that entry when
faced with a non-numeric input:

tgl=> select @ text ’-4.5’ as "abs";
abs

-----
4.5

(1 row)

Here the system has performed an implicit text-to-float8 conversion before applying the chosen oper-
ator. We can verify that float8 and not some other type was used:

tgl=> select @ text ’-4.5e500’ as "abs";
ERROR: Input ’-4.5e500’ is out of range for float8

On the other hand, the postfix operator! (factorial) is defined only for integer data types, not for
float8. So, if we try a similar case with! , we get:

tgl=> select text ’20’ ! as "factorial";
ERROR: Unable to identify a postfix operator ’!’ for type ’text’

You may need to add parentheses or an explicit cast

This happens because the system can’t decide which of the several possible! operators should be
preferred. We can help it out with an explicit cast:

tgl=> select cast(text ’20’ as int8) ! as "factorial";
factorial

---------------------
2432902008176640000

(1 row)

7.3. Functions
The argument types of function calls are resolved according to the following steps.

Function Argument Type Resolution

1. Select the functions to be considered from thepg_proc system catalog. If an unqualified function
name is used, the functions considered are those of the right name and argument count that are
visible in the current search path (seeSection 2.8.3). If a qualified function name was given, only
functions in the specified schema are considered.

a. If the search path finds multiple functions of identical argument types, only the one
appearing earliest in the path is considered. But functions of different argument types
are considered on an equal footing regardless of search path position.
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2. Check for a function accepting exactly the input argument types. If one exists (there can be only
one exact match in the set of functions considered), use it. (Cases involvingunknown will never
find a match at this step.)

3. If no exact match is found, see whether the function call appears to be a trivial type coercion
request. This happens if the function call has just one argument and the function name is the same
as the (internal) name of some data type. Furthermore, the function argument must be either an
unknown-type literal or a type that is binary-compatible with the named data type. When these
conditions are met, the function argument is coerced to the named data type without any explicit
function call.

4. Look for the best match.

a. Discard candidate functions for which the input types do not match and cannot be co-
erced (using an implicit coercion function) to match.unknown literals are assumed to
be coercible to anything for this purpose. If only one candidate remains, use it; else
continue to the next step.

b. Run through all candidates and keep those with the most exact matches on input types.
Keep all candidates if none have any exact matches. If only one candidate remains, use
it; else continue to the next step.

c. Run through all candidates and keep those with the most exact or binary-compatible
matches on input types. Keep all candidates if none have any exact or binary-compatible
matches. If only one candidate remains, use it; else continue to the next step.

d. Run through all candidates and keep those that accept preferred types at the most posi-
tions where type coercion will be required. Keep all candidates if none accept preferred
types. If only one candidate remains, use it; else continue to the next step.

e. If any input arguments areunknown , check the type categories accepted at those ar-
gument positions by the remaining candidates. At each position, select thestring

category if any candidate accepts that category (this bias towards string is appropriate
since an unknown-type literal does look like a string). Otherwise, if all the remaining
candidates accept the same type category, select that category; otherwise fail because
the correct choice cannot be deduced without more clues. Also note whether any of
the candidates accept a preferred data type within the selected category. Now discard
candidates that do not accept the selected type category; furthermore, if any candidate
accepts a preferred type at a given argument position, discard candidates that accept
non-preferred types for that argument.

f. If only one candidate remains, use it. If no candidate or more than one candidate re-
mains, then fail.

Examples

Example 7-4. Factorial Function Argument Type Resolution

There is only oneint4fac function defined in thepg_proc catalog. So the following query auto-
matically converts theint2 argument toint4 :

tgl=> SELECT int4fac(int2 ’4’);
int4fac

---------
24

(1 row)

and is actually transformed by the parser to
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tgl=> SELECT int4fac(int4(int2 ’4’));
int4fac

---------
24

(1 row)

Example 7-5. Substring Function Type Resolution

There are twosubstr functions declared inpg_proc . However, only one takes two arguments, of
typestext andint4 .

If called with a string constant of unspecified type, the type is matched up directly with the only
candidate function type:

tgl=> SELECT substr(’1234’, 3);
substr

--------
34

(1 row)

If the string is declared to be of typevarchar , as might be the case if it comes from a table, then the
parser will try to coerce it to becometext :

tgl=> SELECT substr(varchar ’1234’, 3);
substr

--------
34

(1 row)

which is transformed by the parser to become
tgl=> SELECT substr(text(varchar ’1234’), 3);

substr
--------

34
(1 row)

Note: Actually, the parser is aware that text and varchar are binary-compatible, meaning that
one can be passed to a function that accepts the other without doing any physical conversion.
Therefore, no explicit type conversion call is really inserted in this case.

And, if the function is called with anint4 , the parser will try to convert that totext :

tgl=> SELECT substr(1234, 3);
substr

--------
34

(1 row)

which actually executes as
tgl=> SELECT substr(text(1234), 3);

substr
--------

34
(1 row)

This succeeds because there is a conversion function text(int4) in the system catalog.
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7.4. Query Targets
Values to be inserted into a table are coerced to the destination column’s data type according to the
following steps.

Query Target Type Resolution

1. Check for an exact match with the target.

2. Otherwise, try to coerce the expression to the target type. This will succeed if the two types are
known binary-compatible, or if there is a conversion function. If the expression is an unknown-
type literal, the contents of the literal string will be fed to the input conversion routine for the
target type.

3. If the target is a fixed-length type (e.g.char or varchar declared with a length) then try to find
a sizing function for the target type. A sizing function is a function of the same name as the type,
taking two arguments of which the first is that type and the second is an integer, and returning
the same type. If one is found, it is applied, passing the column’s declared length as the second
parameter.

Example 7-6.character Storage Type Conversion

For a target column declared ascharacter(20) the following query ensures that the target is sized
correctly:

tgl=> CREATE TABLE vv (v character(20));
CREATE
tgl=> INSERT INTO vv SELECT ’abc’ || ’def’;
INSERT 392905 1
tgl=> SELECT v, length(v) FROM vv;

v | length
----------------------+--------

abcdef | 20
(1 row)

What has really happened here is that the two unknown literals are resolved totext by default, allow-
ing the|| operator to be resolved astext concatenation. Then thetext result of the operator is co-
erced tobpchar (“blank-padded char”, the internal name of the character data type) to match the tar-
get column type. (Since the parser knows thattext andbpchar are binary-compatible, this coercion
is implicit and does not insert any real function call.) Finally, the sizing functionbpchar(bpchar,

integer) is found in the system catalogs and applied to the operator’s result and the stored column
length. This type-specific function performs the required length check and addition of padding spaces.

7.5. UNIONand CASEConstructs
SQL UNION constructs must match up possibly dissimilar types to become a single result set. The
resolution algorithm is applied separately to each output column of a union query. TheINTERSECT

andEXCEPTconstructs resolve dissimilar types in the same way asUNION. A CASEconstruct also
uses the identical algorithm to match up its component expressions and select a result data type.
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UNIONand CASEType Resolution

1. If all inputs are of typeunknown , resolve as typetext (the preferred type for string category).
Otherwise, ignore theunknown inputs while choosing the type.

2. If the non-unknown inputs are not all of the same type category, fail.

3. Choose the first non-unknown input type which is a preferred type in that category or allows all
the non-unknown inputs to be implicitly coerced to it.

4. Coerce all inputs to the selected type.

Examples

Example 7-7. Underspecified Types in a Union

tgl=> SELECT text ’a’ AS "Text" UNION SELECT ’b’;
Text

------
a
b

(2 rows)

Here, the unknown-type literal’b’ will be resolved as type text.

Example 7-8. Type Conversion in a Simple Union

tgl=> SELECT 1.2 AS "Numeric" UNION SELECT 1;
Numeric

---------
1

1.2
(2 rows)

The literal1.2 is of typenumeric , and the integer value1 can be cast implicitly tonumeric , so that
type is used.

Example 7-9. Type Conversion in a Transposed Union

tgl=> SELECT 1 AS "Real"
tgl-> UNION SELECT CAST(’2.2’ AS REAL);

Real
------

1
2.2

(2 rows)

Here, since typereal cannot be implicitly cast tointeger , but integer can be implicitly cast to
real , the union result type is resolved asreal .
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Indexes are a common way to enhance database performance. An index allows the database server to
find and retrieve specific rows much faster than it could do without an index. But indexes also add
overhead to the database system as a whole, so they should be used sensibly.

8.1. Introduction
The classical example for the need of an index is if there is a table similar to this:

CREATE TABLE test1 (
id integer,
content varchar

);

and the application requires a lot of queries of the form

SELECT content FROM test1 WHERE id = constant ;

Ordinarily, the system would have to scan the entiretest1 table row by row to find all matching
entries. If there are a lot of rows intest1 and only a few rows (possibly zero or one) returned by the
query, then this is clearly an inefficient method. If the system were instructed to maintain an index on
the id column, then it could use a more efficient method for locating matching rows. For instance, it
might only have to walk a few levels deep into a search tree.

A similar approach is used in most books of non-fiction: Terms and concepts that are frequently
looked up by readers are collected in an alphabetic index at the end of the book. The interested reader
can scan the index relatively quickly and flip to the appropriate page, and would not have to read the
entire book to find the interesting location. As it is the task of the author to anticipate the items that the
readers are most likely to look up, it is the task of the database programmer to foresee which indexes
would be of advantage.

The following command would be used to create the index on theid column, as discussed:

CREATE INDEX test1_id_index ON test1 (id);

The nametest1_id_index can be chosen freely, but you should pick something that enables you
to remember later what the index was for.

To remove an index, use theDROP INDEXcommand. Indexes can be added to and removed from
tables at any time.

Once the index is created, no further intervention is required: the system will use the index when it
thinks it would be more efficient than a sequential table scan. But you may have to run theANALYZE

command regularly to update statistics to allow the query planner to make educated decisions. Also
readChapter 10for information about how to find out whether an index is used and when and why
the planner may choose tonot use an index.

Indexes can benefitUPDATEs andDELETEs with search conditions. Indexes can also be used in join
queries. Thus, an index defined on a column that is part of a join condition can significantly speed up
queries with joins.

When an index is created, the system has to keep it synchronized with the table. This adds overhead to
data manipulation operations. Therefore indexes that are non-essential or do not get used at all should
be removed. Note that a query or data manipulation command can use at most one index per table.

134



Chapter 8. Indexes

8.2. Index Types
PostgreSQL provides several index types: B-tree, R-tree, GiST, and Hash. Each index type is more
appropriate for a particular query type because of the algorithm it uses. By default, theCREATE

INDEX command will create a B-tree index, which fits the most common situations. In particular,
the PostgreSQL query optimizer will consider using a B-tree index whenever an indexed column is
involved in a comparison using one of these operators:<, <=, =, >=, >

R-tree indexes are especially suited for spatial data. To create an R-tree index, use a command of the
form

CREATE INDEXname ON table USING RTREE (column );

The PostgreSQL query optimizer will consider using an R-tree index whenever an indexed column is
involved in a comparison using one of these operators:<<, &<, &>, >>, @, ~=, && (Refer toSection
6.9about the meaning of these operators.)

The query optimizer will consider using a hash index whenever an indexed column is involved in a
comparison using the= operator. The following command is used to create a hash index:

CREATE INDEXname ON table USING HASH (column );

Note: Testing has shown PostgreSQL’s hash indexes to be similar or slower than B-tree indexes,
and the index size and build time for hash indexes is much worse. Hash indexes also suffer poor
performance under high concurrency. For these reasons, hash index use is discouraged.

The B-tree index is an implementation of Lehman-Yao high-concurrency B-trees. The R-tree index
method implements standard R-trees using Guttman’s quadratic split algorithm. The hash index is an
implementation of Litwin’s linear hashing. We mention the algorithms used solely to indicate that all
of these access methods are fully dynamic and do not have to be optimized periodically (as is the case
with, for example, static hash access methods).

8.3. Multicolumn Indexes
An index can be defined on more than one column. For example, if you have a table of this form:

CREATE TABLE test2 (
major int,
minor int,
name varchar

);

(Say, you keep your/dev directory in a database...) and you frequently make queries like

SELECT name FROM test2 WHERE major = constant AND minor = constant ;

then it may be appropriate to define an index on the columnsmajor andminor together, e.g.,

CREATE INDEX test2_mm_idx ON test2 (major, minor);
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Currently, only the B-tree and GiST implementations support multicolumn indexes. Up to 32 columns
may be specified. (This limit can be altered when building PostgreSQL; see the filepg_config.h .)

The query optimizer can use a multicolumn index for queries that involve the firstn consecutive
columns in the index (when used with appropriate operators), up to the total number of columns spec-
ified in the index definition. For example, an index on(a, b, c) can be used in queries involving
all of a, b, andc , or in queries involving botha andb, or in queries involving onlya, but not in other
combinations. (In a query involvinga andc the optimizer might choose to use the index fora only
and treatc like an ordinary unindexed column.)

Multicolumn indexes can only be used if the clauses involving the indexed columns are joined with
AND. For instance,

SELECT name FROM test2 WHERE major = constant OR minor = constant ;

cannot make use of the indextest2_mm_idx defined above to look up both columns. (It can be used
to look up only themajor column, however.)

Multicolumn indexes should be used sparingly. Most of the time, an index on a single column is
sufficient and saves space and time. Indexes with more than three columns are almost certainly inap-
propriate.

8.4. Unique Indexes
Indexes may also be used to enforce uniqueness of a column’s value, or the uniqueness of the com-
bined values of more than one column.

CREATE UNIQUE INDEXname ON table ( column [, ...]);

Currently, only B-tree indexes can be declared unique.

When an index is declared unique, multiple table rows with equal indexed values will not be allowed.
NULL values are not considered equal.

PostgreSQL automatically creates unique indexes when a table is declared with a unique constraint
or a primary key, on the columns that make up the primary key or unique columns (a multicolumn
index, if appropriate), to enforce that constraint. A unique index can be added to a table at any later
time, to add a unique constraint.

Note: The preferred way to add a unique constraint to a table is ALTER TABLE ... ADD CON-

STRAINT. The use of indexes to enforce unique constraints could be considered an implementa-
tion detail that should not be accessed directly.

8.5. Functional Indexes
For afunctional index, an index is defined on the result of a function applied to one or more columns
of a single table. Functional indexes can be used to obtain fast access to data based on the result of
function calls.

For example, a common way to do case-insensitive comparisons is to use thelower function:

SELECT * FROM test1 WHERE lower(col1) = ’value’;
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This query can use an index, if one has been defined on the result of thelower(column) operation:

CREATE INDEX test1_lower_col1_idx ON test1 (lower(col1));

The function in the index definition can take more than one argument, but they must be table columns,
not constants. Functional indexes are always single-column (namely, the function result) even if the
function uses more than one input field; there cannot be multicolumn indexes that contain function
calls.

Tip: The restrictions mentioned in the previous paragraph can easily be worked around by defin-
ing a custom function to use in the index definition that computes any desired result internally.

8.6. Operator Classes
An index definition may specify anoperator classfor each column of an index.

CREATE INDEXname ON table ( column opclass [, ...]);

The operator class identifies the operators to be used by the index for that column. For example, a
B-tree index on four-byte integers would use theint4_ops class; this operator class includes com-
parison functions for four-byte integers. In practice the default operator class for the column’s data
type is usually sufficient. The main point of having operator classes is that for some data types, there
could be more than one meaningful ordering. For example, we might want to sort a complex-number
data type either by absolute value or by real part. We could do this by defining two operator classes for
the data type and then selecting the proper class when making an index. There are also some operator
classes with special purposes:

• The operator classesbox_ops andbigbox_ops both support R-tree indexes on thebox data type.
The difference between them is thatbigbox_ops scales box coordinates down, to avoid floating-
point exceptions from doing multiplication, addition, and subtraction on very large floating-point
coordinates. If the field on which your rectangles lie is about 20 000 units square or larger, you
should usebigbox_ops .

The following query shows all defined operator classes:

SELECT am.amname AS acc_method,
opc.opcname AS ops_name

FROM pg_am am, pg_opclass opc
WHERE opc.opcamid = am.oid
ORDER BY acc_method, ops_name;

It can be extended to show all the operators included in each class:

SELECT am.amname AS acc_method,
opc.opcname AS ops_name,
opr.oprname AS ops_comp

FROM pg_am am, pg_opclass opc, pg_amop amop, pg_operator opr
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WHERE opc.opcamid = am.oid AND
amop.amopclaid = opc.oid AND
amop.amopopr = opr.oid

ORDER BY acc_method, ops_name, ops_comp;

8.7. Partial Indexes
A partial indexis an index built over a subset of a table; the subset is defined by a conditional expres-
sion (called thepredicateof the partial index). The index contains entries for only those table rows
that satisfy the predicate.

A major motivation for partial indexes is to avoid indexing common values. Since a query searching
for a common value (one that accounts for more than a few percent of all the table rows) will not use
the index anyway, there is no point in keeping those rows in the index at all. This reduces the size of
the index, which will speed up queries that do use the index. It will also speed up many table update
operations because the index does not need to be updated in all cases.Example 8-1shows a possible
application of this idea.

Example 8-1. Setting up a Partial Index to Exclude Common Values

Suppose you are storing web server access logs in a database. Most accesses originate from the IP
range of your organization but some are from elsewhere (say, employees on dial-up connections). If
your searches by IP are primarily for outside accesses, you probably do not need to index the IP range
that corresponds to your organization’s subnet.

Assume a table like this:

CREATE TABLE access_log (
url varchar,
client_ip inet,
...

);

To create a partial index that suits our example, use a command such as this:

CREATE INDEX access_log_client_ip_ix ON access_log (client_ip)
WHERE NOT (client_ip > inet ’192.168.100.0’ AND client_ip < inet ’192.168.100.255’);

A typical query that can use this index would be:

SELECT * FROM access_log WHERE url = ’/index.html’ AND client_ip = inet ’212.78.10.32’;

A query that cannot use this index is:
SELECT * FROM access_log WHERE client_ip = inet ’192.168.100.23’;

Observe that this kind of partial index requires that the common values be predetermined. If the
distribution of values is inherent (due to the nature of the application) and static (not changing over
time), this is not difficult, but if the common values are merely due to the coincidental data load this
can require a lot of maintenance work.

Another possibility is to exclude values from the index that the typical query workload is not interested
in; this is shown inExample 8-2. This results in the same advantages as listed above, but it prevents
the “uninteresting” values from being accessed via that index at all, even if an index scan might be
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profitable in that case. Obviously, setting up partial indexes for this kind of scenario will require a lot
of care and experimentation.

Example 8-2. Setting up a Partial Index to Exclude Uninteresting Values

If you have a table that contains both billed and unbilled orders, where the unbilled orders take up a
small fraction of the total table and yet those are the most-accessed rows, you can improve perfor-
mance by creating an index on just the unbilled rows. The command to create the index would look
like this:

CREATE INDEX orders_unbilled_index ON orders (order_nr)
WHERE billed is not true;

A possible query to use this index would be

SELECT * FROM orders WHERE billed is not true AND order_nr < 10000;

However, the index can also be used in queries that do not involveorder_nr at all, e.g.,
SELECT * FROM orders WHERE billed is not true AND amount > 5000.00;

This is not as efficient as a partial index on theamount column would be, since the system has to scan
the entire index. Yet, if there are relatively few unbilled orders, using this partial index just to find the
unbilled orders could be a win.

Note that this query cannot use this index:

SELECT * FROM orders WHERE order_nr = 3501;

The order 3501 may be among the billed or among the unbilled orders.

Example 8-2also illustrates that the indexed column and the column used in the predicate do not need
to match. PostgreSQL supports partial indexes with arbitrary predicates, so long as only columns of
the table being indexed are involved. However, keep in mind that the predicate must match the condi-
tions used in the queries that are supposed to benefit from the index. To be precise, a partial index can
be used in a query only if the system can recognize that the query’s WHERE condition mathemati-
cally impliesthe index’s predicate. PostgreSQL does not have a sophisticated theorem prover that can
recognize mathematically equivalent predicates that are written in different forms. (Not only is such
a general theorem prover extremely difficult to create, it would probably be too slow to be of any real
use.) The system can recognize simple inequality implications, for example “x< 1” implies “x < 2”;
otherwise the predicate condition must exactly match the query’s WHERE condition or the index will
not be recognized to be usable.

A third possible use for partial indexes does not require the index to be used in queries at all. The idea
here is to create a unique index over a subset of a table, as inExample 8-3. This enforces uniqueness
among the rows that satisfy the index predicate, without constraining those that do not.

Example 8-3. Setting up a Partial Unique Index

Suppose that we have a table describing test outcomes. We wish to ensure that there is only one
“successful” entry for a given subject and target combination, but there might be any number of
“unsuccessful” entries. Here is one way to do it:

CREATE TABLE tests (subject text,
target text,
success bool,
...);

CREATE UNIQUE INDEX tests_success_constraint ON tests (subject, target)
WHERE success;
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This is a particularly efficient way of doing it when there are few successful trials and many unsuc-
cessful ones.

Finally, a partial index can also be used to override the system’s query plan choices. It may occur that
data sets with peculiar distributions will cause the system to use an index when it really should not.
In that case the index can be set up so that it is not available for the offending query. Normally, Post-
greSQL makes reasonable choices about index usage (e.g., it avoids them when retrieving common
values, so the earlier example really only saves index size, it is not required to avoid index usage), and
grossly incorrect plan choices are cause for a bug report.

Keep in mind that setting up a partial index indicates that you know at least as much as the query
planner knows, in particular you know when an index might be profitable. Forming this knowledge
requires experience and understanding of how indexes in PostgreSQL work. In most cases, the advan-
tage of a partial index over a regular index will not be much.

More information about partial indexes can be found inThe case for partial indexes, Partial indexing
in POSTGRES: research project, andGeneralized Partial Indexes.

8.8. Examining Index Usage
Although indexes in PostgreSQL do not need maintenance and tuning, it is still important to check
which indexes are actually used by the real-life query workload. Examining index usage is done with
theEXPLAIN command; its application for this purpose is illustrated inSection 10.1.

It is difficult to formulate a general procedure for determining which indexes to set up. There are a
number of typical cases that have been shown in the examples throughout the previous sections. A
good deal of experimentation will be necessary in most cases. The rest of this section gives some tips
for that.

• Always runANALYZEfirst. This command collects statistics about the distribution of the values in
the table. This information is required to guess the number of rows returned by a query, which is
needed by the planner to assign realistic costs to each possible query plan. In absence of any real
statistics, some default values are assumed, which are almost certain to be inaccurate. Examining
an application’s index usage without having runANALYZEis therefore a lost cause.

• Use real data for experimentation. Using test data for setting up indexes will tell you what indexes
you need for the test data, but that is all.

It is especially fatal to use proportionally reduced data sets. While selecting 1000 out of 100000
rows could be a candidate for an index, selecting 1 out of 100 rows will hardly be, because the
100 rows will probably fit within a single disk page, and there is no plan that can beat sequentially
fetching 1 disk page.

Also be careful when making up test data, which is often unavoidable when the application is not
in production use yet. Values that are very similar, completely random, or inserted in sorted order
will skew the statistics away from the distribution that real data would have.

• When indexes are not used, it can be useful for testing to force their use. There are run-time
parameters that can turn off various plan types (described in thePostgreSQL Administrator’s
Guide). For instance, turning off sequential scans (enable_seqscan ) and nested-loop joins
(enable_nestloop ), which are the most basic plans, will force the system to use a different
plan. If the system still chooses a sequential scan or nested-loop join then there is probably a more
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fundamental problem for why the index is not used, for example, the query condition does not
match the index. (What kind of query can use what kind of index is explained in the previous
sections.)

• If forcing index usage does use the index, then there are two possibilities: Either the system is
right and using the index is indeed not appropriate, or the cost estimates of the query plans are not
reflecting reality. So you should time your query with and without indexes. TheEXPLAIN ANALYZE

command can be useful here.

• If it turns out that the cost estimates are wrong, there are, again, two possibilities. The total cost is
computed from the per-row costs of each plan node times the selectivity estimate of the plan node.
The costs of the plan nodes can be tuned with run-time parameters (described in thePostgreSQL
Administrator’s Guide). An inaccurate selectivity estimate is due to insufficient statistics. It may be
possible to help this by tuning the statistics-gathering parameters (seeALTER TABLEreference).

If you do not succeed in adjusting the costs to be more appropriate, then you may have to resort to
forcing index usage explicitly. You may also want to contact the PostgreSQL developers to examine
the issue.
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This chapter describes the behavior of the PostgreSQL database system when two or more sessions
try to access the same data at the same time. The goals in that situation are to allow efficient access for
all sessions while maintaining strict data integrity. Every developer of database applications should
be familiar with the topics covered in this chapter.

9.1. Introduction
Unlike traditional database systems which use locks for concurrency control, PostgreSQL maintains
data consistency by using a multiversion model (Multiversion Concurrency Control, MVCC). This
means that while querying a database each transaction sees a snapshot of data (adatabase version)
as it was some time ago, regardless of the current state of the underlying data. This protects the
transaction from viewing inconsistent data that could be caused by (other) concurrent transaction
updates on the same data rows, providingtransaction isolationfor each database session.

The main difference between multiversion and lock models is that in MVCC locks acquired for query-
ing (reading) data don’t conflict with locks acquired for writing data, and so reading never blocks
writing and writing never blocks reading.

Table- and row-level locking facilities are also available in PostgreSQL for applications that cannot
adapt easily to MVCC behavior. However, proper use of MVCC will generally provide better perfor-
mance than locks.

9.2. Transaction Isolation
The SQL standard defines four levels of transaction isolation in terms of three phenomena that must
be prevented between concurrent transactions. These undesirable phenomena are:

dirty read

A transaction reads data written by a concurrent uncommitted transaction.

nonrepeatable read

A transaction re-reads data it has previously read and finds that data has been modified by another
transaction (that committed since the initial read).

phantom read

A transaction re-executes a query returning a set of rows that satisfy a search condition and
finds that the set of rows satisfying the condition has changed due to another recently-committed
transaction.

The four transaction isolation levels and the corresponding behaviors are described inTable 9-1.

Table 9-1. SQL Transaction Isolation Levels

Isolation Level Dirty Read Nonrepeatable
Read

Phantom Read

Read uncommitted Possible Possible Possible
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Isolation Level Dirty Read Nonrepeatable
Read

Phantom Read

Read committed Not possible Possible Possible

Repeatable read Not possible Not possible Possible

Serializable Not possible Not possible Not possible

PostgreSQL offers the read committed and serializable isolation levels.

9.2.1. Read Committed Isolation Level

Read Committedis the default isolation level in PostgreSQL. When a transaction runs on this isolation
level, aSELECTquery sees only data committed before the query began; it never sees either uncom-
mitted data or changes committed during query execution by concurrent transactions. (However, the
SELECTdoes see the effects of previous updates executed within its own transaction, even though they
are not yet committed.) In effect, aSELECTquery sees a snapshot of the database as of the instant
that that query begins to run. Notice that two successiveSELECTs can see different data, even though
they are within a single transaction, if other transactions commit changes during execution of the first
SELECT.

UPDATE, DELETE, andSELECT FOR UPDATEcommands behave the same asSELECT in terms of
searching for target rows: they will only find target rows that were committed as of the query start
time. However, such a target row may have already been updated (or deleted or marked for update) by
another concurrent transaction by the time it is found. In this case, the would-be updater will wait for
the first updating transaction to commit or roll back (if it is still in progress). If the first updater rolls
back, then its effects are negated and the second updater can proceed with updating the originally
found row. If the first updater commits, the second updater will ignore the row if the first updater
deleted it, otherwise it will attempt to apply its operation to the updated version of the row. The query
search condition (WHEREclause) is re-evaluated to see if the updated version of the row still matches
the search condition. If so, the second updater proceeds with its operation, starting from the updated
version of the row.

Because of the above rule, it is possible for updating queries to see inconsistent snapshots --- they can
see the effects of concurrent updating queries that affected the same rows they are trying to update,
but they do not see effects of those queries on other rows in the database. This behavior makes Read
Committed mode unsuitable for queries that involve complex search conditions. However, it is just
right for simpler cases. For example, consider updating bank balances with transactions like

BEGIN;
UPDATE accounts SET balance = balance + 100.00 WHERE acctnum = 12345;
UPDATE accounts SET balance = balance - 100.00 WHERE acctnum = 7534;
COMMIT;

If two such transactions concurrently try to change the balance of account 12345, we clearly want
the second transaction to start from the updated version of the account’s row. Because each query is
affecting only a predetermined row, letting it see the updated version of the row does not create any
troublesome inconsistency.

Since in Read Committed mode each new query starts with a new snapshot that includes all transac-
tions committed up to that instant, subsequent queries in the same transaction will see the effects of
the committed concurrent transaction in any case. The point at issue here is whether or not within a
singlequery we see an absolutely consistent view of the database.

The partial transaction isolation provided by Read Committed mode is adequate for many applica-
tions, and this mode is fast and simple to use. However, for applications that do complex queries and
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updates, it may be necessary to guarantee a more rigorously consistent view of the database than the
Read Committed mode provides.

9.2.2. Serializable Isolation Level

Serializableprovides the strictest transaction isolation. This level emulates serial transaction execu-
tion, as if transactions had been executed one after another, serially, rather than concurrently. However,
applications using this level must be prepared to retry transactions due to serialization failures.

When a transaction is on the serializable level, aSELECTquery sees only data committed before the
transaction began; it never sees either uncommitted data or changes committed during transaction
execution by concurrent transactions. (However, theSELECTdoes see the effects of previous updates
executed within its own transaction, even though they are not yet committed.) This is different from
Read Committed in that theSELECTsees a snapshot as of the start of the transaction, not as of the
start of the current query within the transaction. Thus, successiveSELECTs within a single transaction
always see the same data.

UPDATE, DELETE, andSELECT FOR UPDATEcommands behave the same asSELECT in terms of
searching for target rows: they will only find target rows that were committed as of the transaction start
time. However, such a target row may have already been updated (or deleted or marked for update)
by another concurrent transaction by the time it is found. In this case, the serializable transaction will
wait for the first updating transaction to commit or roll back (if it is still in progress). If the first updater
rolls back, then its effects are negated and the serializable transaction can proceed with updating the
originally found row. But if the first updater commits (and actually updated or deleted the row, not
just selected it for update) then the serializable transaction will be rolled back with the message

ERROR: Can’t serialize access due to concurrent update

because a serializable transaction cannot modify rows changed by other transactions after the serial-
izable transaction began.

When the application receives this error message, it should abort the current transaction and then
retry the whole transaction from the beginning. The second time through, the transaction sees the
previously-committed change as part of its initial view of the database, so there is no logical conflict
in using the new version of the row as the starting point for the new transaction’s update.

Note that only updating transactions may need to be retried --- read-only transactions will never have
serialization conflicts.

The Serializable mode provides a rigorous guarantee that each transaction sees a wholly consistent
view of the database. However, the application has to be prepared to retry transactions when concur-
rent updates make it impossible to sustain the illusion of serial execution. Since the cost of redoing
complex transactions may be significant, this mode is recommended only when updating transactions
contain logic sufficiently complex that they may give wrong answers in Read Committed mode. Most
commonly, Serializable mode is necessary when a transaction performs several successive queries
that must see identical views of the database.

9.3. Explicit Locking
PostgreSQL provides various lock modes to control concurrent access to data in tables. These modes
can be used for application-controlled locking in situations where MVCC does not give the desired
behavior. Also, most PostgreSQL commands automatically acquire locks of appropriate modes to
ensure that referenced tables are not dropped or modified in incompatible ways while the command
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executes. (For example,ALTER TABLEcannot be executed concurrently with other operations on the
same table.)

9.3.1. Table-Level Locks

The list below shows the available lock modes and the contexts in which they are used automatically
by PostgreSQL. Remember that all of these lock modes are table-level locks, even if the name con-
tains the word “row”. The names of the lock modes are historical. To some extent the names reflect
the typical usage of each lock mode --- but the semantics are all the same. The only real difference be-
tween one lock mode and another is the set of lock modes with which each conflicts. Two transactions
cannot hold locks of conflicting modes on the same table at the same time. (However, a transaction
never conflicts with itself --- for example, it may acquireACCESS EXCLUSIVElock and later ac-
quireACCESS SHARElock on the same table.) Non-conflicting lock modes may be held concurrently
by many transactions. Notice in particular that some lock modes are self-conflicting (for example,
ACCESS EXCLUSIVEcannot be held by more than one transaction at a time) while others are not
self-conflicting (for example,ACCESS SHAREcan be held by multiple transactions). Once acquired,
a lock mode is held till end of transaction.

To examine a list of the currently outstanding locks in a database server, use thepg_locks system
view. For more information on monitoring the status of the lock manager subsystem, refer to the
PostgreSQL Administrator’s Guide.

Table-level lock modes

ACCESS SHARE

Conflicts with theACCESS EXCLUSIVElock mode only.

TheSELECTcommand acquires a lock of this mode on referenced tables. In general, any query
that only reads a table and does not modify it will acquire this lock mode.

ROW SHARE

Conflicts with theEXCLUSIVEandACCESS EXCLUSIVElock modes.

The SELECT FOR UPDATEcommand acquires a lock of this mode on the target table(s) (in
addition toACCESS SHARElocks on any other tables that are referenced but not selectedFOR

UPDATE).

ROW EXCLUSIVE

Conflicts with theSHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE, and ACCESS EXCLUSIVE

lock modes.

The commandsUPDATE, DELETE, and INSERT acquire this lock mode on the target table (in
addition toACCESS SHARElocks on any other referenced tables). In general, this lock mode will
be acquired by any query that modifies the data in a table.

SHARE UPDATE EXCLUSIVE

Conflicts with the SHARE UPDATE EXCLUSIVE, SHARE, SHARE ROW EXCLUSIVE,
EXCLUSIVE, and ACCESS EXCLUSIVElock modes. This mode protects a table against
concurrent schema changes andVACUUMruns.

Acquired byVACUUM(without FULL).
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SHARE

Conflicts with theROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE ROW EXCLUSIVE,
EXCLUSIVE, andACCESS EXCLUSIVElock modes. This mode protects a table against concur-
rent data changes.

Acquired byCREATE INDEX.

SHARE ROW EXCLUSIVE

Conflicts with theROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE, SHARE ROW EX-

CLUSIVE, EXCLUSIVE, andACCESS EXCLUSIVElock modes.

This lock mode is not automatically acquired by any PostgreSQL command.

EXCLUSIVE

Conflicts with theROW SHARE, ROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE, SHARE

ROW EXCLUSIVE, EXCLUSIVE, andACCESS EXCLUSIVElock modes. This mode allows only
concurrentACCESS SHARE, i.e., only reads from the table can proceed in parallel with a trans-
action holding this lock mode.

This lock mode is not automatically acquired by any PostgreSQL command.

ACCESS EXCLUSIVE

Conflicts with locks of all modes (ACCESS SHARE, ROW SHARE, ROW EXCLUSIVE, SHARE UP-

DATE EXCLUSIVE, SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE, andACCESS EXCLUSIVE).
This mode guarantees that the holder is the only transaction accessing the table in any way.

Acquired by theALTER TABLE, DROP TABLE, andVACUUM FULLcommands. This is also the
default lock mode forLOCK TABLEstatements that do not specify a mode explicitly.

Note: Only an ACCESS EXCLUSIVElock blocks a SELECT(without FOR UPDATE) statement.

9.3.2. Row-Level Locks

In addition to table-level locks, there are row-level locks. A row-level lock on a specific row is auto-
matically acquired when the row is updated (or deleted or marked for update). The lock is held until
the transaction commits or rolls back. Row-level locks don’t affect data querying; they blockwriters
to the same rowonly. To acquire a row-level lock on a row without actually modifying the row, se-
lect the row withSELECT FOR UPDATE. Note that once a particular row-level lock is acquired, the
transaction may update the row multiple times without fear of conflicts.

PostgreSQL doesn’t remember any information about modified rows in memory, so it has no limit
to the number of rows locked at one time. However, locking a row may cause a disk write; thus, for
example,SELECT FOR UPDATEwill modify selected rows to mark them and so will result in disk
writes.

In addition to table and row locks, page-level share/exclusive locks are used to control read/write
access to table pages in the shared buffer pool. These locks are released immediately after a tuple is
fetched or updated. Application writers normally need not be concerned with page-level locks, but we
mention them for completeness.
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9.3.3. Deadlocks

Use of explicit locking can causedeadlocks, wherein two (or more) transactions each hold locks that
the other wants. For example, if transaction 1 acquires an exclusive lock on table A and then tries to
acquire an exclusive lock on table B, while transaction 2 has already exclusive-locked table B and
now wants an exclusive lock on table A, then neither one can proceed. PostgreSQL automatically
detects deadlock situations and resolves them by aborting one of the transactions involved, allowing
the other(s) to complete. (Exactly which transaction will be aborted is difficult to predict and should
not be relied on.)

The best defense against deadlocks is generally to avoid them by being certain that all applications
using a database acquire locks on multiple objects in a consistent order. One should also ensure that
the first lock acquired on an object in a transaction is the highest mode that will be needed for that
object. If it is not feasible to verify this in advance, then deadlocks may be handled on-the-fly by
retrying transactions that are aborted due to deadlock.

So long as no deadlock situation is detected, a transaction seeking either a table-level or row-level lock
will wait indefinitely for conflicting locks to be released. This means it is a bad idea for applications
to hold transactions open for long periods of time (e.g., while waiting for user input).

9.4. Data Consistency Checks at the Application Level
Because readers in PostgreSQL don’t lock data, regardless of transaction isolation level, data read
by one transaction can be overwritten by another concurrent transaction. In other words, if a row
is returned bySELECTit doesn’t mean that the row is still current at the instant it is returned (i.e.,
sometime after the current query began). The row might have been modified or deleted by an already-
committed transaction that committed after this one started. Even if the row is still valid “now”, it
could be changed or deleted before the current transaction does a commit or rollback.

Another way to think about it is that each transaction sees a snapshot of the database contents, and
concurrently executing transactions may very well see different snapshots. So the whole concept of
“now” is somewhat suspect anyway. This is not normally a big problem if the client applications are
isolated from each other, but if the clients can communicate via channels outside the database then
serious confusion may ensue.

To ensure the current validity of a row and protect it against concurrent updates one must useSE-
LECT FOR UPDATEor an appropriateLOCK TABLEstatement. (SELECT FOR UPDATElocks just the
returned rows against concurrent updates, whileLOCK TABLElocks the whole table.) This should be
taken into account when porting applications to PostgreSQL from other environments.

Note: Before version 6.5 PostgreSQL used read locks, and so the above consideration is also the
case when upgrading from PostgreSQL versions prior to 6.5.

Global validity checks require extra thought under MVCC. For example, a banking application might
wish to check that the sum of all credits in one table equals the sum of debits in another table, when
both tables are being actively updated. Comparing the results of two successiveSELECT SUM(...)

commands will not work reliably under Read Committed mode, since the second query will likely
include the results of transactions not counted by the first. Doing the two sums in a single serializable
transaction will give an accurate picture of the effects of transactions that committed before the seri-
alizable transaction started --- but one might legitimately wonder whether the answer is still relevant
by the time it is delivered. If the serializable transaction itself applied some changes before trying to
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make the consistency check, the usefulness of the check becomes even more debatable, since now it
includes some but not all post-transaction-start changes. In such cases a careful person might wish to
lock all tables needed for the check, in order to get an indisputable picture of current reality. ASHARE

mode (or higher) lock guarantees that there are no uncommitted changes in the locked table, other
than those of the current transaction.

Note also that if one is relying on explicit locks to prevent concurrent changes, one should use Read
Committed mode, or in Serializable mode be careful to obtain the lock(s) before performing queries.
An explicit lock obtained in a serializable transaction guarantees that no other transactions modifying
the table are still running --- but if the snapshot seen by the transaction predates obtaining the lock,
it may predate some now-committed changes in the table. A serializable transaction’s snapshot is
actually frozen at the start of its first query (SELECT, INSERT, UPDATE, or DELETE), so it’s possible
to obtain explicit locks before the snapshot is frozen.

9.5. Locking and Indexes
Though PostgreSQL provides nonblocking read/write access to table data, nonblocking read/write
access is not currently offered for every index access method implemented in PostgreSQL.

The various index types are handled as follows:

B-tree indexes

Short-term share/exclusive page-level locks are used for read/write access. Locks are released
immediately after each index tuple is fetched or inserted. B-tree indexes provide the highest
concurrency without deadlock conditions.

GiST and R-tree indexes

Share/exclusive index-level locks are used for read/write access. Locks are released after the
statement (command) is done.

Hash indexes

Share/exclusive page-level locks are used for read/write access. Locks are released after the page
is processed. Page-level locks provide better concurrency than index-level ones but are liable to
deadlocks.

In short, B-tree indexes are the recommended index type for concurrent applications.
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Query performance can be affected by many things. Some of these can be manipulated by the user,
while others are fundamental to the underlying design of the system. This chapter provides some hints
about understanding and tuning PostgreSQL performance.

10.1. Using EXPLAIN

PostgreSQL devises aquery planfor each query it is given. Choosing the right plan to match the
query structure and the properties of the data is absolutely critical for good performance. You can use
the EXPLAIN command to see what query plan the system creates for any query. Plan-reading is an
art that deserves an extensive tutorial, which this is not; but here is some basic information.

The numbers that are currently quoted byEXPLAIN are:

• Estimated start-up cost (Time expended before output scan can start, e.g., time to do the sorting in
a sort node.)

• Estimated total cost (If all rows are retrieved, which they may not be --- a query with aLIMIT

clause will stop short of paying the total cost, for example.)

• Estimated number of rows output by this plan node (Again, only if executed to completion.)

• Estimated average width (in bytes) of rows output by this plan node

The costs are measured in units of disk page fetches. (CPU effort estimates are converted into disk-
page units using some fairly arbitrary fudge factors. If you want to experiment with these factors, see
the list of run-time configuration parameters in thePostgreSQL Administrator’s Guide.)

It’s important to note that the cost of an upper-level node includes the cost of all its child nodes. It’s
also important to realize that the cost only reflects things that the planner/optimizer cares about. In
particular, the cost does not consider the time spent transmitting result rows to the frontend --- which
could be a pretty dominant factor in the true elapsed time, but the planner ignores it because it cannot
change it by altering the plan. (Every correct plan will output the same row set, we trust.)

Rows output is a little tricky because it isnot the number of rows processed/scanned by the query ---
it is usually less, reflecting the estimated selectivity of anyWHERE-clause constraints that are being
applied at this node. Ideally the top-level rows estimate will approximate the number of rows actually
returned, updated, or deleted by the query.

Here are some examples (using the regress test database after aVACUUM ANALYZE, and 7.3 develop-
ment sources):

regression=# EXPLAIN SELECT * FROM tenk1;
QUERY PLAN

-------------------------------------------------------------
Seq Scan on tenk1 (cost=0.00..333.00 rows=10000 width=148)

This is about as straightforward as it gets. If you do

SELECT * FROM pg_class WHERE relname = ’tenk1’;
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you will find out thattenk1 has 233 disk pages and 10000 rows. So the cost is estimated at 233
page reads, defined as costing 1.0 apiece, plus 10000 *cpu_tuple_cost which is currently 0.01
(try SHOW cpu_tuple_cost ).

Now let’s modify the query to add aWHEREcondition:

regression=# EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 1000;
QUERY PLAN

------------------------------------------------------------
Seq Scan on tenk1 (cost=0.00..358.00 rows=1033 width=148)

Filter: (unique1 < 1000)

The estimate of output rows has gone down because of theWHEREclause. However, the scan will still
have to visit all 10000 rows, so the cost hasn’t decreased; in fact it has gone up a bit to reflect the extra
CPU time spent checking theWHEREcondition.

The actual number of rows this query would select is 1000, but the estimate is only approximate. If
you try to duplicate this experiment, you will probably get a slightly different estimate; moreover,
it will change after eachANALYZEcommand, because the statistics produced byANALYZEare taken
from a randomized sample of the table.

Modify the query to restrict the condition even more:

regression=# EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 50;
QUERY PLAN

-----------------------------------------------------------------------
--------

Index Scan using tenk1_unique1 on tenk1 (cost=0.00..179.33 rows=49 width=148)
Index Cond: (unique1 < 50)

and you will see that if we make theWHEREcondition selective enough, the planner will eventually
decide that an index scan is cheaper than a sequential scan. This plan will only have to visit 50 rows
because of the index, so it wins despite the fact that each individual fetch is more expensive than
reading a whole disk page sequentially.

Add another clause to theWHEREcondition:

regression=# EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 50 AND
regression-# stringu1 = ’xxx’;

QUERY PLAN
-----------------------------------------------------------------------

--------
Index Scan using tenk1_unique1 on tenk1 (cost=0.00..179.45 rows=1 width=148)

Index Cond: (unique1 < 50)
Filter: (stringu1 = ’xxx’::name)

The added clausestringu1 = ’xxx’ reduces the output-rows estimate, but not the cost because we
still have to visit the same set of rows. Notice that thestringu1 clause cannot be applied as an index
condition (since this index is only on theunique1 column). Instead it is applied as a filter on the rows
retrieved by the index. Thus the cost has actually gone up a little bit to reflect this extra checking.

Let’s try joining two tables, using the fields we have been discussing:

regression=# EXPLAIN SELECT * FROM tenk1 t1, tenk2 t2 WHERE t1.unique1 < 50
regression-# AND t1.unique2 = t2.unique2;

QUERY PLAN
-----------------------------------------------------------------------

-----
Nested Loop (cost=0.00..327.02 rows=49 width=296)
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- > Index Scan using tenk1_unique1 on tenk1 t1
(cost=0.00..179.33 rows=49 width=148)

Index Cond: (unique1 < 50)
- > Index Scan using tenk2_unique2 on tenk2 t2

(cost=0.00..3.01 rows=1 width=148)
Index Cond: ("outer".unique2 = t2.unique2)

In this nested-loop join, the outer scan is the same index scan we had in the example before last, and
so its cost and row count are the same because we are applying theunique1 < 50 WHEREclause at
that node. Thet1.unique2 = t2.unique2 clause is not relevant yet, so it doesn’t affect row count
of the outer scan. For the inner scan, theunique2 value of the current outer-scan row is plugged into
the inner index scan to produce an index condition liket2.unique2 = constant . So we get the
same inner-scan plan and costs that we’d get from, say,EXPLAIN SELECT * FROM tenk2 WHERE

unique2 = 42 . The costs of the loop node are then set on the basis of the cost of the outer scan, plus
one repetition of the inner scan for each outer row (49 * 3.01, here), plus a little CPU time for join
processing.

In this example the loop’s output row count is the same as the product of the two scans’ row counts, but
that’s not true in general, because in general you can haveWHEREclauses that mention both relations
and so can only be applied at the join point, not to either input scan. For example, if we addedWHERE

... AND t1.hundred < t2.hundred , that would decrease the output row count of the join node,
but not change either input scan.

One way to look at variant plans is to force the planner to disregard whatever strategy it thought was
the winner, using the enable/disable flags for each plan type. (This is a crude tool, but useful. See also
Section 10.3.)

regression=# SET enable_nestloop = off;
SET
regression=# EXPLAIN SELECT * FROM tenk1 t1, tenk2 t2 WHERE t1.unique1 < 50
regression-# AND t1.unique2 = t2.unique2;

QUERY PLAN
-----------------------------------------------------------------------

---
Hash Join (cost=179.45..563.06 rows=49 width=296)

Hash Cond: ("outer".unique2 = "inner".unique2)
- > Seq Scan on tenk2 t2 (cost=0.00..333.00 rows=10000 width=148)
- > Hash (cost=179.33..179.33 rows=49 width=148)

- > Index Scan using tenk1_unique1 on tenk1 t1
(cost=0.00..179.33 rows=49 width=148)

Index Cond: (unique1 < 50)

This plan proposes to extract the 50 interesting rows oftenk1 using ye same olde index scan, stash
them into an in-memory hash table, and then do a sequential scan oftenk2 , probing into the hash
table for possible matches oft1.unique2 = t2.unique2 at eachtenk2 row. The cost to read
tenk1 and set up the hash table is entirely start-up cost for the hash join, since we won’t get any rows
out until we can start readingtenk2 . The total time estimate for the join also includes a hefty charge
for the CPU time to probe the hash table 10000 times. Note, however, that we arenot charging 10000
times 179.33; the hash table setup is only done once in this plan type.

It is possible to check on the accuracy of the planner’s estimated costs by usingEXPLAIN ANALYZE.
This command actually executes the query, and then displays the true run time accumulated within
each plan node along with the same estimated costs that a plainEXPLAIN shows. For example, we
might get a result like this:
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regression=# EXPLAIN ANALYZE
regression-# SELECT * FROM tenk1 t1, tenk2 t2
regression-# WHERE t1.unique1 < 50 AND t1.unique2 = t2.unique2;

QUERY PLAN
-----------------------------------------------------------------------

--------
Nested Loop (cost=0.00..327.02 rows=49 width=296)

(actual time=1.18..29.82 rows=50 loops=1)
- > Index Scan using tenk1_unique1 on tenk1 t1

(cost=0.00..179.33 rows=49 width=148)
(actual time=0.63..8.91 rows=50 loops=1)

Index Cond: (unique1 < 50)
- > Index Scan using tenk2_unique2 on tenk2 t2

(cost=0.00..3.01 rows=1 width=148)
(actual time=0.29..0.32 rows=1 loops=50)

Index Cond: ("outer".unique2 = t2.unique2)
Total runtime: 31.60 msec

Note that the “actual time” values are in milliseconds of real time, whereas the “cost” estimates are
expressed in arbitrary units of disk fetches; so they are unlikely to match up. The thing to pay attention
to is the ratios.

In some query plans, it is possible for a subplan node to be executed more than once. For example,
the inner index scan is executed once per outer row in the above nested-loop plan. In such cases, the
“loops” value reports the total number of executions of the node, and the actual time and rows values
shown are averages per-execution. This is done to make the numbers comparable with the way that
the cost estimates are shown. Multiply by the “loops” value to get the total time actually spent in the
node.

TheTotal runtime shown byEXPLAIN ANALYZEincludes executor start-up and shut-down time,
as well as time spent processing the result rows. It does not include parsing, rewriting, or planning
time. For aSELECTquery, the total run time will normally be just a little larger than the total time
reported for the top-level plan node. ForINSERT, UPDATE, andDELETEcommands, the total run time
may be considerably larger, because it includes the time spent processing the result rows. In these
commands, the time for the top plan node essentially is the time spent computing the new rows and/or
locating the old ones, but it doesn’t include the time spent making the changes.

It is worth noting thatEXPLAIN results should not be extrapolated to situations other than the one you
are actually testing; for example, results on a toy-sized table can’t be assumed to apply to large tables.
The planner’s cost estimates are not linear and so it may well choose a different plan for a larger or
smaller table. An extreme example is that on a table that only occupies one disk page, you’ll nearly
always get a sequential scan plan whether indexes are available or not. The planner realizes that it’s
going to take one disk page read to process the table in any case, so there’s no value in expending
additional page reads to look at an index.

10.2. Statistics Used by the Planner
As we saw in the previous section, the query planner needs to estimate the number of rows retrieved
by a query in order to make good choices of query plans. This section provides a quick look at the
statistics that the system uses for these estimates.

One component of the statistics is the total number of entries in each table and index, as well as the
number of disk blocks occupied by each table and index. This information is kept inpg_class ’s
reltuples andrelpages columns. We can look at it with queries similar to this one:
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regression=# SELECT relname, relkind, reltuples, relpages FROM pg_class
regression-# WHERE relname LIKE ’tenk1%’;

relname | relkind | reltuples | relpages
---------------+---------+-----------+----------

tenk1 | r | 10000 | 233
tenk1_hundred | i | 10000 | 30
tenk1_unique1 | i | 10000 | 30
tenk1_unique2 | i | 10000 | 30

(4 rows)

Here we can see thattenk1 contains 10000 rows, as do its indexes, but the indexes are (unsurpris-
ingly) much smaller than the table.

For efficiency reasons,reltuples and relpages are not updated on-the-fly, and so they usually
contain only approximate values (which is good enough for the planner’s purposes). They are ini-
tialized with dummy values (presently 1000 and 10 respectively) when a table is created. They are
updated by certain commands, presentlyVACUUM, ANALYZE, andCREATE INDEX. A stand-aloneAN-

ALYZE, that is one not part ofVACUUM, generates an approximatereltuples value since it does not
read every row of the table.

Most queries retrieve only a fraction of the rows in a table, due to havingWHEREclauses that restrict the
rows to be examined. The planner thus needs to make an estimate of theselectivityof WHEREclauses,
that is, the fraction of rows that match each clause of theWHEREcondition. The information used for
this task is stored in thepg_statistic system catalog. Entries inpg_statistic are updated by
ANALYZEandVACUUM ANALYZEcommands, and are always approximate even when freshly updated.

Rather than look atpg_statistic directly, it’s better to look at its viewpg_stats when examining
the statistics manually.pg_stats is designed to be more easily readable. Furthermore,pg_stats

is readable by all, whereaspg_statistic is only readable by the superuser. (This prevents unpriv-
ileged users from learning something about the contents of other people’s tables from the statistics.
Thepg_stats view is restricted to show only rows about tables that the current user can read.) For
example, we might do:

regression=# SELECT attname, n_distinct, most_common_vals FROM pg_stats WHERE table-
name = ’road’;

attname | n_distinct | most_common_vals
---------+------------+------------------------------------------------

---------------------------------------------------------------------------
---------------------------------------------------------------------------
---------------------------------------------------------------------------
---------------------------------------------------------------------------
-------------------------

name | -0.467008 | {"I- 580 Ramp","I- 880 Ramp","Sp Rail-
road ","I- 580 ","I- 680 Ramp","I-
80 Ramp","14th St ","5th St ","Mis-
sion Blvd","I- 880 "}

thepath | 20 | {"[(-122.089,37.71),(-122.0886,37.711)]"}
(2 rows)
regression=#

Table 10-1shows the columns that exist inpg_stats .

Table 10-1.pg_stats Columns

Name Type Description
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Name Type Description

tablename name Name of the table containing the
column

attname name Column described by this row

null_frac real Fraction of column’s entries that
are null

avg_width integer Average width in bytes of the
column’s entries

n_distinct real If greater than zero, the
estimated number of distinct
values in the column. If less than
zero, the negative of the number
of distinct values divided by the
number of rows. (The negated
form is used whenANALYZE

believes that the number of
distinct values is likely to
increase as the table grows; the
positive form is used when the
column seems to have a fixed
number of possible values.) For
example, -1 indicates a unique
column in which the number of
distinct values is the same as the
number of rows.

most_common_vals text[] A list of the most common
values in the column. (Omitted
if no values seem to be more
common than any others.)

most_common_freqs real[] A list of the frequencies of the
most common values, i.e.,
number of occurrences of each
divided by total number of rows.

histogram_bounds text[] A list of values that divide the
column’s values into groups of
approximately equal population.
Themost_common_vals , if
present, are omitted from the
histogram calculation. (Omitted
if column data type does not
have a< operator, or if the
most_common_vals list
accounts for the entire
population.)
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Name Type Description

correlation real Statistical correlation between
physical row ordering and
logical ordering of the column
values. This ranges from -1 to
+1. When the value is near -1 or
+1, an index scan on the column
will be estimated to be cheaper
than when it is near zero, due to
reduction of random access to
the disk. (Omitted if column
data type does not have a<

operator.)

The maximum number of entries in themost_common_vals andhistogram_bounds arrays can be
set on a column-by-column basis using theALTER TABLE SET STATISTICScommand. The default
limit is presently 10 entries. Raising the limit may allow more accurate planner estimates to be made,
particularly for columns with irregular data distributions, at the price of consuming more space in
pg_statistic and slightly more time to compute the estimates. Conversely, a lower limit may be
appropriate for columns with simple data distributions.

10.3. Controlling the Planner with Explicit JOIN Clauses
Beginning with PostgreSQL 7.1 it has been possible to control the query planner to some extent by
using the explicitJOIN syntax. To see why this matters, we first need some background.

In a simple join query, such as

SELECT * FROM a, b, c WHERE a.id = b.id AND b.ref = c.id;

the planner is free to join the given tables in any order. For example, it could generate a query plan
that joins A to B, using theWHEREconditiona.id = b.id , and then joins C to this joined table,
using the otherWHEREcondition. Or it could join B to C and then join A to that result. Or it could join
A to C and then join them with B --- but that would be inefficient, since the full Cartesian product of
A and C would have to be formed, there being no applicable condition in theWHEREclause to allow
optimization of the join. (All joins in the PostgreSQL executor happen between two input tables, so
it’s necessary to build up the result in one or another of these fashions.) The important point is that
these different join possibilities give semantically equivalent results but may have hugely different
execution costs. Therefore, the planner will explore all of them to try to find the most efficient query
plan.

When a query only involves two or three tables, there aren’t many join orders to worry about. But the
number of possible join orders grows exponentially as the number of tables expands. Beyond ten or
so input tables it’s no longer practical to do an exhaustive search of all the possibilities, and even for
six or seven tables planning may take an annoyingly long time. When there are too many input tables,
the PostgreSQL planner will switch from exhaustive search to ageneticprobabilistic search through a
limited number of possibilities. (The switch-over threshold is set by theGEQO_THRESHOLDrun-time
parameter described in thePostgreSQL Administrator’s Guide.) The genetic search takes less time,
but it won’t necessarily find the best possible plan.

When the query involves outer joins, the planner has much less freedom than it does for plain (inner)
joins. For example, consider
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SELECT * FROM a LEFT JOIN (b JOIN c ON (b.ref = c.id)) ON (a.id = b.id);

Although this query’s restrictions are superficially similar to the previous example, the semantics are
different because a row must be emitted for each row of A that has no matching row in the join of B
and C. Therefore the planner has no choice of join order here: it must join B to C and then join A to
that result. Accordingly, this query takes less time to plan than the previous query.

The PostgreSQL query planner treats all explicitJOIN syntaxes as constraining the join order, even
though it is not logically necessary to make such a constraint for inner joins. Therefore, although all
of these queries give the same result:

SELECT * FROM a, b, c WHERE a.id = b.id AND b.ref = c.id;
SELECT * FROM a CROSS JOIN b CROSS JOIN c WHERE a.id = b.id AND b.ref = c.id;
SELECT * FROM a JOIN (b JOIN c ON (b.ref = c.id)) ON (a.id = b.id);

but the second and third take less time to plan than the first. This effect is not worth worrying about
for only three tables, but it can be a lifesaver with many tables.

You do not need to constrain the join order completely in order to cut search time, because it’s OK to
useJOIN operators in a plainFROMlist. For example,

SELECT * FROM a CROSS JOIN b, c, d, e WHERE ...;

forces the planner to join A to B before joining them to other tables, but doesn’t constrain its choices
otherwise. In this example, the number of possible join orders is reduced by a factor of 5.

If you have a mix of outer and inner joins in a complex query, you might not want to constrain the
planner’s search for a good ordering of inner joins inside an outer join. You can’t do that directly in
theJOIN syntax, but you can get around the syntactic limitation by using subselects. For example,

SELECT * FROM d LEFT JOIN
(SELECT * FROM a, b, c WHERE ...) AS ss
ON (...);

Here, joining D must be the last step in the query plan, but the planner is free to consider various join
orders for A, B, C.

Constraining the planner’s search in this way is a useful technique both for reducing planning time
and for directing the planner to a good query plan. If the planner chooses a bad join order by default,
you can force it to choose a better order viaJOIN syntax --- assuming that you know of a better order,
that is. Experimentation is recommended.

10.4. Populating a Database
One may need to do a large number of table insertions when first populating a database. Here are
some tips and techniques for making that as efficient as possible.

10.4.1. Disable Autocommit

Turn off autocommit and just do one commit at the end. (In plain SQL, this means issuingBEGIN at
the start andCOMMITat the end. Some client libraries may do this behind your back, in which case
you need to make sure the library does it when you want it done.) If you allow each insertion to be
committed separately, PostgreSQL is doing a lot of work for each record added. An additional benefit
of doing all insertions in one transaction is that if the insertion of one record were to fail then the
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insertion of all records inserted up to that point would be rolled back, so you won’t be stuck with
partially loaded data.

10.4.2. Use COPY FROM

UseCOPY FROM STDINto load all the records in one command, instead of using a series ofINSERT

commands. This reduces parsing, planning, etc. overhead a great deal. If you do this then it is not
necessary to turn off autocommit, since it is only one command anyway.

10.4.3. Remove Indexes

If you are loading a freshly created table, the fastest way is to create the table, bulk-load withCOPY,
then create any indexes needed for the table. Creating an index on pre-existing data is quicker than
updating it incrementally as each record is loaded.

If you are augmenting an existing table, you canDROP INDEX, load the table, then recreate the index.
Of course, the database performance for other users may be adversely affected during the time that
the index is missing. One should also think twice before dropping unique indexes, since the error
checking afforded by the unique constraint will be lost while the index is missing.

10.4.4. Run ANALYZE Afterwards

It’s a good idea to runANALYZEor VACUUM ANALYZEanytime you’ve added or updated a lot of data,
including just after initially populating a table. This ensures that the planner has up-to-date statistics
about the table. With no statistics or obsolete statistics, the planner may make poor choices of query
plans, leading to bad performance on queries that use your table.
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PostgreSQL uses an internal heuristic parser for all date/time input support. Dates and times are input
as strings, and are broken up into distinct fields with a preliminary determination of what kind of
information may be in the field. Each field is interpreted and either assigned a numeric value, ignored,
or rejected. The parser contains internal lookup tables for all textual fields, including months, days of
the week, and time zones.

This appendix includes information on the content of these lookup tables and describes the steps used
by the parser to decode dates and times.

A.1. Date/Time Input Interpretation
The date/time types are all decoded using a common set of routines.

Date/Time Input Interpretation

1. Break the input string into tokens and categorize each token as a string, time, time zone, or
number.

a. If the numeric token contains a colon (: ), this is a time string. Include all subsequent
digits and colons.

b. If the numeric token contains a dash (- ), slash (/ ), or two or more dots (. ), this is a
date string which may have a text month.

c. If the token is numeric only, then it is either a single field or an ISO 8601 concatenated
date (e.g.,19990113 for January 13, 1999) or time (e.g.141516 for 14:15:16).

d. If the token starts with a plus (+) or minus (- ), then it is either a time zone or a special
field.

2. If the token is a text string, match up with possible strings.

a. Do a binary-search table lookup for the token as either a special string (e.g.,today ),
day (e.g.,Thursday ), month (e.g.,January ), or noise word (e.g.,at , on).

Set field values and bit mask for fields. For example, set year, month, day fortoday ,
and additionally hour, minute, second fornow.

b. If not found, do a similar binary-search table lookup to match the token with a time
zone.

c. If not found, throw an error.

3. The token is a number or number field.

a. If there are more than 4 digits, and if no other date fields have been previously read,
then interpret as a “concatenated date” (e.g.,19990118 ). 8 and 6 digits are interpreted
as year, month, and day, while 7 and 5 digits are interpreted as year, day of year, respec-
tively.

b. If the token is three digits and a year has already been decoded, then interpret as day
of year.

c. If four or six digits and a year has already been read, then interpret as a time.

d. If four or more digits, then interpret as a year.
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e. If in European date mode, and if the day field has not yet been read, and if the value is
less than or equal to 31, then interpret as a day.

f. If the month field has not yet been read, and if the value is less than or equal to 12, then
interpret as a month.

g. If the day field has not yet been read, and if the value is less than or equal to 31, then
interpret as a day.

h. If two digits or four or more digits, then interpret as a year.

i. Otherwise, throw an error.

4. If BC has been specified, negate the year and add one for internal storage. (There is no year zero
in the Gregorian calendar, so numerically1BCbecomes year zero.)

5. If BC was not specified, and if the year field was two digits in length, then adjust the year to 4
digits. If the field was less than 70, then add 2000; otherwise, add 1900.

Tip: Gregorian years AD 1-99 may be entered by using 4 digits with leading zeros (e.g., 0099 is
AD 99). Previous versions of PostgreSQL accepted years with three digits and with single
digits, but as of version 7.0 the rules have been tightened up to reduce the possibility of
ambiguity.

A.2. Date/Time Key Words
Table A-1shows the tokens that are permissible as abbreviations for the names of the month.

Table A-1. Month Abbreviations

Month Abbreviations

April Apr

August Aug

December Dec

February Feb

January Jan

July Jul

June Jun

March Mar

November Nov

October Oct

September Sep, Sept

Note: The month May has no explicit abbreviation, for obvious reasons.

Table A-2shows the tokens that are permissible as abbreviations for the names of the days of the
week.
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Table A-2. Day of the Week Abbreviations

Day Abbreviation

Sunday Sun

Monday Mon

Tuesday Tue, Tues

Wednesday Wed, Weds

Thursday Thu, Thur, Thurs

Friday Fri

Saturday Sat

Table A-3shows the tokens that serve various modifier purposes.

Table A-3. Date/Time Field Modifiers

Identifier Description

ABSTIME Key word ignored

AM Time is before 12:00

AT Key word ignored

JULIAN , JD, J Next field is Julian Day

ON Key word ignored

PM Time is on or after after 12:00

T Next field is time

The key wordABSTIME is ignored for historical reasons; in very old releases of PostgreSQL invalid
fields of typeabstime were emitted asInvalid Abstime . This is no longer the case however and
this key word will likely be dropped in a future release.

Table A-4shows the time zone abbreviations recognized by PostgreSQL. PostgreSQL contains inter-
nal tabular information for time zone decoding, since there is no standard operating system interface
to provide access to general, cross-time zone information. The underlying operating systemis used to
provide time zone information foroutput, however.

The table is organized by time zone offset from UTC, rather than alphabetically; this is intended to
facilitate matching local usage with recognized abbreviations for cases where these might differ.

Table A-4. Time Zone Abbreviations

Time Zone Offset from UTC Description

NZDT +13:00 New Zealand Daylight Time

IDLE +12:00 International Date Line, East

NZST +12:00 New Zealand Standard Time

NZT +12:00 New Zealand Time

AESST +11:00 Australia Eastern Summer
Standard Time

ACSST +10:30 Central Australia Summer
Standard Time

CADT +10:30 Central Australia Daylight
Savings Time
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Time Zone Offset from UTC Description

SADT +10:30 South Australian Daylight Time

AEST +10:00 Australia Eastern Standard Time

EAST +10:00 East Australian Standard Time

GST +10:00 Guam Standard Time, USSR
Zone 9

LIGT +10:00 Melbourne, Australia

SAST +09:30 South Australia Standard Time

CAST +09:30 Central Australia Standard Time

AWSST +09:00 Australia Western Summer
Standard Time

JST +09:00 Japan Standard Time,USSR
Zone 8

KST +09:00 Korea Standard Time

MHT +09:00 Kwajalein Time

WDT +09:00 West Australian Daylight Time

MT +08:30 Moluccas Time

AWST +08:00 Australia Western Standard
Time

CCT +08:00 China Coastal Time

WADT +08:00 West Australian Daylight Time

WST +08:00 West Australian Standard Time

JT +07:30 Java Time

ALMST +07:00 Almaty Summer Time

WAST +07:00 West Australian Standard Time

CXT +07:00 Christmas (Island) Time

MMT +06:30 Myannar Time

ALMT +06:00 Almaty Time

MAWT +06:00 Mawson (Antarctica) Time

IOT +05:00 Indian Chagos Time

MVT +05:00 Maldives Island Time

TFT +05:00 Kerguelen Time

AFT +04:30 Afganistan Time

EAST +04:00 Antananarivo Savings Time

MUT +04:00 Mauritius Island Time

RET +04:00 Reunion Island Time

SCT +04:00 Mahe Island Time

IRT, IT +03:30 Iran Time

EAT +03:00 Antananarivo, Comoro Time

BT +03:00 Baghdad Time

EETDST +03:00 Eastern Europe Daylight
Savings Time
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Time Zone Offset from UTC Description

HMT +03:00 Hellas Mediterranean Time (?)

BDST +02:00 British Double Standard Time

CEST +02:00 Central European Savings Time

CETDST +02:00 Central European Daylight
Savings Time

EET +02:00 Eastern Europe, USSR Zone 1

FWT +02:00 French Winter Time

IST +02:00 Israel Standard Time

MEST +02:00 Middle Europe Summer Time

METDST +02:00 Middle Europe Daylight Time

SST +02:00 Swedish Summer Time

BST +01:00 British Summer Time

CET +01:00 Central European Time

DNT +01:00 Dansk Normal Tid

FST +01:00 French Summer Time

MET +01:00 Middle Europe Time

MEWT +01:00 Middle Europe Winter Time

MEZ +01:00 Middle Europe Zone

NOR +01:00 Norway Standard Time

SET +01:00 Seychelles Time

SWT +01:00 Swedish Winter Time

WETDST +01:00 Western Europe Daylight
Savings Time

GMT +00:00 Greenwich Mean Time

UT +00:00 Universal Time

UTC +00:00 Universal Time, Coordinated

Z +00:00 Same as UTC

ZULU +00:00 Same as UTC

WET +00:00 Western Europe

WAT -01:00 West Africa Time

NDT -02:30 Newfoundland Daylight Time

ADT -03:00 Atlantic Daylight Time

AWT -03:00 (unknown)

NFT -03:30 Newfoundland Standard Time

NST -03:30 Newfoundland Standard Time

AST -04:00 Atlantic Standard Time
(Canada)

ACST -04:00 Atlantic/Porto Acre Summer
Time

ACT -05:00 Atlantic/Porto Acre Standard
Time

EDT -04:00 Eastern Daylight Time
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Time Zone Offset from UTC Description

CDT -05:00 Central Daylight Time

EST -05:00 Eastern Standard Time

CST -06:00 Central Standard Time

MDT -06:00 Mountain Daylight Time

MST -07:00 Mountain Standard Time

PDT -07:00 Pacific Daylight Time

AKDT -08:00 Alaska Daylight Time

PST -08:00 Pacific Standard Time

YDT -08:00 Yukon Daylight Time

AKST -09:00 Alaska Standard Time

HDT -09:00 Hawaii/Alaska Daylight Time

YST -09:00 Yukon Standard Time

MART -09:30 Marquesas Time

AHST -10:00 Alaska-Hawaii Standard Time

HST -10:00 Hawaii Standard Time

CAT -10:00 Central Alaska Time

NT -11:00 Nome Time

IDLW -12:00 International Date Line, West

Australian Time Zones. There are three naming conflicts between Australian time zone names with
time zones commonly used in North and South America:ACST, CST, andEST. If the run-time option
AUSTRALIAN_TIMEZONESis set to true thenACST, CST, EST, andSAT are interpreted as Australian
time zone names, as shown inTable A-5. If it is false (which is the default), thenACST, CST, andEST

are taken as American time zone names, andSAT is interpreted as a noise word indicating Saturday.

Table A-5. Australian Time Zone Abbreviations

Time Zone Offset from UTC Description

ACST +09:30 Central Australia Standard Time

CST +10:30 Australian Central Standard
Time

EST +10:00 Australian Eastern Standard
Time

SAT +09:30 South Australian Standard Time

A.3. History of Units

Note: Contributed by José Soares (<jose@sferacarta.com >)

The Julian Day was invented by the French scholar Joseph Justus Scaliger (1540-1609) and probably
takes its name from the Scaliger’s father, the Italian scholar Julius Caesar Scaliger (1484-1558). As-
tronomers have used the Julian period to assign a unique number to every day since 1 January 4713
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BC. This is the so-called Julian Day (JD). JD 0 designates the 24 hours from noon UTC on 1 January
4713 BC to noon UTC on 2 January 4713 BC.

The “Julian Day” is different from the “Julian Date”. The Julian date refers to the Julian calendar,
which was introduced by Julius Caesar in 45 BC. It was in common use until the 1582, when countries
started changing to the Gregorian calendar. In the Julian calendar, the tropical year is approximated
as 365 1/4 days = 365.25 days. This gives an error of about 1 day in 128 years.

The accumulating calendar error prompted Pope Gregory XIII to reform the calendar in accordance
with instructions from the Council of Trent. In the Gregorian calendar, the tropical year is approxi-
mated as 365 + 97 / 400 days = 365.2425 days. Thus it takes approximately 3300 years for the tropical
year to shift one day with respect to the Gregorian calendar.

The approximation 365+97/400 is achieved by having 97 leap years every 400 years, using the fol-
lowing rules:

Every year divisible by 4 is a leap year.
However, every year divisible by 100 is not a leap year.
However, every year divisible by 400 is a leap year after all.

So, 1700, 1800, 1900, 2100, and 2200 are not leap years. But 1600, 2000, and 2400 are leap years.
By contrast, in the older Julian calendar only years divisible by 4 are leap years.

The papal bull of February 1582 decreed that 10 days should be dropped from October 1582 so that
15 October should follow immediately after 4 October. This was observed in Italy, Poland, Portugal,
and Spain. Other Catholic countries followed shortly after, but Protestant countries were reluctant
to change, and the Greek orthodox countries didn’t change until the start of the 20th century. The
reform was observed by Great Britain and Dominions (including what is now the USA) in 1752. Thus
2 September 1752 was followed by 14 September 1752. This is why Unix systems have thecal

program produce the following:

$ cal 9 1752
September 1752

S M Tu W Th F S
1 2 14 15 16

17 18 19 20 21 22 23
24 25 26 27 28 29 30

Note: The SQL standard states that “Within the definition of a ‘datetime literal’, the ‘datetime
value’s are constrained by the natural rules for dates and times according to the Gregorian cal-
endar”. Dates between 1752-09-03 and 1752-09-13, although eliminated in some countries by
Papal fiat, conform to “natural rules” and are hence valid dates.

Different calendars have been developed in various parts of the world, many predating the Gregorian
system. For example, the beginnings of the Chinese calendar can be traced back to the 14th century
BC. Legend has it that the Emperor Huangdi invented the calendar in 2637 BC. The People’s Republic
of China uses the Gregorian calendar for civil purposes. The Chinese calendar is used for determining
festivals.
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Table B-1lists all tokens that are key words in the SQL standard and in PostgreSQL 7.3.2. Background
information can be found inSection 1.1.1.

SQL distinguishes betweenreservedandnon-reservedkey words. According to the standard, reserved
key words are the only real key words; they are never allowed as identifiers. Non-reserved key words
only have a special meaning in particular contexts and can be used as identifiers in other contexts.
Most non-reserved key words are actually the names of built-in tables and functions specified by
SQL. The concept of non-reserved key words essentially only exists to declare that some predefined
meaning is attached to a word in some contexts.

In the PostgreSQL parser life is a bit more complicated. There are several different classes of tokens
ranging from those that can never be used as an identifier to those that have absolutely no special
status in the parser as compared to an ordinary identifier. (The latter is usually the case for functions
specified by SQL.) Even reserved key words are not completely reserved in PostgreSQL, but can be
used as column labels (for example,SELECT 55 AS CHECK, even thoughCHECKis a reserved key
word).

In Table B-1in the column for PostgreSQL we classify as “non-reserved” those key words that are
explicitly known to the parser but are allowed in most or all contexts where an identifier is expected.
Some key words that are otherwise non-reserved cannot be used as function or data type names and
are marked accordingly. (Most of these words represent built-in functions or data types with special
syntax. The function or type is still available but it cannot be redefined by the user.) Labeled “reserved”
are those tokens that are only allowed as “AS” column label names (and perhaps in very few other
contexts). Some reserved key words are allowable as names for functions; this is also shown in the
table.

As a general rule, if you get spurious parser errors for commands that contain any of the listed key
words as an identifier you should try to quote the identifier to see if the problem goes away.

It is important to understand before studyingTable B-1that the fact that a key word is not reserved
in PostgreSQL does not mean that the feature related to the word is not implemented. Conversely, the
presence of a key word does not indicate the existence of a feature.

Table B-1. SQL Key Words

Key Word PostgreSQL SQL 99 SQL 92

ABORT non-reserved

ABS non-reserved

ABSOLUTE non-reserved reserved reserved

ACCESS non-reserved

ACTION non-reserved reserved reserved

ADA non-reserved non-reserved

ADD non-reserved reserved reserved

ADMIN reserved

AFTER non-reserved reserved

AGGREGATE non-reserved reserved

ALIAS reserved

ALL reserved reserved reserved

ALLOCATE reserved reserved
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Key Word PostgreSQL SQL 99 SQL 92

ALTER non-reserved reserved reserved

ANALYSE reserved

ANALYZE reserved

AND reserved reserved reserved

ANY reserved reserved reserved

ARE reserved reserved

ARRAY reserved

AS reserved reserved reserved

ASC reserved reserved reserved

ASENSITIVE non-reserved

ASSERTION non-reserved reserved reserved

ASSIGNMENT non-reserved non-reserved

ASYMMETRIC non-reserved

AT non-reserved reserved reserved

ATOMIC non-reserved

AUTHORIZATION reserved (can be
function)

reserved reserved

AVG non-reserved reserved

BACKWARD non-reserved

BEFORE non-reserved reserved

BEGIN non-reserved reserved reserved

BETWEEN reserved (can be
function)

non-reserved reserved

BIGINT non-reserved (cannot be
function or type)

BINARY reserved (can be
function)

reserved

BIT non-reserved (cannot be
function or type)

reserved reserved

BITVAR non-reserved

BIT_LENGTH non-reserved reserved

BLOB reserved

BOOLEAN non-reserved (cannot be
function or type)

reserved

BOTH reserved reserved reserved

BREADTH reserved

BY non-reserved reserved reserved

C non-reserved non-reserved

CACHE non-reserved

CALL reserved

CALLED non-reserved non-reserved

CARDINALITY non-reserved

CASCADE non-reserved reserved reserved
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Key Word PostgreSQL SQL 99 SQL 92

CASCADED reserved reserved

CASE reserved reserved reserved

CAST reserved reserved reserved

CATALOG reserved reserved

CATALOG_NAME non-reserved non-reserved

CHAIN non-reserved non-reserved

CHAR non-reserved (cannot be
function or type)

reserved reserved

CHARACTER non-reserved (cannot be
function or type)

reserved reserved

CHARACTERISTICS non-reserved

CHARACTER_LENGTH non-reserved reserved

CHARACTER_SET_CATALOG non-reserved non-reserved

CHARACTER_SET_NAME non-reserved non-reserved

CHARACTER_SET_SCHEMA non-reserved non-reserved

CHAR_LENGTH non-reserved reserved

CHECK reserved reserved reserved

CHECKED non-reserved

CHECKPOINT non-reserved

CLASS non-reserved reserved

CLASS_ORIGIN non-reserved non-reserved

CLOB reserved

CLOSE non-reserved reserved reserved

CLUSTER non-reserved

COALESCE non-reserved (cannot be
function or type)

non-reserved reserved

COBOL non-reserved non-reserved

COLLATE reserved reserved reserved

COLLATION reserved reserved

COLLATION_CATALOG non-reserved non-reserved

COLLATION_NAME non-reserved non-reserved

COLLATION_SCHEMA non-reserved non-reserved

COLUMN reserved reserved reserved

COLUMN_NAME non-reserved non-reserved

COMMAND_FUNCTION non-reserved non-reserved

COMMAND_FUNCTION_CODE non-reserved

COMMENT non-reserved

COMMIT non-reserved reserved reserved

COMMITTED non-reserved non-reserved non-reserved
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Key Word PostgreSQL SQL 99 SQL 92

COMPLETION reserved

CONDITION_NUMBER non-reserved non-reserved

CONNECT reserved reserved

CONNECTION reserved reserved

CONNECTION_NAME non-reserved non-reserved

CONSTRAINT reserved reserved reserved

CONSTRAINTS non-reserved reserved reserved

CONSTRAINT_CATALOG non-reserved non-reserved

CONSTRAINT_NAME non-reserved non-reserved

CONSTRAINT_SCHEMA non-reserved non-reserved

CONSTRUCTOR reserved

CONTAINS non-reserved

CONTINUE reserved reserved

CONVERSION non-reserved

CONVERT non-reserved (cannot be
function or type)

non-reserved reserved

COPY non-reserved

CORRESPONDING reserved reserved

COUNT non-reserved reserved

CREATE reserved reserved reserved

CREATEDB non-reserved

CREATEUSER non-reserved

CROSS reserved (can be
function)

reserved reserved

CUBE reserved

CURRENT reserved reserved

CURRENT_DATE reserved reserved reserved

CURRENT_PATH reserved

CURRENT_ROLE reserved

CURRENT_TIME reserved reserved reserved

CURRENT_TIMESTAMPreserved reserved reserved

CURRENT_USER reserved reserved reserved

CURSOR non-reserved reserved reserved

CURSOR_NAME non-reserved non-reserved

CYCLE non-reserved reserved

DATA reserved non-reserved

DATABASE non-reserved

DATE reserved reserved

DATETIME_INTERVAL_CODE non-reserved non-reserved
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Key Word PostgreSQL SQL 99 SQL 92

DATETIME_INTERVAL_PRECISION non-reserved non-reserved

DAY non-reserved reserved reserved

DEALLOCATE non-reserved reserved reserved

DEC non-reserved (cannot be
function or type)

reserved reserved

DECIMAL non-reserved (cannot be
function or type)

reserved reserved

DECLARE non-reserved reserved reserved

DEFAULT reserved reserved reserved

DEFERRABLE reserved reserved reserved

DEFERRED non-reserved reserved reserved

DEFINED non-reserved

DEFINER non-reserved non-reserved

DELETE non-reserved reserved reserved

DELIMITER non-reserved

DELIMITERS non-reserved

DEPTH reserved

DEREF reserved

DESC reserved reserved reserved

DESCRIBE reserved reserved

DESCRIPTOR reserved reserved

DESTROY reserved

DESTRUCTOR reserved

DETERMINISTIC reserved

DIAGNOSTICS reserved reserved

DICTIONARY reserved

DISCONNECT reserved reserved

DISPATCH non-reserved

DISTINCT reserved reserved reserved

DO reserved

DOMAIN non-reserved reserved reserved

DOUBLE non-reserved reserved reserved

DROP non-reserved reserved reserved

DYNAMIC reserved

DYNAMIC_FUNCTION non-reserved non-reserved

DYNAMIC_FUNCTION_CODE non-reserved

EACH non-reserved reserved

ELSE reserved reserved reserved

ENCODING non-reserved

ENCRYPTED non-reserved
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END reserved reserved reserved

END-EXEC reserved reserved

EQUALS reserved

ESCAPE non-reserved reserved reserved

EVERY reserved

EXCEPT reserved reserved reserved

EXCEPTION reserved reserved

EXCLUSIVE non-reserved

EXEC reserved reserved

EXECUTE non-reserved reserved reserved

EXISTING non-reserved

EXISTS non-reserved (cannot be
function or type)

non-reserved reserved

EXPLAIN non-reserved

EXTERNAL non-reserved reserved reserved

EXTRACT non-reserved (cannot be
function or type)

non-reserved reserved

FALSE reserved reserved reserved

FETCH non-reserved reserved reserved

FINAL non-reserved

FIRST reserved reserved

FLOAT non-reserved (cannot be
function or type)

reserved reserved

FOR reserved reserved reserved

FORCE non-reserved

FOREIGN reserved reserved reserved

FORTRAN non-reserved non-reserved

FORWARD non-reserved

FOUND reserved reserved

FREE reserved

FREEZE reserved (can be
function)

FROM reserved reserved reserved

FULL reserved (can be
function)

reserved reserved

FUNCTION non-reserved reserved

G non-reserved

GENERAL reserved

GENERATED non-reserved

GET non-reserved reserved reserved

GLOBAL non-reserved reserved reserved

GO reserved reserved

170



Appendix B. SQL Key Words

Key Word PostgreSQL SQL 99 SQL 92

GOTO reserved reserved

GRANT reserved reserved reserved

GRANTED non-reserved

GROUP reserved reserved reserved

GROUPING reserved

HANDLER non-reserved

HAVING reserved reserved reserved

HIERARCHY non-reserved

HOLD non-reserved

HOST reserved

HOUR non-reserved reserved reserved

IDENTITY reserved reserved

IGNORE reserved

ILIKE reserved (can be
function)

IMMEDIATE non-reserved reserved reserved

IMMUTABLE non-reserved

IMPLEMENTATION non-reserved

IMPLICIT non-reserved

IN reserved (can be
function)

reserved reserved

INCREMENT non-reserved

INDEX non-reserved

INDICATOR reserved reserved

INFIX non-reserved

INHERITS non-reserved

INITIALIZE reserved

INITIALLY reserved reserved reserved

INNER reserved (can be
function)

reserved reserved

INOUT non-reserved reserved

INPUT non-reserved reserved reserved

INSENSITIVE non-reserved non-reserved reserved

INSERT non-reserved reserved reserved

INSTANCE non-reserved

INSTANTIABLE non-reserved

INSTEAD non-reserved

INT non-reserved (cannot be
function or type)

reserved reserved

INTEGER non-reserved (cannot be
function or type)

reserved reserved

INTERSECT reserved reserved reserved
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INTERVAL non-reserved (cannot be
function or type)

reserved reserved

INTO reserved reserved reserved

INVOKER non-reserved non-reserved

IS reserved (can be
function)

reserved reserved

ISNULL reserved (can be
function)

ISOLATION non-reserved reserved reserved

ITERATE reserved

JOIN reserved (can be
function)

reserved reserved

K non-reserved

KEY non-reserved reserved reserved

KEY_MEMBER non-reserved

KEY_TYPE non-reserved

LANCOMPILER non-reserved

LANGUAGE non-reserved reserved reserved

LARGE reserved

LAST reserved reserved

LATERAL reserved

LEADING reserved reserved reserved

LEFT reserved (can be
function)

reserved reserved

LENGTH non-reserved non-reserved

LESS reserved

LEVEL non-reserved reserved reserved

LIKE reserved (can be
function)

reserved reserved

LIMIT reserved reserved

LISTEN non-reserved

LOAD non-reserved

LOCAL non-reserved reserved reserved

LOCALTIME reserved reserved

LOCALTIMESTAMP reserved reserved

LOCATION non-reserved

LOCATOR reserved

LOCK non-reserved

LOWER non-reserved reserved

M non-reserved

MAP reserved

MATCH non-reserved reserved reserved

MAX non-reserved reserved
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MAXVALUE non-reserved

MESSAGE_LENGTH non-reserved non-reserved

MESSAGE_OCTET_LENGTH non-reserved non-reserved

MESSAGE_TEXT non-reserved non-reserved

METHOD non-reserved

MIN non-reserved reserved

MINUTE non-reserved reserved reserved

MINVALUE non-reserved

MOD non-reserved

MODE non-reserved

MODIFIES reserved

MODIFY reserved

MODULE reserved reserved

MONTH non-reserved reserved reserved

MORE non-reserved non-reserved

MOVE non-reserved

MUMPS non-reserved non-reserved

NAME non-reserved non-reserved

NAMES non-reserved reserved reserved

NATIONAL non-reserved reserved reserved

NATURAL reserved (can be
function)

reserved reserved

NCHAR non-reserved (cannot be
function or type)

reserved reserved

NCLOB reserved

NEW reserved reserved

NEXT non-reserved reserved reserved

NO non-reserved reserved reserved

NOCREATEDB non-reserved

NOCREATEUSER non-reserved

NONE non-reserved (cannot be
function or type)

reserved

NOT reserved reserved reserved

NOTHING non-reserved

NOTIFY non-reserved

NOTNULL reserved (can be
function)

NULL reserved reserved reserved

NULLABLE non-reserved non-reserved

NULLIF non-reserved (cannot be
function or type)

non-reserved reserved

NUMBER non-reserved non-reserved
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NUMERIC non-reserved (cannot be
function or type)

reserved reserved

OBJECT reserved

OCTET_LENGTH non-reserved reserved

OF non-reserved reserved reserved

OFF reserved reserved

OFFSET reserved

OIDS non-reserved

OLD reserved reserved

ON reserved reserved reserved

ONLY reserved reserved reserved

OPEN reserved reserved

OPERATION reserved

OPERATOR non-reserved

OPTION non-reserved reserved reserved

OPTIONS non-reserved

OR reserved reserved reserved

ORDER reserved reserved reserved

ORDINALITY reserved

OUT non-reserved reserved

OUTER reserved (can be
function)

reserved reserved

OUTPUT reserved reserved

OVERLAPS reserved (can be
function)

non-reserved reserved

OVERLAY non-reserved (cannot be
function or type)

non-reserved

OVERRIDING non-reserved

OWNER non-reserved

PAD reserved reserved

PARAMETER reserved

PARAMETERS reserved

PARAMETER_MODE non-reserved

PARAMETER_NAME non-reserved

PARAMETER_ORDINAL_POSITION non-reserved

PARAMETER_SPECIFIC_CATALOG non-reserved

PARAMETER_SPECIFIC_NAME non-reserved

PARAMETER_SPECIFIC_SCHEMA non-reserved

PARTIAL non-reserved reserved reserved
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PASCAL non-reserved non-reserved

PASSWORD non-reserved

PATH non-reserved reserved

PENDANT non-reserved

PLACING reserved

PLI non-reserved non-reserved

POSITION non-reserved (cannot be
function or type)

non-reserved reserved

POSTFIX reserved

PRECISION non-reserved reserved reserved

PREFIX reserved

PREORDER reserved

PREPARE non-reserved reserved reserved

PRESERVE reserved reserved

PRIMARY reserved reserved reserved

PRIOR non-reserved reserved reserved

PRIVILEGES non-reserved reserved reserved

PROCEDURAL non-reserved

PROCEDURE non-reserved reserved reserved

PUBLIC reserved reserved

READ non-reserved reserved reserved

READS reserved

REAL non-reserved (cannot be
function or type)

reserved reserved

RECHECK non-reserved

RECURSIVE reserved

REF reserved

REFERENCES reserved reserved reserved

REFERENCING reserved

REINDEX non-reserved

RELATIVE non-reserved reserved reserved

RENAME non-reserved

REPEATABLE non-reserved non-reserved

REPLACE non-reserved

RESET non-reserved

RESTRICT non-reserved reserved reserved

RESULT reserved

RETURN reserved

RETURNED_LENGTH non-reserved non-reserved

RETURNED_OCTET_LENGTH non-reserved non-reserved

RETURNED_SQLSTATE non-reserved non-reserved
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RETURNS non-reserved reserved

REVOKE non-reserved reserved reserved

RIGHT reserved (can be
function)

reserved reserved

ROLE reserved

ROLLBACK non-reserved reserved reserved

ROLLUP reserved

ROUTINE reserved

ROUTINE_CATALOG non-reserved

ROUTINE_NAME non-reserved

ROUTINE_SCHEMA non-reserved

ROW non-reserved (cannot be
function or type)

reserved

ROWS reserved reserved

ROW_COUNT non-reserved non-reserved

RULE non-reserved

SAVEPOINT reserved

SCALE non-reserved non-reserved

SCHEMA non-reserved reserved reserved

SCHEMA_NAME non-reserved non-reserved

SCOPE reserved

SCROLL non-reserved reserved reserved

SEARCH reserved

SECOND non-reserved reserved reserved

SECTION reserved reserved

SECURITY non-reserved non-reserved

SELECT reserved reserved reserved

SELF non-reserved

SENSITIVE non-reserved

SEQUENCE non-reserved reserved

SERIALIZABLE non-reserved non-reserved non-reserved

SERVER_NAME non-reserved non-reserved

SESSION non-reserved reserved reserved

SESSION_USER reserved reserved reserved

SET non-reserved reserved reserved

SETOF non-reserved (cannot be
function or type)

SETS reserved

SHARE non-reserved

SHOW non-reserved

SIMILAR reserved (can be
function)

non-reserved
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SIMPLE non-reserved non-reserved

SIZE reserved reserved

SMALLINT non-reserved (cannot be
function or type)

reserved reserved

SOME reserved reserved reserved

SOURCE non-reserved

SPACE reserved reserved

SPECIFIC reserved

SPECIFICTYPE reserved

SPECIFIC_NAME non-reserved

SQL reserved reserved

SQLCODE reserved

SQLERROR reserved

SQLEXCEPTION reserved

SQLSTATE reserved reserved

SQLWARNING reserved

STABLE non-reserved

START non-reserved reserved

STATE reserved

STATEMENT non-reserved reserved

STATIC reserved

STATISTICS non-reserved

STDIN non-reserved

STDOUT non-reserved

STORAGE non-reserved

STRICT non-reserved

STRUCTURE reserved

STYLE non-reserved

SUBCLASS_ORIGIN non-reserved non-reserved

SUBLIST non-reserved

SUBSTRING non-reserved (cannot be
function or type)

non-reserved reserved

SUM non-reserved reserved

SYMMETRIC non-reserved

SYSID non-reserved

SYSTEM non-reserved

SYSTEM_USER reserved reserved

TABLE reserved reserved reserved

TABLE_NAME non-reserved non-reserved

TEMP non-reserved

TEMPLATE non-reserved

TEMPORARY non-reserved reserved reserved
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TERMINATE reserved

THAN reserved

THEN reserved reserved reserved

TIME non-reserved (cannot be
function or type)

reserved reserved

TIMESTAMP non-reserved (cannot be
function or type)

reserved reserved

TIMEZONE_HOUR reserved reserved

TIMEZONE_MINUTE reserved reserved

TO reserved reserved reserved

TOAST non-reserved

TRAILING reserved reserved reserved

TRANSACTION non-reserved reserved reserved

TRANSACTIONS_COMMITTED non-reserved

TRANSACTIONS_ROLLED_BACK non-reserved

TRANSACTION_ACTIVE non-reserved

TRANSFORM non-reserved

TRANSFORMS non-reserved

TRANSLATE non-reserved reserved

TRANSLATION reserved reserved

TREAT non-reserved (cannot be
function or type)

reserved

TRIGGER non-reserved reserved

TRIGGER_CATALOG non-reserved

TRIGGER_NAME non-reserved

TRIGGER_SCHEMA non-reserved

TRIM non-reserved (cannot be
function or type)

non-reserved reserved

TRUE reserved reserved reserved

TRUNCATE non-reserved

TRUSTED non-reserved

TYPE non-reserved non-reserved non-reserved

UNCOMMITTED non-reserved non-reserved

UNDER reserved

UNENCRYPTED non-reserved

UNION reserved reserved reserved

UNIQUE reserved reserved reserved

UNKNOWN non-reserved reserved reserved

UNLISTEN non-reserved

UNNAMED non-reserved non-reserved
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UNNEST reserved

UNTIL non-reserved

UPDATE non-reserved reserved reserved

UPPER non-reserved reserved

USAGE non-reserved reserved reserved

USER reserved reserved reserved

USER_DEFINED_TYPE_CATALOG non-reserved

USER_DEFINED_TYPE_NAME non-reserved

USER_DEFINED_TYPE_SCHEMA non-reserved

USING reserved reserved reserved

VACUUM non-reserved

VALID non-reserved

VALIDATOR non-reserved

VALUE reserved reserved

VALUES non-reserved reserved reserved

VARCHAR non-reserved (cannot be
function or type)

reserved reserved

VARIABLE reserved

VARYING non-reserved reserved reserved

VERBOSE reserved (can be
function)

VERSION non-reserved

VIEW non-reserved reserved reserved

VOLATILE non-reserved

WHEN reserved reserved reserved

WHENEVER reserved reserved

WHERE reserved reserved reserved

WITH non-reserved reserved reserved

WITHOUT non-reserved reserved

WORK non-reserved reserved reserved

WRITE non-reserved reserved reserved

YEAR non-reserved reserved reserved

ZONE non-reserved reserved reserved
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Appendix C. SQL Conformance
This section attempts to outline to what extent PostgreSQL conforms to the SQL standard. Full com-
pliance to the standard or a complete statement about the compliance to the standard is complicated
and not particularly useful, so this section can only give an overview.

The formal name of the SQL standard is ISO/IEC 9075 “Database Language SQL”. A revised version
of the standard is released from time to time; the most recent one appearing in 1999. That version is
refered to as ISO/IEC 9075:1999, or informally as SQL99. The version prior to that was SQL92.
PostgreSQL development tends to aim for conformance with the latest official version of the standard
where such conformance does not contradict traditional features or common sense. At the time of this
writing, ballotting is under way for a new revision of the standard, which, if approved, will eventually
become the conformance target for future PostgreSQL development.

SQL92 defined three feature sets for conformance: Entry, Intermediate, and Full. Most database prod-
ucts claiming SQL standard conformance were conforming at only the Entry level, since the entire
set of features in the Intermediate and Full levels was either too voluminous or in conflict with legacy
behaviors.

SQL99 defines a large set of individual features rather than the ineffectively broad three levels found
in SQL92. A large subset of these features represents the “core” features, which every conforming
SQL implementation must supply. The rest of the features are purely optional. Some optional features
are grouped together to form “packages”, which SQL implementations can claim conformance to,
thus claiming conformance to particular groups of features.

The SQL99 standard is also split into 5 parts: Framework, Foundation, Call Level Interface, Persistent
Stored Modules, and Host Language Bindings. PostgreSQL only covers parts 1, 2, and 5. Part 3 is
similar to the ODBC interface, and part 4 is similar to the PL/pgSQL programming language, but
exact conformance is not specifically intended in either case.

In the following two sections, we provide a list of those features that PostgreSQL supports, followed
by a list of the features defined in SQL99 which are not yet supported in PostgreSQL. Both of these
lists are approximate: There may be minor details that are nonconforming for a feature that is listed
as supported, and large parts of an unsupported feature may in fact be implemented. The main body
of the documentation always contains the most accurate information about what does and does not
work.

Note: Feature codes containing a hyphen are subfeatures. Therefore, if a particular subfeature
is not supported, the main feature is listed as unsupported even if some other subfeatures are
supported.

C.1. Supported Features

Identifier Package Description Comment

B012 Core Embedded C

B021 Direct SQL

E011 Core Numeric data types

E011-01 Core INTEGER and
SMALLINT data types
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Identifier Package Description Comment

E011-02 Core REAL, DOUBLE
PRECISON, and
FLOAT data types

E011-03 Core DECIMAL and
NUMERIC data types

E011-04 Core Arithmetic operators

E011-05 Core Numeric comparison

E011-06 Core Implicit casting among
the numeric data types

E021 Core Character data types

E021-01 Core CHARACTER data
type

E021-02 Core CHARACTER
VARYING data type

E021-03 Core Character literals

E021-04 Core CHARACTER_LENGTH
function

E021-05 Core OCTET_LENGTH
function

E021-06 Core SUBSTRING function

E021-07 Core Character concatenation

E021-08 Core UPPER and LOWER
functions

E021-09 Core TRIM function

E021-10 Core Implicit casting among
the character data types

E021-11 Core POSITION function

E011-12 Core Character comparison

E031 Core Identifiers

E031-01 Core Delimited identifiers

E031-02 Core Lower case identifiers

E031-03 Core Trailing underscore

E051 Core Basic query
specification

E051-01 Core SELECT DISTINCT

E051-02 Core GROUP BY clause

E051-04 Core GROUP BY can
contain columns not in
<select list>

E051-05 Core Select list items can be
renamed

AS is required

E051-06 Core HAVING clause

E051-07 Core Qualified * in select list
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Identifier Package Description Comment

E051-08 Core Correlation names in
the FROM clause

E051-09 Core Rename columns in the
FROM clause

E061 Core Basic predicates and
search conditions

E061-01 Core Comparison predicate

E061-02 Core BETWEEN predicate

E061-03 Core IN predicate with list of
values

E061-04 Core LIKE predicate

E061-05 Core LIKE predicate
ESCAPE clause

E061-06 Core NULL predicate

E061-07 Core Quantified comparison
predicate

E061-08 Core EXISTS predicate

E061-09 Core Subqueries in
comparison predicate

E061-11 Core Subqueries in IN
predicate

E061-12 Core Subqueries in quantified
comparison predicate

E061-13 Core Correlated subqueries

E061-14 Core Search condition

E071 Core Basic query expressions

E071-01 Core UNION DISTINCT
table operator

E071-02 Core UNION ALL table
operator

E071-03 Core EXCEPT DISTINCT
table operator

E071-05 Core Columns combined via
table operators need not
have exactly the same
data type

E071-06 Core Table operators in
subqueries

E081-01 Core SELECT privilege

E081-02 Core DELETE privilege

E081-03 Core INSERT privilege at the
table level

E081-04 Core UPDATE privilege at
the table level
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Identifier Package Description Comment

E081-06 Core REFERENCES
privilege at the table
level

E091 Core Set functions

E091-01 Core AVG

E091-02 Core COUNT

E091-03 Core MAX

E091-04 Core MIN

E091-05 Core SUM

E091-06 Core ALL quantifier

E091-07 Core DISTINCT quantifier

E101 Core Basic data manipulation

E101-01 Core INSERT statement

E101-03 Core Searched UPDATE
statement

E101-04 Core Searched DELETE
statement

E111 Core Single row SELECT
statement

E121-01 Core DECLARE CURSOR

E121-02 Core ORDER BY columns
need not be in select list

E121-03 Core Value expressions in
ORDER BY clause

E121-08 Core CLOSE statement (cursor)

E121-10 Core FETCH statement
implicit NEXT

E131 Core Null value support
(nulls in lieu of values)

E141 Core Basic integrity
constraints

E141-01 Core NOT NULL constraints

E141-02 Core UNIQUE constraints of
NOT NULL columns

E141-03 Core PRIMARY KEY
constraints

E141-04 Core Basic FOREIGN KEY
constraint with the NO
ACTION default for
both referential delete
action and referential
update action

E141-06 Core CHECK constraints

E141-07 Core Column defaults
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Identifier Package Description Comment

E141-08 Core NOT NULL inferred on
PRIMARY KEY

E141-10 Core Names in a foreign key
can be specified in any
order

E151 Core Transaction support

E151-01 Core COMMIT statement

E151-02 Core ROLLBACK statement

E152-01 Core SET TRANSACTION
statement: ISOLATION
LEVEL
SERIALIZABLE
clause

E161 Core SQL comments using
leading double minus

F031 Core Basic schema
manipulation

F031-01 Core CREATE TABLE
statement to create
persistent base tables

F031-02 Core CREATE VIEW
statement

F031-03 Core GRANT statement

F031-04 Core ALTER TABLE
statement: ADD
COLUMN clause

F031-13 Core DROP TABLE
statement: RESTRICT
clause

F031-16 Core DROP VIEW
statement: RESTRICT
clause

F032 CASCADE drop
behavior

F033 ALTER TABLE
statement: DROP
COLUMN clause

F041 Core Basic joined table

F041-01 Core Inner join (but not
necessarily the INNER
keyword)

F041-02 Core INNER keyword

F041-03 Core LEFT OUTER JOIN

F041-04 Core RIGHT OUTER JOIN

F041-05 Core Outer joins can be
nested
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Identifier Package Description Comment

F041-07 Core The inner table in a left
or right outer join can
also be used in an inner
join

F041-08 Core All comparison
operators are supported
(rather than just =)

F051 Core Basic date and time

F051-01 Core DATE data type
(including support of
DATE literal)

F051-02 Core TIME data type
(including support of
TIME literal) with
fractional seconds
precision of at least 0

F051-03 Core TIMESTAMP data type
(including support of
TIMESTAMP literal)
with fractional seconds
precision of at least 0
and 6

F051-04 Core Comparison predicate
on DATE, TIME, and
TIMESTAMP data
types

F051-05 Core Explicit CAST between
datetime types and
character types

F051-06 Core CURRENT_DATE

F051-07 Core LOCALTIME

F051-08 Core LOCALTIMESTAMP

F052 Enhanced datetime
facilities

Intervals and datetime
arithmetic

F081 Core UNION and EXCEPT
in views

F111-02 READ COMMITTED
isolation level

F131 Core Grouped operations

F131-01 Core WHERE, GROUP BY,
and HAVING clauses
supported in queries
with grouped views

F131-02 Core Multiple tables
supported in queries
with grouped views
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Identifier Package Description Comment

F131-03 Core Set functions supported
in queries with grouped
views

F131-04 Core Subqueries with
GROUP BY and
HAVING clauses and
grouped views

F131-05 Core Single row SELECT
with GROUP BY and
HAVING clauses and
grouped views

F171 Multiple schemas per
user

F191 Enhanced integrity
management

Referential delete
actions

F201 Core CAST function

F221 Core Explicit defaults

F222 INSERT statement:
DEFAULT VALUES
clause

F251 Domain support

F261 Core CASE expression

F261-01 Core Simple CASE

F261-02 Core Searched CASE

F261-03 Core NULLIF

F261-04 Core COALESCE

F271 Compound character
literals

F281 LIKE enhancements

F302 OLAP facilities INTERSECT table
operator

F302-01 OLAP facilities INTERSECT
DISTINCT table
operator

F302-02 OLAP facilities INTERSECT ALL table
operator

F304 OLAP facilities EXCEPT ALL table
operator

F311 Core Schema definition
statement

F311-01 Core CREATE SCHEMA

F311-02 Core CREATE TABLE for
persistent base tables

F311-03 Core CREATE VIEW

F311-05 Core GRANT statement
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Identifier Package Description Comment

F321 User authorization

F361 Subprogram support

F381 Extended schema
manipulation

F381-01 ALTER TABLE
statement: ALTER
COLUMN clause

F381-02 ALTER TABLE
statement: ADD
CONSTRAINT clause

F381-03 ALTER TABLE
statement: DROP
CONSTRAINT clause

F391 Long identifiers

F401 OLAP facilities Extended joined table

F401-01 OLAP facilities NATURAL JOIN

F401-02 OLAP facilities FULL OUTER JOIN

F401-03 OLAP facilities UNION JOIN

F401-04 OLAP facilities CROSS JOIN

F411 Enhanced datetime
facilities

Time zone specification

F421 National character

F431-01 FETCH with explicit
NEXT

F431-04 FETCH PRIOR

F431-06 FETCH RELATIVE

F441 Extended set function
support

F471 Core Scalar subquery values

F481 Core Expanded NULL
predicate

F491 Enhanced integrity
management

Constraint management

F511 BIT data type

F531 Temporary tables

F555 Enhanced datetime
facilities

Enhanced seconds
precision

F561 Full value expressions

F571 Truth value tests

F591 OLAP facilities Derived tables

F611 Indicator data types

F651 Catalog name qualifiers

F701 Enhanced integrity
management

Referential update
actions
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Identifier Package Description Comment

F761 Session management

F791 Insensitive cursors

F801 Full set function

S071 Enhanced object
support

SQL paths in function
and type name
resolution

S111 Enhanced object
support

ONLY in query
expressions

S211 Enhanced object
support, SQL/MM
support

User-defined cast
functions

T031 BOOLEAN data type

T141 SIMILAR predicate

T151 DISTINCT predicate

T191 Enhanced integrity
management

Referential action
RESTRICT

T201 Enhanced integrity
management

Comparable data types
for referential
constraints

T211-01 Enhanced integrity
management

Triggers activated on
UPDATE, INSERT, or
DELETE of one base
table

T211-02 Enhanced integrity
management

BEFORE triggers

T211-03 Enhanced integrity
management

AFTER triggers

T211-04 Enhanced integrity
management

FOR EACH ROW
triggers

T211-07 Enhanced integrity
management

TRIGGER privilege

T231 SENSITIVE cursors

T241 START
TRANSACTION
statement

T312 OVERLAY function

T321-01 Core User-defined functions
with no overloading

T321-03 Core Function invocation

T322 PSM, SQL/MM supportOverloading of
SQL-invoked functions
and procedures

T323 Explicit security for
external routines
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Identifier Package Description Comment

T351 Bracketed SQL
comments (/*...*/
comments)

T441 ABS and MOD
functions

T501 Enhanced EXISTS
predicate

T551 Optional key words for
default syntax

T581 Regular expression
substring function

T591 UNIQUE constraints of
possibly null columns

C.2. Unsupported Features
The following features defined in SQL99 are not implemented in the current release of PostgreSQL.
In a few cases, equivalent functionality is available.

Identifier Package Description Comment

B011 Core Embedded Ada

B013 Core Embedded COBOL

B014 Core Embedded Fortran

B015 Core Embedded MUMPS

B016 Core Embedded Pascal

B017 Core Embedded PL/I

B031 Basic dynamic SQL

B032 Extended dynamic SQL

B032-1 <describe input>
statement

B041 Extensions to embedded
SQL exception
declarations

B051 Enhanced execution
rights

E081 Core Basic Privileges

E081-05 Core UPDATE privilege at
the column level

E081-07 Core REFERENCES
privilege at the column
level
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Identifier Package Description Comment

E081-08 Core WITH GRANT
OPTION

E121 Core Basic cursor support

E121-04 Core OPEN statement (cursor)

E121-06 Core Positioned UPDATE
statement

(cursor)

E121-07 Core Positioned DELETE
statement

(cursor)

E121-17 Core WITH HOLD cursors Cursor to stay open
across transactions

E152 Core Basic SET
TRANSACTION
statement

E152-02 Core SET TRANSACTION
statement: READ
ONLY and READ
WRITE clauses

Syntax accepted; READ
ONLY not supported

E153 Core Updatable queries with
subqueries

E171 Core SQLSTATE support

F181 Multiple module
support

E182 Core Module language

F021 Core Basic information
schema

F021-01 Core COLUMNS view

F021-02 Core TABLES view

F021-03 Core VIEWS view

F021-04 Core TABLE_CONSTRAINTS
view

F021-05 Core REFERENTIAL_CONSTRAINTS
view

F021-06 Core CHECK_CONSTRAINTS
view

F031-19 Core REVOKE statement:
RESTRICT clause

F034 Extended REVOKE
statement

F034-01 REVOKE statement
performed by other than
the owner of a schema
object

F034-02 REVOKE statement:
GRANT OPTION FOR
clause
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Identifier Package Description Comment

F034-03 REVOKE statement to
revoke a privilege that
the grantee has WITH
GRANT OPTION

F111 Isolation levels other
than SERIALIZABLE

F111-01 READ
UNCOMMITTED
isolation level

F111-03 REPEATABLE READ
isolation level

F121 Basic diagnostics
management

F121-01 GET DIAGNOSTICS
statement

F121-02 SET TRANSACTION
statement:
DIAGNOSTICS SIZE
clause

F231 Privilege Tables

F231-01 TABLE_PRIVILEGES
view

F231-02 COLUMN_PRIVILEGES
view

F231-03 USAGE_PRIVILEGES
view

F291 UNIQUE predicate

F301 CORRESPONDING in
query expressions

F311-04 Core CREATE VIEW: WITH
CHECK OPTION

F341 Usage tables

F431 Read-only scrollable
cursors

F431-02 FETCH FIRST

F431-03 FETCH LAST

F431-05 FETCH ABSOLUTE

F451 Character set definition

F461 Named character sets

F501 Core Features and
conformance views

F501-01 Core SQL_FEATURES view

F501-02 Core SQL_SIZING view

F501-03 Core SQL_LANGUAGES
view
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Identifier Package Description Comment

F502 Enhanced
documentation tables

F502-01 SQL_SIZING_PROFILES
view

F502-02 SQL_IMPLEMENTATION_INFO
view

F502-03 SQL_PACKAGES view

F521 Enhanced integrity
management

Assertions

F641 OLAP facilities Row and table
constructors

F661 Simple tables

F671 Enhanced integrity
management

Subqueries in CHECK intentionally omitted

F691 Collation and
translation

F711 ALTER domain

F721 Deferrable constraints foreign keys only

F731 INSERT column
privileges

F741 Referential MATCH
types

no partial match yet

F751 View CHECK
enhancements

F771 Connection
management

F781 Self-referencing
operations

F811 Extended flagging

F812 Core Basic flagging

F813 Extended flagging for
"Core SQL Flagging"
and "Catalog Lookup"
only

F821 Local table references

F831 Full cursor update

F831-01 Updatable scrollable
cursors

F831-02 Updatable ordered
cursors

S011 Core Distinct data types

S011-01 Core USER_DEFINED_TYPES
view
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Identifier Package Description Comment

S023 Basic object support,
SQL/MM support

Basic structured types

S024, SQL/MM supportEnhanced object
support

Enhanced structured
types

S041 Basic object support Basic reference types

S043 Enhanced object
support

Enhanced reference
types

S051 Basic object support Create table of type

S081 Enhanced object
support

Subtables

S091 SQL/MM support Basic array support PostgreSQL arrays are
different

S091-01 SQL/MM support Arrays of built-in data
types

S091-02 SQL/MM support Arrays of distinct types

S091-03 SQL/MM support Array expressions

S092 SQL/MM support Arrays of user-defined
types

S094 Arrays of reference
types

S151 Basic object support Type predicate IS OF

S161 Enhanced object
support

Subtype treatment TREAT(expr AS type)

S201 SQL routines on arrays

S201-01 Array parameters

S201-02 Array as result type of
functions

S231 Enhanced object
support

Structured type locators

S232 Array locators

S241 Enhanced object
support

Transform functions

S251 User-defined orderingsCREATE ORDERING
FOR

S261 Specific type method

T011 Timestamp in
Information Schema

T041 Basic object support Basic LOB data type
support

T041-01 Basic object support BLOB data type

T041-02 Basic object support CLOB data type
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T041-03 Basic object support POSITION, LENGTH,
LOWER, TRIM,
UPPER, and
SUBSTRING functions
for LOB data types

T041-04 Basic object support Concatenation of LOB
data types

T041-05 Basic object support LOB locator:
non-holdable

T042 Extended LOB data
type support

T051 Row types

T111 Updatable joins, unions,
and columns

T121 WITH (excluding
RECURSIVE) in query
expression

T131 Recursive query

T171 LIKE clause in table
definition

CREATE TABLE T1
(LIKE T2)

T211 Enhanced integrity
management, Active
database

Basic trigger capability

T211-05 Enhanced integrity
management

Ability to specify a
search condition that
must be true before the
trigger is invoked

T211-06 Enhanced integrity
management

Support for run-time
rules for the interaction
of triggers and
constraints

T211-08 Enhanced integrity
management

Multiple triggers for the
same the event are
executed in the order in
which they were created

T212 Enhanced integrity
management

Enhanced trigger
capability

T251 SET TRANSACTION
statement: LOCAL
option

T261 Chained transactions

T271 Savepoints

T281 SELECT privilege with
column granularity

T301 Functional
Dependencies
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T321 Core Basic SQL-invoked
routines

T321-02 Core User-defined stored
procedures with no
overloading

T321-04 Core CALL statement

T321-05 Core RETURN statement

T321-06 Core ROUTINES view

T321-07 Core PARAMETERS view

T331 Basic roles

T332 Extended roles

T401 INSERT into a cursor

T411 UPDATE statement:
SET ROW option

T431 OLAP facilities CUBE and ROLLUP
operations

T461 Symmetric BETWEEN
predicate

T471 Result sets return value

T491 LATERAL derived
table

T511 Transaction counts

T541 Updatable table
references

T561 Holdable locators

T571 Array-returning external
SQL-invoked functions

T601 Local cursor references
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aggregate, ?
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(See label)
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all, ?

and
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auto-increment

(See serial)
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B-tree

(See indexes)
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bigint, 49
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binary strings
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bit strings

constants,3

data type,68

BLOB

(See large object)
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data type,63

operators

(See operators, logical)
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SQL commands, ?
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character set encoding, ?
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client authentication, ?

cluster, ?

column, ?

columns

system columns, ?

col_description,115

comments

in SQL,6

comparison

operators,76

concurrency, ?

conditionals, ?

configuration

server, ?

configure, ?

connection loss, ?

constants,2

COPY, ?

with libpq, ?

count, ?

CREATE TABLE, ?

createdb, ?

crypt, ?

cstring,70

currval, ?

198



Index

D
data area

(See database cluster)

data types,48, ?

constants, ?

extending, ?

numeric,49

type casts, ?

database, ?

creating, ?

database cluster, ?

date

constants, ?

current, ?

data type, ?

output format, ?

(See Also Formatting)

date style, ?

deadlock

timeout, ?

decimal

(See numeric)

DELETE, ?

Digital UNIX

(See Tru64 UNIX)

dirty read, ?

disk space, ?

disk usage, ?

DISTINCT, ?,44

double precision,49

DROP TABLE, ?

duplicate, ?

dynamic loading, ?

dynamic_library_path, ?, ?

E
elog, ?

PL/Perl, ?

embedded SQL

in C, ?

environment variables, ?

error message, ?

escaping binary strings, ?

escaping strings, ?

except,45

exists, ?

extending SQL, ?

types, ?

F

false,63

FETCH

embedded SQL, ?

files, ?

flex, ?

float4

(See real)

float8

(See double precision)

floating point,49

foreign key, ?

formatting,94

FreeBSD, ?, ?, ?

fsync, ?

function, ?, ?

internal, ?

SQL, ?

functions,76

G

genetic query optimization, ?

GEQO

(See genetic query optimization)

get_bit, ?

get_byte, ?

group,41

GROUP BY, ?

H

hash

(See indexes)

has_database_privilege,115

has_function_privilege,115

has_language_privilege,115

has_schema_privilege,115

has_table_privilege,115

HAVING, ?

hierarchical database, ?

HP-UX, ?, ?
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I
ident, ?

identifiers,1

in, ?

index scan, ?

indexes,134

B-tree, ?

hash, ?

multicolumn,135

on functions,136

partial,138

R-tree, ?

unique,136

inet (data type), ?

inheritance, ?, ?

initlocation, ?

input function, ?

INSERT, ?

installation, ?

on Windows, ?, ?

int2

(See smallint)

int4

(See integer)

int8

(See bigint)

integer,49

internal,70

intersection,45

interval, ?

IRIX, ?

IS NULL, ?

isolation levels, ?

read committed, ?

read serializable, ?

J
join, ?

outer, ?

self, ?

joins,36

cross, ?

left, 49

natural, ?

outer, ?

K
Kerberos, ?

key words

list of, 165

syntax,1

L
label

column,44

table,39

language_handler,70

large object, ?

LC_COLLATE, ?

ldconfig, ?

length

binary strings

(See binary strings, length)

character strings

(See character strings, length)

libperl, ?

libpgtcl, ?

libpq, ?

libpq-fe.h, ?

libpq-int.h, ?, ?

libpython, ?

like, ?

limit, 46

line, ?

Linux, ?, ?, ?

locale, ?, ?

locking, ?

log files, ?

M
MAC address

(See macaddr)

macaddr (data type), ?

MacOS X, ?, ?

make, ?

MANPATH, ?

(See Also man pages)

max, ?

MD5, ?

min, ?

multibyte, ?
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N

names

qualified, ?

unqualified, ?

namespaces, ?, ?

NetBSD, ?, ?, ?

network

addresses,67

nextval, ?

nonblocking connection, ?, ?

nonrepeatable read, ?

not

operator, ?

not in, ?

notice processor, ?

NOTIFY, ?, ?

nullif, ?

numeric

constants, ?

numeric (data type),49

O

object identifier

data type,69

object-oriented database, ?

obj_description,115

offset

with query results,46

OID, ?,69

opaque,70

OpenBSD, ?, ?, ?

OpenSSL, ?

(See Also SSL)

operators,76

logical,76

precedence,6

syntax,5

or

operator, ?

Oracle, ?, ?

ORDER BY, ?, ?

output function, ?

overlay, ?

overloading, ?

P
password, ?

.pgpass, ?

PATH, ?

path (data type), ?

Perl, ?

PGDATA, ?

PGDATABASE, ?

PGHOST, ?

PGPASSWORD, ?

PGPORT, ?

pgtcl

closing, ?

connecting, ?, ?, ?, ?, ?, ?

connection loss, ?

creating, ?

delete, ?

export, ?

import, ?

notify, ?

opening, ?

positioning, ?, ?

query, ?

reading, ?

writing, ?

PGUSER, ?

pg_config, ?, ?

pg_conndefaults, ?

pg_connect, ?, ?, ?, ?, ?

pg_ctl, ?

pg_dumpall, ?

pg_execute, ?

pg_function_is_visible,115

pg_get_constraintdef,115

pg_get_indexdef,115

pg_get_ruledef,115

pg_get_userbyid,115

pg_get_viewdef,115

pg_hba.conf, ?

pg_ident.conf, ?

pg_lo_close, ?

pg_lo_creat, ?

pg_lo_export, ?

pg_lo_import, ?

pg_lo_lseek, ?

pg_lo_open, ?

pg_lo_read, ?

pg_lo_tell, ?

pg_lo_unlink, ?

pg_lo_write, ?

pg_opclass_is_visible,115
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pg_operator_is_visible,115

pg_table_is_visible,115

pg_type_is_visible,115

phantom read, ?

PIC, ?

PL/Perl, ?

PL/pgSQL, ?

PL/Python, ?

PL/SQL, ?

PL/Tcl, ?

point, ?

polygon, ?

port, ?

postgres user, ?

postmaster, ?, ?

ps

to monitor activity, ?

psql, ?

Python, ?

Q
qualified names, ?

query, ?

quotes

and identifiers, ?

escaping, ?

R
R-tree

(See indexes)

range table, ?

readline, ?

real,49

record,70

referential integrity, ?

regclass,69

regoper,69

regoperator,69

regproc,69

regprocedure,69

regression test, ?

regtype,69

regular expressions,91, 92

(See Also pattern matching)

reindex, ?

relation, ?

relational database, ?

row, ?

rules, ?

and views, ?

S
schema

current,115

schemas, ?

current schema, ?

SCO OpenServer, ?

search path, ?

changing at runtime, ?

current,115

search_path, ?

SELECT, ?

select list, ?

semaphores, ?

sequences, ?

and serial type, ?

sequential scan, ?

serial,52

serial4,52

serial8,52

SETOF, ?

(See Also function)

setting

current,115

set,115

setval, ?

set_bit, ?

set_byte, ?

shared libraries, ?

shared memory, ?

SHMMAX, ?

SIGHUP, ?, ?, ?

similar to, ?

sliced bread

(See TOAST)

smallint,49

Solaris, ?, ?, ?

some, ?

sorting

query results,45

SPI

allocating space, ?, ?, ?, ?, ?, ?

connecting, ?, ?, ?, ?

copying tuple descriptors, ?

copying tuples, ?, ?

cursors, ?, ?, ?, ?, ?

decoding tuples, ?, ?, ?, ?, ?, ?, ?

disconnecting, ?
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executing, ?

modifying tuples, ?

SPI_connect, ?

SPI_copytuple, ?

SPI_copytupledesc, ?

SPI_copytupleintoslot, ?

SPI_cursor_close, ?

SPI_cursor_fetch, ?

SPI_cursor_find, ?

SPI_cursor_move, ?

SPI_cursor_open, ?

SPI_exec, ?

SPI_execp, ?

SPI_finish, ?

SPI_fname, ?

SPI_fnumber, ?

SPI_freeplan, ?

SPI_freetuple, ?

SPI_freetuptable, ?

SPI_getbinval, ?

SPI_getrelname, ?

SPI_gettype, ?

SPI_gettypeid, ?

SPI_getvalue, ?

spi_lastoid, ?

SPI_modifytuple, ?

SPI_palloc, ?

SPI_pfree, ?

SPI_prepare, ?

SPI_repalloc, ?

SPI_saveplan, ?

ssh, ?

SSL, ?, ?, ?

standard deviation, ?

statistics, ?

strings

(See character strings)

subqueries,40, ?

subquery,2

substring, ?, ?, ?

sum, ?

superuser, ?

syntax

SQL,1

T
table, ?

Tcl, ?, ?

TCP/IP, ?

text

(See character strings)

threads

with libpq, ?

tid, 69

time

constants, ?

current, ?

data type, ?

output format, ?

(See Also Formatting)

time with time zone

data type, ?

time without time zone

time, ?

time zone, ?

time zones,62, ?

timeout

authentication, ?

deadlock, ?

timestamp

data type, ?

timestamp with time zone

data type, ?

timestamp without time zone

data type, ?

timezone

conversion, ?

TOAST, ?

and user-defined types, ?

transaction ID

wraparound, ?

transaction isolation level, ?

transactions, ?

trigger,70

triggers

in PL/Tcl, ?

Tru64 UNIX, ?

true,63

types

(See data types)

U
union,45

UnixWare, ?, ?

unqualified names, ?

UPDATE, ?

upgrading, ?, ?

user

current,115

203



Index

V
vacuum, ?

variance, ?

version, ?,115

view, ?

views

updating, ?

void, 70

W
where,40

X
xid, 69

Y
yacc, ?

204


	PostgreSQL 7.3.2 User's Guide
	Table of Contents
	List of Tables
	List of Examples
	Preface
	1. What is PostgreSQL?
	2. A Short History of PostgreSQL
	2.1. The Berkeley POSTGRES Project
	2.2. Postgres95
	2.3. PostgreSQL

	3. What's In This Book
	4. Overview of Documentation Resources
	5. Terminology and Notation
	6. Bug Reporting Guidelines
	6.1. Identifying Bugs
	6.2. What to report
	6.3. Where to report bugs


	Chapter 1. SQL Syntax
	1.1. Lexical Structure
	1.1.1. Identifiers and Key Words
	1.1.2. Constants
	1.1.2.1. String Constants
	1.1.2.2. BitString Constants
	1.1.2.3. Numeric Constants
	1.1.2.4. Constants of Other Types
	1.1.2.5. Array constants

	1.1.3. Operators
	1.1.4. Special Characters
	1.1.5. Comments
	1.1.6. Lexical Precedence

	1.2. Value Expressions
	1.2.1. Column References
	1.2.2. Positional Parameters
	1.2.3. Operator Invocations
	1.2.4. Function Calls
	1.2.5. Aggregate Expressions
	1.2.6. Type Casts
	1.2.7. Scalar Subqueries
	1.2.8. Expression Evaluation


	Chapter 2. Data Definition
	2.1. Table Basics
	2.2. System Columns
	2.3. Default Values
	2.4. Constraints
	2.4.1. Check Constraints
	2.4.2. NotNull Constraints
	2.4.3. Unique Constraints
	2.4.4. Primary Keys
	2.4.5. Foreign Keys

	2.5. Inheritance
	2.6. Modifying Tables
	2.6.1. Adding a Column
	2.6.2. Removing a Column
	2.6.3. Adding a Constraint
	2.6.4. Removing a Constraint
	2.6.5. Changing the Default
	2.6.6. Renaming a Column
	2.6.7. Renaming a Table

	2.7. Privileges
	2.8. Schemas
	2.8.1. Creating a Schema
	2.8.2. The Public Schema
	2.8.3. The Schema Search Path
	2.8.4. Schemas and Privileges
	2.8.5. The System Catalog Schema
	2.8.6. Usage Patterns
	2.8.7. Portability

	2.9. Other Database Objects
	2.10. Dependency Tracking

	Chapter 3. Data Manipulation
	3.1. Inserting Data
	3.2. Updating Data
	3.3. Deleting Data

	Chapter 4. Queries
	4.1. Overview
	4.2. Table Expressions
	4.2.1. The FROM Clause
	4.2.1.1. Joined Tables
	Join Types
	4.2.1.2. Table and Column Aliases
	4.2.1.3. Subqueries

	4.2.2. The WHERE Clause
	4.2.3. The GROUP BY and HAVING Clauses

	4.3. Select Lists
	4.3.1. SelectList Items
	4.3.2. Column Labels
	4.3.3. DISTINCT

	4.4. Combining Queries
	4.5. Sorting Rows
	4.6. LIMIT and OFFSET

	Chapter 5. Data Types
	5.1. Numeric Types
	5.1.1. The Integer Types
	5.1.2. Arbitrary Precision Numbers
	5.1.3. FloatingPoint Types
	5.1.4. The Serial Types

	5.2. Monetary Type
	5.3. Character Types
	5.4. Binary Strings
	5.5. Date/Time Types
	5.5.1. Date/Time Input
	5.5.1.1. Dates
	5.5.1.2. Times
	5.5.1.3. Time stamps
	5.5.1.4. Intervals
	5.5.1.5. Special values

	5.5.2. Date/Time Output
	5.5.3. Time Zones
	5.5.4. Internals

	5.6. Boolean Type
	5.7. Geometric Types
	5.7.1. Point
	5.7.2. Line Segment
	5.7.3. Box
	5.7.4. Path
	5.7.5. Polygon
	5.7.6. Circle

	5.8. Network Address Data Types
	5.8.1. inet
	5.8.2. cidr
	5.8.3. inet vs cidr
	5.8.4. macaddr

	5.9. Bit String Types
	5.10. Object Identifier Types
	5.11. PseudoTypes
	5.12. Arrays

	Chapter 6. Functions and Operators
	6.1. Logical Operators
	6.2. Comparison Operators
	6.3. Mathematical Functions and Operators
	6.4. String Functions and Operators
	6.5. Binary String Functions and Operators
	6.6. Pattern Matching
	6.6.1. LIKE
	6.6.2. SIMILAR TO and SQL99 Regular Expressions
	6.6.3. POSIX Regular Expressions

	6.7. Data Type Formatting Functions
	6.8. Date/Time Functions and Operators
	6.8.1. EXTRACT, datepart
	6.8.2. datetrunc
	6.8.3. AT TIME ZONE
	6.8.4. Current Date/Time

	6.9. Geometric Functions and Operators
	6.10. Network Address Type Functions
	6.11. SequenceManipulation Functions
	6.12. Conditional Expressions
	6.12.1. CASE
	6.12.2. COALESCE
	6.12.3. NULLIF

	6.13. Miscellaneous Functions
	6.14. Aggregate Functions
	6.15. Subquery Expressions
	6.15.1. EXISTS
	6.15.2. IN (scalar form)
	6.15.3. IN (subquery form)
	6.15.4. NOT IN (scalar form)
	6.15.5. NOT IN (subquery form)
	6.15.6. ANY/SOME
	6.15.7. ALL
	6.15.8. Rowwise Comparison


	Chapter 7. Type Conversion
	7.1. Overview
	7.2. Operators
	7.3. Functions
	7.4. Query Targets
	7.5. UNION and CASE Constructs

	Chapter 8. Indexes
	8.1. Introduction
	8.2. Index Types
	8.3. Multicolumn Indexes
	8.4. Unique Indexes
	8.5. Functional Indexes
	8.6. Operator Classes
	8.7. Partial Indexes
	8.8. Examining Index Usage

	Chapter 9. Concurrency Control
	9.1. Introduction
	9.2. Transaction Isolation
	9.2.1. Read Committed Isolation Level
	9.2.2. Serializable Isolation Level

	9.3. Explicit Locking
	9.3.1. TableLevel Locks
	Tablelevel lock modes

	9.3.2. RowLevel Locks
	9.3.3. Deadlocks

	9.4. Data Consistency Checks at the Application Level
	9.5. Locking and Indexes

	Chapter 10. Performance Tips
	10.1. Using EXPLAIN
	10.2. Statistics Used by the Planner
	10.3. Controlling the Planner with Explicit JOIN Clauses
	10.4. Populating a Database
	10.4.1. Disable Autocommit
	10.4.2. Use COPY FROM
	10.4.3. Remove Indexes
	10.4.4. Run ANALYZE Afterwards


	Appendix A. Date/Time Support
	A.1. Date/Time Input Interpretation
	A.2. Date/Time Key Words
	A.3. History of Units

	Appendix B. SQL Key Words
	Appendix C. SQL Conformance
	C.1. Supported Features
	C.2. Unsupported Features

	Bibliography
	SQL Reference Books
	PostgreSQLSpecific Documentation
	Proceedings and Articles

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y


