PostgreSQL 7.3.2 User’s Guide

The PostgreSQL Global Development Group

PostgreSQL 7.3.2 User’s Guide
by The PostgreSQL Global Development Group
Copyright © 1996-2002 by The PostgreSQL Global Development Group

Legal Notice

PostgreSQL is Copyright © 1996-2002 by the PostgreSQL Global Development Group and is distributed under the terms of the license of the
University of California below.

Postgres95 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written
agreement is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in all
copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE

AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PRO-
VIDED HEREUNDER IS ON AN “AS-IS” BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents

L (=] = 1o TSR i
1. What iS POSIOrES QL 2....ceiieeeecectesesteseeeeee st ne e s aesaestesee e enennennenes i
2. A Short History of POStOreSQL.......ccviriiiirierie s i

2.1. The Berkeley POSTGRES PrOjJECL........covoiieirieireeerieteseeeseeseeesee e ii
2.2, POSIGIESO5.....e ettt r e n e ii
2.3, POSIGIES QL. ettt e iii
3. What's IN ThiS BOOK......c.cciiiiirieieieeee sttt sttt e s sne e e neeneenenneees iii
4. Overview of Documentation RESOUICES......ccceveererirerieieeee e s iv
5. Terminology and NOTALION..........ccoiiriirieeree et e sb et v
6. BUg RePOrtiNg GUIEIINES......c.ccuiiieiirieiriei ettt v
6.1. 1deNtifYiNG BUGS......c.crueuirieiiieiiieeiiieesi et Vi
6.2. WRAL L0 FEPOLL. ...ttt Vi
6.3. WhHETe 1O rePOIT DUGS......ecveeeriiitiisteiieeree ettt Viii

1@ IS o] = b TP URT PSRRI 1

1.1, LEXICAl STTUCTUIE...c.eiiiieieeeeet ettt b ettt b e bt e b e et ebesbe e neen 1
1.1.1. Identifiers and KeY WOIS.........cccoiiiiiriiiieereses et 1
112, CONSLANTS....cueiiiiteeee ettt b et e b e sbesae e e sb e e e e sne s e e seesreenne e 2

1.1.2.1. StriNg CONSIANLS......ccceeieieceee e nas 2
1.1.2.2. Bit-String CONSLANLS.......ccceceeiieicie et 3
1.1.2.3. NUMETIC CONSTANTS.....ciuiitiiiieieeetinie et s 3
1.1.2.4. Constants of Other TYPES......cccccveveveiceere e 4
1.1.2.5. Array CONSEANTS.cceiiieiiiiieesee sttt be e s 4
G R O o 1= - o] £ PR UPRPRPRRN 5
1.1.4. Special CharaClerS.......cccoviieieieeeees s e e s r e e ns 5
I T O 1 0 1T o £ PP SP 6
1.1.6. LeXiCal PreCEUBNCE.ccv ettt st 6

2 o [N T o d o] £ TS (o] o S 7
1.2.1. ColuMN REFEIENCESc.e ettt 8
1.2.2. POSItiONal PArameters.......cccoeoieirerierereeeesese e et seeeese e e s seneens 8
1.2.3. Operator INVOCALIONS.cccoeirieirieie ettt sttt st s 9
S o 1 o o I O 1| 9
1.2.5. Aggregate EXPreSSIONS. ..ottt 9
1.2.6. TYPE CASIS.....eiiieiiceeert ettt e 10
1.2.7. SCAlar SUDQUETIES.......ceiuiirieiereete ettt 10
1.2.8. EXPression EVAlUALION. ..o 11

A B - = W B = {1 011 (o] o PSSR 12
P I = o] (= 2 7= T o USRS 12
2.2, SYSLEM COIUMIMSttt et e et sb et e e e se e e eneenesaeseeas 13
2.3. DEFAUIL VAIUES......ceeeeeee ettt b b st ae s se 14
P o] 11 L= 1 | £ U UTRTSTURRRRIN 14

2.4.1. CheCK CONSIIAINTS.ciiiereeeeirecrie sttt s st b e e 15
2.4.2. NOt-NUIl CONSEIAINTS.....oeitieeiiiriere et e 16
2.4.3. UNIQUE CONSLIAINES......ccuiiiiieieiiriere sttt s e sr e e 17
A N e] 4 F= LV (=) V< T 18
A T o 1 (=T (o | TN 1= VA= 18

2.5, INNEIILANCE. ...ttt bbb ettt et s b b bt eene e b e e 21

WA ST Y, oo 11 YT o T = o] =S 23
2.6.1. AAdING @ COIUMIL......cciiiiee ettt nne s 23

2.6.2. RemMOVING @ COIUMIL....coiiiiiiiiiirieeriee ettt eb e e eb e 23

2.6.3. AddiNG @ CONSLIAINL.......cciiiriierieeree et eb e sreea 23
2.6.4. Removing @ CONSIIAIML.........cceiiieirieerieereete ettt eb e e 24
2.6.5. Changing the Defaull...........ccoiiiiieree e 24
2.6.6. Renaming @ COIUMM......c.cciiiiiirieirieerete ettt 24
2.6.7. ReNaming @ TabIB ..o 24

P B o 1 Y/1 =T o T SRS 25
2.8. SCREIMAS. ...t et b b e e et et ae b beseese et e neeaesaesaen 25
2.8.1. Creating @ SCREMIA.........oii et e 26
2.8.2. The PUDIIC SCheMIA........ciiiiiie e e 27
2.8.3. The Schema Search Path...........cocoiiiiiii e 27
2.8.4. Schemas and PrivilEges. ..o e 28
2.8.5. The System Catalog SChema..........ccccceeviiieie i 28
2.8.6. USAQE PALLBIMIS.....cceiiiiie ittt sttt saesne b saaesreennee e 29
A T A o 1 7= o] 1 2 29

2.9. Other Database ODJECLS.......cviveiecieeee e sae e 30
2.10. DependenCy TraCKiNG.......cciceeverereerieseereesteeseesteseeae e eseassesseeseesseeaessessaessesseesessesnes 30
T B - = 1Y/ F= U T o101 = 11 o] o T 32
T I TS o = = SRR 32
1 T2 U1 oo F-] o N 5= - VSRR 33
TG T B 1= 1= 1 g o [0 | = SR 33
A, QUETIES....eeiteeteecte ettt ettt et et e st e et e beeaeeetesbeeaeesbesbeesbeebeeaeeabeeaeebesheeabebeebeenbeebeensesheeneenbesteensenteeans 35
I @ N =T T ST 35
4.2, TADIE EXPrESSIONS......cuiiiitirieterieteseeteeste sttt sttt sttt b ettt be et e b et e ebe e b 35
4.2.1. The FROM ClAUSE........eiirieeeieieestes et see et ste e e se s ste e seeseenessessesanseens 36
I TN [11 =T I = o] = PR 36

4.2.1.2. Table and Column AlIASES........cooereererieere e 39

4.2.1.3. SUDQUETIES ... ettt 40

4.2.2. The WHERE ClaUSE......ccciieeereie sttt sttt st ssesae e 40
4.2.3. The GROUP BY and HAVING ClaUSES.......ccccriririereeieeeeeseesie e seeesesesie e 41

G TS T =T ot I PP RSTSRN 43
4.3.1. SElECt-LISt ITEMS.....oitiii et sen 44
4.3.2. COIUMN LADEIS. ...ttt 44
T I 115 I N TS 44

4.4, ComMDINING QUETIESeitiie ittt e a bbb b se e seebesae e 45
TS Yo 1] o L0 L= 45
4.6. LIMIT @Nd OFFSET......cociieirieierieieresie sttt sttt e s sae b et sessenessenens 46
LT B L= 1= B Y/ 012 PSPPSRt 48
Rt I N1 g1 o 1Y o= 49
L0 I T I o TN g =T [T G Y 0T 50
5.1.2. Arbitrary PrecCision NUMDELS.........ccccoviveieieeescse e 50
5.1.3. FlIoating-POiNt TYPES....cceiieieeeerere st stetesee et see e st e e sre e s 51
5.1.4. The Serial TYPES....ccciiieererieeeieter st e ettt e et e e e ere e e 52

LT Y Fo T U= = Y Y o = S 53
LG T @ =T = Tox (=T g)Y/ 01 S 53
5.4, BINAIY STINGS. oottt sttt sttt ettt sttt be et e se et e seebenesbe e ebeneas 55
5.5, DALE/TIME TYPES....cuiieiiirieteriete sttt st sttt b ettt b e et et se et ne st e b 56
5.5.1. DAte/TIME INPUL....oiitiriitiieieieeree ettt st s b e snene 57

5.5, 1.1 DALES ...t e et s r e nne e saee s 58

ST 0 I 1 1= S 58

5.5.1.3. TIME STAMMS....ectiriiiiirteeriee ettt s b e s ebe e 59

ST I B 11 =T Y= =TSSR 60

5.5.1.5. SPECIal ValUES ..ot 60

5.5.2. DAte/TIME OULPUL......cceeueriitiirieerieerieie ettt s b e s eb e s eb e snenea 61
5.5.3. TIME ZONES.....iiiieeeteie ettt e sttt s b bt eene st e e 62
LTI B 1 1 (=1 = 1 PSSR 62

oI =To o] [ST= 1o I 1Y/ o 1= SRS 63
5. 7. GEOMELIIC TYPES.. i titeeeeeeeete ettt sttt b b et e e et aesbesbeseese e e enesaesaeseens 64
L A0 I T o TSP 64
5.7.2. LiNE SEOMIENL....c.eiiieitiiierie ettt s s bbb e eene b e e 64

L A0 T = 1o)RR 65

L A T - 1 TSP 65

LT ST = e 1Yo o U 66
576, CHICIE ettt r e e 66

5.8. Network Address Data TYPES ..o vieririee e see e seee e eree e e sae e e e e e sreeeesaeeneas 67
LR 20 I T 1= PSP RPRRURTRPN 67
LR 2022 o o [PPSR RUPRR 67
B5.8.30NEBL VS CIAr i e s 68

LR JR 34 = Vo o [o [PSP 68

S =11] o N Y/ 0TS 68
5.10. ObJeCt IAENLTIEN TYPES....ciiiieieicecieee ettt sttt st se e e eseenesnn e 69
L0t =TT T [T 1Y/ o1 SRR 70
LT I N g - T S 71
6. FUNCLIONS ANA OPEIALOIS.......civieiriereeeeeeteses e seeseeeete et eeee e e seseesteseeseeseesesseseeseensenensesssssenses 76
6.1. LOGICAI OPEIALOLS. . .c.eeiteeiteeiteiertee sttt ettt sttt et b ettt s b et bt e b e 76
6.2. COMPATISON OPEIALOLS ... ccveuerveuereeiereeie sttt sttt sttt sbe et sttt be e b e b e 76
6.3. Mathematical FuNctions and OPEratOrS..........ccouerireireineeeneeesese et 78
6.4. String FUNCIONS aNnd OPEIatOrS........ccoveireriirerieeree ettt 80
6.5. Binary String FUNctions and OPeratorS.........coccoieerieierieinieeneseesesesese e 88
6.6. Pattern MatCRING........c.oi i 90
B.6. L. LIKE .ooueiveeesteeiiieteseeteseeteseetesestesestesestesesaesesa et e sa et e se et e e e be et enesaesenaeRena et e neeteneere e nreneas 90
6.6.2.SIMILAR TO and SQL99 Regular EXPreSSions.cccveereereereeeneseneneens 91
6.6.3. POSIX Regular EXPreSSIONS.......ccciirirererieeeeiesie e seesesesese e seeseesessessesseseeses 92

6.7. Data Type Formatting FUNCHONS. ..ottt 94
6.8. Date/Time FUuNCtions and OPEratOrS..........coererererirereriesieeeiese st 99
(ORI I 5 I 2 7Y O I F- (LT o - U A SRR 101
6.8.2.dAE_ITUNC .eoieeiee ettt et e et e st e e e st e e ene e e sabeeeeateeeeaseeesareeenreesnnes 104
6.8.3. AT TIME ZONE....ciiciiiieiiiiiisitiesiesseesteesbessassaessbesssesssse s besssasssasssbessseessessnsens 105
6.8.4. CUITENt DAtE/TIME.....eiiteiireeriet e 105

6.9. Geometric FUNCLIONS aNd OPEratOLS......ccceceeverieeiese et re e e sae e snaens 107
6.10. Network Address Type FUNCHIOMNS.........cccvieeierieese et s 110
6.11. Sequence-Manipulation FUNCHQANS............ccooieiieieni e s 111
6.12. ConditioNal EXPreSSIONS.......cciiiiieiirireeesteceere s e e e ste e sae e e sae e esee e sreeseesneenaeseennnens 113
B.12.1. CASE ...ttt ettt 113
6.12.2. COALESCE.......ct ittt st s 114
B.12.3. NULLIF ...ttt ettt st 114
6.13. Miscellaneous FUNCHONS.........c.cciriereiisre s 115
6.14. AQQregate FUNCLONS..........ccviv et s e e s 119
6.15. SUDQUETY EXPrESSIONS......ccviereerieiereeertestestes e seesessesressesseseesseeesessessessesseseensesessessenes 120
LT o TNt O 1 1 YRS 120
6.15.2. IN (SCAIAr FOIMM)...c.ccviiiieiieere e e 121

6.15.3. IN (SUDQUETY TOIMY....coviiieiiiee e 121

6.15.4. NOT IN (SCAIAT FOIM)....ceiviiiiiirieiriee e 122

6.15.5. NOT IN (SUDQUETY TOIMR)....c.coviirieirieieriee e 122

B.15.6. ANY/SOME......coi ettt st te st s besae e e saeennens 123

LS00 T Y I TSRS 123

6.15.8. ROW-WiSE COMPAIISON......ctiieuirreiirieiereeie sttt st sbe e enees 124

A Y/ o LS @] 01V/=T £ (o] o TH USROS 125
A I O YT T USSR 125

7.2, OPBIALOIS. ...ttt ettt sttt et e e he e te s bt e e e e bt e he e bt s st e eesbesse e beebe e s e sneeneesresanens 126

7.3 FUNCHIONS ...ttt bbb et b bbbttt ae b e b e b se e e e e e aenae e 129

T4, QUETY TAIJELS....iiitiiiiiiii sttt ettt st sb et be e b e ssbesbe e be e sbeesabeebeesbaesnreenbeenees 132
7.5.UNIONANACASECONSIIUCTS.eiuiiiieiieirie sttt see e sbe s s s 132

B INBXES ..ttt e et Rt bt bR et R e Rt be e e s e n e nenne 134
LS 38 00 [11 (oo [1 ox 1o] o SRS 134

S [0 (= G)Y/ o1 134

8.3. MUILICOIUMN INUEXES......iieeiiieiiieietes et s 135

8.4. UNIQUE INUEXES......ecviieieeeeeeti st se ettt te e st sa e e et e e e e neetesteseesaeneeneenennenes 136

8.5. FUNCHONAI INUEXES.....coi it 136

R ST @] o 1T = (0] O P TT S = S 137

T = U (= VN 1T oY S 138

8.8. EXamining INAEX USAQE.......ccerruiririeiriee ettt sttt sttt 140

9. CONCUITENCY CONLIOL...c.eiieeieiiiesiisee ettt st e eese e e esesaeseeseesenseneeneenens 142
LS I 11 0o [o3 1 o o TS 142

9.2. TranSaCtioN ISOIALIAN......ccciriierireeere et 142
9.2.1. Read Committed Isolation Level...........cooeririii e 143

9.2.2. Serializable 1S0lation LEVEL...........cooi i 144

9.3, EXPHCIE LOCKING.....cveuieetirietirietiiet ettt 144
9.3.1. TADIE-LEVEI LOCKS.....ccuiiiiie ettt 145

9.3.2. ROW-LEVEI LOCKS......utiuiitiie ettt e 146

9.3.3. DEAAIOCKS. ...ttt et bbb e eae s 146

9.4. Data Consistency Checks at the Application Level..........ccoerereninininenccencne 147

9.5. LOCKING AN INAEXES.....coiiuieiiieriereeeeeee sttt sbe e e ae e 148

10. PerfOrMEaNCE TIPS . ittt ettt b b ettt sb e b e b et e b e b e b e e e e e esenne e 149
10,1, USINGEXPLAIN ..c.cetiieteieteeeteeseeseseeseseesessesessesesesseessassssessssesessesessesessesessesensesensssensssenes 149
10.2. Statistics Used by the Planner...........coovveici e 152
10.3. Controlling the Planner with EXpliGIDIN ClausSes.........cccceeevveceeneseese e 155
10.4. Populating @ Database.........ccccoceeveiiieeseseeese st 156
10.4.1. Disable AUtOCOMIMIL........cccirriiirieiriere e e 156

10.4.2. USE COPY FROM.....cceiiiriiriiirieisieesie st s 157

10.4.3. REMOVE INUEXES......coiiiriieiiirieirieirie ettt 157

10.4.4. RUN ANALYZE AftEIrWAIUS......cocvveirieirieerieesiees e 157

F N T =Y T =TT o) Lo) 158
A.1. Date/Time INput INtErpretation.........cooo e 158

A.2. Date/TIME KEY WOIGS........cerieiirieie ettt sttt st e 159

A3 HISTOIY OF UNIES ...ttt e 163

B. SQL KEY WOIAS.......cuiieitirieterieterieteeste sttt b et b et b e ne bbb nn s 165
C. SQL CONOMMIANCE. ... ettt sttt st e et sesbesbeste e e e eseeaesaeseeseneeneeneenens 180
C.1. SUPPOIEA FEALUIES.......ciueuiietiieitisteest ettt bbbt 180

C.2. UNSUPPOIEA FEATUMBSeitirterieeeieieeee sttt ettt e e b st e b se e e e e ene s ees 189

Vi

Vii

List of Tables

1-1. Operator Precedence (dECrEASING)......ccueruererererierrerieeeeseseestesteseeseeeesessessessessesessessessessessenes 6
Lo I D = = B Y] 1= 3RS 48
Lo 1 4 1= o 1 o =R 49
5-3. MONELAIY TYPES....e ettt sttt b e r b e et b e b et e st eneeneenes 53
S O T T = ot (=T gl Y] L= OSSR 53
5-5. Specialty CharaCler TYPES......cocir ettt b s e 55
5-6. BINAIY SENG TYPES......cueiitereeterieieesie sttt st sttt b et b bbb 55
5-7.bytea Literal ESCAPEU OCIELS......ccoiiirieirieieriee ettt e e 55
5-8.bytea OULPUL ESCAPEU OCLELS.......coviiieeireciereeie et 56
5-0. DAL/ TIME TYPES . ettt sttt sttt b et b et b et bt bbbt e b e sttt b et b et b st e be e 56
5-10. DALE INPUL......oitiiriieeeeeieer ettt r e e e b r e sn e n e eneeneenes 58
501, TIME INPUL. .ottt b et b et b et b et b e 58
5-12. Time With TimMe ZONE INPUL.......ccooiiiieiieeeieee ettt e 59
5-13. TIME ZONE INPUL.....eiieirietirieterietee sttt st b e sttt b et b et b e 60
5-14. Special Date/TimMe INPULS......ooiieeeee et ae e se e e e e enesneeeas 60
5-15. Date/Time OULPUL SEYIES... ..ottt e b 61
5-16. Date Order CONVENTIONS.oouiueerereesiesie ettt e e sbe st e e e s e b sae e e ese e e e enesaennas 61
R CT=To 01T (g Tol Y] o 1= 64
5-18. Network AddreSs Data TYPES......ccotririerieriereeeeterie sttt be e s e sbe e 67
5-19.cidr Type INPUL EXBMPIES.....cooiiiiiiiee ettt e e 67
e O @] o] [=Tex l [o [T o1 1) 1= T gl Y o= RS 69
Lo I Y= TN o (o Tl 1Y o= 70
(R I OTa] o] o F= T TST0] g @] o 1=] = (] = 76
6-2. MathematiCal OPEIalOrS.......ccccceiieieererieeeese st eree e ree e e e e st st esaesreeaesteere et e sneeeesaesnnes 78
6-3. Bit String BiNary OPEIaAtOIS........cccvieererieeiesieeeesteseesee s e seestesteseeseesseessessessaessesseesessesnsessesses 78
6-4. MathematiCal FUNCHONS..........cociierrs s 79
SRS T Ny To o aToT 0 g 1=]t ol i g Tod 1 0] o =R 80
6-6. SQL String FUNCIONS aNd OPEIALQIS......c.cevveeeeeierereseeeeee st e st see e sreae e e srenees 80
6-7. Other StriNg FUNCLONS.........coiiiieiee et e et se s aesaeseenae e e e enesrenen 82
6-8. BUIIt-IN CONVEISIONS......cvceieirireereieeeires s 85
6-9. SQL Binary String FUNCtioNs and OPEeratorS.......cccvvevereereeeresesieneeseeeseseseeseeseeessessessesees 88
6-10. Other Binary String FUNCHONS. ..ot e 89
6-11. Regular EXpression MatCh OPEratOrS........ccoovierrererenisee e 92
6-12. FOrmMatting FUNCLIONScoiiiiieiriee et s st 95
6-13. Template patterns for date/time CONVEISIONS..........cccoivieireienrenee e 95
6-14. Template pattern modifiers for date/time CONVErSIONS........ccocvvevvereeeenceneseree e 97
6-15. Template patterns for NUMEric CONVEISIANS.........cocoiiiirieirieie e 98
6-16.10_Char EXAMPIES.....c.oiiiieiiiiietee ettt s 99
6-17. DAe/TIME OPEIALOIS......cueieeuireeuirietteet ettt b e bbbttt b e e 100
6-18. DAte/TIME FUNCHONS. .. .ottt se e eae e e e s eneeneeneenens 100
6-19. AT TIME ZONE VAIANTS......iuiiiriririeieeneresieie ettt et bbb es 105
6-20. GEOMELIIC OPEIALOLS......cueveuieetirietieet ettt e e bt b et b ettt p e 107
6-21. GEOMELIC FUNCLIONS.cititiitieieeieeet ettt et s a et se e s b e e e s e e e e eneeaen 108
6-22. Geometric Type Conversion FUNCLIOMNS.ccoiiiiiiiieeeeee e en 109
6-23.cidr AnAINEt OPEIALOIS.....couiieieeereee ettt sttt bbb se e besbesbesee s enee e eaesaens 110
6-24.cidr andinet FUNCHONS ..o e e sn 110
6-25.Macaddr FUNCLONS........cccii ettt et sae e ae st e eaaebeereenesreenaesreennens 111
6-26. SEQUENCE FUNCHIOMS ... cotiitiititieeeee ettt sttt bbb ne et sb e b e e s e e e e eaeeae 111
6-27. Session INformation FUNCHIONS..........ociieiieere e 115

viii

6-28. Configuration Settings Information FUNCHONS.........cocveiieinei e 115

6-29. Access Privilege INQUIry FUNCLOMNS ..ot 116
6-30. Schema Visibility INQUIry FUNCLIONS.........ccoiiiiirierieee e 117
6-31. Catalog INformation FUNCLIONS..........ccuoiiiiieriere e 118
6-32. Comment INformation FUNCHONS..........oiiiiiieieiee et s 119
6-33. AQQregate FUNCHONS.coiirieirieeiieteeiees et 119
9-1. SQL Transaction ISOlation LEVEIS...........ci ettt s 142
10-1.pg_StatS COIUMMNS.....cceiiiiiieiecteeierte e see et re e e sre s e e s tesreeatesbeeaeessesaeeeesreeneetenreanes 153
A-1. MONth ADDIEVIAIONS......ccviieeeee et et e 159
A-2. Day of the Week ADDreviations..........coooriii e 159
A-3. Date/Time Field MOGIfIErS e 160
A-4. TIMe ZoNe ADDIEVIALIONS.......c.civiiieeiieereee st 160
A-5. Australian Time Zone ADDIeVIAtIONS.ccovirriereireeree e 163
L ST @ T =) VAT o o £ S 165

List of Examples

5-1. USING the CharaCter tYPES... ..ot s 54
5-2. USING tNED00IEAN TYPE..c ettt e 63
5-3. USING the DIt STHNG tYPES. ..ottt 69
7-1. Exponentiation Operator Type RESOIULON.........cccviirieirieireiieesees e 128
7-2. String Concatenation Operator Type ReSOIULIOMN.........ccccciveirieinreerere e 128
7-3. Absolute-Value and Factorial Operator Type ReSOIULION.cccoverrerrenneeseeeeeee 129
7-4. Factorial Function Argument Type ReSOIULION...........ccooiiriiiiieneere e 130
7-5. Substring Function Type RESOIULION.........ooiiiiiiiene et 131
7-6.character Storage TYPE CONVEISION......coierieiririerie e es et e e see e sees e snesae s 132
7-7. Underspecified TYPeS iN @ UNIQN.......cocooiiiiieiiinee e s sa 133
7-8. Type Conversion in @ SiMPle UNIOM........c.coiiini e s 133
7-9. Type Conversion in a TranSPOSEd UNION.........ccciiiiiiirieeere st ene 133
8-1. Setting up a Partial Index to Exclude Common ValLIES...........ccceveveecenieeeece e 138
8-2. Setting up a Partial Index to Exclude Uninteresting Values...........cccceoveeeeeeveiieeieiennns 139
8-3. Setting up a Partial Unique INAEX........ccccciieeceiecereseees st 139

Preface

1. What is PostgreSQL?

PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES,
Version 4.2, developed at the University of California at Berkeley Computer Science Department.
The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Ad-
vanced Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science
Foundation (NSF), and ESL, Inc.

PostgreSQL is an open-source descendant of this original Berkeley code. It provides SQL92/SQL99
language support and other modern features.

POSTGRES pioneered many of the object-relational concepts now becoming available in some com-
mercial databases. Traditional relational database management systems (RDBMS) support a data
model consisting of a collection of named relations, containing attributes of a specific type. In current
commercial systems, possible types include floating point numbers, integers, character strings, money,
and dates. It is commonly recognized that this model is inadequate for future data-processing appli-
cations. The relational model successfully replaced previous models in part because of its “Spartan
simplicity”. However, this simplicity makes the implementation of certain applications very difficult.
PostgreSQL offers substantial additional power by incorporating the following additional concepts in
such a way that users can easily extend the system:

« inheritance
- data types
. functions

Other features provide additional power and flexibility:

« constraints

. triggers

- rules

- transactional integrity

These features put PostgreSQL into the category of databases referreabjecigelational Note

that this is distinct from those referred to @lsject-orientedwhich in general are not as well suited

to supporting traditional relational database languages. So, although PostgreSQL has some object-
oriented features, it is firmly in the relational database world. In fact, some commercial databases
have recently incorporated features pioneered by PostgreSQL.

2. A Short History of PostgreSQL

The object-relational database management system now known as PostgreSQL (and briefly called
Postgres95) is derived from the POSTGRES package written at the University of California at Berke-
ley. With over a decade of development behind it, PostgreSQL is the most advanced open-source
database available anywhere, offering multiversion concurrency control, supporting almost all SQL

1. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/postgres.html

Preface

constructs (including subselects, transactions, and user-defined types and functions), and having a
wide range of language bindings available (including C, C++, Java, Perl, Tcl, and Python).

2.1. The Berkeley POSTGRES Project

Implementation of the POSTGRES DBMS began in 1986. The initial concepts for the system were
presented irrhe design of POSTGRE®d the definition of the initial data model appearedire
POSTGRES data moddlhe design of the rule system at that time was describ&téndesign of the
POSTGRES rules systeirhe rationale and architecture of the storage manager were detailed in
design of the POSTGRES storage system

Postgres has undergone several major releases since then. The first “demoware” system became op-
erational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in
The implementation of POSTGRES released to a few external users in June 1989. In response

to a critique of the first rule systend (commentary on the POSTGRES rules sykttra rule system

was redesigneddn Rules, Procedures, Caching and Views in Database Systems/ersion 2 was
released in June 1990 with the new rule system. Version 3 appeared in 1991 and added support for
multiple storage managers, an improved query executor, and a rewritten rewrite rule system. For the
most part, subsequent releases until Postgres95 (see below) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These
include: a financial data analysis system, a jet engine performance monitoring package, an aster-
oid tracking database, a medical information database, and several geographic information systems.
POSTGRES has also been used as an educational tool at several universities. Finally, lllustra Infor-
mation Technologies (later merged into Inforfiwhich is now owned by IBM) picked up the code

and commercialized it. POSTGRES became the primary data manager for the Sequbsz20dific
computing project in late 1992.

The size of the external user community nearly doubled during 1993. It became increasingly obvious
that maintenance of the prototype code and support was taking up large amounts of time that should
have been devoted to database research. In an effort to reduce this support burden, the Berkeley
POSTGRES project officially ended with Version 4.2.

2.2. Postgres95

In 1994, Andrew Yu and Jolly Chen added a SQL language interpreter to POSTGRES. Postgres95
was subsequently released to the Web to find its own way in the world as an open-source descendant
of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes im-
proved performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the
Wisconsin Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following
were the major enhancements:

« The query language PostQUEL was replaced with SQL (implemented in the server). Subqueries
were not supported until PostgreSQL (see below), but they could be imitated in Postgres95 with
user-defined SQL functions. Aggregates were re-implemented. Support for the GROUP BY query
clause was also added. Thtgpq interface remained available for C programs.

- In addition to the monitor program, a new program (psql) was provided for interactive SQL queries
using GNU Readline.

2. http://www.informix.com/
3. http://www.ibm.com/
4. http://meteora.ucsd.edu/s2k/s2k_home.html

Preface

« A new front-end libraryjibpgtcl , supported Tcl-based clients. A sample shadtclsh , pro-
vided new Tcl commands to interface Tcl programs with the Postgres95 backend.

« The large-object interface was overhauled. The Inversion large objects were the only mechanism
for storing large objects. (The Inversion file system was removed.)

- The instance-level rule system was removed. Rules were still available as rewrite rules.

« A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed
with the source code

+ GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled
with an unpatched GCC (data alignment of doubles was fixed).

2.3. PostgreSQL

By 1996, it became clear that the name “Postgres95” would not stand the test of time. We chose a new
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent
versions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting
the numbers back into the sequence originally begun by the Berkeley POSTGRES project.

The emphasis during development of Postgres95 was on identifying and understanding existing prob-
lems in the backend code. With PostgreSQL, the emphasis has shifted to augmenting features and
capabilities, although work continues in all areas.

Major enhancements in PostgreSQL include:

- Table-level locking has been replaced by multiversion concurrency control, which allows readers
to continue reading consistent data during writer activity and enables hot backups from pg_dump
while the database stays available for queries.

- Important backend features, including subselects, defaults, constraints, and triggers, have been im-
plemented.

« Additional SQL92-compliant language features have been added, including primary keys, quoted
identifiers, literal string type coercion, type casting, and binary and hexadecimal integer input.

- Built-in types have been improved, including new wide-range date/time types and additional geo-
metric type support.

« Overall backend code speed has been increased by approximately 20-40%, and backend start-up
time has decreased by 80% since version 6.0 was released.

3. What's In This Book

This book describes the use of the SQL language in PostgreSQL. We start with describing the general
syntax of SQL, then explain how to create the structures to hold data, how to populate the database,
and how to query it. The middle part lists the available data types and functions for use in SQL data
commands. The rest of the book treats several aspects that are important for tuning a database for
optimal performance.

The information in this book is arranged so that a novice user can follow it start to end to gain a full
understanding of the topics without having to refer forward too many times. The chapters are intended
to be self-contained, so that advanced users can read the chapters individually as they choose. The

Preface

information in this book is presented in a narrative fashion in topical units. Readers looking for a
complete description of a particular command should look intdPdstgreSQL Reference Manual

Readers of this book should know how to connect to a PostgreSQL database and issue SQL com-
mands. Readers that are unfamiliar with these issues are encouraged to feastgheSQL Tutorial

first. SQL commands are typically entered using the PostgreSQL interactive terminal psql, but other
programs that have similar functionality can be used as well.

This book covers PostgreSQL 7.3.2 only. For information on other versions, please read the docu-
mentation that accompanies that release.

4. Qverview of Documentation Resources

The PostgreSQL documentation is organized into several books:

PostgreSQL Tutorial
An informal introduction for new users.
PostgreSQL User’s Guide

Documents the SQL query language environment, including data types and functions, as well as
user-level performance tuning. Every PostgreSQL user should read this.

PostgreSQL Administrator's Guide

Installation and server management information. Everyone who runs a PostgreSQL server, either
for personal use or for other users, needs to read this.

PostgreSQL Programmer’s Guide

Advanced information for application programmers. Topics include type and function extensi-
bility, library interfaces, and application design issues.

PostgreSQL Reference Manual

Reference pages for SQL command syntax, and client and server programs. This book is auxil-
iary to the User’s, Administrator’s, and Programmer’s Guides.

PostgreSQL Developer’'s Guide

Information for PostgreSQL developers. This is intended for those who are contributing to the
PostgreSQL project; application development information appears irdggammer’s Guide

In addition to this manual set, there are other resources to help you with PostgreSQL installation and
use:
man pages

The Reference Manual pages in the traditional Unix man format. There is no difference in
content.

FAQs

Frequently Asked Questions (FAQ) lists document both general issues and some
platform-specific issues.

READMEs

README files are available for some contributed packages.

Preface

Web Site

The PostgreSQL web sitearries details on the latest release, upcoming features, and other
information to make your work or play with PostgreSQL more productive.

Mailing Lists

The mailing lists are a good place to have your questions answered, to share experiences with
other users, and to contact the developers. Consult the User’s L'aewi®n of the PostgreSQL
web site for details.

Yourself!

PostgreSQL is an open-source effort. As such, it depends on the user community for ongoing
support. As you begin to use PostgreSQL, you will rely on others for help, either through the
documentation or through the mailing lists. Consider contributing your knowledge back. If you
learn something which is not in the documentation, write it up and contribute it. If you add
features to the code, contribute them.

Even those without a lot of experience can provide corrections and minor changes in the docu-
mentation, and that is a good way to start. Tipgsgl-docs@postgresgl.org > mailing list
is the place to get going.

5. Terminology and Notation

An administratoris generally a person who is in charge of installing and running the serueseA

could be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms should
not be interpreted too narrowly; this documentation set does not have fixed presumptions about system
administration procedures.

We use /usr/local/pgsql/ as the root directory of the installation and
{usr/local/pgsgl/data as the directory with the database files. These directories may vary on
your site, details can be derived in tAdministrator's Guide

In a command synopsis, brackdtsand]) indicate an optional phrase or keyword. Anything in braces
({ and}) and containing vertical bars) indicates that you must choose one alternative.

Examples will show commands executed from various accounts and programs. Commands executed
from a Unix shell may be preceded with a dollar sigs”f* Commands executed from particular

user accounts such as root or postgres are specially flagged and explained. SQL commands may be
preceded with £>" or will have no leading prompt, depending on the context.

Note: The notation for flagging commands is not universally consistent throughout
the documentation set. Please report problems to the documentation mailing list
<pgsql-docs@postgresql.org >,

5. http://www.postgresql.org
6. http://lwww.postgresql.org/users-lounge/

Preface

6. Bug Reporting Guidelines

When you find a bug in PostgreSQL we want to hear about it. Your bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part
of PostgreSQL will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No one is required to follow them but it tends to be to everyone’s advantage.

We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a lot of users,
chances are good that someone will look into it. It could also happen that we tell you to update to a
newer version to see if the bug happens there. Or we might decide that the bug cannot be fixed before
some major rewrite we might be planning is done. Or perhaps it is simply too hard and there are
more important things on the agenda. If you need help immediately, consider obtaining a commercial
support contract.

6.1. Identifying Bugs

Before you report a bug, please read and re-read the documentation to verify that you can really do
whatever it is you are trying. If it is not clear from the documentation whether you can do something
or not, please report that too; it is a bug in the documentation. If it turns out that the program does
something different from what the documentation says, that is a bug. That might include, but is not
limited to, the following circumstances:

- A program terminates with a fatal signal or an operating system error message that would point to
a problem in the program. (A counterexample might be a “disk full” message, since you have to fix
that yourself.)

- A program produces the wrong output for any given input.
- A program refuses to accept valid input (as defined in the documentation).

- A program accepts invalid input without a notice or error message. But keep in mind that your idea
of invalid input might be our idea of an extension or compatibility with traditional practice.

« PostgreSQL fails to compile, build, or install according to the instructions on supported platforms.
Here “program” refers to any executable, not only the backend server.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of
the mailing lists for help in tuning your applications. Failing to comply to the SQL standard is not
necessarily a bug either, unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to see if your bug is already known.
If you cannot decode the information on the TODO list, report your problem. The least we can do is
make the TODO list clearer.

6.2. What to report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do
not speculate what you think went wrong, what “it seemed to do”, or which part of the program has a
fault. If you are not familiar with the implementation you would probably guess wrong and not help
us a bit. And even if you are, educated explanations are a great supplement to but no substitute for
facts. If we are going to fix the bug we still have to see it happen for ourselves first. Reporting the bare
facts is relatively straightforward (you can probably copy and paste them from the screen) but all too

Vi

Preface

often important details are left out because someone thought it does not matter or the report would be
understood anyway.

The following items should be contained in every bug report:

« The exact sequence of stdfpam program start-umecessary to reproduce the problem. This should
be self-contained; it is not enough to send in a bare select statement without the preceding create
table and insert statements, if the output should depend on the data in the tables. We do not have the
time to reverse-engineer your database schema, and if we are supposed to make up our own data
we would probably miss the problem. The best format for a test case for query-language related
problems is a file that can be run through the psql frontend that shows the problem. (Be sure to
not have anything in yout/.psglrc start-up file.) An easy start at this file is to use pg_dump to
dump out the table declarations and data needed to set the scene, then add the problem query. You
are encouraged to minimize the size of your example, but this is not absolutely necessary. If the
bug is reproducible, we will find it either way.

If your application uses some other client interface, such as PHP, then please try to isolate the
offending queries. We will probably not set up a web server to reproduce your problem. In any case
remember to provide the exact input files, do not guess that the problem happens for “large files”
or “mid-size databases”, etc. since this information is too inexact to be of use.

« The output you got. Please do not say that it “didn’t work” or “crashed”. If there is an error message,
show it, even if you do not understand it. If the program terminates with an operating system error,
say which. If nothing at all happens, say so. Even if the result of your test case is a program crash
or otherwise obvious it might not happen on our platform. The easiest thing is to copy the output
from the terminal, if possible.

Note: In case of fatal errors, the error message reported by the client might not contain all the
information available. Please also look at the log output of the database server. If you do not
keep your server’s log output, this would be a good time to start doing so.

- The output you expected is very important to state. If you just write “This command gives me that
output.” or “This is not what | expected.”, we might run it ourselves, scan the output, and think it
looks OK and is exactly what we expected. We should not have to spend the time to decode the
exact semantics behind your commands. Especially refrain from merely saying that “This is not
what SQL says/Oracle does.” Digging out the correct behavior from SQL is not a fun undertaking,
nor do we all know how all the other relational databases out there behave. (If your problem is a
program crash, you can obviously omit this item.)

- Any command line options and other start-up options, including concerned environment variables
or configuration files that you changed from the default. Again, be exact. If you are using a prepack-
aged distribution that starts the database server at boot time, you should try to find out how that is
done.

- Anything you did at all differently from the installation instructions.

« The PostgreSQL version. You can run the comm8&BHECT version(); to find out the version
of the server you are connected to. Most executable programs also suppertian option; at
leastpostmaster --version andpsgl --version should work. If the function or the options
do not exist then your version is more than old enough to warrant an upgrade. You can also look
into theREADMHile in the source directory or at the name of your distribution file or package name.

Vii

Preface

If you run a prepackaged version, such as RPMs, say so, including any subversion the package may
have. If you are talking about a CVS snapshot, mention that, including its date and time.

If your version is older than 7.3.2 we will almost certainly tell you to upgrade. There are tons of
bug fixes in each new release, that is why we make new releases.

- Platform information. This includes the kernel name and version, C library, processor, memory
information. In most cases it is sufficient to report the vendor and version, but do not assume
everyone knows what exactly “Debian” contains or that everyone runs on Pentiums. If you have
installation problems then information about compilers, make, etc. is also necessary.

Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your
input files are huge, it is fair to ask first whether somebody is interested in looking into it.

Do not spend all your time to figure out which changes in the input make the problem go away. This
will probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still
have time to find and share your work-around. Also, once again, do not waste your time guessing why
the bug exists. We will find that out soon enough.

When writing a bug report, please choose non-confusing terminology. The software package in to-
tal is called “PostgreSQL”, sometimes “Postgres” for short. If you are specifically talking about the
backend server, mention that, do not just say “PostgreSQL crashes”. A crash of a single backend
server process is quite different from crash of the parent “postmaster” process; please don't say “the
postmaster crashed” when you mean a single backend went down, nor vice versa. Also, client pro-
grams such as the interactive frontend “psql” are completely separate from the backend. Please try to
be specific about whether the problem is on the client or server side.

6.3. Where to report bugs

In general, send bug reports to the bug report mailing lispgt&l-bugs@postgresgl.org >. You
are requested to use a descriptive subject for your email message, perhaps parts of the error message.

Another method is to fill in the bug report web-form available at the project's web site
http://www.postgresql.org/. Entering a bug report this way causes it to be mailed to the
<pgsql-bugs@postgresgl.org > mailing list.

Do not send bug reports to any of the user mailing lists, suchpasqksql@postgresgl.org >

or <pgsql-general@postgresgl.org >. These mailing lists are for answering user questions and
their subscribers normally do not wish to receive bug reports. More importantly, they are unlikely to
fix them.

Also, please do not send reports to the developers’ mailing list pgsqgl-
hackers@postgresqgl.org >. This list is for discussing the development of PostgreSQL and it
would be nice if we could keep the bug reports separate. We might choose to take up a discussion
about your bug report opgsgl-hackers , if the problem needs more review.

If you have a problem with the documentation, the best place to report it is the documentation mailing
list <pgsgl-docs@postgresql.org >, Please be specific about what part of the documentation you
are unhappy with.

If your bug is a portability problem on a non-supported platform, send mail to
<pgsql-ports@postgresql.org >, so we (and you) can work on porting PostgreSQL to your
platform.

viii

Preface

Note: Due to the unfortunate amount of spam going around, all of the above email addresses
are closed mailing lists. That is, you need to be subscribed to a list to be allowed to post on it.
(You need not be subscribed to use the bug report web-form, however.) If you would like to send
mail but do not want to receive list traffic, you can subscribe and set your subscription option to
nomail . For more information send mail to <majordomo@postgresgl.org > with the single word
help in the body of the message.

Chapter 1. SQL Syntax

This chapter describes the syntax of SQL. It forms the foundation for understanding the following
chapters which will go into detail about how the SQL commands are applied to define and modify
data.

We also advise users who are already familiar with SQL to read this chapter carefully because there
are several rules and concepts that are implemented inconsistently among SQL databases or that are
specific to PostgreSQL.

1.1. Lexical Structure

SQL input consists of a sequenceadfmmandsA command is composed of a sequenceosens
terminated by a semicolon (*;”). The end of the input stream also terminates a command. Which
tokens are valid depends on the syntax of the particular command.

A token can be &«ey word anidentifier, a quoted identifier a literal (or constant), or a special
character symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not
be if there is no ambiguity (which is generally only the case if a special character is adjacent to some
other token type).

Additionally, commentgan occur in SQL input. They are not tokens, they are effectively equivalent
to whitespace.

For example, the following is (syntactically) valid SQL input:

SELECT * FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
INSERT INTO MY_TABLE VALUES (3, 'hi there’);

This is a sequence of three commands, one per line (although this is not required; more than one
command can be on a line, and commands can usefully be split across lines).

The SQL syntax is not very consistent regarding what tokens identify commands and which are
operands or parameters. The first few tokens are generally the command name, so in the above ex-
ample we would usually speak of a “SELECT”, an “UPDATE”, and an “INSERT” command. But for
instance the&JPDATECommand always requireSSET token to appear in a certain position, and this
particular variation oINSERT also requires & ALUESIn order to be complete. The precise syntax
rules for each command are described inRbstgreSQL Reference Manual

1.1.1. Identifiers and Key Words

Tokens such aSELECT, UPDATE or VALUESIn the example above are exampleskey words that

is, words that have a fixed meaning in the SQL language. The tak¥nFABLEand A are exam-

ples ofidentifiers They identify names of tables, columns, or other database objects, depending on
the command they are used in. Therefore they are sometimes simply called “names”. Key words and
identifiers have the same lexical structure, meaning that one cannot know whether a token is an iden-
tifier or a key word without knowing the language. A complete list of key words can be found in
Appendix B

SQL identifiers and key words must begin with a letiiz(but also letters with diacritical marks
and non-Latin letters) or an underscorg. (Subsequent characters in an identifier or key word can
be letters, digits@-9), or underscores, although the SQL standard will not define a key word that
contains digits or starts or ends with an underscore.

Chapter 1. SQL Syntax

The system uses no more thBIAMEDATALEN characters of an identifier; longer names can be
written in commands, but they will be truncated. By defablAMEDATALENs 64 so the maxi-
mum identifier length is 63 (but at the time PostgreSQL is bNIKMEDATALENRan be changed in
src/include/postgres_ext.h).

Identifier and key word names are case insensitive. Therefore
UPDATE MY_TABLE SET A = 5;
can equivalently be written as
uPDaTE my_TabLE SeT a = 5;
A convention often used is to write key words in upper case and names in lower case, e.g.,

UPDATE my table SET a = 5;

There is a second kind of identifier: tlelimited identifieror quoted identifierlt is formed by en-
closing an arbitrary sequence of characters in double-quo}es delimited identifier is always an
identifier, never a key word. Seelect” could be used to refer to a column or table named “select”,
whereas an unquotestlect would be taken as a key word and would therefore provoke a parse
error when used where a table or column name is expected. The example can be written with quoted
identifiers like this:

UPDATE "my_table" SET "a" = 5:

Quoted identifiers can contain any character other than a double quote itself. To include a double
guote, write two double quotes. This allows constructing table or column names that would otherwise
not be possible, such as ones containing spaces or ampersands. The length limitation still applies.

Quoting an identifier also makes it case-sensitive, whereas unquoted names are always folded to lower
case. For example, the identifie¥©Q foo and"foo" are considered the same by PostgreSQL, but
"Foo" and"FOO" are different from these three and each other.

1.1.2. Constants

There are three kinds d@fplicitly-typed constants PostgreSQL.: strings, bit strings, and numbers.
Constants can also be specified with explicit types, which can enable more accurate representation and
more efficient handling by the system. The implicit constants are described below; explicit constants
are discussed afterwards.

1.1.2.1. String Constants

A string constant in SQL is an arbitrary sequence of characters bounded by single quotes (“), e.g.,
"This is a string’ . SQL allows single quotes to be embedded in strings by typing two adjacent
single quotes (e.gDianne’s horse’). In PostgreSQL single quotes may alternatively be escaped
with a backslash (“\", e.g.pianne\'s horse’).

C-style backslash escapes are also availablas a backspaceaf is a form feed)n is a newline,
\r is a carriage returry is a tab, and xxx , wherexxx is an octal number, is the character with

1. The folding of unquoted names to lower case in PostgreSQL is incompatible with the SQL standard, which says that
unquoted names should be folded to upper case. Tduusshould be equivalent t&OO" not"foo" according to the standard.
If you want to write portable applications you are advised to always quote a particular name or never quote it.

Chapter 1. SQL Syntax

the corresponding ASCII code. Any other character following a backslash is taken literally. Thus, to
include a backslash in a string constant, type two backslashes.

The character with the code zero cannot be in a string constant.

Two string constants that are only separated by whitesgabeat least one newlinare concatenated
and effectively treated as if the string had been written in one constant. For example:

SELECT 'foo’
‘bar’;

is equivalent to

SELECT ’foobar’;

but

SELECT ’foo’ ‘bar’;

is not valid syntax. (This slightly bizarre behavior is specified by SQL; PostgreSQL is following the
standard.)

1.1.2.2. Bit-String Constants

Bit-string constants look like string constants witl® &upper or lower case) immediately before the
opening quote (no intervening whitespace), eBLP01’ . The only characters allowed within bit-
string constants ar@and1.

Alternatively, bit-string constants can be specified in hexadecimal notation, using a |&adipger
or lower case), e.gX'1FF’ . This notation is equivalent to a bit-string constant with four binary digits
for each hexadecimal digit.

Both forms of bit-string constant can be continued across lines in the same way as regular string
constants.

1.1.2.3. Numeric Constants

Numeric constants are accepted in these general forms:

digits

digits [digits][e[+-] digits]
[digits]. digits [e[+-] digits]
digits e[+-] digits

wheredigits is one or more decimal digits (0 through 9). At least one digit must be before or after

the decimal point, if one is used. At least one digit must follow the exponent magkef bne is

present. There may not be any spaces or other characters embedded in the constant. Note that any
leading plus or minus sign is not actually considered part of the constant; it is an operator applied to
the constant.

These are some examples of valid numeric constants:

42
3.5
4,
.001
5e2

Chapter 1. SQL Syntax

1.925e-3

A numeric constant that contains neither a decimal point nor an exponent is initially presumed to be
typeinteger if its value fits in typeinteger (32 bits); otherwise it is presumed to be typgint

if its value fits in typebigint (64 bits); otherwise it is taken to be typemeric . Constants that
contain decimal points and/or exponents are always initially presumed to beuygéc .

The initially assigned data type of a numeric constant is just a starting point for the type resolution
algorithms. In most cases the constant will be automatically coerced to the most appropriate type de-
pending on context. When necessary, you can force a numeric value to be interpreted as a specific data
type by casting it. For example, you can force a humeric value to be treated asdypéfloatd)

by writing

REAL '1.23' -- string style
1.23:REAL -- PostgreSQL (historical) style

1.1.2.4. Constants of Other Types
A constant of ararbitrary type can be entered using any one of the following notations:
type '’ string

'string i type
CAST ('string ' AS type)

The string’s text is passed to the input conversion routine for the type dglbed. The result is a
constant of the indicated type. The explicit type cast may be omitted if there is no ambiguity as to
the type the constant must be (for example, when it is passed as an argument to a non-overloaded
function), in which case it is automatically coerced.

It is also possible to specify a type coercion using a function-like syntax:
typename (' string ')

but not all type names may be used in this way;Seetion 1.2.60or details.

The:: , CAST(), and function-call syntaxes can also be used to specify run-time type conversions of
arbitrary expressions, as discusseé&aetction 1.2.6But the formtype ’string ' can only be used

to specify the type of a literal constant. Another restrictiontye ’'string ' is that it does not

work for array types; use or CAST() to specify the type of an array constant.

1.1.2.5. Array constants

The general format of an array constant is the following:
{ wvall delim val2 delim o ¥

wheredelim is the delimiter character for the type, as recorded ipgtdype entry. (For all built-in
types, this is the comma character.) Eachval is either a constant of the array element type, or a
subarray. An example of an array constant is

'{{1,2,3},{4,5,6},{7,8,9}}

This constant is a two-dimensional, 3-by-3 array consisting of three subarrays of integers.

Chapter 1. SQL Syntax
Individual array elements can be placed between double-quote matksafzoid ambiguity problems
with respect to whitespace. Without quote marks, the array-value parser will skip leading whitespace.

(Array constants are actually only a special case of the generic type constants discussed in the previous
section. The constant is initially treated as a string and passed to the array input conversion routine.
An explicit type specification might be necessary.)

1.1.3. Operators

An operator is a sequence of upNBMEDATALEN (63 by default) characters from the following list:
+-*<>=~1@H#B"&|'?$

There are a few restrictions on operator names, however:

« $ (dollar) cannot be a single-character operator, although it can be part of a multiple-character
operator name.

« -- and/* cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

- A multiple-character operator name cannot end or - , unless the name also contains at least one
of these characters:

~1@H#%N&|'?$

For example@-is an allowed operator name, but is not. This restriction allows PostgreSQL to
parse SQL-compliant queries without requiring spaces between tokens.

When working with non-SQL-standard operator names, you will usually need to separate adjacent
operators with spaces to avoid ambiguity. For example, if you have defined a left unary operator
named@ you cannot writeX*@Y, you must writex* @Yto ensure that PostgreSQL reads it as two
operator names not one.

1.1.4. Special Characters

Some characters that are not alphanumeric have a special meaning that is different from being an

operator. Details on the usage can be found at the location where the respective syntax element is
described. This section only exists to advise the existence and summarize the purposes of these char-
acters.

- Adollar sign §) followed by digits is used to represent the positional parameters in the body of a
function definition. In other contexts the dollar sign may be part of an operator name.

« Parentheseg)() have their usual meaning to group expressions and enforce precedence. In some
cases parentheses are required as part of the fixed syntax of a particular SQL command.

- Brackets[]) are used to select the elements of an array.S&®tion 5.1Zor more information on
arrays.

« Commas () are used in some syntactical constructs to separate the elements of a list.

Chapter 1. SQL Syntax
- The semicolon;() terminates an SQL command. It cannot appear anywhere within a command,
except within a string constant or quoted identifier.

« The colon () is used to select “slices” from arrays. (S8ection 5.12 In certain SQL dialects
(such as Embedded SQL), the colon is used to prefix variable names.

- The asterisk¥) has a special meaning when used in 88 ECTcommand or with theCOUNT
aggregate function.

« The period () is used in floating-point constants, and to separate schema, table, and column names.

1.1.5. Comments

A comment is an arbitrary sequence of characters beginning with double dashes and extending to the
end of the line, e.g.:

-- This is a standard SQL92 comment

Alternatively, C-style block comments can be used:

/* multiline comment
* with nesting: /* nested block comment */
*/

where the comment begins with and extends to the matching occurrence/of These block com-
ments nest, as specified in SQL99 but unlike C, so that one can comment out larger blocks of code
that may contain existing block comments.

A comment is removed from the input stream before further syntax analysis and is effectively replaced
by whitespace.

1.1.6. Lexical Precedence

Table 1-1shows the precedence and associativity of the operators in PostgreSQL. Most operators
have the same precedence and are left-associative. The precedence and associativity of the operators is
hard-wired into the parser. This may lead to non-intuitive behavior; for example the Boolean operators

< and> have a different precedence than the Boolean operatoend>=. Also, you will sometimes

need to add parentheses when using combinations of binary and unary operators. For instance

SELECT 5! - 6;
will be parsed as
SELECT 5 ! (- 6);

because the parser has no idea -- until it is too late - timtlefined as a postfix operator, not an infix
one. To get the desired behavior in this case, you must write

SELECT (5) - 6

This is the price one pays for extensibility.

Chapter 1. SQL Syntax

Table 1-1. Operator Precedence (decreasing)

Operator/Element IAssociativity Description
left table/column name separator
left PostgreSQL-style typecast

[left array element selection

- right unary minus

" left exponentiation

*/ % left multiplication, division, modulg

+ - left addition, subtraction

IS IS TRUE, IS FALSE, IS
UNKNOWNS NULL

ISNULL test for null

NOTNULL test for not null

(any other) left all other native and user-defingd
operators

IN set membership

BETWEEN containment

OVERLAPS time interval overlap

LIKE ILIKE SIMILAR string pattern matching

<> less than, greater than

= right equality, assignment

NOT right logical negation

IAND left logical conjunction

OR left logical disjunction

Note that the operator precedence rules also apply to user-defined operators that have the same names
as the built-in operators mentioned above. For example, if you define a “+” operator for some custom
data type it will have the same precedence as the built-in “+” operator, no matter what yours does.

When a schema-qualified operator name is used iIOBERATORYnNtax, as for example in
SELECT 3 OPERATOR(pg_catalog.+) 4;

the OPERATORoONSstruct is taken to have the default precedence showabte 1-1for “any other”
operator. This is true no matter which specific operator name appears ORHRATOR()

1.2. Value Expressions

Value expressions are used in a variety of contexts, such as in the target liss&lLtbeTcommand,

as new column values INSERT or UPDATE or in search conditions in a number of commands. The
result of a value expression is sometimes callegtalar, to distinguish it from the result of a table
expression (which is a table). Value expressions are therefore also sediied expressionfr even
simply expressions The expression syntax allows the calculation of values from primitive parts using
arithmetic, logical, set, and other operations.

A value expression is one of the following:

Chapter 1. SQL Syntax

« A constant or literal value; segection 1.1.2

« A column reference.

- A positional parameter reference, in the body of a function declaration.
« An operator invocation.

« A function call.

- An aggregate expression.

+ Atype cast.

« A scalar subguery.

- Another value expression in parentheses, useful to group subexpressions and override precedence.

In addition to this list, there are a number of constructs that can be classified as an expression but do
not follow any general syntax rules. These generally have the semantics of a function or operator and
are explained in the appropriate locatiorGhapter 6 An example is théS NULL clause.

We have already discussed constantSéation 1.1.2The following sections discuss the remaining
options.

1.2.1. Column References

A column can be referenced in the form
correlation . columnname

or
correlation . columnname [subscript]

(Here, the brackets] are meant to appear literally.)

correlation is the name of a table (possibly qualified), or an alias for a table defined by means

of aFROMlause, or the key word$EWor OLD (NEWandOLDcan only appear in rewrite rules, while

other correlation names can be used in any SQL statement.) The correlation name and separating dot
may be omitted if the column name is unique across all the tables being used in the current query.
(See alscChapter 4

If column is of an array type, then the optioralbscript selects a specific element or elements
in the array. If no subscript is provided, then the whole array is selected S&gmn 5.1For more
about arrays.)

1.2.2. Positional Parameters

A positional parameter reference is used to indicate a parameter that is supplied externally to an SQL
statement. Parameters are used in SQL function definitions and in prepared queries. The form of a
parameter reference is:

$number

For example, consider the definition of a functidapt , as

Chapter 1. SQL Syntax
CREATE FUNCTION dept(text) RETURNS dept
AS 'SELECT * FROM dept WHERE name = $1’
LANGUAGE SQL;

Here thes1 will be replaced by the first function argument when the function is invoked.

1.2.3. Operator Invocations

There are three possible syntaxes for an operator invocation:

expression operator expression (binary infix operator)
operator expression (unary prefix operator)
expression operator (unary postfix operator)

where theoperator token follows the syntax rules &ection 1.1.3or is one of the keywordsND
OR andNOT, or is a qualified operator name

OPERATOR{chema. operatorname)

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the u§drapter 6describes the built-in operators.

1.2.4. Function Calls

The syntax for a function call is the name of a function (possibly qualified with a schema name),
followed by its argument list enclosed in parentheses:

function ([expression [[expression 1)

For example, the following computes the square root of 2:

sqrt(2)

The list of built-in functions is irChapter 6 Other functions may be added by the user.

1.2.5. Aggregate Expressions

An aggregate expressiaepresents the application of an aggregate function across the rows selected
by a query. An aggregate function reduces multiple inputs to a single output value, such as the sum or
average of the inputs. The syntax of an aggregate expression is one of the following:

aggregate_name (expression)
aggregate_name (ALL expression)
aggregate_name (DISTINCT expression)
aggregate_name (*)

whereaggregate_name is a previously defined aggregate (possibly a qualified name)exnd
pression is any value expression that does not itself contain an aggregate expression.

The first form of aggregate expression invokes the aggregate across all input rows for which the given
expression yields a non-null value. (Actually, it is up to the aggregate function whether to ignore null

Chapter 1. SQL Syntax

values or not --- but all the standard ones do.) The second form is the same as the firstLkince

is the default. The third form invokes the aggregate for all distinct non-null values of the expression
found in the input rows. The last form invokes the aggregate once for each input row regardless of
null or non-null values; since no particular input value is specified, it is generally only useful for the
count() aggregate function.

For examplegount(*) yields the total number of input rowspunt(fl) yields the number of input
rows in whichfl is non-null;count(distinct 1) yields the number of distinct non-null values
of f1.

The predefined aggregate functions are describ&kation 6.140ther aggregate functions may be
added by the user.

1.2.6. Type Casts

A type cast specifies a conversion from one data type to another. PostgreSQL accepts two equivalent
syntaxes for type casts:

CAST (expression AS type)
expression :: type

The CASTsyntax conforms to SQL; the syntax with is historical PostgreSQL usage.

When a cast is applied to a value expression of a known type, it represents a run-time type conversion.
The cast will succeed only if a suitable type conversion function is available. Notice that this is subtly
different from the use of casts with constants, as showB8antion 1.1.2.4A cast applied to an
unadorned string literal represents the initial assignment of a type to a literal constant value, and so it
will succeed for any type (if the contents of the string literal are acceptable input syntax for the data
type).

An explicit type cast may usually be omitted if there is no ambiguity as to the type that a value expres-
sion must produce (for example, when it is assigned to a table column); the system will automatically
apply a type cast in such cases. However, automatic casting is only done for casts that are marked
“OK to apply implicitly” in the system catalogs. Other casts must be invoked with explicit casting
syntax. This restriction is intended to prevent surprising conversions from being applied silently.

It is also possible to specify a type cast using a function-like syntax:
typename (expression)

However, this only works for types whose names are also valid as function names. For exiample,

ble precision can't be used this way, but the equivaléoat8 can. Also, the namésterval

time , andtimestamp can only be used in this fashion if they are double-quoted, because of syntactic
conflicts. Therefore, the use of the function-like cast syntax leads to inconsistencies and should prob-
ably be avoided in new applications. (The function-like syntax is in fact just a function call. When
one of the two standard cast syntaxes is used to do a run-time conversion, it will internally invoke
a registered function to perform the conversion. By convention, these conversion functions have the
same name as their output type, but this is not something that a portable application should rely on.)

1.2.7. Scalar Subqueries

A scalar subquery is an ordina®ELECTquery in parentheses that returns exactly one row with one
column. (SeeChapter 4for information about writing queries.) THeELECTquery is executed and

the single returned value is used in the surrounding value expression. It is an error to use a query that
returns more than one row or more than one column as a scalar subquery. (But if, during a particular

10

Chapter 1. SQL Syntax

execution, the subquery returns no rows, there is no error; the scalar result is taken to be null.) The
subquery can refer to variables from the surrounding query, which will act as constants during any
one evaluation of the subquery. See @swtion 6.15

For example, the following finds the largest city population in each state:

SELECT name, (SELECT max(pop) FROM cities WHERE cities.state = states.name)
FROM states;

1.2.8. Expression Evaluation

The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or
function are not necessarily evaluated left-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote

SELECT true OR somefunc();
thensomefunc() would (probably) not be called at all. The same would be the case if one wrote
SELECT somefunc() OR true;

Note that this is not the same as the left-to-right “short-circuiting” of Boolean operators that is found
in some programming languages.

As a consequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerous to rely on side effects or evaluation ordetHERBNdHAVINGclauses, since

those clauses are extensively reprocessed as part of developing an execution plan. Boolean expressions
(ANDORNOTcombinations) in those clauses may be reorganized in any manner allowed by the laws

of Boolean algebra.

When it is essential to force evaluation ordeGASEconstruct (se&ection 6.1 may be used. For
example, this is an untrustworthy way of trying to avoid division by zero\WwHERElause:

SELECT ... WHERE x <> 0 AND y/x > 1.5;

But this is safe:

SELECT ... WHERE CASE WHEN x> 0 THEN y/x > 1.5 ELSE false END;

A CASEconstruct used in this fashion will defeat optimization attempts, so it should only be done
when necessary.

11

Chapter 2. Data Definition

This chapter covers how one creates the database structures that will hold one’s data. In a relational
database, the raw data is stored in tables, so the majority of this chapter is devoted to explaining how
tables are created and modified and what features are available to control what data is stored in the
tables. Subsequently, we discuss how tables can be organized into schemas, and how privileges can
be assigned to tables. Finally, we will briefly look at other features that affect the data storage, such
as views, functions, and triggers. Detailed information on these topics is found Po#tgreSQL
Programmer’s Guide

2.1. Table Basics

A table in a relational database is much like a table on paper: It consists of rows and columns. The
number and order of the columns is fixed, and each column has a name. The number of rows is
variable -- it reflects how much data is stored at a given moment. SQL does not make any guarantees
about the order of the rows in a table. When a table is read, the rows will appear in random order,
unless sorting is explicitly requested. This is covere@livapter 4 Furthermore, SQL does not assign
unique identifiers to rows, so it is possible to have several completely identical rows in a table. This
is a consequence of the mathematical model that underlies SQL but is usually not desirable. Later in
this chapter we will see how to deal with this issue.

Each column has a data type. The data type constrains the set of possible values that can be assigned
to a column and assigns semantics to the data stored in the column so that it can be used for com-
putations. For instance, a column declared to be of a numerical type will not accept arbitrary text
strings, and the data stored in such a column can be used for mathematical computations. By contrast,
a column declared to be of a character string type will accept almost any kind of data but it does not
lend itself to mathematical calculations, although other operations such as string concatenation are
available.

PostgreSQL includes a sizable set of built-in data types that fit many applications. Users can also
define their own data types. Most built-in data types have obvious names and semantics, so we defer
a detailed explanation t8hapter 5Some of the frequently used data typesiateger for whole
numberspumeric for possibly fractional numbergxt for character stringslate for datestime

for time-of-day values, antimestamp for values containing both date and time.

To create a table, you use the aptly nan@REATE TABLEEommand. In this command you specify
at least a name for the new table, the names of the columns and the data type of each column. For
example:

CREATE TABLE my first_table (
first_column text,
second_column integer

);

This creates a table namedy first_table with two columns. The first column is named
first_column and has a data type @fxt ; the second column has the naseeond_column and

the typeinteger . The table and column names follow the identifier syntax explaine8eiction

1.1.1 The type names are usually also identifiers, but there are some exceptions. Note that the
column list is comma-separated and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give names to your
tables and columns that convey what kind of data they store. So let's look at a more realistic example:

CREATE TABLE products (

12

Chapter 2. Data Definition

product_no integer,
name text,
price numeric

);

(Thenumeric type can store fractional components, as would be typical of monetary amounts.)

Tip: When you create many interrelated tables it is wise to choose a consistent naming pattern
for the tables and columns. For instance, there is a choice of using singular or plural nouns for
table names, both of which are favored by some theorist or other.

There is a limit on how many columns a table can contain. Depending on the column types, it is
between 250 and 1600. However, defining a table with anywhere near this many columns is highly
unusual and often a questionable design.

If you don't need a table anymore, you can remove it usindfReP TABLEommand. For example:

DROP TABLE my first_table;
DROP TABLE products;

Attempting to drop a table that does not exist is an error. Nevertheless, it is common in SQL script
files to unconditionally try to drop each table before creating it, ignoring the error messages.

If you need to modify a table that already exists look iStction 2.8ater in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding features to the table definition to ensure data integrity, security, or convenience.
If you are eager to fill your tables with data now you can skip aheathtpter 3and read the rest of

this chapter later.

2.2. System Columns

Every table has severalstem columnthat are implicitly defined by the system. Therefore, these
names cannot be used as names of user-defined columns. (Note that these restrictions are separate
from whether the name is a key word or not; quoting a name will not allow you to escape these
restrictions.) You do not really need to be concerned about these columns, just know they exist.

oid
The object identifier (object ID) of a row. This is a serial number that is automatically added by
PostgreSQL to all table rows (unless the table was crea@diOUT OIDSin which case this

column is not present). This column is of typid (same name as the column); sextion 5.10
for more information about the type.

tableoid

The OID of the table containing this row. This attribute is particularly handy for queries that
select from inheritance hierarchies, since without it, it’s difficult to tell which individual table a
row came from. Theableoid can be joined against thed column ofpg_class to obtain

the table name.

xmin

The identity (transaction ID) of the inserting transaction for this tuple. (Note: In this context, a
tuple is an individual state of a row; each update of a row creates a new tuple for the same logical
row.)

13

Chapter 2. Data Definition

cmin
The command identifier (starting at zero) within the inserting transaction.
xXmax

The identity (transaction ID) of the deleting transaction, or zero for an undeleted tuple. It is
possible for this field to be nonzero in a visible tuple: That usually indicates that the deleting
transaction hasn’t committed yet, or that an attempted deletion was rolled back.

cmax
The command identifier within the deleting transaction, or zero.
ctid

The physical location of the tuple within its table. Note that althoughctidle can be used to
locate the tuple very quickly, a rowsid will change each time it is updated or moved by
VACUUM FULLThereforectid is useless as a long-term row identifier. The OID, or even better
a user-defined serial number, should be used to identify logical rows.

2.3. Default Values

A column can be assigned a default value. When a new row is created and no values are specified for
some of the columns, the columns will be filled with their respective default values. A data manipu-
lation command can also request explicitly that a column be set to its default value, without knowing
what this value is. (Details about data manipulation commands &hapter 3

If no default value is declared explicitly, the null value is the default value. This usually makes sense
because a null value can be thought to represent unknown data.

In a table definition, default values are listed after the column data type. For example:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric DEFAULT 9.99

The default value may be a scalar expression, which will be evaluated whenever the default value is
inserted fiotwhen the table is created).

2.4. Constraints

Data types are a way to limit the kind of data that can be stored in a table. For many applications,
however, the constraint they provide is too coarse. For example, a column containing a product price
should probably only accept positive values. But there is no data type that accepts only positive num-
bers. Another issue is that you might want to constrain column data with respect to other columns or
rows. For example, in a table containing product information, there should only be one row for each

product number.

To that end, SQL allows you to define constraints on columns and tables. Constraints give you as
much control over the data in your tables as you wish. If a user attempts to store data in a column

14

Chapter 2. Data Definition

that would violate a constraint, an error is raised. This applies even if the value came from the default
value definition.

2.4.1. Check Constraints

A check constraint is the most generic constraint type. It allows you to specify that the value in a
certain column must satisfy an arbitrary expression. For instance, to require positive product prices,
you could use:

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0)

As you see, the constraint definition comes after the data type, just like default value definitions.
Default values and constraints can be listed in any order. A check constraint consists of the key word
CHECHKollowed by an expression in parentheses. The check constraint expression should involve the
column thus constrained, otherwise the constraint would not make too much sense.

You can also give the constraint a separate name. This clarifies error messages and allows you to refer
to the constraint when you need to change it. The syntax is:

CREATE TABLE products (

product_no integer,

name text,

price numeric CONSTRAINT positive_price CHECK (price > 0)
);

So, to specify a named constraint, use the key va8ISTRAINTfollowed by an identifier followed
by the constraint definition.

A check constraint can also refer to several columns. Say you store a regular price and a discounted
price, and you want to ensure that the discounted price is lower than the regular price.

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0),
discounted_price numeric CHECK (discounted_price > 0),
CHECK (price > discounted_price)

The first two constraints should look familiar. The third one uses a new syntax. It is not attached to a
particular column, instead it appears as a separate item in the comma-separated column list. Column
definitions and these constraint definitions can be listed in mixed order.

We say that the first two constraints are column constraints, whereas the third one is a table constraint
because it is written separately from the column definitions. Column constraints can also be written
as table constraints, while the reverse is not necessarily possible. The above example could also be
written as

CREATE TABLE products (
product_no integer,

15

Chapter 2. Data Definition

name text,

price numeric,

CHECK (price > 0),
discounted_price numeric,

CHECK (discounted_price > 0),
CHECK (price > discounted_price)

);
or even

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0),
discounted_price numeric,
CHECK (discounted_price > 0 AND price > discounted_price)

);
It's a matter of taste.

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the
null value. Since most expressions will evaluate to the null value if one operand is null they will not
prevent null values in the constrained columns. To ensure that a column does not contain null values,
the not-null constraint described in the next section should be used.

2.4.2. Not-Null Constraints

A not-null constraint simply specifies that a column must not assume the null value. A syntax example:

CREATE TABLE products (
product_no integer NOT NULL
name text NOT NULL
price numeric

A not-null constraint is always written as a column constraint. A not-null constraint is function-
ally equivalent to creating a check constraifECK ¢olumn_name IS NOT NULL), but in Post-
greSQL creating an explicit not-null constraint is more efficient. The drawback is that you cannot give
explicit names to not-null constraints created that way.

Of course, a column can have more than one constraint. Just write the constraints after one another:

CREATE TABLE products (
product_no integer NOT NULL,
name text NOT NULL,
price numeric NOT NULL CHECK (price > 0)

);
The order doesn’'t matter. It does not necessarily affect in which order the constraints are checked.

The NOT NULLconstraint has an inverse: tNeJLL constraint. This does not mean that the column
must be null, which would surely be useless. Instead, this simply defines the default behavior that
the column may be null. ThEULL constraint is not defined in the SQL standard and should not be
used in portable applications. (It was only added to PostgreSQL to be compatible with other database

16

Chapter 2. Data Definition

systems.) Some users, however, like it because it makes it easy to toggle the constraint in a script file.
For example, you could start with

CREATE TABLE products (
product_no integer NULL,
name text NULL,
price numeric NULL

);

and then insert th®OTkey word where desired.

Tip: In most database designs the majority of columns should be marked not null.

2.4.3. Unique Constraints

Unique constraints ensure that the data contained in a column or a group of columns is unique with
respect to all the rows in the table. The syntax is

CREATE TABLE products (
product_no integer UNIQUE
name text,
price numeric

);
when written as a column constraint, and

CREATE TABLE products (
product_no integer,
name text,
price numeric,
UNIQUE (product_no)

)i

when written as a table constraint.

If a unique constraint refers to a group of columns, the columns are listed separated by commas:

CREATE TABLE example (
a integer,
b integer,
c integer,
UNIQUE (a, c)

It is also possible to assign names to unigue constraints:

CREATE TABLE products (
product_no integer CONSTRAINT must_be_different UNIQUE,
name text,
price numeric

17

Chapter 2. Data Definition

In general, a unigque constraint is violated when there are (at least) two rows in the table where the
values of each of the corresponding columns that are part of the constraint are equal. However, null
values are not considered equal in this consideration. That means, in the presence of a multicolumn
unique constraint it is possible to store an unlimited number of rows that contain a null value in at
least one of the constrained columns. This behavior conforms to the SQL standard, but we have heard
that other SQL databases may not follow this rule. So be careful when developing applications that
are intended to be portable.

2.4.4. Primary Keys

Technically, a primary key constraint is simply a combination of a unique constraint and a not-null
constraint. So, the following two table definitions accept the same data:

CREATE TABLE products (
product_no integer UNIQUE NOT NULL,
name text,
price numeric

);

CREATE TABLE products (
product_no integer PRIMARY KEY
name text,
price numeric

Primary keys can also constrain more than one column; the syntax is similar to unique constraints:

CREATE TABLE example (
a integer,
b integer,
c integer,
PRIMARY KEY (a, ¢)

A primary key indicates that a column or group of columns can be used as a unique identifier for
rows in the table. (This is a direct consequence of the definition of a primary key. Note that a unique
constraint does not, in fact, provide a unique identifier because it does not exclude null values.) This
is useful both for documentation purposes and for client applications. For example, a GUI application
that allows modifying row values probably needs to know the primary key of a table to be able to
identify rows uniquely.

A table can have at most one primary key (while it can have many unique and not-null constraints).
Relational database theory dictates that every table must have a primary key. This rule is not enforced
by PostgreSQL, but it is usually best to follow it.

2.4.5. Foreign Keys

A foreign key constraint specifies that the values in a column (or a group of columns) must match the
values appearing in some row of another table. We say this maintairef¢inential integritybetween
two related tables.

Say you have the product table that we have used several times already:

18

Chapter 2. Data Definition

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

);

Let's also assume you have a table storing orders of those products. We want to ensure that the orders
table only contains orders of products that actually exist. So we define a foreign key constraint in the
orders table that references the products table:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products (product_no) ,
quantity integer

);

Now it is impossible to create orders wigloduct_no entries that do not appear in the products
table.

We say that in this situation the orders table is teferencingtable and the products table is the
referencedable. Similarly, there are referencing and referenced columns.

You can also shorten the above command to

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products,
quantity integer

);

because in absence of a column list the primary key of the referenced table is used as referenced
column.

A foreign key can also constrain and reference a group of columns. As usual, it then needs to be
written in table constraint form. Here is a contrived syntax example:

CREATE TABLE t1 (

a integer PRIMARY KEY,

b integer,

c integer,

FOREIGN KEY (b, c) REFERENCES other_table (cl, c2)
);

Of course, the number and type of the constrained columns needs to match the number and type of
the referenced columns.

A table can contain more than one foreign key constraint. This is used to implement many-to-many
relationships between tables. Say you have tables about products and orders, but now you want to
allow one order to contain possibly many products (which the structure above did not allow). You
could use this table structure:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

);

CREATE TABLE orders (
order_id integer PRIMARY KEY,

19

Chapter 2. Data Definition

shipping_address text,
);

CREATE TABLE order_items (
product_no integer REFERENCES products,
order_id integer REFERENCES orders,
quantity integer,
PRIMARY KEY (product_no, order_id)

)i

Note also that the primary key overlaps with the foreign keys in the last table.

We know that the foreign keys disallow creation of orders that don't relate to any products. But what
if a product is removed after an order is created that references it? SQL allows you to specify that as
well. Intuitively, we have a few options:

- Disallow deleting a referenced product
+ Delete the orders as well
. Something else?

To illustrate this, let's implement the following policy on the many-to-many relationship example
above: When someone wants to remove a product that is still referenced by an order (via
order_items), we disallow it. If someone removes an order, the order items are removed as well.

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

);

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,

);

CREATE TABLE order_items (
product_no integer REFERENCES products ON DELETE RESTRICT
order_id integer REFERENCES orders ON DELETE CASCADE
quantity integer,
PRIMARY KEY (product_no, order_id)

Restricting and cascading deletes are the two most common of®#B83RICT can also be written
asNO ACTIONand it’s also the default if you don’t specify anything. There are two other options
for what should happen with the foreign key columns when a primary key is def&dNULLand

SET DEFAULTNote that these do not excuse you from observing any constraints. For example, if an
action specifieSET DEFAULTbut the default value would not satisfy the foreign key, the deletion of
the primary key will fail.

Analogous tatON DELETRhere is als®N UPDATRvhich is invoked when a primary key is changed
(updated). The possible actions are the same.

20

Chapter 2. Data Definition

More information about updating and deleting data i€hapter 3

Finally, we should mention that a foreign key must reference columns that are either a primary key or
form a unique constraint. If the foreign key references a unigue constraint, there are some additional
possibilities regarding how null values are matched. These are explaineddREASE TABLENtry

in the PostgreSQL Reference Manual

2.5. Inheritance

Let's create two tables. The capitals table contains state capitals which are also cities. Naturally, the
capitals table should inherit from cities.

CREATE TABLE cities (

name text,
population float,
altitude int -- (in ft)

);

CREATE TABLE capitals (
state char(2)
) INHERITS (cities);

In this case, a row of capitaleherits all attributes (name, population, and altitude) from its parent,
cities. The type of the attribute nametéxt , a native PostgreSQL type for variable length ASCII
strings. The type of the attribute populatiorflist , a native PostgreSQL type for double precision
floating-point numbers. State capitals have an extra attribute, state, that shows their state. In Post-
greSQL, a table can inherit from zero or more other tables, and a query can reference either all rows
of a table or all rows of a table plus all of its descendants.

Note: The inheritance hierarchy is actually a directed acyclic graph.

For example, the following query finds the names of all cities, including state capitals, that are located
at an altitude over 500ft:

SELECT name, altitude
FROM cities
WHERE altitude > 500;

which returns:

name | altitude
___________ N
Las Vegas | 2174
Mariposa | 1953
Madison | 845

On the other hand, the following query finds all the cities that are not state capitals and are situated at
an altitude over 500ft:

SELECT name, altitude

21

Chapter 2. Data Definition

FROM ONLY cities
WHERE altitude > 500;

name | altitude
___________ &
Las Vegas | 2174
Mariposa | 1953

Here the “ONLY” before cities indicates that the query should be run over only cities and not tables
below cities in the inheritance hierarchy. Many of the commands that we have already discussed --
SELECT, UPDATEaNdDELETE-- support this “ONLY” notation.

In some cases you may wish to know which table a particular tuple originated from. There is a system
column calledTABLEOID in each table which can tell you the originating table:

SELECT c.tableoid, c.name, c.altitude
FROM cities ¢
WHERE c.altitude > 500;

which returns:

tableoid | name | altitude
139793 | Las Vegas | 2174
139793 | Mariposa | 1953
139798 | Madison | 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing a join
with pg_class you can see the actual table names:

SELECT p.relname, c.name, c.altitude
FROM cities ¢, pg_class p
WHERE c.altitude > 500 and c.tableoid = p.oid;

which returns:

relname | name | altitude
+ +

cities | Las Vegas | 2174

cites | Mariposa | 1953

capitals | Madison | 845

Deprecated: In previous versions of PostgreSQL, the default was not to get access to child tables.
This was found to be error prone and is also in violation of the SQL standard. Under the old syntax,
to get the sub-tables you append * to the table name. For example

SELECT * from cities*;

You can still explicitly specify scanning child tables by appending *, as well as explicitly specify
not scanning child tables by writing “ONLY”. But beginning in version 7.1, the default behavior for
an undecorated table name is to scan its child tables too, whereas before the default was not to
do so. To get the old default behavior, set the configuration option SQL_Inheritance to off, e.g.,

SET SQL_Inheritance TO OFF;

22

Chapter 2. Data Definition

or add a line in your postgresgl.conf file.

A limitation of the inheritance feature is that indexes (including unique constraints) and foreign key
constraints only apply to single tables, not to their inheritance children. Thus, in the above example,
specifying that another table’s colunREFERENCES cities(name) would allow the other table

to contain city names but not capital names. This deficiency will probably be fixed in some future
release.

2.6. Modifying Tables

When you create a table and you realize that you made a mistake, or the requirements of the applica-
tion changed, then you can drop the table and create it again. But this is not a convenient option if the
table is already filled with data, or if the table is referenced by other database objects (for instance a
foreign key constraint). Therefore PostgreSQL provides a family of commands to make modifications
on existing tables.

You can

« Add columns,

« Remove columns,

« Add constraints,

« Remove constraints,
« Change default values,
- Rename columns,

- Rename tables.

All these actions are performed using thieTER TABLEcommand.

2.6.1. Adding a Column

To add a column, use this command:

ALTER TABLE products ADD COLUMN description text;

The new column will initially be filled with null values in the existing rows of the table.

You can also define a constraint on the column at the same time, using the usual syntax:
ALTER TABLE products ADD COLUMN description text CHECK (description <> ")

A new column cannot have a not-null constraint since the column initially has to contain null values.
But you can add a not-null constraint later. Also, you cannot define a default value on a new column.
According to the SQL standard, this would have to fill the new columns in the existing rows with the
default value, which is not implemented yet. But you can adjust the column default later on.

2.6.2. Removing a Column

To remove a column, use this command:

ALTER TABLE products DROP COLUMN description;

23

Chapter 2. Data Definition
2.6.3. Adding a Constraint
To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (name <> "),

ALTER TABLE products ADD CONSTRAINT some_name UNIQUE (product_no);

ALTER TABLE products ADD FOREIGN KEY (product_group_id) REFERENCES prod-
uct_groups;

To add a not-null constraint, which cannot be written as a table constraint, use this syntax:

ALTER TABLE products ALTER COLUMN product_ no SET NOT NULL;

The constraint will be checked immediately, so the table data must satisfy the constraint before it can
be added.

2.6.4. Removing a Constraint

To remove a constraint you need to know its name. If you gave it a name then that's easy. Otherwise
the system assigned a generated name, which you need to find out. The psqgl comntabié-

name can be helpful here; other interfaces might also provide a way to inspect table details. Then the
command is:

ALTER TABLE products DROP CONSTRAINT some_name;

This works the same for all constraint types except not-null constraints. To drop a not null constraint
use

ALTER TABLE products ALTER COLUMN product_no DROP NOT NULL;

(Recall that not-null constraints do not have names.)

2.6.5. Changing the Default

To set a new default for a column, use a command like this:

ALTER TABLE products ALTER COLUMN price SET DEFAULT 7.77;
To remove any default value, use

ALTER TABLE products ALTER COLUMN price DROP DEFAULT;

This is equivalent to setting the default to null, at least in PostgreSQL. As a consequence, it is not an
error to drop a default where one hadn't been defined, because the default is implicitly the null value.

2.6.6. Renaming a Column

To rename a column:

ALTER TABLE products RENAME COLUMN product_ no TO product_number;

24

Chapter 2. Data Definition

2.6.7. Renaming a Table

To rename a table:

ALTER TABLE products RENAME TO items;

2.7. Privileges

When you create a database object, you become its owner. By default, only the owner of an object can
do anything with the object. In order to allow other users to ugwiitjlegesmust be granted. (There
are also users that have the superuser privilege. Those users can always access any object.)

Note: To change the owner of a table, index, sequence, or view, use the ALTER TABLEcommand.

There are several different privilegeSELECT, INSERT, UPDATE DELETE RULE REFERENCES
TRIGGER CREATE TEMPORARMEXECUTEUSAGE andALL PRIVILEGES. For complete informa-
tion on the different types of privileges supported by PostgreSQL, refer iBRA&Treference page.
The following sections and chapters will also show you how those privileges are used.

The right to modify or destroy an object is always the privilege of the owner only.

To assign privileges, theRANTcommand is used. So,jde is an existing user, angtcounts is an
existing table, the privilege to update the table can be granted with

GRANT UPDATE ON accounts TO joe;

The user executing this command must be the owner of the table. To grant a privilege to a group, use

GRANT SELECT ON accounts TO GROUP staff;
The special “user” nameUBLIC can be used to grant a privilege to every user on the system. Writing
ALL in place of a specific privilege specifies that all privileges will be granted.

To revoke a privilege, use the fittingly namr&VOKEommand:

REVOKE ALL ON accounts FROM PUBLIC;

The special privileges of the table owner (i.e., the right tdO&DP GRANTREVOKEetc) are always
implicit in being the owner, and cannot be granted or revoked. But the table owner can choose to
revoke his own ordinary privileges, for example to make a table read-only for himself as well as
others.

2.8. Schemas

A PostgreSQL database cluster (installation) contains one or more named databases. Users and groups
of users are shared across the entire cluster, but no other data is shared across databases. Any given
client connection to the server can access only the data in a single database, the one specified in the
connection request.

25

Chapter 2. Data Definition

Note: Users of a cluster do not necessarily have the privilege to access every database in the
cluster. Sharing of user names means that there cannot be different users named, say, joe in
two databases in the same cluster; but the system can be configured to allow joe access to only
some of the databases.

A database contains one or more nameldemaswhich in turn contain tables. Schemas also contain
other kinds of named objects, including data types, functions, and operators. The same object name
can be used in different schemas without conflict; for example, dtbmal andmyschema may

contain tables namenhytable . Unlike databases, schemas are not rigidly separated: a user may
access objects in any of the schemas in the database he is connected to, if he has privileges to do so.

There are several reasons why one might want to use schemas:

- To allow many users to use one database without interfering with each other.
- To organize database objects into logical groups to make them more manageable.

« Third-party applications can be put into separate schemas so they cannot collide with the names of
other objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be
nested.

2.8.1. Creating a Schema

To create a separate schema, use the commaarEhTE SCHEMA&ive the schema a name of your
choice. For example:

CREATE SCHEMA myschema;

To create or access objects in a schema, writeaified nameconsisting of the schema name and
table name separated by a dot:

schema. table
Actually, the even more general syntax
database .schema. table

can be used too, but at present this is just for pro-forma compliance with the SQL standard; if you
write a database name it must be the same as the database you are connected to.

So to create a table in the new schema, use
CREATE TABLE myschema.mytable (

)y

This works anywhere a table hame is expected, including the table modification commands and the
data access commands discussed in the following chapters.

To drop a schema if it's empty (all objects in it have been dropped), use

DROP SCHEMA myschema;

To drop a schema including all contained objects, use

26

Chapter 2. Data Definition

DROP SCHEMA myschema CASCADE;

SeeSection 2.10or a description of the general mechanism behind this.

Often you will want to create a schema owned by someone else (since this is one of the ways to
restrict the activities of your users to well-defined namespaces). The syntax for that is:

CREATE SCHEMAchemaname AUTHORIZATION username ;
You can even omit the schema name, in which case the schema name will be the same as the user
name. Se&ection 2.8.6or how this can be useful.

Schema names beginning wiih_ are reserved for system purposes and may not be created by users.

2.8.2. The Public Schema

In the previous sections we created tables without specifying any schema names. By default, such
tables (and other objects) are automatically put into a schema named “public”. Every new database
contains such a schema. Thus, the following are equivalent:

CREATE TABLE products (...);
and

CREATE TABLE public.products (...);

2.8.3. The Schema Search Path

Qualified names are tedious to write, and it's often best not to wire a particular schema name into

applications anyway. Therefore tables are often referred torngyalified hameswhich consist of

just the table name. The system determines which table is meant by followeayeh pathwhich is

a list of schemas to look in. The first matching table in the search path is taken to be the one wanted.
If there is no match in the search path, an error is reported, even if matching table names exist in other
schemas in the database.

The first schema named in the search path is called the current schema. Aside from being the first
schema searched, it is also the schema in which new tables will be createdCIREASE TABLE
command does not specify a schema name.

To show the current search path, use the following command:
SHOW search_path;
In the default setup this returns:

search_path

$user,public

The first element specifies that a schema with the same name as the current user is to be searched.
Since no such schema exists yet, this entry is ignored. The second element refers to the public schema
that we have seen already.

The first schema in the search path that exists is the default location for creating new objects. That
is the reason that by default objects are created in the public schema. When objects are referenced

27

Chapter 2. Data Definition

in any other context without schema qualification (table modification, data modification, or query
commands) the search path is traversed until a matching object is found. Therefore, in the default
configuration, any unqualified access again can only refer to the public schema.

To put our new schema in the path, we use

SET search_path TO myschema,public;

(We omit thesuser here because we have no immediate need for it.) And then we can access the
table without schema qualification:

DROP TABLE mytable;

Also, sincemyschema is the first element in the path, new objects would by default be created in it.
We could also have written

SET search_path TO myschema;
Then we no longer have access to the public schema without explicit qualification. There is nothing
special about the public schema except that it exists by default. It can be dropped, too.
See als@ection 6.130r other ways to access the schema search path.

The search path works in the same way for data type names, function names, and operator names as it
does for table names. Data type and function names can be qualified in exactly the same way as table
names. If you need to write a qualified operator name in an expression, there is a special provision:
you must write

OPERATORgChema. operator)
This is needed to avoid syntactic ambiguity. An example is
SELECT 3 OPERATOR(pg_catalog.+) 4;

In practice one usually relies on the search path for operators, so as not to have to write anything so
ugly as that.

2.8.4. Schemas and Privileges

By default, users cannot see the objects in schemas they do not own. To allow that, the owner of the
schema needs to grant th&AGHrivilege on the schema. To allow users to make use of the objects
in the schema, additional privileges may need to be granted, as appropriate for the object.

A user can also be allowed to create objects in someone else’s schema. To allow tERE/TE
privilege on the schema needs to be granted. Note that by default, everyone GRE&wEprivilege

on the schemaublic . This allows all users that manage to connect to a given database to create
objects there. If you do not want to allow that, you can revoke that privilege:

REVOKE CREATE ON public FROM PUBLIC;

(The first “public” is the schema, the second “public” means “every user”. In the first sense it is
an identifier, in the second sense it is a reserved word, hence the different capitalization; recall the
guidelines fromSection 1.1.1)

28

Chapter 2. Data Definition

2.8.5. The System Catalog Schema

In addition topublic and user-created schemas, each database contpingatalog schema,
which contains the system tables and all the built-in data types, functions, and opekateasalog

is always effectively part of the search path. If it is not named explicitly in the path then it is implicitly
searchetbeforesearching the path’s schemas. This ensures that built-in names will always be findable.
However, you may explicitly placpg_catalog at the end of your search path if you prefer to have
user-defined names override built-in names.

In PostgreSQL versions before 7.3, table names beginningpgittwere reserved. This is no longer

true: you may create such a table name if you wish, in any non-system schema. However, it's best
to continue to avoid such names, to ensure that you won't suffer a conflict if some future version
defines a system catalog named the same as your table. (With the default search path, an unqualified
reference to your table name would be resolved as the system catalog instead.) System catalogs will
continue to follow the convention of having names beginning with, so that they will not conflict

with unqualified user-table names so long as users avoipgth@refix.

2.8.6. Usage Patterns

Schemas can be used to organize your data in many ways. There are a few usage patterns that are
recommended and are easily supported by the default configuration:

- If you do not create any schemas then all users access the public schema implicitly. This simu-
lates the situation where schemas are not available at all. This setup is mainly recommended when
there is only a single user or a few cooperating users in a database. This setup also allows smooth
transition from the non-schema-aware world.

« You can create a schema for each user with the same name as that user. Recall that the default
search path starts witbuser , which resolves to the user name. Therefore, if each user has a
separate schema, they access their own schemas by default.

If you use this setup then you might also want to revoke access to the public schema (or drop it
altogether), so users are truly constrained to their own schemas.

- Toinstall shared applications (tables to be used by everyone, additional functions provided by third
parties, etc.), put them into separate schemas. Remember to grant appropriate privileges to allow
the other users to access them. Users can then refer to these additional objects by qualifying the
names with a schema name, or they can put the additional schemas into their path, as they choose.

2.8.7. Portability

In the SQL standard, the notion of objects in the same schema being owned by different users does
not exist. Moreover, some implementations don'’t allow you to create schemas that have a different
name than their owner. In fact, the concepts of schema and user are nearly equivalent in a database
system that implements only the basic schema support specified in the standard. Therefore, many
users consider qualified names to really consistsefname . tablename . This is how PostgreSQL

will effectively behave if you create a per-user schema for every user.

Also, there is no concept ofgublic schema in the SQL standard. For maximum conformance to
the standard, you should not use (perhaps even removpiithe schema.

29

Chapter 2. Data Definition

Of course, some SQL database systems might not implement schemas at all, or provide namespace
support by allowing (possibly limited) cross-database access. If you need to work with those systems,
then maximum portability would be achieved by not using schemas at all.

2.9. Other Database Objects

Tables are the central objects in a relational database structure, because they hold your data. But they
are not the only objects that exist in a database. Many other kinds of objects can be created to make the
use and management of the data more efficient or convenient. They are not discussed in this chapter,
but we give you a list here so that you are aware of what is possible.

+ Views
- Functions, operators, data types, domains

- Triggers and rewrite rules

2.10. Dependency Tracking

When you create complex database structures involving many tables with foreign key constraints,
views, triggers, functions, etc. you will implicitly create a net of dependencies between the objects.
For instance, a table with a foreign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, PostgreSQL makes sure that you cannot drop
objects that other objects still depend on. For example, attempting to drop the products table we had
considered irSection 2.4.5with the orders table depending on it, would result in an error message
such as this:

DROP TABLE products;

NOTICE: constraint $1 on table orders depends on table products

ERROR: Cannot drop table products because other objects depend on it
Use DROP ... CASCADE to drop the dependent objects too

The error message contains a useful hint: If you don’t want to bother deleting all the dependent objects
individually, you can run

DROP TABLE products CASCADE;

and all the dependent objects will be removed. In this case, it doesn’t remove the orders table, it only
removes the foreign key constraint. (If you want to check WbROP ... CASCADE will do, run
DROPwithout CASCADENd read th&NOTICEmessages.)

All drop commands in PostgreSQL support specifyixsCADEOf course, the nature of the possible
dependencies varies with the type of the object. You can also RESTRICTinstead ofCASCADEO
get the default behavior which is to restrict drops of objects that other objects depend on.

Note: According to the SQL standard, specifying either RESTRICT or CASCADHS required. No
database system actually implements it that way, but whether the default behavior is RESTRICTor
CASCADmaries across systems.

30

Chapter 2. Data Definition
Note: Foreign key constraint dependencies and serial column dependencies from PostgreSQL

versions prior to 7.3 are not maintained or created during the upgrade process. All other depen-
dency types will be properly created during an upgrade.

31

Chapter 3. Data Manipulation

The previous chapter discussed how to create tables and other structures to hold your data. Now it is
time to fill the tables with data. This chapter covers how to insert, update, and delete table data. We
also introduce ways to effect automatic data changes when certain events occur: triggers and rewrite
rules. The chapter after this will finally explain how to extract your long-lost data back out of the
database.

3.1. Inserting Data

When a table is created, it contains no data. The first thing to do before a database can be of much use
is to insert data. Data is conceptually inserted one row at a time. Of course you can also insert more
than one row, but there is no way to insert less than one row at a time. Even if you know only some
column values, a complete row must be created.

To create a new row, use tlieSERT command. The command requires the table name and a value
for each of the columns of the table. For example, consider the products tabl€fapter 2

CREATE TABLE products (
product_no integer,
name text,
price numeric

)i
An example command to insert a row would be:

INSERT INTO products VALUES (1, 'Cheese’, 9.99);
The data values are listed in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columns in the table. To
avoid that you can also list the columns explicitly. For example, both of the following commands have
the same effect as the one above:

INSERT INTO products (product_no, name, price) VALUES (1, 'Cheese’, 9.99);
INSERT INTO products (name, price, product_no) VALUES ('Cheese’, 9.99, 1);

Many users consider it good practice to always list the column names.

If you don’t have values for all the columns, you can omit some of them. In that case, the columns
will be filled with their default values. For example,

INSERT INTO products (product_no, name) VALUES (1, 'Cheese’);
INSERT INTO products VALUES (1, 'Cheese’);

The second form is a PostgreSQL extension. It fills the columns from the left with as many values as
are given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columns or for the entire row:

INSERT INTO products (product_no, name, price) VALUES (1, 'Cheese’, DE-
FAULT);
INSERT INTO products DEFAULT VALUES;

32

Chapter 3. Data Manipulation

Tip: To do “bulk loads”, that is, inserting a lot of data, take a look at the COPYcommand (see
PostgreSQL Reference Manual). It is not as flexible as the INSERT command, but more efficient.

3.2. Updating Data

The modification of data that is already in the database is referred to as updating. You can update
individual rows, all the rows in a table, or a subset of all rows. Each column can be updated separately;
the other columns are not affected.

To perform an update, you need three pieces of information:

1. The name of the table and column to update,
2. The new value of the column,
3. Which row(s) to update.

Recall fromChapter 2hat SQL does not, in general, provide a unique identifier for rows. Therefore

it is not necessarily possible to directly specify which row to update. Instead, you specify which
conditions a row must meet in order to be updated. Only if you have a primary key in the table
(no matter whether you declared it or not) can you reliably address individual rows, by choosing a
condition that matches the primary key. Graphical database access tools rely on this fact to allow you
to update rows individually.

For example, this command updates all products that have a price of 5 to have a price of 10:

UPDATE products SET price = 10 WHERE price = 5;

This may cause zero, one, or many rows to be updated. It is not an error to attempt an update that does
not match any rows.

Let's look at that command in detail: First is the key warBDATEfollowed by the table name. As

usual, the table name may be schema-qualified, otherwise it is looked up in the path. Next is the key
word SET followed by the column name, an equals sign and the new column value. The new column
value can be any scalar expression, not just a constant. For example, if you want to raise the price of
all products by 10% you could use:

UPDATE products SET price = price * 1.10;

As you see, the expression for the new value can also refer to the old value. We also lefMaHEIRE

clause. If it is omitted, it means that all rows in the table are updated. If it is present, only those rows
that match the condition after tweHERRre updated. Note that the equals sign ing&& clause is an
assignment while the one in tieHERElause is a comparison, but this does not create any ambiguity.

Of course, the condition does not have to be an equality test. Many other operators are available (see
Chapter §. But the expression needs to evaluate to a Boolean result.

You can also update more than one column iv@&DATEcommand by listing more than one assign-
ment in theSET clause. For example:

UPDATE mytable SET a = 5, b = 3, ¢ = 1 WHERE a > 0;

33

Chapter 3. Data Manipulation

3.3. Deleting Data

So far we have explained how to add data to tables and how to change data. What remains is to
discuss how to remove data that is no longer needed. Just as adding data is only possible in whole
rows, you can only remove entire rows from a table. In the previous section we discussed that SQL
does not provide a way to directly address individual rows. Therefore, removing rows can only be
done by specifying conditions that the rows to be removed have to match. If you have a primary key
in the table then you can specify the exact row. But you can also remove groups of rows matching a
condition, or you can remove all rows in the table at once.

You use theDELETEcommand to remove rows; the syntax is very similar toWr®ATECcommand.
For instance, to remove all rows from the products table that have a price of 10, use

DELETE FROM products WHERE price = 10;

If you simply write
DELETE FROM products;

then all rows in the table will be deleted! Caveat programmer.

34

Chapter 4. Queries

The previous chapters explained how to create tables, how to fill them with data, and how to manipu-
late that data. Now we finally discuss how to retrieve the data out of the database.

4.1. Overview

The process of retrieving or the command to retrieve data from a database is aglled;dn SQL
theSELECTcommand is used to specify queries. The general syntax &fEhECTcommand is

SELECT select_list FROMtable_expression [sort_specification]
The following sections describe the details of the select list, the table expression, and the sort specifi-
cation.

The simplest kind of query has the form

SELECT * FROM tablel,;

Assuming that there is a table calledlel , this command would retrieve all rows and all columns

from tablel . (The method of retrieval depends on the client application. For example, the psql
program will display an ASClIl-art table on the screen, while client libraries will offer functions to
retrieve individual rows and columns.) The select list specificatiomreans all columns that the table
expression happens to provide. A select list can also select a subset of the available columns or make
calculations using the columns. For examplealilel has columns named b, andc (and perhaps

others) you can make the following query:

SELECT a, b + ¢ FROM tablel;

(assuming thatt andc are of a numerical data type). S8ection 4.3For more details.

FROM tablel is a particularly simple kind of table expression: it reads just one table. In general,
table expressions can be complex constructs of base tables, joins, and subqueries. But you can also
omit the table expression entirely and use St ECTcommand as a calculator:

SELECT 3 * 4,

This is more useful if the expressions in the select list return varying results. For example, you could
call a function this way:

SELECT random();

4.2. Table Expressions

A table expressiogomputes a table. The table expression contaifR@Mclause that is optionally
followed byWHEREGROUP BYandHAVINGclauses. Trivial table expressions simply refer to a table

on disk, a so-called base table, but more complex expressions can be used to modify or combine base
tables in various ways.

The optionaWHEREGROUP BYandHAVING clauses in the table expression specify a pipeline of
successive transformations performed on the table derived irRB&tlause. All these transforma-

35

Chapter 4. Queries

tions produce a virtual table that provides the rows that are passed to the select list to compute the
output rows of the query.

4.2.1. The FROM Clause

The FROMclause derives a table from one or more other tables given in a comma-separated table
reference list.

FROMtable_reference [, table_reference [, ...

A table reference may be a table name (possibly schema-qualified), or a derived table such as a
subquery, a table join, or complex combinations of these. If more than one table reference is listed in
theFROM:lause they are cross-joined (see below) to form the intermediate virtual table that may then
be subject to transformations by thtHEREGROUP BYandHAVING clauses and is finally the result

of the overall table expression.

When a table reference names a table that is the supertable of a table inheritance hierarchy, the table
reference produces rows of not only that table but all of its subtable successors, unless the keyword

ONLYprecedes the table name. However, the reference produces only the columns that appear in the
named table --- any columns added in subtables are ignored.

4.2.1.1. Joined Tables

A joined table is a table derived from two other (real or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available.

Join Types

Cross join
Tl CROSS JOINT2

For each combination of rows fromil andT2, the derived table will contain a row consisting of
all columns inT1 followed by all columns inr2. If the tables have N and M rows respectively,
the joined table will have N * M rows. A cross join is equivalent tolSNER JOIN ON TRUE

Tip: FROMT1 CROSS JOINT2 is equivalent to FROMT1, T2.

Qualified joins

T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 ON boolean_expression

T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 USING (join col-
umn list)

T1 NATURAL { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2

The wordsINNER andOUTERare optional in all formsINNER is the defaultL. EFT, RIGHT, and
FULL imply an outer join.

Thejoin conditionis specified in theNor USING clause, or implicitly by the wordNATURAL
The join condition determines which rows from the two source tables are considered to “match”,
as explained in detail below.

TheONclause is the most general kind of join condition: it takes a Boolean value expression of
the same kind as is used inveHERElause. A pair of rows fronT1 and T2 match if theON
expression evaluates to true for them.

36

Chapter 4. Queries

USINGis a shorthand notation: it takes a comma-separated list of column names, which the joined
tables must have in common, and forms a join condition specifying equality of each of these pairs
of columns. Furthermore, the output of@IN USING has one column for each of the equated
pairs of input columns, followed by all of the other columns from each table. TUBISIG (a,

b, ¢) isequivalentt®N (tl.a = t2.a AND tl.b = t2.b AND tl.c = t2.c) with the
exception that ifoNis used there will be two columres b, andc in the result, whereas with
USINGthere will be only one of each.

Finally, NATURALs a shorthand form afSING: it forms aUSINGlist consisting of exactly those
column names that appear in both input tables. As WBING, these columns appear only once
in the output table.

The possible types of qualified join are:

INNER JOIN

For each row R1 of T1, the joined table has a row for each row in T2 that satisfies the join
condition with R1.

LEFT OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join
condition with any row in T2, a joined row is added with null values in columns of T2.
Thus, the joined table unconditionally has at least one row for each row in T1.

RIGHT OUTER JOIN

First, an inner join is performed. Then, for each row in T2 that does not satisfy the join
condition with any row in T1, a joined row is added with null values in columns of T1. This
is the converse of a left join: the result table will unconditionally have a row for each row
in T2.

FULL OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join
condition with any row in T2, a joined row is added with null values in columns of T2.

Also, for each row of T2 that does not satisfy the join condition with any row in T1, a

joined row with null values in the columns of T1 is added.

Joins of all types can be chained together or nested: either or bdthafidT2 may be joined tables.
Parentheses may be used aroo@tN clauses to control the join order. In the absence of parentheses,
JOIN clauses nest left-to-right.

To put this together, assume we have talles

num | name

andt2

num | value

_____ R
1] xxx
3 1 yyy

37

Chapter 4. Queries

5| zzz
then we get the following results for the various joins:

=> SELECT * FROM tl1 CROSS JOIN t2;
num | name | num | value
| xxx
| yyy
| zzz
| xxx
| yyy
| zzz
| xxx

| yyy
| zzz

WWNNNPRE PP
O 0 0 T T oY 9O
O wWkrF JgwkEowek

3
(9 rows)

=> SELECT * FROM t1 INNER JOIN t2 ON tl.num = t2.num;
num | name | num | value

----- R S S S
1] a | 1] xxx
31lc | 31 vyyy

(2 rows)

=> SELECT * FROM t1 INNER JOIN t2 USING (num);
num | name | value

_____ R B
1| a | xxx
3]c | yyy

(2 rows)

=> SELECT * FROM t1 NATURAL INNER JOIN t2;
num | name | value

_____ R B
1| a | xxx
3]c | yyy

(2 rows)

=> SELECT * FROM t1 LEFT JOIN t2 ON tl.num = t2.num;
num | name | num | value

+ + +

1| a | 1| xxx

2|b I I

3]c | 31y
(3 rows)

=> SELECT * FROM t1 LEFT JOIN t2 USING (num);
num | name | value

_____ S B —
1] a | xxx
2]b I
3]c | yyy

(3 rows)

=> SELECT * FROM t1 RIGHT JOIN t2 ON tl.num = t2.num;
num | name | num | value

38

Chapter 4. Queries

----- B R Y S
1] a | 1] xxx
31lc I 31 vyy

| | 5| zzz

(3 rows)

=> SELECT * FROM t1 FULL JOIN t2 ON tl.num = t2.num;
num | name | num | value

+ +
T T

3| yyy
| 5| zzz

+
| 1] xxx
I
I

w N -

a
b
c

(4 rows)

The join condition specified witbNcan also contain conditions that do not relate directly to the join.
This can prove useful for some queries but needs to be thought out carefully. For example:

=> SELECT * FROM t1 LEFT JOIN t2 ON tl.num = t2.num AND t2.value = 'xxx’;
num | name | num | value

----- S S —
1| a | 1| xxx
2|b I I
31c I I

(3 rows)

4.2.1.2. Table and Column Aliases

A temporary name can be given to tables and complex table references to be used for references to
the derived table in further processing. This is call¢dtde alias

To create a table alias, write
FROMtable_reference AS alias
or
FROMtable_reference alias

The ASkey word is noisealias can be any identifier.

A typical application of table aliases is to assign short identifiers to long table names to keep the join
clauses readable. For example:

SELECT * FROM some_very_long_table_name s JOIN another_fairly_long_name a ON s.id = a.num;

The alias becomes the new name of the table reference for the current query -- it is no longer possible
to refer to the table by the original name. Thus

SELECT * FROM my_table AS m WHERE my_table.a > 5;

39

Chapter 4. Queries

is not valid SQL syntax. What will actually happen (this is a PostgreSQL extension to the standard)
is that an implicit table reference is added to BROMclause, so the query is processed as if it were
written as

SELECT * FROM my_table AS m, my_table AS my_table WHERE my_table.a > 5;

which will result in a cross join, which is usually not what you want.

Table aliases are mainly for notational convenience, but it is necessary to use them when joining a
table to itself, e.g.,

SELECT * FROM my_table AS a CROSS JOIN my_table AS b ...

Additionally, an alias is required if the table reference is a subquerySseton 4.2.1.8

Parentheses are used to resolve ambiguities. The following statement will assign thetaliii®
result of the join, unlike the previous example:

SELECT * FROM (my_table AS a CROSS JOIN my table) AS b ...

Another form of table aliasing also gives temporary names to the columns of the table:
FROMtable_reference [AS] alias (columnl [, column2 [, ..]])

If fewer column aliases are specified than the actual table has columns, the remaining columns are not
renamed. This syntax is especially useful for self-joins or subqueries.

When an alias is applied to the output af@IN clause, using any of these forms, the alias hides the
original names within th@OIN . For example,

SELECT a.* FROM my_table AS a JOIN your_table AS b ON ...
is valid SQL, but
SELECT a.* FROM (my_table AS a JOIN your_table AS b ON ...) AS ¢

is not valid: the table alias is not visible outside the alias

4.2.1.3. Subqueries

Subqueries specifying a derived table must be enclosed in parenthesesistiieg assigned a table
alias name. (Se$Bection 4.2.1.2 For example:

FROM (SELECT * FROM tablel) AS alias_name

This example is equivalent #ROM tablel AS alias_name . More interesting cases, which can'’t
be reduced to a plain join, arise when the subquery involves grouping or aggregation.

4.2.2. The WHERE Clause

The syntax of th&VHERElause is

WHEREsearch_condition

40

Chapter 4. Queries

wheresearch_condition is any value expression as definedSaction 1.2hat returns a value
of typeboolean .

After the processing of thEROMclause is done, each row of the derived virtual table is checked
against the search condition. If the result of the condition is true, the row is kept in the output table,
otherwise (that is, if the result is false or null) it is discarded. The search condition typically references
at least some column in the table generated irFffR@Mclause; this is not required, but otherwise the
WHERElause will be fairly useless.

Note: Before the implementation of the JOIN syntax, it was necessary to put the join condition of
an inner join in the WHERElause. For example, these table expressions are equivalent:

FROM a, b WHERE a.id = b.id AND b.val > 5
and

FROM a INNER JOIN b ON (a.id = b.id) WHERE b.val > 5
or perhaps even

FROM a NATURAL JOIN b WHERE b.val> 5

Which one of these you use is mainly a matter of style. The JOIN syntax in the FROMclause is
probably not as portable to other SQL database products. For outer joins there is no choice in any
case: they must be done in the FROMlause. An ONUSING clause of an outer join is not equivalent
to a WHEREondition, because it determines the addition of rows (for unmatched input rows) as
well as the removal of rows from the final result.

Here are some examplesWHERElauses:
SELECT ... FROM fdt WHERE cl1 > 5
SELECT ... FROM fdt WHERE cl1 IN (1, 2, 3)
SELECT ... FROM fdt WHERE cl1 IN (SELECT cl FROM t2)
SELECT ... FROM fdt WHERE cl1 IN (SELECT c¢3 FROM t2 WHERE c¢2 = fdt.cl + 10)
SELECT ... FROM fdt WHERE cl1 BETWEEN (SELECT c¢3 FROM t2 WHERE c¢2 = fdt.cl1 + 10) AND
SELECT ... FROM fdt WHERE EXISTS (SELECT c1 FROM t2 WHERE ¢2 > fdt.cl)

fdt is the table derived in theROMlause. Rows that do not meet the search condition OMHERE
clause are eliminated frofdt . Notice the use of scalar subqueries as value expressions. Just like
any other query, the subqueries can employ complex table expressions. Notiftk hiswveferenced

in the subqueries. Qualifyingl asfdt.cl is only necessary i€l is also the name of a column in

the derived input table of the subquery. Qualifying the column name adds clarity even when it is not
needed. This shows how the column naming scope of an outer query extends into its inner queries.

4.2.3. The GROUP BY and HAVING Clauses

After passing thavHERHilter, the derived input table may be subject to grouping, using3tReuUP
BY clause, and elimination of group rows using H&VINGclause.

SELECT select_list

41

Chapter 4. Queries

FROM ...
[WHERE ..]
GROUP BYgrouping_column_reference [, grouping_column_reference]-..

The GROUP B¥lause is used to group together rows in a table that share the same values in all the
columns listed. The order in which the columns are listed does not matter. The purpose is to reduce
each group of rows sharing common values into one group row that is representative of all rows in

the group. This is done to eliminate redundancy in the output and/or compute aggregates that apply
to these groups. For instance:

=> SELECT * FROM testl;
x|y

(3 rows)

In the second query, we could not have writt®BLECT * FROM testl GROUP BY x because
there is no single value for the colunynthat could be associated with each group. The grouped-
by columns can be referenced in the select list since they have a known constant value per group.

In general, if a table is grouped, columns that are not used in the grouping cannot be referenced except
in aggregate expressions. An example with aggregate expressions is:

=> SELECT x, sum(y) FROM testl GROUP BY x;

X | sum
R

a | 4
b| 5
c | 2
(3 rows)

Heresum() is an aggregate function that computes a single value over the entire group. More infor-
mation about the available aggregate functions can be fouSddtion 6.14

Tip: Grouping without aggregate expressions effectively calculates the set of distinct values in a
column. This can also be achieved using the DISTINCT clause (see Section 4.3.3).

Here is another exampleum(sales) on a table grouped by product code gives the total sales for
each product, not the total sales on all products.

SELECT product_id, p.name, (sum(s.units) * p.price) AS sales

FROM products p LEFT JOIN sales s USING (product_id)
GROUP BY product_id, p.name, p.price;

42

Chapter 4. Queries

In this example, the columnsoduct_id , p.name, andp.price must be in theGROUP B¥lause

since they are referenced in the query select list. (Depending on how exactly the products table is
set up, name and price may be fully dependent on the product ID, so the additional groupings could
theoretically be unnecessary, but this is not implemented yet.) The cawmits does not have

to be in theGROUP BYist since it is only used in an aggregate expresssom()), which represents

the group of sales of a product. For each product, a summary row is returned about all sales of the
product.

In strict SQL,GROUP B¥an only group by columns of the source table but PostgreSQL extends this
to also allonGROUP BYo group by columns in the select list. Grouping by value expressions instead
of simple column names is also allowed.

If a table has been grouped usinGBOUP BY¥lause, but then only certain groups are of interest, the
HAVINGclause can be used, much likevERElause, to eliminate groups from a grouped table. The
syntax is:

SELECT select_list FROM ... [WHERE ..] GROUP BY ... HAVING boolean_expression

Expressions in thEAVINGclause can refer both to grouped expressions and to ungrouped expressions
(which necessarily involve an aggregate function).

Example:

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING sum(y) > 3;

X | sum
RS S

al| 4
b|] 5
(2 rows)

X | sum
RS S

al| 4
b|] 5
(2 rows)

Again, a more realistic example:

SELECT product_id, p.name, (sum(s.units) * (p.price - p.cost)) AS profit
FROM products p LEFT JOIN sales s USING (product_id)
WHERE s.date > CURRENT_DATE - INTERVAL ’'4 weeks'’
GROUP BY product_id, p.name, p.price, p.cost
HAVING sum(p.price * s.units) > 5000;

In the example above, th#HERElause is selecting rows by a column that is not grouped, while the
HAVINGclause restricts the output to groups with total gross sales over 5000. Note that the aggregate
expressions do not necessarily need to be the same everywhere.

4.3. Select Lists

As shown in the previous section, the table expression isEi€&ECTcommand constructs an inter-
mediate virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This table

43

Chapter 4. Queries

is finally passed on to processing by thelect list The select list determines whidolumnsof the
intermediate table are actually output.

4.3.1. Select-List Items

The simplest kind of select list is which emits all columns that the table expression produces.
Otherwise, a select list is a comma-separated list of value expressions (as defieetion 1.2. For
instance, it could be a list of column names:

SELECT a, b, ¢ FROM ...

The columns names, b, andc are either the actual names of the columns of tables referenced in the
FROMlause, or the aliases given to them as explainékiction 4.2.1.2The name space available in
the select list is the same as in WeIERElause, unless grouping is used, in which case it is the same
as in theHAVINGclause.

If more than one table has a column of the same name, the table name must also be given, as in

SELECT tbll.a, thl2.b, tbll.c FROM ...

(See alssection 4.2.9

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to
the returned table. The value expression is evaluated once for each retrieved row, with the row’s values
substituted for any column references. But the expressions in the select list do not have to reference
any columns in the table expression of #ROMlause; they could be constant arithmetic expressions

as well, for instance.

4.3.2. Column Labels

The entries in the select list can be assigned names for further processing. The “further processing” in
this case is an optional sort specification and the client application (e.g., column headers for display).
For example:

SELECT a AS value, b + ¢ AS sum FROM ...

If no output column name is specified via AS, the system assigns a default name. For simple column
references, this is the name of the referenced column. For function calls, this is the name of the
function. For complex expressions, the system will generate a generic name.

Note: The naming of output columns here is different from that done in the FROMclause (see
Section 4.2.1.2). This pipeline will in fact allow you to rename the same column twice, but the
name chosen in the select list is the one that will be passed on.

4.3.3. DISTINCT

After the select list has been processed, the result table may optionally be subject to the elimination
of duplicates. Th®ISTINCT key word is written directly after th6ELECTto enable this:

SELECT DISTINCT select_list

44

Chapter 4. Queries

(Instead oDISTINCT the wordALL can be used to select the default behavior of retaining all rows.)

Obviously, two rows are considered distinct if they differ in at least one column value. Null values are
considered equal in this comparison.

Alternatively, an arbitrary expression can determine what rows are to be considered distinct:

SELECT DISTINCT ON (expression [, expression)] select_list

Hereexpression is an arbitrary value expression that is evaluated for all rows. A set of rows for
which all the expressions are equal are considered duplicates, and only the first row of the set is kept
in the output. Note that the “first row” of a set is unpredictable unless the query is sorted on enough
columns to guarantee a unique ordering of the rows arriving abtBEINCT filter. (DISTINCT ON
processing occurs aft@RDER Borting.)

The DISTINCT ON clause is not part of the SQL standard and is sometimes considered bad style
because of the potentially indeterminate nature of its results. With judicious GR@IP B¥wand
subselects iFROMhe construct can be avoided, but it is often the most convenient alternative.

4.4. Combining Queries

The results of two queries can be combined using the set operations union, intersection, and differ-
ence. The syntax is

queryl UNION [ALL] query2
queryl INTERSECT [ALL] query2
queryl EXCEPT [ALL] query2

queryl andquery2 are queries that can use any of the features discussed up to this point. Set
operations can also be nested and chained, for example

queryl UNION query2 UNION query3
which really says

(queryl UNION query2) UNION query3

UNIONeffectively appends the result gtiery2 to the result ofjueryl (although there is no guar-
antee that this is the order in which the rows are actually returned). Furthermore, it eliminates all
duplicate rows, in the sense BfSTINCT, unlessUNION ALLis used.

INTERSECT returns all rows that are both in the resultaqpferyl and in the result ofjuery2 .
Duplicate rows are eliminated unles§TERSECT ALLis used.

EXCEPTreturns all rows that are in the result@fieryl but not in the result ofuery2 . (This is
sometimes called thdifferencebetween two queries.) Again, duplicates are eliminated uriss
CEPT ALLis used.

In order to calculate the union, intersection, or difference of two queries, the two queries must be
“union compatible”, which means that they both return the same number of columns, and that the
corresponding columns have compatible data types, as descriBedtion 7.5

45

Chapter 4. Queries

4.5. Sorting Rows

After a query has produced an output table (after the select list has been processed) it can optionally
be sorted. If sorting is not chosen, the rows will be returned in random order. The actual order in that
case will depend on the scan and join plan types and the order on disk, but it must not be relied on. A
particular output ordering can only be guaranteed if the sort step is explicitly chosen.

TheORDER BYlause specifies the sort order:

SELECT select_list
FROMtable_expression
ORDER BYcolumnl [ASC | DESC] [, column2 [ASC | DESC] ..]

columnl , etc., refer to select list columns. These can be either the output name of a column (see
Section 4.3.2or the number of a column. Some examples:

SELECT a, b FROM tablel ORDER BY a;
SELECT a + b AS sum, ¢ FROM tablel ORDER BY sum;
SELECT a, sum(b) FROM tablel GROUP BY a ORDER BY 1;

As an extension to the SQL standard, PostgreSQL also allows ordering by arbitrary expressions:
SELECT a, b FROM tablel ORDER BY a + b;

References to column names in #ROMlause that are renamed in the select list are also allowed:
SELECT a AS b FROM tablel ORDER BY a;

But these extensions do not work in queries involvisiglON INTERSECT, or EXCEPT and are not

portable to other SQL databases.

Each column specification may be followed by an optio®&C or DESCto set the sort direction to
ascending or descendingSCorder is the default. Ascending order puts smaller values first, where
“smaller” is defined in terms of the operator. Similarly, descending order is determined with:the
operator.

If more than one sort column is specified, the later entries are used to sort rows that are equal under
the order imposed by the earlier sort columns.

4.6. LIMIT and OFFSET

LIMIT andOFFSETallow you to retrieve just a portion of the rows that are generated by the rest of
the query:

SELECT select_list
FROMtable_expression
[LIMIT { number | ALL }] [OFFSET number]

If a limit count is given, no more than that many rows will be returned (but possibly less, if the query
itself yields less rowsLIMIT ALL is the same as omitting theMIT clause.

OFFSETsays to skip that many rows before beginning to return rows to the cll¥RSET 0is
the same as omitting th@FFSETclause. If bothOFFSETandLIMIT appear, thel©FFSETrows are
skipped before starting to count theviT rows that are returned.

46

Chapter 4. Queries

When usind_IMIT , itis a good idea to use aPRDER BYlause that constrains the result rows into a
unique order. Otherwise you will get an unpredictable subset of the query’s rows---you may be asking
for the tenth through twentieth rows, but tenth through twentieth in what ordering? The ordering is
unknown, unless you specifi&@RDER BY

The query optimizer takedMIT into account when generating a query plan, so you are very likely

to get different plans (yielding different row orders) depending on what you givelfeT and
OFFSET Thus, using differentIMIT /OFFSETvalues to select different subsets of a query resillt

give inconsistent resultsnless you enforce a predictable result ordering @RDER BYThis is not

a bug; it is an inherent consequence of the fact that SQL does not promise to deliver the results of a
query in any particular order unleSRDER BYs used to constrain the order.

47

Chapter 5. Data Types

PostgreSQL has a rich set of native data types available to users. Users may add new types to Post-
greSQL using th€REATE TYPEommand.

Table 5-1shows all general-purpose data types included in the standard distribution. Most of the
alternative names listed in the “Aliases” column are the names used internally by PostgreSQL for
historical reasons. In addition, some internally used or deprecated types are available, but they are not
listed here.

Table 5-1. Data Types

Type Name Aliases Description

bigint int8 signed eight-byte integer

bigserial serial8 autoincrementing eight-byte
integer

bit fixed-length bit string

bit varying(n) varbit(n) \variable-length bit string

boolean bool logical Boolean (true/false)

box rectangular box in 2D plane

bytea binary data

character varying(n) \varchar(n) \variable-length character string

character(n) char(n) fixed-length character string

cidr IP network address

circle circle in 2D plane

date calendar date (year, month, day)

double precision float8 double precision floating-point
number

inet IP host address

integer int , int4 signed four-byte integer

interval(p) general-use time span

line infinite line in 2D plane (not
implemented)

Iseg line segment in 2D plane

macaddr MAC address

money currency amount

numeric [(p, s)] decimal [(p, S)] exact numeric with selectable
precision

path open and closed geometric path
in 2D plane

point geometric point in 2D plane

polygon closed geometric path in 2D
plane

real float4 single precision floating-point
number

smallint int2 signed two-byte integer

48

Chapter 5. Data Types

Type Name Aliases Description

serial serial4 autoincrementing four-byte
integer

text \variable-length character string

time [(p)] [without time of day

time zone]

time [(p)] with time timetz time of day, including time zone

zone

timestamp [(p)] timestamp date and time

without time zone

timestamp [(p)] [with timestamptz date and time, including time

time zone] zone

Compatibility: The following types (or spellings thereof) are specified by SQL: bit , bit varying
boolean , char , character varying , Character , varchar , date , double precision , integer
interval , numeric , decimal ,real ,smallint ,time ,timestamp (both with or without time zone).

Each data type has an external representation determined by its input and output functions. Many of
the built-in types have obvious external formats. However, several types are either unique to Post-
greSQL, such as open and closed paths, or have several possibilities for formats, such as the date
and time types. Most of the input and output functions corresponding to the base types (e.g., integers
and floating-point numbers) do some error-checking. Some of the input and output functions are not
invertible. That is, the result of an output function may lose precision when compared to the original
input.

Some of the operators and functions (e.g., addition and multiplication) do not perform run-time error-
checking in the interests of improving execution speed. On some systems, for example, the numeric
operators for some data types may silently underflow or overflow.

5.1. Numeric Types

Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte floating-point num-
bers, and fixed-precision decimal@able 5-2lists the available types.

Table 5-2. Numeric Types

Type name Storage size Description Range
smallint 2 bytes small range -32768 to +32767
fixed-precision
integer 4 bytes usual choice for -2147483648 to
fixed-precision +2147483647
bigint 8 bytes large range -
fixed-precision 9223372036854775808
to
922337203685477580[7

49

Chapter 5. Data Types

Type name Storage size Description Range

decimal \variable user-specified precisiomo limit
exact

numeric \variable user-specified precisiomo limit
exact

real 4 bytes \variable-precision, 6 decimal digits
inexact precision

double precision 8 bytes \variable-precision, 15 decimal digits
inexact precision

serial 4 bytes autoincrementing 1t0 2147483647
integer

bigserial 8 bytes large autoincrementingll to
integer 922337203685477580[7

The syntax of constants for the numeric types is describ&eation 1.1.2The numeric types have a
full set of corresponding arithmetic operators and functions. Ref€htpter &Gor more information.
The following sections describe the types in detail.

5.1.1. The Integer Types

The typessmallint , integer , bigint store whole numbers, that is, numbers without fractional
components, of various ranges. Attempts to store values outside of the allowed range will result in an
error.

The typeinteger is the usual choice, as it offers the best balance between range, storage size, and
performance. Themallint type is generally only used if disk space is at a premium. Qitiet
type should only be used if theteger range is not sufficient, because the latter is definitely faster.

Thebigint type may not function correctly on all platforms, since it relies on compiler support for
eight-byte integers. On a machine without such suppa@int acts the same asteger (but still

takes up eight bytes of storage). However, we are not aware of any reasonable platform where this is
actually the case.

SQL only specifies the integer typegseger (orint) andsmallint . The typebigint , and the
type nameint2 ,int4 , andint8 are extensions, which are shared with various other SQL database
systems.

Note: If you have a column of type smallint or bigint ~ with an index, you may encounter prob-
lems getting the system to use that index. For instance, a clause of the form

.... WHERE smallint_column = 42

will not use an index, because the system assigns type integer to the constant 42, and Post-
greSQL currently cannot use an index when two different data types are involved. A workaround
is to single-quote the constant, thus:

.... WHERE smallint_column = 42’

This will cause the system to delay type resolution and will assign the right type to the constant.

50

Chapter 5. Data Types

5.1.2. Arbitrary Precision Numbers

The typenumeric can store numbers with up to 1,000 digits of precision and perform calculations
exactly. It is especially recommended for storing monetary amounts and other quantities where ex-
actness is required. However, themeric type is very slow compared to the floating-point types
described in the next section.

In what follows we use these terms: Thealeof a numeric is the count of decimal digits in the
fractional part, to the right of the decimal point. Theecisionof a numeric is the total count of
significant digits in the whole number, that is, the number of digits to both sides of the decimal point.
So the number 23.5141 has a precision of 6 and a scale of 4. Integers can be considered to have a
scale of zero.

Both the precision and the scale of the numeric type can be configured. To declare a column of type
numeric use the syntax

NUMERICfrecision , scale)
The precision must be positive, the scale zero or positive. Alternatively,

NUMERIC(recision)

selects a scale of 0. Specifying

NUMERIC

without any precision or scale creates a column in which numeric values of any precision and scale
can be stored, up to the implementation limit on precision. A column of this kind will not coerce
input values to any particular scale, whereasieric columns with a declared scale will coerce input
values to that scale. (The SQL standard requires a default scale of 0, i.e., coercion to integer precision.
We find this a bit useless. If you're concerned about portability, always specify the precision and scale
explicitly.)

If the precision or scale of a value is greater than the declared precision or scale of a column, the
system will attempt to round the value. If the value cannot be rounded so as to satisfy the declared
limits, an error is raised.

The typesdecimal andnumeric are equivalent. Both types are part of the SQL standard.

5.1.3. Floating-Point Types

The data typeszal anddouble precision are inexact, variable-precision numeric types. In prac-
tice, these types are usually implementations of IEEE Standard 754 for Binary Floating-Point Arith-
metic (single and double precision, respectively), to the extent that the underlying processor, operating
system, and compiler support it.

Inexact means that some values cannot be converted exactly to the internal format and are stored as
approximations, so that storing and printing back out a value may show slight discrepancies. Man-
aging these errors and how they propagate through calculations is the subject of an entire branch of
mathematics and computer science and will not be discussed further here, except for the following
points:

« If you require exact storage and calculations (such as for monetary amounts), usenthie
type instead.

51

Chapter 5. Data Types

- If you want to do complicated calculations with these types for anything important, especially
if you rely on certain behavior in boundary cases (infinity, underflow), you should evaluate the
implementation carefully.

« Comparing two floating-point values for equality may or may not work as expected.

Normally, thereal type has arange of at least -1E+37 to +1E+37 with a precision of at least 6 decimal
digits. Thedouble precision type normally has a range of around -1E+308 to +1E+308 with a
precision of at least 15 digits. Values that are too large or too small will cause an error. Rounding
may take place if the precision of an input number is too high. Numbers too close to zero that are not
representable as distinct from zero will cause an underflow error.

5.1.4. The Serial Types

Theserial data type is not a true type, but merely a notational convenience for setting up identi-
fier columns (similar to th&UTO_INCREMENTProperty supported by some other databases). In the
current implementation, specifying

CREATE TABLEtablename (
colname SERIAL

);
is equivalent to specifying:

CREATE SEQUENCtablename _colname _seq;
CREATE TABLEtablename (
colname integer DEFAULT nextval(’ tablename _colname _seq’) NOT NULL

);

Thus, we have created an integer column and arranged for its default values to be assigned from a
sequence generator.MOT NULLconstraint is applied to ensure that a null value cannot be explicitly
inserted, either. In most cases you would also want to attagkiQUEor PRIMARY KEYconstraint

to prevent duplicate values from being inserted by accident, but this is not automatic.

Touse aserial column to insert the next value of the sequence into the table, specify tlsatitie
column should be assigned the default value. This can be done either be excluding from the column
from the list of columns in théNSERT statement, or through the use of thEFAULTkeyword.

The type nameserial andserial4 are equivalent: both creaitgeger columns. The type names
bigserial andserial8 work just the same way, except that they credigiat column.bigse-
rial should be used if you anticipate the use of more tiait2ntifiers over the lifetime of the table.

The sequence created byeaial type is automatically dropped when the owning column is dropped,

and cannot be dropped otherwise. (This was not true in PostgreSQL releases before 7.3. Note that this
automatic drop linkage will not occur for a sequence created by reloading a dump from a pre-7.3
database; the dump file does not contain the information needed to establish the dependency link.)
Furthermore, this dependency between sequence and column is made onlysferiaghe column

itself; if any other columns reference the sequence (perhaps by manually callingxthal())
function), they may be broken if the sequence is removed. Uséngl columns in fashion is
considered bad form.

Note: Prior to PostgreSQL 7.3, serial implied UNIQUE This is no longer automatic. If you wish
a serial column to be UNIQUEoOr a PRIMARY KEMt must now be specified, just as with any other
data type.

52

Chapter 5. Data Types

5.2. Monetary Type

Note: The money type is deprecated. Use numeric or decimal instead, in combination with the
to_char function. The money type may become a locale-aware layer over the numeric type in a
future release.

Themoney type stores a currency amount with fixed decimal point representatioabée5-3 The
output format is locale-specific.

Input is accepted in a variety of formats, including integer and floating-point literals, as well as “typ-
ical” currency formatting, such a$1,000.00' . Outputis in the latter form.

Table 5-3. Monetary Types

Type Name Storage Description Range

money 4 bytes currency amount -21474836.48 to
+21474836.47

5.3. Character Types

Table 5-4. Character Types

Type name Description

character varying(n), varchar(n) variable-length with limit
character(n),char(n) fixed-length, blank padded
text \variable unlimited length

Table 5-4shows the general-purpose character types available in PostgreSQL.

SQL defines two primary character typebaracter varying(n) andcharacter(n), wheren

is a positive integer. Both of these types can store strings apctwaracters in length. An attempt to

store a longer string into a column of these types will result in an error, unless the excess characters are
all spaces, in which case the string will be truncated to the maximum length. (This somewhat bizarre
exception is required by the SQL standard.) If the string to be stored is shorter than the declared
length, values of typeharacter will be space-padded; values of typlearacter varying will

simply store the shorter string.

Note: If one explicitly casts a value to character varying(n) or character(n), then an over-
length value will be truncated to n characters without raising an error. (This too is required by the
SQL standard.)

Note: Prior to PostgreSQL 7.2, strings that were too long were always truncated without raising
an error, in either explicit or implicit casting contexts.

53

Chapter 5. Data Types

The notationsvarchar(n) andchar(n) are aliases fotharacter varying(n) andcharac-

ter(n), respectivelycharacter without length specifier is equivalentdbaracter(1) ;if char-

acter varying is used without length specifier, the type accepts strings of any size. The latter is a
PostgreSQL extension.

In addition, PostgreSQL supports the more gengal type, which stores strings of any length.
Unlike character varying , text does not require an explicit declared upper limit on the size of
the string. Although the typext is not in the SQL standard, many other RDBMS packages have it
as well.

The storage requirement for data of these types is 4 bytes plus the actual string, and irchase of

acter plus the padding. Long strings are compressed by the system automatically, so the physical
requirement on disk may be less. Long values are also stored in background tables so they don’t
interfere with rapid access to the shorter column values. In any case, the longest possible character
string that can be stored is about 1 GB. (The maximum value that will be allowadifothe data

type declaration is less than that. It wouldn’t be very useful to change this because with multibyte
character encodings the number of characters and bytes can be quite different anyway. If you desire
to store long strings with no specific upper limit, usg or character varying without a length
specifier, rather than making up an arbitrary length limit.)

Tip: There are no performance differences between these three types, apart from the increased
storage size when using the blank-padded type.

Refer toSection 1.1.2.%or information about the syntax of string literals, andXbapter &or infor-
mation about available operators and functions.

Example 5-1. Using the character types

CREATE TABLE testl (a character(4));
INSERT INTO testl VALUES ('ok’);

SELECT a, char_length(a) FROM testl; -- a
a | char_length
______ IS R ——
ok | 4

CREATE TABLE test2 (b varchar(b));
INSERT INTO test2 VALUES ('ok’);
INSERT INTO test2 VALUES ('good);
INSERT INTO test2 VALUES (too long’);
ERROR: value too long for type character varying(5)
INSERT INTO test2 VALUES ('too long’::varchar(5)); -- explicit truncation
SELECT b, char_length(b) FROM test2;
b | char_length
_______ R

ok | 2
good | 5
too | | 5

O Thechar_length function is discussed iBection 6.4

54

Chapter 5. Data Types

There are two other fixed-length character types in PostgreSQL, shotabie 5-5 The name type
existsonly for storage of internal catalog names and is not intended for use by the general user. Its
length is currently defined as 64 bytes (63 usable characters plus terminator) but should be referenced
using the constarNAMEDATALENThe length is set at compile time (and is therefore adjustable for
special uses); the default maximum length may change in a future release. Thehtype (note the

guotes) is different fronshar(1)
system catalogs as a poor-man’s enumeration type.

in that it only uses one byte of storage. It is internally used in the

Table 5-5. Specialty Character Types

Type Name Storage Description

"char" 1 byte single character internal type

name 64 bytes sixty-three character internal
type

5.4. Binary Strings

Thebytea data type allows storage of binary strings; $able 5-6

Table 5-6. Binary String Types

Type Name

Storage

Description

bytea

4 bytes plus the actual binary

string

\Variable (not specifically
limited) length binary string

A binary string is a sequence of octets (or bytes). Binary strings are distinguished from characters
strings by two characteristics: First, binary strings specifically allow storing octets of zero value and
other “non-printable” octets. Second, operations on binary strings process the actual bytes, whereas
the encoding and processing of character strings depends on locale settings.

When enteringhytea values, octets of certain valuesustbe escaped (but all octet valuegy be
escaped) when used as part of a string literal in an SQL statement. In general, to escape an octet, it is
converted into the three-digit octal number equivalent of its decimal octet value, and preceded by two
backslashes. Some octet values have alternate escape sequences, as Hhlol@rbii

Table 5-7.bytea Literal Escaped Octets

Decimal Octet Description Input Escaped [Example Printed Result
Value Representation
0 zero octet "\\000’ SELECT \00O
'\\000'::bytea;
39 single quote '\ or’\o47’ SELECT
'\"::bytea;
92 backslash AS or SELECT \
"\\134" "\W'::bytea;

Note that the result in each of the exampleSatle 5-7was exactly one octet in length, even though
the output representation of the zero octet and backslash are more than one cl&naateout-

55

Chapter 5. Data Types

put octets are also escaped. In general, each “non-printable” octet decimal value is converted into its
equivalent three digit octal value, and preceded by one backslash. Most “printable” octets are repre-
sented by their standard representation in the client character set. The octet with decimal value 92
(backslash) has a special alternate output representation. DetailsTatdérb-8

Table 5-8.bytea Output Escaped Octets

Decimal Octet Description Output Escaped [Example Printed Result
Value Representation
92 backslash \ SELECT \

'\134"::bytea;

0to 31 and 127 to['non-printable” \### (octal SELECT \001
255 octets value) "\001'::bytea;
3210126 “printable” octets |ASCII SELECT ~

representation [\\176'::bytea;

To use thebytea escaped octet notation, string literals (input strings) must contain two backslashes
because they must pass through two parsers in the PostgreSQL server. The first backslash is inter-
preted as an escape character by the string-literal parser, and therefore is consumed, leaving the char-
acters that follow. The remaining backslash is recognized byytea input function as the prefix

of a three digit octal value. For example, a string literal passed to the backékabas becomes

"001’ after passing through the string-literal parser. The1l’ is then sent to théytea input

function, where it is converted to a single octet with a decimal value of 1.

For a similar reason, a backslash must be input\s (or\134'). The first and third back-

slashes are interpreted as escape characters by the string-literal parser, and therefore are consumed,
leaving two backslashes in the string passed tobthea input function, which interprets them as
representing a single backslash. For example, a string literal passed to the s&twer asbecomes

v after passing through the string-literal parser. The is then sentto theytea input function,

where it is converted to a single octet with a decimal value of 92.

A single quote is a bit different in that it must be input'ds (or '\047'), notas’\" . Thisis
because, while the literal parser interprets the single quote as a special character, and will consume
the single backslash, th®tea input function doesot recognize a single quote as a special octet.
Therefore a string literal passed to the backen®'asbecomes’ after passing through the string-

literal parser. The’ is then sent to théytea input function, where it is retains its single octet
decimal value of 39.

Depending on the front end to PostgreSQL you use, you may have additional work to do in terms
of escaping and unescapihgtea strings. For example, you may also have to escape line feeds and
carriage returns if your interface automatically translates these. Or you may have to double up on
backslashes if the parser for your language or choice also treats them as an escape character.

The SQL standard defines a different binary string type, caledBor BINARY LARGE OBJECT
The input format is different comparedtiigtea , but the provided functions and operators are mostly
the same.

5.5. Date/Time Types
PostgreSQL supports the full set of SQL date and time types, showhabie 5-9

56

Chapter 5. Data Types

Table 5-9. Date/Time Types

Type Description [Storage Earliest Latest Resolution
timestamp [|both date and 8 bytes 4713 BC AD 1465001 [1 microsecond
(p) 11 time 14 digits
without

time zone]

timestamp [|both date and 8 bytes 4713 BC AD 1465001 [1 microsecond
(p) 1 with time 14 digits

time zone

interval [time intervals 12 bytes -178000000 [178000000 1 microsecond
(p)] years years

date dates only 4 bytes 4713 BC 32767 AD 1 day

time [(p) ftimesofday 8 bytes 00:00:00.00 [23:59:59.99 |1 microsecond
] [without only

time zone]

time [(p) ftimesofday [12 bytes 00:00:00.00+1223:59:59.99-12/1 microsecond
] with time only

zone

time , timestamp , andinterval accept an optional precision valpewhich specifies the number
of fractional digits retained in the seconds field. By default, there is no explicit bound on precision.
The allowed range gb is from O to 6 for theimestamp andinterval types.

Note: When timestamp values are stored as double precision floating-point numbers (currently
the default), the effective limit of precision may be less than 6, since timestamp values are stored
as seconds since 2000-01-01. Microsecond precision is achieved for dates within a few years of
2000-01-01, but the precision degrades for dates further away. When timestamps are stored as
eight-byte integers (a compile-time option), microsecond precision is available over the full range
of values.

For thetime types, the allowed range pfis from 0 to 6 when eight-byte integer storage is used, or
from 0 to 10 when floating-point storage is used.

Time zones, and time-zone conventions, are influenced by political decisions, not just earth geometry.
Time zones around the world became somewhat standardized during the 1900’s, but continue to be
prone to arbitrary changes. PostgreSQL uses your operating system’s underlying features to provide
output time-zone support, and these systems usually contain information for only the time period
1902 through 2038 (corresponding to the full range of conventional Unix system timegtamp

with time zone andtime with time zone will use time zone information only within that year
range, and assume that times outside that range are in UTC.

The typetime with time zone is defined by the SQL standard, but the definition exhibits prop-
erties which lead to questionable usefulness. In most cases, a combinatiae ofime , times-

tamp without time zone andtimestamp with time zone should provide a complete range
of date/time functionality required by any application.

The typesabstime andreltime are lower precision types which are used internally. You are dis-
couraged from using these types in new applications and are encouraged to move any old ones over
when appropriate. Any or all of these internal types might disappear in a future release.

57

Chapter 5. Data Types

5.5.1. Date/Time Input

Date and time input is accepted in almost any reasonable format, including 1ISO 8601,
SQL-compatible, traditional PostgreSQL, and others. For some formats, ordering of month and
day in date input can be ambiguous and there is support for specifying the expected ordering of
these fields. The commargET DateStyle TO 'US’ or SET DateStyle TO 'NonEuropean’

specifies the variant “month before day”, the comm8&gd DateStyle TO 'European’ sets the
variant “day before month”.

PostgreSQL is more flexible in handling date/time than the SQL standard requireSpSaalix A
for the exact parsing rules of date/time input and for the recognized text fields including months, days
of the week, and time zones.

Remember that any date or time literal input needs to be enclosed in single quotes, like text strings.
Refer toSection 1.1.2.4or more information. SQL requires the following syntax

type [(p)] " value’

wherep in the optional precision specification is an integer corresponding to the number of fractional
digits in the seconds field. Precision can be specifiedifar , timestamp , andinterval types.

5.5.1.1. Dates
Table 5-10shows some possible inputs for tthete type.

Table 5-10. Date Input

Example Description

January 8, 1999 unambiguous

1999-01-08 ISO-8601 format, preferred

1/8/1999 U.S.; read as August 1 in European mode
8/1/1999 European; read as August 1 in U.S. mode
1/18/1999 U.S.; read as January 18 in any mode
19990108 ISO-8601 year, month, day

990108 ISO-8601 year, month, day

1999.008 year and day of year

99008 lyear and day of year

J2451187 Julian day

January 8, 99 BC year 99 before the Common Era

5.5.1.2. Times

Thetime type can be specified @igne or astime without time zone . The optional precision

p should be between 0 and 6, and defaults to the precision of the input time literal.

Table 5-11shows the validime inputs.

Table 5-11. Time Input

Example Description
04:05:06.789 ISO 8601

58

Chapter 5. Data Types

Example Description

04:05:06 ISO 8601

04:05 ISO 8601

040506 ISO 8601

04:05 AM same as 04:05; AM does not affect value
04:05 PM same as 16:05; input hour must be <= 12
allballs same as 00:00:00

The typetime with time zone accepts all input also legal for thime type, appended with a
legal time zone, as shown Trable 5-12

Table 5-12. Time With Time Zone Input

Example Description
04:05:06.789-8 ISO 8601
04:05:06-08:00 ISO 8601
04:05-08:00 ISO 8601
040506-08 ISO 8601

Refer toTable 5-13for more examples of time zones.

5.5.1.3. Time stamps

The time stamp types atimestamp [(p)] without time zone andtimestamp [(p)]
with time zone . Writing justtimestamp is equivalent taimestamp without time zone

Note: Prior to PostgreSQL 7.3, writing just timestamp was equivalent to timestamp with time
zone . This was changed for SQL spec compliance.

Valid input for the time stamp types consists of a concatenation of a date and a time, followed by an
optionalADor BC, followed by an optional time zone. (S&able 5-13) Thus

1999-01-08 04:05:06

and
1999-01-08 04:05:06 -8:00

are valid values, which follow the ISO 8601 standard. In addition, the wide-spread format
January 8 04:05:06 1999 PST

is supported.

The optional precisiop should be between 0 and 6, and defaults to the precision of thetimgst
tamp literal.

For timestamp without time zone , any explicit time zone specified in the input is silently ig-
nored. That is, the resulting date/time value is derived from the explicit date/time fields in the input
value, and is not adjusted for time zone.

59

Chapter 5. Data Types

For timestamp with time zone , the internally stored value is always in UTC (GMT). An input
value that has an explicit time zone specified is converted to UTC using the appropriate offset for
that time zone. If no time zone is stated in the input string, then it is assumed to be in the time zone
indicated by the system’SimeZone parameter, and is converted to UTC using the offset for the
TimeZone zone.

When atimestamp with time zone value is output, it is always converted from UTC to the
currentTimeZone zone, and displayed as local time in that zone. To see the time in another time
zone, either changemeZone or use theAT TIME ZONEconstruct (se&ection 6.8.8

Conversions betweeimestamp without time zone andtimestamp with time zone nor-
mally assume that thgmestamp without time zone value should be taken or given @isne-
Zone local time. A different zone reference can be specified for the conversionABIMAME ZONE

Table 5-13. Time Zone Input

Time Zone Description

PST Pacific Standard Time
-8:00 ISO-8601 offset for PST
-800 ISO-8601 offset for PST
-8 ISO-8601 offset for PST

5.5.1.4. Intervals

interval values can be written with the following syntax:

Quantity Unit [Quantity Unit...] [Direction]
@ Quantity Unit [Quantity Unit...] [Direction]

where:Quantity is a number (possibly signed)nit issecond , minute , hour , day, week, month,
year , decade , century , millennium , or abbreviations or plurals of these unitstection can
beago or empty. The at sign@) is optional noise. The amounts of different units are implicitly added
up with appropriate sign accounting.

Quantities of days, hours, minutes, and seconds can be specified without explicit unit markings. For
example;1 12:59:10’ is read the same &b day 12 hours 59 min 10 sec’

The optional precisiop should be between 0 and 6, and defaults to the precision of the input literal.

5.5.1.5. Special values

The following SQL-compatible functions can be used as date or time values for the corresponding data
type: CURRENT_DATECURRENT_TIMECURRENT_TIMESTAMPThe latter two accept an optional
precision specification. (See alSection 6.8.4

PostgreSQL also supports several special date/time input values for convenience, as sfaa in
5-14. The valuesnfinity and-infinity are specially represented inside the system and will be
displayed the same way; but the others are simply notational shorthands that will be converted to
ordinary date/time values when read.

Table 5-14. Special Date/Time Inputs

Input string Description

60

Chapter 5. Data Types

Input string Description

epoch 1970-01-01 00:00:00+00 (Unix system time
zero)

infinity later than all other timestamps (not available for
typedate)

-infinity earlier than all other timestamps (not available
for typedate)

now current transaction time

today midnight today

tomorrow midnight tomorrow

yesterday midnight yesterday

zulu , allballs ,z 00:00:00.00 GMT

5.5.2. Date/Time Output

Output formats can be set to one of the four styles ISO 8601, SQL (Ingres), traditional PostgreSQL,
and German, using th&ET DateStyle . The default is the ISO format. (The SQL standard requires
the use of the ISO 8601 format. The name of the “SQL” output format is a historical accitiiie)
5-15shows examples of each output style. The output ofithe andtime types is of course only

the date or time part in accordance with the given examples.

Table 5-15. Date/Time Output Styles

Style Specification Description Example

ISO ISO 8601/SQL standard 1997-12-17 07:37:16-08

SQL traditional style 12/17/1997 07:37:16.00 PST
PostgreSQL original style Wed Dec 17 07:37:16 1997 PST
German regional style 17.12.1997 07:37:16.00 PST

The SQL style has European and non-European (U.S.) variants, which determines whether month
follows day or vice versa. (Se®ection 5.5.%or how this setting also affects interpretation of input
values.)Table 5-16shows an example.

Table 5-16. Date Order Conventions

Style Specification Description Example
European day /month /year 17/12/1997 15:37:16.00 MET
us month /day /year 12/17/1997 07:37:16.00 PST

interval output looks like the input format, except that units likeek or century are converted
to years and days. In ISO mode the output looks like

[Quantity Units [...]] [Days] Hours:Minutes [ago]

The date/time styles can be selected by the user usingEffle DATESTYLEcommand, thelat-
estyle parameter in theostgresgl.conf configuration file, and theGDATESTYLENvironment

61

Chapter 5. Data Types

variable on the server or client. The formatting functionchar (seeSection 6.7 is also available
as a more flexible way to format the date/time output.

5.5.3. Time Zones

PostgreSQL endeavors to be compatible with the SQL standard definitions for typical usage. However,
the SQL standard has an odd mix of date and time types and capabilities. Two obvious problems are:

« Although thedate type does not have an associated time zonetjitiee type can. Time zones in
the real world can have no meaning unless associated with a date as well as a time since the offset
may vary through the year with daylight-saving time boundaries.

« The default time zone is specified as a constant integer offset from GMT/UTC. It is not possible to
adapt to daylight-saving time when doing date/time arithmetic across DST boundaries.

To address these difficulties, we recommend using date/time types that contain both date and time
when using time zones. We recommemat using the typdime with time zone (though it is
supported by PostgreSQL for legacy applications and for compatibility with other SQL implementa-
tions). PostgreSQL assumes your local time zone for any type containing only date or time. Further,
time zone support is derived from the underlying operating system time-zone capabilities, and hence
can handle daylight-saving time and other expected behavior.

PostgreSQL obtains time-zone support from the underlying operating system for dates between 1902
and 2038 (near the typical date limits for Unix-style systems). Outside of this range, all dates are
assumed to be specified and used in Universal Coordinated Time (UTC).

All dates and times are stored internally in UTC, traditionally known as Greenwich Mean Time
(GMT). Times are converted to local time on the database server before being sent to the client fron-
tend, hence by default are in the server time zone.

There are several ways to select the time zone used by the server:

- TheTz environment variable on the server host is used by the server as the default time zone, if no
other is specified.

« Thetimezone configuration parameter can be sepastgresgl.conf

- The PGTzenvironment variable, if set at the client, is used by libpg applications to s&&Ta
TIME ZONEcommand to the server upon connection.

« The SQL comman8ET TIME ZONEsets the time zone for the session.

Note: If an invalid time zone is specified, the time zone becomes UTC (on most systems anyway).

Refer toAppendix Afor a list of available time zones.

62

Chapter 5. Data Types

5.5.4. Internals

PostgreSQL uses Julian dates for all date/time calculations. They have the nice property of correctly
predicting/calculating any date more recent than 4713 BC to far into the future, using the assumption
that the length of the year is 365.2425 days.

Date conventions before the 19th century make for interesting reading, but are not consistent enough
to warrant coding into a date/time handler.

5.6. Boolean Type

PostgreSQL provides the standard SQL typelean . boolean can have one of only two states:
“true” or “false”. A third state, “unknown”, is represented by the SQL null value.

Valid literal values for the “true” state are:

TRUE
"
'true’
Yy
yes
L

il)

For the “false” state, the following values can be used:

FALSE
lfl
'false’
n
no
o

’)

Using the key word§RUEandFALSEis preferred (and SQL-compliant).

Example 5-2. Using theboolean type

CREATE TABLE testl (a boolean, b text);
INSERT INTO testl VALUES (TRUE, ’sic est);
INSERT INTO testl VALUES (FALSE, 'non est);
SELECT * FROM testl;

a | b
R

t | sic est

f | non est

SELECT * FROM testl WHERE a;
a | b

R S —

t | sic est

Example 5-Zhows thaboolean values are output using the letterandf .

Tip: Values of the boolean type cannot be cast directly to other types (e.g., CAST (boolval
AS integer) does not work). This can be accomplished using the CASEexpression: CASE WHEN
boolval THEN ‘'value if true’ ELSE 'value if false’ END . See also Section 6.12.

63

Chapter 5. Data Types

boolean uses 1 byte of storage.

5.7. Geometric Types

Geometric data types represent two-dimensional spatial objedite 5-17shows the geometric types
available in PostgreSQL. The most fundamental type, the point, forms the basis for all of the other

types.

Table 5-17. Geometric Types

Geometric Type Storage Representation Description

point 16 bytes (X,y) Point in space

line 32 bytes ((x1,y1),(x2,y2)) Infinite line (not fully
implemented)

Iseg 32 bytes ((x1,y1),(x2,y2)) Finite line segment

box 32 bytes ((x1,y1),(x2,y2)) Rectangular box

path 16+16n bytes ((x1,y1),...) Closed path (similar to
polygon)

path 16+16n bytes [(x1,y1),...] Open path

polygon 40+16n bytes ((x1,y1),...) Polygon (similar to
closed path)

circle 24 bytes <(X,y),r> Circle (center and
radius)

A rich set of functions and operators is available to perform various geometric operations such as
scaling, translation, rotation, and determining intersections. They are explaiBedtion 6.9

5.7.1. Point

Points are the fundamental two-dimensional building block for geometric types. is specified
using the following syntax:

where the arguments are

the x-axis coordinate as a floating-point number

the y-axis coordinate as a floating-point number

64

Chapter 5. Data Types

5.7.2. Line Segment

Line segmentdgeg) are represented by pairs of poiritgeg is specified using the following syntax:

(Cxx,y1),(x2,vy2))
(xt, y1L),(x2,y2)
x1, yl1 X2, y2

where the arguments are

(x1.,y1)
(x2.y2)

the end points of the line segment

5.7.3. Box

Boxes are represented by pairs of points that are opposite corners of thekadz.specified using
the following syntax:

(C xx, y1),(x2,vy2))
(xt, yl),(x2, y2)
x1 , yl X2 , y2

where the arguments are

(x1,y1)
(x2.,y2)

opposite corners of the box

Boxes are output using the first syntax. The corners are reordered on input to store the upper right
corner, then the lower left corner. Other corners of the box can be entered, but the lower left and upper
right corners are determined from the input and stored corners.

5.7.4. Path

Paths are represented by connected sets of points. Paths operb&here the first and last points

in the set are not connected, aoldsed where the first and last point are connected. Functions
popen(p) and pclose(p) are supplied to force a path to be open or closed, and functions
isopen(p) andisclosed(p) are supplied to test for either type in a query.

path is specified using the following syntax:

(Cxt, yl), ... (xn ., yn))
[Cx1, y1l), ... (xn o, yn)]
(xx, y1), .., (xn , yn)
(x1, y1 Xn , yn)
x1 , vyl Xn , yn

65

Chapter 5. Data Types

where the arguments are

x.y)

End points of the line segments comprising the path. A leading square brpgkediCates an
open path, while a leading parenthegiyifidicates a closed path.

Paths are output using the first syntax.

5.7.5. Polygon

Polygons are represented by sets of points. Polygons should probably be considered equivalent to
closed paths, but are stored differently and have their own set of support routines.

polygon is specified using the following syntax:

(C xt, y1), ... (xn ., yn))
(x¥t, y1), .., (Xn , yn)
(x1, y1 Xn , yn)
x1 , vyl Xn , yn

where the arguments are

(x.y)
End points of the line segments comprising the boundary of the polygon

Polygons are output using the first syntax.

5.7.6. Circle

Circles are represented by a center point and aradiate. s specified using the following syntax:

y), r >
y)., r
(x,y),r
y r

where the arguments are

(x.y)
center of the circle

radius of the circle

66

Chapter 5. Data Types

Circles are output using the first syntax.

5.8. Network Address Data Types

PostgreSQL offers data types to store IP and MAC addresses, sholablin5-18 It is preferable
to use these types over plain text types, because these types offer input error checking and several
specialized operators and functions.

Table 5-18. Network Address Data Types

Name Storage Description Range

cidr 12 bytes IP networks valid IPv4 networks

inet 12 bytes IP hosts and networks yvalid IPv4 hosts or
networks

macaddr 6 bytes MAC addresses customary formats

IPVv6 is not yet supported.

5.8.1. inet

Theinet type holds an IP host address, and optionally the identity of the subnet it is in, all in one
field. The subnet identity is represented by the number of bits in the network part of the address (the
“netmask”). If the netmask is 32, then the value does not indicate a subnet, only a single host. Note
that if you want to accept networks only, you should usecttie type rather thaimet .

The input format for this type is.x.x.x/y wherex.x.x.x isan IP address andis the number
of bits in the netmask. If thgy part is left off, then the netmask is 32, and the value represents just a
single host. On display, thg portion is suppressed if the netmask is 32.

5.8.2. cidr

Thecidr type holds an IP network specification. Input and output formats follow Classless Internet
Domain Routing conventions. The format for specifying classless network.isx/y where
X.X.X.X isthe network ang is the number of bits in the netmaskyifis omitted, it is calculated
using assumptions from the older classful numbering system, except that it will be at least large
enough to include all of the octets written in the input.

Table 5-19%shows some examples.

Table 5-19.cidr

Type Input Examples

CIDR Input CIDR Displayed abbrev (CIDR)
192.168.100.128/25 192.168.100.128/25 192.168.100.128/25
192.168/24 192.168.0.0/24 192.168.0/24
192.168/25 192.168.0.0/25 192.168.0.0/25
192.168.1 192.168.1.0/24 192.168.1/24
192.168 192.168.0.0/24 192.168.0/24

128.1 128.1.0.0/16 128.1/16

67

Chapter 5. Data Types

CIDR Input CIDR Displayed abbrev (CIDR)
128 128.0.0.0/16 128.0/16
128.1.2 128.1.2.0/24 128.1.2/24
10.1.2 10.1.2.0/24 10.1.2/24
10.1 10.1.0.0/16 10.1/16

10 10.0.0.0/8 10/8

5.8.3. inet vs cidr

The essential difference betweilent andcidr data types is thatet accepts values with nonzero
bits to the right of the netmask, whereddr does not.

Tip: If you do not like the output format for inet or cidr values, try the host (), text (), and
abbrev () functions.

5.8.4. macaddr

Themacaddr type stores MAC addresses, i.e., Ethernet card hardware addresses (although MAC ad-
dresses are used for other purposes as well). Input is accepted in various customary formats, including

'08002b:010203’

'08002b-010203’

'0800.2b01.0203’

'08-00-2b-01-02-03'

'08:00:2h:01:02:03’
which would all specify the same address. Upper and lower case is accepted for the thigitsgh
f . Output is always in the last of the shown forms.

The directorycontrib/mac in the PostgreSQL source distribution contains tools that can be used to
map MAC addresses to hardware manufacturer names.

5.9. Bit String Types

Bit strings are strings of 1's and 0's. They can be used to store or visualize bit masks. There are two
SQL bit typesBIT(n) andBIT VARYING(n), wheren is a positive integer.

BIT type data must match the lengthexactly; it is an error to attempt to store shorter or longer bit
strings.BIT VARYING data is of variable length up to the maximum lengtHonger strings will be
rejected. Writing3IT without a length is equivalent ®IT(1) , whileBIT VARYING without a length
specification means unlimited length.

Note: If one explicitly casts a bit-string value to BIT(n), it will be truncated or zero-padded on the
right to be exactly n bits, without raising an error. Similarly, if one explicitly casts a bit-string value
to BIT VARYING(n), it will be truncated on the right if it is more than n bits.

68

Chapter 5. Data Types

Note: Prior to PostgreSQL 7.2, BIT data was always silently truncated or zero-padded on the
right, with or without an explicit cast. This was changed to comply with the SQL standard.

Refer toSection 1.1.2.2or information about the syntax of bit string constants. Bit-logical operators
and string manipulation functions are available; €bapter 6

Example 5-3. Using the bit string types

CREATE TABLE test (a BIT(3), b BIT VARYING(5));
INSERT INTO test VALUES (B'101', B'00);

INSERT INTO test VALUES (B'10’, B'101");

ERROR: Bit string length 2 does not match type BIT(3)
INSERT INTO test VALUES (B’10:bit(3), B'101");
SELECT * FROM test;

a | b
_____ R
101 | 00
100 | 101

5.10. Object Identifier Types

Object identifiers (OIDs) are used internally by PostgreSQL as primary keys for various system tables.
Also, an OID system column is added to user-created tables (WM@$OUT OIDSs specified at

table creation time). Typeid represents an object identifier. There are also several aliaseisl for
regproc , regprocedure , regoper , regoperator ,regclass , andregtype . Table 5-20shows

an overview.

The oid type is currently implemented as an unsigned four-byte integer. Therefore, it is not large
enough to provide database-wide uniqueness in large databases, or even in large individual tables. So,
using a user-created table’s OID column as a primary key is discouraged. OIDs are best used only for
references to system tables.

Theoid type itself has few operations beyond comparison (which is implemented as unsigned com-
parison). It can be cast to integer, however, and then manipulated using the standard integer operators.
(Beware of possible signed-versus-unsigned confusion if you do this.)

The oid alias types have no operations of their own except for specialized input and output rou-
tines. These routines are able to accept and display symbolic names for system objects, rather than
the raw numeric value that typsd would use. The alias types allow simplified lookup of OID
values for objects: for example, one may writetable’::regclass to get the OID of table

mytable , rather tharSELECT oid FROM pg_class WHERE relname = 'mytable’ . (In reality,

a much more complicateBELECTwould be needed to deal with selecting the right OID when there

are multiple tables namedytable in different schemas.)

Table 5-20. Object Identifier Types

Type name References Description \Value example
oid any numeric object 564182
identifier

69

Chapter 5. Data Types

Type name References Description \Value example
regproc pg_proc function name sum
regprocedure pg_proc function with argumentisum(int4)
types
regoper pg_operator operator name +
regoperator pg_operator operator with argument:(integer,integer)
types or -(NONE,integer)
regclass pg_class relation name pg_type
regtype pg_type type name integer

All of the OID alias types accept schema-qualified names, and will display schema-qualified names
on output if the object would not be found in the current search path without being qualified. The
regproc andregoper alias types will only accept input names that are unique (not overloaded),
so they are of limited use; for most usegprocedure or regoperator is more appropriate. For
regoperator , unary operators are identified by writingpNEor the unused operand.

OIDs are 32-bit quantities and are assigned from a single cluster-wide counter. In a large or long-
lived database, it is possible for the counter to wrap around. Hence, it is bad practice to assume that
OIDs are unique, unless you take steps to ensure that they are unique. Recommended practice when
using OIDs for row identification is to create a unique constraint on the OID column of each table for
which the OID will be used. Never assume that OIDs are unique across tables; use the combination
of tableoid and row OID if you need a database-wide identifier. (Future releases of PostgreSQL are
likely to use a separate OID counter for each table, sotéhétoid mustbe included to arrive at a
globally unique identifier.)

Another identifier type used by the systenxiis , or transaction (abbreviated xact) identifier. This is
the data type of the system columimsin andxmax. Transaction identifiers are 32-bit quantities. In a
long-lived database it is possible for transaction IDs to wrap around. This is not a fatal problem given
appropriate maintenance procedures; se@tstgreSQL Administrator's Guider details. However,

it is unwise to depend on uniqueness of transaction IDs over the long term (more than one billion
transactions).

A third identifier type used by the systemdsl , or command identifier. This is the data type of
the system columnsmin andcmax. Command identifiers are also 32-bit quantities. This creates a
hard limit of 22 (4 billion) SQL commands within a single transaction. In practice this limit is not a
problem --- note that the limit is on number of SQL commands, not number of tuples processed.

A final identifier type used by the systentiis , or tuple identifier. This is the data type of the system
columnctid . Atuple ID is a pair (block number, tuple index within block) that identifies the physical
location of the tuple within its table.

5.11. Pseudo-Types

The PostgreSQL type system contains a number of special-purpose entries that are collectively called
pseudo-typesA pseudo-type cannot be used as a column data type, but it can be used to declare a
function’s argument or result type. Each of the available pseudo-types is useful in situations where a
function’s behavior does not correspond to simply taking or returning a value of a specific SQL data
type.Table 5-21lists the existing pseudo-types.

Table 5-21. Pseudo-Types

Type name Description

70

Chapter 5. Data Types

Type name Description

record Identifies a function returning an unspecified row
type

any Indicates that a function accepts any input data
type whatever

anyarray Indicates that a function accepts any array data
type

void Indicates that a function returns no value

trigger A trigger function is declared to retutrigger

language_handler A procedural language call handler is declared to
returnlanguage_handler

cstring Indicates that a function accepts or returns a
null-terminated C string

internal Indicates that a function accepts or returns a
server-internal data type

opaque /An obsolete type name that formerly served all

the above purposes

Functions coded in C (whether built-in or dynamically loaded) may be declared to accept or return
any of these pseudo data types. It is up to the function author to ensure that the function will behave
safely when a pseudo-type is used as an argument type.

Functions coded in procedural languages may use pseudo-types only as allowed by their implementa-
tion languages. At present the procedural languages all forbid use of a pseudo-type as argument type,
and allow onlyvoid as a result type (plusigger ~ when the function is used as a trigger).

Theinternal pseudo-type is used to declare functions that are meant only to be called internally
by the database system, and not by direct invocation in a SQL query. If a function has at least one
internal -type argument then it cannot be called from SQL. To preserve the type safety of this
restriction it is important to follow this coding rule: do not create any function that is declared to
returninternal unless it has at least ofreernal ~ argument.

5.12. Arrays

PostgreSQL allows columns of a table to be defined as variable-length multidimensional arrays. Ar-
rays of any built-in type or user-defined type can be created. To illustrate their use, we create this
table:

CREATE TABLE sal_emp (

name text,
pay_by_quarter integer[],
schedule text[][]

);

As shown, an array data type is named by appending square brgtKets the data type name of the
array elements. The above command will create a table naatesmp with columns including a
text string (hame), a one-dimensional array of typeeger (pay_by quarter), which represents
the employee’s salary by quarter, and a two-dimensional arr@ytof (schedule), which represents
the employee’s weekly schedule.

71

Chapter 5. Data Types

Now we do soméNSERTS. Observe that to write an array value, we enclose the element values within
curly braces and separate them by commas. If you know C, this is not unlike the syntax for initializing
structures. (More details appear below.)

INSERT INTO sal_emp
VALUES ('Bill’,
'{10000, 10000, 10000, 10000},
{{"meeting"”, "lunch"}, {}});

INSERT INTO sal_emp
VALUES ('Carol’,
{20000, 25000, 25000, 25000},
{{"talk", "consult"}, {"meeting"}});

Now, we can run some queries sai_emp . First, we show how to access a single element of an array
at a time. This query retrieves the names of the employees whose pay changed in the second quarter:

SELECT name FROM sal_emp WHERE pay_by quarter[l] <> pay_by_quarter[2];

The array subscript numbers are written within square brackets. By default PostgreSQL uses the one-
based numbering convention for arrays, that is, an arrayebéments starts withrray[1] and ends
with array[n] .

This query retrieves the third quarter pay of all employees:

SELECT pay_by_quarter[3] FROM sal_emp;

pay_by_quarter

10000
25000
(2 rows)

We can also access arbitrary rectangular slices of an array, or subarrays. An array slice is denoted
by writing lower-bound : upper-bound for one or more array dimensions. This query retrieves the
first item on Bill's schedule for the first two days of the week:

SELECT schedule[1:2][1:1] FROM sal_emp WHERE name = 'Bill’;

schedule

{{meeting}.{"}}
(1 row)

We could also have written

SELECT schedule[1:2][1] FROM sal_emp WHERE name = 'Bill’;

72

Chapter 5. Data Types

with the same result. An array subscripting operation is taken to represent an array slice if any of the
subscripts are written in the forfawer : upper . A lower bound of 1 is assumed for any subscript
where only one value is specified.

An array value can be replaced completely:

UPDATE sal_emp SET pay_by quarter = '{25000,25000,27000,27000}
WHERE name = 'Carol’;

or updated at a single element:

UPDATE sal_emp SET pay_by_quarter[4] = 15000
WHERE name = 'Bill’;

or updated in a slice:

UPDATE sal_emp SET pay_by quarter[1:2] = '{27000,27000}
WHERE name = 'Carol’;

An array can be enlarged by assigning to an element adjacent to those already present, or by assigning
to a slice that is adjacent to or overlaps the data already present. For example, if an array value cur-
rently has 4 elements, it will have five elements after an update that assigmsy{s] . Currently,
enlargement in this fashion is only allowed for one-dimensional arrays, not multidimensional arrays.

Array slice assignment allows creation of arrays that do not use one-based subscripts. For example
one might assign tarray[-2:7] to create an array with subscript values running from -2 to 7.

The syntax foICREATE TABLRllows fixed-length arrays to be defined:

CREATE TABLE tictactoe (
squares integer[3][3]
)i

However, the current implementation does not enforce the array size limits --- the behavior is the same
as for arrays of unspecified length.

Actually, the current implementation does not enforce the declared number of dimensions either.
Arrays of a particular element type are all considered to be of the same type, regardless of size or
number of dimensions. So, declaring number of dimensions or sizEREATE TABLHS simply
documentation, it does not affect runtime behavior.

The current dimensions of any array value can be retrieved witarthg dims function:

SELECT array_dims(schedule) FROM sal_emp WHERE name = 'Carol’;

array_dims

2y
1 row)

array_dims produces aext result, which is convenient for people to read but perhaps not so
convenient for programs.

To search for a value in an array, you must check each value of the array. This can be done by hand
(if you know the size of the array):

SELECT * FROM sal_ emp WHERE pay_by_quarter[1] = 10000 OR
pay_by_quarter[2] = 10000 OR

73

Chapter 5. Data Types

10000 OR
10000;

pay_by_quarter[3]
pay_by_quarter[4]

However, this quickly becomes tedious for large arrays, and is not helpful if the size of the array
is unknown. Although it is not part of the primary PostgreSQL distribution, there is an extension
available that defines new functions and operators for iterating over array values. Using this, the
above query could be:

SELECT * FROM sal_emp WHERE pay_by_quarter[1:4] *= 10000;
To search the entire array (not just specified columns), you could use:

SELECT * FROM sal_emp WHERE pay_by_quarter *= 10000;

In addition, you could find rows where the array had all values equal to 10 000 with:

SELECT * FROM sal_emp WHERE pay_by quarter **= 10000;

To install this optional module, look in theontrib/array directory of the PostgreSQL source
distribution.

Tip: Arrays are not sets; using arrays in the manner described in the previous paragraph is often
a sign of database misdesign. The array field should generally be split off into a separate table.
Tables can obviously be searched easily.

Note: A limitation of the present array implementation is that individual elements of an array
cannot be SQL null values. The entire array can be set to null, but you can’t have an array with
some elements null and some not. Fixing this is on the to-do list.

Array input and output syntax. The external representation of an array value consists of items
that are interpreted according to the 1/O conversion rules for the array’s element type, plus decoration
that indicates the array structure. The decoration consists of curly bfaessly) around the array

value plus delimiter characters between adjacent items. The delimiter character is usually a comma
(,) but can be something else: it is determined bytpdelim setting for the array’s element type.
(Among the standard data types provided in the PostgreSQL distributionhdypeses a semicolon

(;) but all the others use comma.) In a multidimensional array, each dimension (row, plane, cube,
etc.) gets its own level of curly braces, and delimiters must be written between adjacent curly-braced
entities of the same level. You may write whitespace before a left brace, after a right brace, or before
any individual item string. Whitespace after an item is not ignored, however: after skipping leading
whitespace, everything up to the next right brace or delimiter is taken as the item value.

Quoting array elements. As shown above, when writing an array value you may write double quotes
around any individual array element. Youstdo so if the element value would otherwise confuse the
array-value parser. For example, elements containing curly braces, commas (or whatever the delimiter
character is), double quotes, backslashes, or leading white space must be double-quoted. To put a
double quote or backslash in an array element value, precede it with a backslash. Alternatively, you
can use backslash-escaping to protect all data characters that would otherwise be taken as array syntax
or ignorable white space.

The array output routine will put double quotes around element values if they are empty strings
or contain curly braces, delimiter characters, double quotes, backslashes, or white space. Double
quotes and backslashes embedded in element values will be backslash-escaped. For numeric data

74

Chapter 5. Data Types

types it is safe to assume that double quotes will never appear, but for textual data types one should be
prepared to cope with either presence or absence of quotes. (This is a change in behavior from pre-7.2
PostgreSQL releases.)

Tip: Remember that what you write in an SQL command will first be interpreted as a string literal,
and then as an array. This doubles the number of backslashes you need. For example, to insert a
text array value containing a backslash and a double quote, you'd need to write

INSERT ... VALUES ({W","\"7});

The string-literal processor removes one level of backslashes, so that what arrives at the array-
value parser looks like {"\\","\""} . In turn, the strings fed to the text data type’s input routine
become\ and " respectively. (If we were working with a data type whose input routine also treated
backslashes specially, bytea for example, we might need as many as eight backslashes in the
command to get one backslash into the stored array element.)

75

Chapter 6. Functions and Operators

PostgreSQL provides a large number of functions and operators for the built-in data types. Users can
also define their own functions and operators, as described PastgreSQL Programmer’s Guide

The psqgl commandglf and\do can be used to show the list of all actually available functions and
operators, respectively.

If you are concerned about portability then take note that most of the functions and operators de-
scribed in this chapter, with the exception of the most trivial arithmetic and comparison operators and
some explicitly marked functions, are not specified by the SQL standard. Some of this extended func-
tionality is present in other SQL implementations, and in many cases this functionality is compatible

and consistent between various products.

6.1. Logical Operators

The usual logical operators are available:

AND
OR
NOT

SQL uses a three-valued Boolean logic where the null value represents “unknown”. Observe the
following truth tables:

a b a AND b a OR b
TRUE TRUE TRUE TRUE
TRUE FALSE FALSE TRUE
TRUE NULL NULL TRUE
FALSE FALSE FALSE FALSE
FALSE NULL FALSE NULL
NULL NULL NULL NULL
a NOT a

TRUE FALSE

FALSE TRUE

NULL NULL

6.2. Comparison Operators

The usual comparison operators are available, showalite 6-1

Table 6-1. Comparison Operators

Operator

Description

<

less than

76

Chapter 6. Functions and Operators

Operator Description

> greater than

<= less than or equal to
>= greater than or equal to
= equal

<>o0rl= not equal

Note: The != operator is converted to <> in the parser stage. It is not possible to implement !=
and <> operators that do different things.

Comparison operators are available for all data types where this makes sense. All comparison oper-
ators are binary operators that return values of typgean ; expressions lika < 2 < 3 are not
valid (because there is nooperator to compare a Boolean value wajh

In addition to the comparison operators, the speRfafWEENONstruct is available.
a BETWEENx ANDYy
is equivalent to
a >= x ANDa <=y
Similarly,
a NOT BETWEEM ANDy
is equivalent to
a < x ORa >y

There is no difference between the two respective forms apart from the CPU cycles required to rewrite
the first one into the second one internally.

To check whether a value is or is not null, use the constructs

expression IS NULL
expression IS NOT NULL

or the equivalent, but nonstandard, constructs

expression ISNULL
expression NOTNULL

Do notwrite expression = NULLbecaus@lULLis not “equal to"NULL (The null value represents
an unknown value, and it is not known whether two unknown values are equal.)

Some applications may (incorrectly) require thakpression = NULL returns true if
expression evaluates to the null value. To support these applications, the run-time option
transform_null_equals can be turned on (e.gSET transform_null_equals TO ON;).
PostgreSQL will then convert = NULL clauses toax IS NULL. This was the default behavior in
releases 6.5 through 7.1.

Boolean values can also be tested using the constructs

77

Chapter 6. Functions and Operators

expression IS TRUE
expression IS NOT TRUE
expression IS FALSE
expression IS NOT FALSE
expression IS UNKNOWN
expression IS NOT UNKNOWN

These are similar tt6 NULL in that they will always return true or false, never a null value, even
when the operand is null. A null input is treated as the logical value “unknown”.

6.3. Mathematical Functions and Operators

Mathematical operators are provided for many PostgreSQL types. For types without common math-
ematical conventions for all possible permutations (e.g., date/time types) we describe the actual be-
havior in subsequent sections.

Table 6-2shows the available mathematical operators.

Table 6-2. Mathematical Operators

Name Description Example Result
+ addition 2+3 5
- subtraction 2-3 -1
* multiplication 2*3 6
/ division (integer 4/2
division truncates
results)
% modulo (remainder) 5% 4 1
A exponentiation 2.073.0 8
I/ square root |/ 25.0 5
I/ cube root [|/ 27.0 3
! factorial 51 120
I factorial (prefix s 120
operator)
@ absolute value @ -5.0 5
& binary AND 91 & 15 11
| binary OR 32 |3 35
binary XOR 17 #5 20
~ binary NOT ~1 -2
<< binary shift left 1<<4 16
>> binary shift right 3>>2 2

The “binary” operators are also available for the bit string typi@sandBIT VARYING, as shown in

Table 6-3 Bit string arguments t&, | , and# must be of equal length. When bit shifting, the original

length of the string is preserved, as shown in the table.

Table 6-3. Bit String Binary Operators

78

Chapter 6. Functions and Operators

Example Result
B'10001’ & B'01101" 00001
B'10001’ | B'01101" 11101
B’10001’ # B'01101"’ 11110
~ B’10001’ 01110
B’10001' << 3 01000
B’10001' >> 2 00100

Table 6-4shows the available mathematical functions. In the talpléndicatesdouble precision

Many of these functions are provided in multiple forms with different argument types. Except where
noted, any given form of a function returns the same datatype as its argument. The functions work-
ing with double precision data are mostly implemented on top of the host system’s C library;

accuracy and behavior in boundary cases may therefore vary depending on the host system.

Table 6-4. Mathematical Functions

Function Return Type Description Example Result
abs (X) (same ax) absolute value fabs(-17.4) 17.4
cbrt (dp) dp cube root cbrt(27.0) 3
ceil (dp or (same as input) [smallest integer [ceil(-42.8) -42
numeric) not less than

argument
degrees (dp) dp radians to degreesdegrees(0.5) 28.647889756541P
exp (dp or (same as input) |exponential exp(1.0) 2.71828182845905
numeric)
floor (dp or (same as input) |[largest integer notffloor(-42.8) -43
numeric) greater than

argument
In (dp or (same as input) |natural logarithm |In(2.0) 0.693147180559945
numeric)
log (dp or (same as input) |base 10 logarithm|log(100.0) 2
numeric)
log (b numeric , X jnumeric logarithm to basé og(2.0, 64.0) 6.0000000000
numeric)
mod(y , X) (same as argumemtemainder ofy /x |mod(9,4) 1

types)

pi () dp “Pi” constant pi() 3.14159265358979
pow(X dp,e dp) (dp raise a number to pow(9.0, 3.0) 729

exponene
pow(X numeric , € numeric raise a number to pow(9.0, 3.0) 729
numeric) exponene
radians (dp) dp degrees to radiansradians(45.0) 0.785398163397448

79

Chapter 6. Functions and Operators

Function Return Type Description Example Result
random () dp random value random()

between 0.0 and

1.0
round (dp or (same as input) round to nearest [round(42.4) 42
numeric) integer
round (V numeric round tos decimalround(42.4382, 42.44
numeric , S places 2)
integer)
sign (dp or (same as input) [sign of the sign(-8.4) -1
numeric) argument (-1, O,

+1)
sqrt (dp or (same as input) [square root sqrt(2.0) 1.4142135623731
numeric)
trunc (dp or (same as input) [truncate toward [trunc(42.8) 42
numeric) zero
trunc (v numeric truncate tcs trunc(42.4382, 42.43
numeric , S decimal places)
integer)

Finally, Table 6-5shows the available trigonometric functions. All trigonometric functions take argu-
ments and return values of tygeuble precision

Table 6-5. Trigonometric Functions

Function Description

acos (X) inverse cosine

asin (X) inverse sine

atan (X) inverse tangent
atan2 (X,y) inverse tangent of /y
cos (X) cosine

cot (X) cotangent

sin (X) sine

tan (X) tangent

6.4. String Functions and Operators

This section describes functions and operators for examining and manipulating string values. Strings
in this context include values of all the typ€SIARACTERCHARACTER VARYIN@NdTEXT. Unless
otherwise noted, all of the functions listed below work on all of these types, but be wary of potential
effects of the automatic padding when using t+ARACTERype. Generally, the functions described

here also work on data of non-string types by converting that data to a string representation first. Some
functions also exist natively for bit-string types.

SQL defines some string functions with a special syntax where certain key words rather than commas
are used to separate the arguments. Details afabie 6-6 These functions are also implemented
using the regular syntax for function invocation. (Sable 6-7)

80

Table 6-6. SQL String Functions and Operators

Chapter 6. Functions and Operators

from pattern
for escape)

matching SQL

regular expression%#"o_a#" '

from

Function Return Type Description Example Result
string || text String 'Post’ || PostgreSQL
string concatenation 'greSQL’
bit_length (stringinteger Number of bits in |pit_length(jose’) (32
string
char_length (strinoteger Number of char_length(jose’) |4
or charac- characters in string
ter_length (string)
convert (string fext Change encodingconvert(PostgreSQl'PostgreSQL’ in
usingconver- using specified using Unicode (UTF-8)
sion_name) conversion name. iso_8859_1 to_utf @ncoding
Conversions can he
defined byCREATE]
CONVERSION
Also there are
some pre-defined
conversion names|
SeeTable 6-8for
available
conversion names;
lower (string) fext Convert string to lower('TOM’) tom
lower case
octet_length (Striingegey Number of bytes irpctet_length(’jose’) |4
string
overlay (string fext Insert substring |overlay(Txxxxas’ [Thomas
placingstring placing ’hom’
frominteger [for from 2 for 4)
integer)
position (substringteger Location of position('om’ 3
instring) specified substringn 'Thomas’)
substring (string text Extract substring substring('Thomas’ jhom
[from integer] from 2 for 3)
[for integer)
substring (string text Extract substring |substring(Thomas’ |mas
from pattern) matching POSIX [from '..$")
regular expression
substring (String fext Extract substring [substring('Thomas’ joma

for '#)

81

Chapter 6. Functions and Operators

upper case

Function Return Type Description Example Result
trim ([leading| fext Remove the trim(both "X’ Tom
trailing | both] longest string from 'xTomxx")
[characters] containing only the
fromstring) characters (a

space by default)

from the

beginning/end/both

ends of the

string
upper (string) fext Convert string to upper(tom’) TOM

Additional string manipulation functions are available and are listethivie 6-7 Some of them are
used internally to implement the SQL-standard string functions listddlite 6-6

Table 6-7. Other String Functions

with encode()
Parameter type is
same as in
encode()

Function Return Type Description Example Result
ascii (text) integer ASCII code of the [ascii(’x’) 120
first character of
the argument.
btrim (string text Remove (trim) thebtrim('xyxtrimyyx’,"xytim
text , trim longest string
text) consisting only of
characters inrim
from the start and
end ofstring
chr (integer) text Character with thechr(65) A
given ASCII code
text Convert string to |convert(text_in_unidacte’jn_unicode
convert (string dest_encoding [UNICODE/, represented in 1ISC
text The original 'LATINL) 8859-1
[src_encoding encoding is
name,] specified by
dest_encoding src_encoding
name) If
src_encoding
is omitted,
database encoding
is assumed.
decode (string bytea Decode binary [decode(MTIzAAE="{123\000\001
text ,type data fromstring [base64’)
text) previously encoded

82

Chapter 6. Functions and Operators

Function Return Type Description Example Result
encode (data text Encode binary [encode(’123\000\0PAT,IzZAAE=
bytea , type data to ASCII-only/base64')
text) representation.
Supported types
are: base64, hex,
escape.
initcap (text) fext Convert first letter jinitcap(hi Hi Thomas
of each word thomas’)

(whitespace
separated) to uppe

=

case
length (string) integer Length of string ength(’jose’) 4
Ipad (string text Fill up the Ipad(’hi’, 5, xyxhi
text , length string to length xy")
integer [, fill length by
text]) prepending the

characterdill (a

space by default).
If the string is
already longer thal
length thenitis
truncated (on the

=

right).
Itrim (string text Remove the Itrim(’zzzytrim’,’xyz")[trim
text ,text longest string
text) containing only

characters from
trim from the
start of the string.

pg_client_encoding nam@ Current client pg_client_encoding(BQL_ASCII
encoding name.

quote_ident (Stringxt Return the given quote_ident(Foo’) ['Foo"

text) string suitably

quoted to be used
as an identifier in
an SQL query
string. Quotes are
added only if
necessary (i.e., if
the string contains
non-identifier
characters or
would be
case-folded).
Embedded quotes
are properly
doubled.

83

Chapter 6. Functions and Operators

Function Return Type Description Example Result
quote_literal (strixg Return the given [quote_literalOVReill@yReilly’
text) string suitably

quoted to be used

as a literal in an

SQL query string.

Embedded quotes

and backslashes

are properly

doubled.
repeat (text , text Repeat text a repeat('’Pg’, PgPgPgPg
integer) number of times 4)
replace (string fext Replace all replace('abcdefabcdaBbXXefabXXef
text ,from text |, occurrences in [cd, 'XX)
to text) string of

substringfrom

with substringto
rpad (string text Fill up the rpad(hi’, 5, hixyx
text , length string to length xy")
integer [, fill length by
text]) appending the

characterdill (a

space by default).

If the string is

already longer thap

length thenitis

truncated.
rtrim (String text Remove the rtrim(trimxxxx’,’x’) ~ trim
text, trim text) longest string

containing only

characters from

trim from the end

of the string.
split_part (stringtext Splitstring on split_part(abc~@~ddef@~ghi’,~@~",2)
text delimiter
delimiter returning the
text , column resulting (one
integer) based)olumn

number.
strpos (string , ftext Locate specified strpos(high’,’ig) 2

substring)

substring (same a
posi-

tion(substring
in string), but
note the reversed

argument order)

D

84

Chapter 6. Functions and Operators

Function Return Type Description Example Result
substr (string , text Extract specified [substr(alphabet’, [ph
from [, count]) substring (same ag, 2)

sub-

string(string
from from for

count))
to_ascii (text [, fext Converttextto to_ascii('Karel’) Karel
encoding) IASCII from other

encoding
to_hex (number fext Convertnumber to_hex(9223372036@HTTHEET ::bigint)
integer or to its equivalent
bigint) hexadecimal

representation
trans- text Any character in [translate('12345’, [a23x5
late (string string that 14, 'ax))
text ,from text , matches a
to text) character in the

from setis

replaced by the
corresponding
character in théo
set.

Notes:
a. Theto_ascii function supports conversion fromATINL , LATIN2 , andWIN1250 only.

Table 6-8. Built-in Conversions

Conversion Name a Source Encoding Destination Encoding
ascii_to_mic SQL_ASCII MULE_INTERNAL
ascii_to_utf 8 SQL_ASCII UNICODE
big5_to_euc_tw BIG5 EUC_TW
big5_to_mic BIG5 MULE_INTERNAL
big5_to_utf_8 BIG5 UNICODE
euc_cn_to_mic EUC_CN MULE_INTERNAL
euc_cn_to_utf 8 EUC_CN UNICODE
euc_jp_to_mic EUC_JP MULE_INTERNAL
euc_jp_to_sjis EUC_JP SJIS
euc_jp_to_utf 8 EUC_JP UNICODE
euc_kr_to_mic EUC_KR MULE_INTERNAL
euc_kr_to_utf_8 EUC_KR UNICODE
euc_tw_to_big5 EUC_TW BIG5
euc_tw_to_mic EUC_TW MULE_INTERNAL
euc_tw_to_utf 8 EUC_TW UNICODE
gb18030_to_utf 8 GB18030 UNICODE
gbk_to_utf 8 GBK UNICODE

85

Chapter 6. Functions and Operators

Conversion Name a Source Encoding Destination Encoding
iso_8859 10 to_utf 8 LATING UNICODE
iso_8859_13 to_utf_8 LATIN7 UNICODE
iso_8859 14 to_utf 8 LATINS UNICODE
iso_8859 15 to_utf 8 LATIN9 UNICODE
iso_8859 16 to_utf_8 LATIN10 UNICODE
iso_8859_1_to_mic LATIN1 MULE_INTERNAL
iso_8859 1 to_utf 8 LATIN1 UNICODE
iso_8859_2_to_mic LATIN2 MULE_INTERNAL
iso_8859 2 to_utf 8 LATIN2 UNICODE
iso_8859 2 to_windows_1250 |[LATIN2 WIN1250
iso_8859_3_to_mic LATIN3 MULE_INTERNAL
iso_8859_3_to_utf 8 LATIN3 UNICODE
iso_8859 4 to_mic LATIN4 MULE_INTERNAL
iso_8859_4_to_utf_8 LATIN4 UNICODE
iso_8859 5 to_koi8 r ISO_8859 5 KOI8

iso_8859 5 to_mic ISO_8859 5 MULE_INTERNAL
iso_8859 5 to_utf 8 ISO_8859 5 UNICODE
iso_8859 5 to_windows_1251 [ISO_8859 5 WIN
iso_8859_5_to_windows_866 ISO_8859_5 ALT
iso_8859_6_to_utf_8 ISO_8859_6 UNICODE
iso_8859 7 to_utf 8 ISO_8859 7 UNICODE
iso_8859 8 to_utf 8 ISO_8859 8 UNICODE
iso_8859 9 to_utf 8 LATINS UNICODE
iohab_to_utf_8 JOHAB UNICODE
koi8_r_to_iso_8859_5 KOI8 ISO_8859_5
koi8_r_to_mic KOI8 MULE_INTERNAL
koi8_r_to_utf 8 KOI8 UNICODE

koi8 r to windows_1251 KOI8 WIN
koi8_r_to_windows_866 KOI8 ALT

mic_to_ascii MULE_INTERNAL SQL_ASCII
mic_to_big5 MULE_INTERNAL BIG5
mic_to_euc_cn MULE_INTERNAL EUC_CN
mic_to_euc_jp MULE_INTERNAL EUC_JP
mic_to_euc_kr MULE_INTERNAL EUC_KR
mic_to_euc_tw MULE_INTERNAL EUC_TW
mic_to_iso_8859 1 MULE_INTERNAL LATIN1
mic_to_iso_8859 2 MULE_INTERNAL LATIN2
mic_to_iso_8859_3 MULE_INTERNAL LATIN3
mic_to_iso_8859 4 MULE_INTERNAL LATIN4

86

Chapter 6. Functions and Operators

Conversion Name a Source Encoding Destination Encoding
mic_to_iso_8859 5 MULE_INTERNAL ISO_8859 5
mic_to_koi8_r MULE_INTERNAL KOI8
mic_to_sjis MULE_INTERNAL SJIS
mic_to_windows_1250 MULE_INTERNAL WIN1250
mic_to_windows_1251 MULE_INTERNAL WIN
mic_to_windows_866 MULE_INTERNAL ALT
sjis_to_euc_jp SJIS EUC_JP
sjis_to_mic SJIS MULE_INTERNAL
sjis_to_utf 8 SJIS UNICODE
tcvn_to_utf 8 TCVN UNICODE
uhc_to_utf 8 UHC UNICODE
utf_8 to_ascii UNICODE SQL_ASCII
utf_8_to_big5 UNICODE BIG5

utf_8 to_euc_cn UNICODE EUC_CN
utf_8 to_euc_jp UNICODE EUC_JP

utf 8 to_euc_kr UNICODE EUC_KR

utf 8 to_euc_tw UNICODE EUC_TW
utf_8_to_gh18030 UNICODE GB18030
utf 8 to_gbk UNICODE GBK
utf_8_to_iso_8859 1 UNICODE LATINL
utf_8 to_iso_8859 10 UNICODE LATING

utf 8 to_iso_8859 13 UNICODE LATIN7

utf 8 to_iso_8859 14 UNICODE LATINS
utf_8_to_iso_8859 15 UNICODE LATINO
utf_8_to_iso_8859 16 UNICODE LATIN10
utf 8 to_iso_8859 2 UNICODE LATIN2
utf_8 to_iso_8859 3 UNICODE LATIN3

utf 8 to_iso_8859 4 UNICODE LATIN4

utf 8 to_iso_8859 5 UNICODE ISO_8859 5
utf_8_to_iso_8859 6 UNICODE ISO_8859 6
utf_8_to_iso_8859 7 UNICODE ISO_8859_7
utf_8 to_iso_8859_8 UNICODE ISO_8859_8
utf_8 to_iso_8859 9 UNICODE LATINS
utf_8 to_johab UNICODE JOHAB

utf 8 to_koi8_r UNICODE KOI8

utf_8 to_sjis UNICODE SJIS
utf_8_to_tcvn UNICODE TCVN
utf_8_to_uhc UNICODE UHC

utf_8 to_windows_1250 UNICODE WIN1250
utf_8 to_windows_1251 UNICODE WIN

utf 8 to_windows_1256 UNICODE WIN1256
utf 8 to_windows_866 UNICODE ALT

87

Chapter 6. Functions and Operators

Conversion Name a Source Encoding Destination Encoding

utf_8 to_windows_874 UNICODE WIN874
windows_1250_to_iso_8859 2 |WIN1250 LATIN2

windows_1250 to_mic WIN1250 MULE_INTERNAL
windows_1250 to_utf 8 WIN1250 UNICODE

windows_1251 to_iso_8859 5 WIN ISO_8859 5

windows_1251 to_koi8_r WIN KOI8

windows_1251_to_mic WIN MULE_INTERNAL
windows_1251_to_utf_8 WIN UNICODE
windows_1251 to windows_866 WIN ALT

windows_1256 to_utf 8 WIN1256 UNICODE
windows_866_to_iso_8859_5 |ALT ISO_8859 5
windows_866_to_koi8_r ALT KOI8

windows_866_to_mic ALT MULE_INTERNAL
windows_866_to_utf 8 ALT UNICODE
windows_866 to windows_ 1251 ALT WIN

windows_874_to_utf 8 WIN874 UNICODE

Notes:

a. The conversion names follow a standard naming scheme: The official name of the source
encoding with all non-alphanumeric characters replaced by underscores followed bjollowed
by the equally processed destination encoding hame. Therefore the names might deviate frgm the
customary encoding names.

6.5. Binary String Functions and Operators

This section describes functions and operators for examining and manipulating binary string values.
Strings in this context mean values of the tyg¢TEA

SQL defines some string functions with a special syntax where certain key words rather than commas
are used to separate the arguments. Details afalite 6-9 Some functions are also implemented
using the regular syntax for function invocation. (Sable 6-10)

Table 6-9. SQL Binary String Functions and Operators

Function Return Type Description Example Result
string || bytea String "\WPost"::bytea \Post'greSQL\000
string concatenation I
'\\047greSQL\\000’::pytea
octet_length (Striingegey Number of bytes irpctet_length()jo\\0005e’::bytea)
binary string

88

Chapter 6. Functions and Operators

Function

Return Type

Description

Example

Result

position

(substringteger

Location of

position("\\000om'::btea

instring) specified substringn
'Th\\000omas'::bytea)

substring (string oytea Extract substring substring('Th\\000orm800ytea
[from integer] from 2 for 3)
[for integer])
trim ([both] bytea Remove the trim(\\000"::bytea [Tom
characters longest string from
fromstring) containing only the\\000Tom\\000'::bytea)

characters

from the

beginning/end/both

ends of the

string
get_byte (string |finteger Extract byte from jget_byte('Th\\000omb&9:bytea,
offset) string. 4)
set_byte (string [gytea Set byte in string. [set_byte('Th\\000onak\0bgm@as
offset , 4, 64)
newvalue)
get_bit (string ,integer Extract bit from get_bit(Th\000Oomag:::bytea,
offset) string. 45)
set_bit (string ,|ytea Set bitin string. set_bit(Th\\000omaghi§deamAs
offset 45, 0)
newvalue)

Additional binary string manipulation functions are available and are listélre 6-10 Some of
them are used internally to implement the SQL-standard string functions lisTedbie 6-9

Table 6-10. Other Binary String Functions

are: base64, hex,

escape.

Function Return Type Description Example Result
btrim (string bytea Remove (trim) thebtrim("\\000trim\\000 trimytea, \\000’::byteq
bytea trim longest string
bytea) consisting only of

characters inrim

from the start and

end ofstring
length (string) [integer Length of binary [length(jo\\000se’::bysea)

string
encode (string text Encode binary lencode('123\\00045@'28\a68456
bytea , type string to 'escape’)
text) ASCII-only

representation.

Supported types

89

Chapter 6. Functions and Operators

Function Return Type Description Example Result
decode (string bytea Decode binary [decode(’123\\000458'23\000456
text ,type string from 'escape’)

text) string

previously encoded
with encode()
Parameter type is
same as in
encode()

6.6. Pattern Matching

There are three separate approaches to pattern matching provided by PostgreSQL: the traditional
SQLLIKE operator, the more recent SQLSMILAR TO operator, and POSIX-style regular expres-
sions. Additionally, a pattern matching functi®®)BSTRING is available, using either SQL99-style

or POSIX-style regular expressions.

Tip: If you have pattern matching needs that go beyond this, consider writing a user-defined
function in Perl or Tcl.

6.6.1. LIKE

string LIKE pattern [ESCAPE escape-character]
string NOT LIKE pattern [ESCAPE escape-character]

Everypattern defines a set of strings. TI&E expression returns true if tls#ring is contained
in the set of strings represented pgttern . (As expected, th&8lOT LIKE expression returns false
if LIKE returns true, and vice versa. An equivalent expressidiois (string LIKE pattern).)

If pattern does not contain percent signs or underscore, then the pattern only represents the string
itself; in that caseLIKE acts like the equals operator. An underscorgif pattern stands for
(matches) any single character; a percent sigm{atches any string of zero or more characters.

Some examples:

‘abc’ LIKE ’'abc’ true
‘abc’ LIKE 'a%’ true
‘abc’ LIKE '_b’ true
‘abc’ LIKE ¢’ false

LIKE pattern matches always cover the entire string. To match a pattern anywhere within a string, the
pattern must therefore start and end with a percent sign.

To match a literal underscore or percent sign without matching other characters, the respective char-
acter inpattern must be preceded by the escape character. The default escape character is the
backslash but a different one may be selected by using$l@PEclause. To match the escape char-
acter itself, write two escape characters.

Note that the backslash already has a special meaning in string literals, so to write a pattern constant
that contains a backslash you must write two backslashes in the query. Thus, writing a pattern that

90

Chapter 6. Functions and Operators

actually matches a literal backslash means writing four backslashes in the query. You can avoid this
by selecting a different escape character WHCAPE then backslash is not speciallttKE anymore.
(But it is still special to the string literal parser, so you still need two of them.)

It's also possible to select no escape character by wrEHBGAPE " This effectively disables the
escape mechanism, which makes it impossible to turn off the special meaning of underscore and
percent signs in the pattern.

The keywordLIKE can be used instead bfKE to make the match case insensitive according to the
active locale. This is not in the SQL standard but is a PostgreSQL extension.

The operator~ is equivalent ta_IKE , and~~* corresponds ttLIKE . There are alsb-~ and!~~*
operators that represeMOT LIKE andNOT ILIKE . All of these operators are PostgreSQL-specific.

6.6.2. SIMILAR TO and SQL99 Regular Expressions

string SIMILAR TO pattern [ESCAPE escape-character]
string NOT SIMILAR TO pattern [ESCAPE escape-character]

The SIMILAR TO operator returns true or false depending on whether its pattern matches the given
string. It is much likeLIKE , except that it interprets the pattern using SQL99’s definition of a regular
expression. SQL99’s regular expressions are a curious cross betw@emotation and common
regular expression notation.

Like LIKE, the SIMILAR TO operator succeeds only if its pattern matches the entire string; this is
unlike common regular expression practice, wherein the pattern may match any part of the string.
Also like LIKE , SIMILAR TO uses%and_ as wildcard characters denoting any string and any single
character, respectively (these are comparable tand. in POSIX regular expressions).

In addition to these facilities borrowed fromKE , SIMILAR TO supports these pattern-matching
metacharacters borrowed from POSIX regular expressions:

« | denotes alternation (either of two alternatives).

« * denotes repetition of the previous item zero or more times.

- + denotes repetition of the previous item one or more times.

- Parenthese§ may be used to group items into a single logical item.

- Abracket expressiop..] specifies a character class, just as in POSIX regular expressions.

Notice that bounded repetition &nd{...}) are not provided, though they exist in POSIX. Also, dot
(.) is not a metacharacter.

As with LIKE , a backslash disables the special meaning of any of these metacharacters; or a different
escape character can be specified \EETAPE

Some examples:

‘abc’ SIMILAR TO ’abc’ true
‘abc’ SIMILAR TO 'a’ false
‘abc’ SIMILAR TO '%(b|d)%’ true
‘abc’ SIMILAR TO ’(b|c)%’ false

The SUBSTRINGfunction with three parameterSUBSTRING(tring FROMpattern FOR es-
cape) , provides extraction of a substring that matches a SQL99 regular expression pattern. As with
SIMILAR TO, the specified pattern must match to the entire data string, else the function fails and

91

Chapter 6. Functions and Operators

returns null. To indicate the part of the pattern that should be returned on success, SQL99 specifies
that the pattern must contain two occurrences of the escape character followed by doublé)quote (
The text matching the portion of the pattern between these markers is returned.

Some examples:

SUBSTRING('foobar FROM ’'%#"0_b#"%’ FOR '#) oob
SUBSTRING(foobar FROM '#'0_b#"'%’ FOR '#) NULL

6.6.3. POSIX Regular Expressions

Table 6-11lists the available operators for pattern matching using POSIX regular expressions.

Table 6-11. Regular Expression Match Operators

Operator Description Example

~ Matches regular expression, [thomas’' ~ ’.*thomas.*
case sensitive

~* Matches regular expression, [thomas’ ~* '*Thomas.*
case insensitive

I~ Does not match regular 'thomas’ !~ '.*Thomas.*
expression, case sensitive

1~* Does not match regular 'thomas’ !~* ’*vadim.*'
expression, case insensitive

POSIX regular expressions provide a more powerful means for pattern matching thakehand
SIMILAR TO operators. Many Unix tools such egrep , sed, orawk use a pattern matching language
that is similar to the one described here.

A regular expression is a character sequence that is an abbreviated definition of a set of strings (a
regular sej. A string is said to match a regular expression if it is a member of the regular set described
by the regular expression. As withKE , pattern characters match string characters exactly unless
they are special characters in the regular expression language --- but regular expressions use different
special characters thankg does. UnlikeLIKE patterns, a regular expression is allowed to match
anywhere within a string, unless the regular expression is explicitly anchored to the beginning or end
of the string.

Some examples:

‘abc’ ~ ’abc’ true
‘abc’ ~ na’ true
‘abc’ ~ ’(b|d) true
‘abc’ ~ "*(b|c) false

The SUBSTRINGfunction with two parametersSUBSTRING(tring FROMpattern), provides
extraction of a substring that matches a POSIX regular expression pattern. It returns null if there is
no match, otherwise the portion of the text that matched the pattern. But if the pattern contains any
parentheses, the portion of the text that matched the first parenthesized subexpression (the one whose
left parenthesis comes first) is returned. You can always put parentheses around the whole expression
if you want to use parentheses within it without triggering this exception.

92

Chapter 6. Functions and Operators

Some examples:

SUBSTRING('foobar FROM ’0.b") oob
SUBSTRING(foobar’ FROM ’o(.)b’) o

Regular expressions (RESs), as defined in POSIX 1003.2, come in two forms: modern REs (roughly
those ofegrep ; 1003.2 calls these “extended” REs) and obsolete REs (roughly thase ©003.2
“basic” REs). PostgreSQL implements the modern form.

A (modern) RE is one or more non-emgiisanchesseparated by. It matches anything that matches
one of the branches.

A branch is one or morpieces concatenated. It matches a match for the first, followed by a match
for the second, etc.

A piece is aratompossibly followed by a single, +, ?, orbound An atom followed by matches a
sequence of 0 or more matches of the atom. An atom followegrbgtches a sequence of 1 or more
matches of the atom. An atom followed Bymatches a sequence of 0 or 1 matches of the atom.

A boundis { followed by an unsigned decimal integer, possibly followed, bgossibly followed

by another unsigned decimal integer, always followed} byrhe integers must lie between 0 and
RE_DUP_MAX255) inclusive, and if there are two of them, the first may not exceed the second. An
atom followed by a bound containing one integeand no comma matches a sequence of exactly
matches of the atom. An atom followed by a bound containing one integad a comma matches a
sequence af or more matches of the atom. An atom followed by a bound containing two integers
andj matches a sequenceiothroughj (inclusive) matches of the atom.

Note: A repetition operator (?, *, +, or bounds) cannot follow another repetition operator. A repe-
tition operator cannot begin an expression or subexpression or follow ~ or | .

An atomis a regular expression enclosed(jn (matching a match for the regular expression), an
empty set of) (matching the null string), Aracket expressio(see below), (matching any single
character)? (matching the null string at the beginning of the input striggimnatching the null string

at the end of the input string),\afollowed by one of the charactetg$()|*+?{\ (matching that
character taken as an ordinary character)f@lowed by any other character (matching that character
taken as an ordinary character, as if thhad not been present), or a single character with no other
significance (matching that character){Aollowed by a character other than a digit is an ordinary
character, not the beginning of a bound. It is illegal to end an RE\with

Note that the backslash X already has a special meaning in string literals, so to write a pattern
constant that contains a backslash you must write two backslashes in the query.

A bracket expressiois a list of characters enclosed[in. It normally matches any single character
from the list (but see below). If the list begins withit matches any single character (but see below)
not from the rest of the list. If two characters in the list are separated byis is shorthand for the
full range of characters between those two (inclusive) in the collating sequende;¥.g.in ASCII
matches any decimal digit. It is illegal for two ranges to share an endpoing-e-g. . Ranges are
very collating-sequence-dependent, and portable programs should avoid relying on them.

To include a litera] in the list, make it the first character (following a possit)eTo include a literal

-, make it the first or last character, or the second endpoint of a range. To use a lidsréte first
endpoint of a range, enclose it jn and.] to make it a collating element (see below). With the
exception of these and some combinations upifgee next paragraphs), all other special characters,
including\ , lose their special significance within a bracket expression.

93

Chapter 6. Functions and Operators

Within a bracket expression, a collating element (a character, a multiple-character sequence that col-
lates as if it were a single character, or a collating-sequence name for either) enclpseghith.]

stands for the sequence of characters of that collating element. The sequence is a single element of
the bracket expression’s list. A bracket expression containing a multiple-character collating element
can thus match more than one character, e.qg. if the collating sequence incthdesllating element,

then the RE[.ch.]]*c matches the first five charactersobthcc .

Within a bracket expression, a collating element enclosé¢d iand=] is an equivalence class, stand-

ing for the sequences of characters of all collating elements equivalent to that one, including itself. (If
there are no other equivalent collating elements, the treatment is as if the enclosing delimit¢rs were
and.] .) For example, ib and” are the members of an equivalence class, frer]] , [="=]] ,
and[o”] are all synonymous. An equivalence class may not be an endpoint of a range.

Within a bracket expression, the name of a character class enclogedaimd:] stands for the list

of all characters belonging to that class. Standard character class nanmsuatie:alpha , blank ,

cntrl ,digit ,graph ,lower ,print ,punct ,space ,upper ,xdigit . These stand for the character
classes defined in ctype. A locale may provide others. A character class may not be used as an endpoint
of a range.

There are two special cases of bracket expressions: the bracket expr@ssiariy and[[:>:]]

match the null string at the beginning and end of a word respectively. A word is defined as a sequence
of word characters which is neither preceded nor followed by word characters. A word character is
an alnum character (as defined by ctype) or an underscore. This is an extension, compatible with but
not specified by POSIX 1003.2, and should be used with caution in software intended to be portable
to other systems.

In the event that an RE could match more than one substring of a given string, the RE matches the
one starting earliest in the string. If the RE could match more than one substring starting at that
point, it matches the longest. Subexpressions also match the longest possible substrings, subject to
the constraint that the whole match be as long as possible, with subexpressions starting earlier in the
RE taking priority over ones starting later. Note that higher-level subexpressions thus take priority
over their lower-level component subexpressions.

Match lengths are measured in characters, not collating elements. A null string is considered
longer than no match at all. For exampléy* matches the three middle charactersabbbc ,
(wee|week)(knights|nights) matches all ten characters akeknights , when (*).* is
matched againgtbc the parenthesized subexpression matches all three characters, an@when

is matched againgc both the whole RE and the parenthesized subexpression match the null string.

If case-independent matching is specified, the effect is much as if all case distinctions had vanished
from the alphabet. When an alphabetic that exists in multiple cases appears as an ordinary character
outside a bracket expression, it is effectively transformed into a bracket expression containing both
cases, e.gx becomegxX] . When it appears inside a bracket expression, all case counterparts of it
are added to the bracket expression, so that (g]g.becomegxX] and[*x] becomeg$ xX]

There is no particular limit on the length of REs, except insofar as memory is limited. Memory
usage is approximately linear in RE size, and largely insensitive to RE complexity, except
for bounded repetitions. Bounded repetitions are implemented by macro expansion, which is
costly in time and space if counts are large or bounded repetitions are nested. An RE like, say,
((((a{1,100}){1,100}){1,100}){1,100}){1,100} will (eventually) run almost any existing
machine out of swap space.

1. This was written in 1994, mind you. The numbers have probably changed, but the problem persists.

94

Chapter 6. Functions and Operators

6.7. Data Type Formatting Functions

The PostgreSQL formatting functions provide a powerful set of tools for converting various data types
(date/time, integer, floating point, numeric) to formatted strings and for converting from formatted
strings to specific data type$able 6-12lists them. These functions all follow a common calling
convention: the first argument is the value to be formatted and the second argument is a template that
defines the output or input format.

Table 6-12. Formatting Functions

Function Returns Description Example

to_char (timestamp , fext convert time stamp to to_char(timestamp

text) string 'now’,HH12:MI:SS")

to_char (interval , fext convert interval to strin@o_char(interval

text) '15h 2m
12s’,'HH24:MI:SS’)

to_char (int ,text) fext convert integer to stringo_char(125,
'999")

to_char (double text convert real/double tto_char(125.8,

precision ,text) precision to string '999D9")

to_char (numeric |, text convert numeric to to_char(numeric

text) string '-125.8’,
'999D99S")

to_date (text ,text) (date convert string to date to_date('05 Dec
2000’, 'DD Mon
YYYY’)

to_timestamp (text , ftimestamp convert string to time fto_timestamp('05

text) stamp Dec 2000’, 'DD Mon
YYYY’)

to_number (text , numeric convert string to to_number('12,454.8-

text) numeric ", '99G999D9S’)

In an output template string, there are certain patterns that are recognized and replaced with
appropriately-formatted data from the value to be formatted. Any text that is not a template pattern is
simply copied verbatim. Similarly, in an input template string, template patterns identify the parts of
the input data string to be looked at and the values to be found there.

Table 6-13shows the template patterns available for formatting date and time values.

Table 6-13. Template patterns for date/time conversions

Pattern Description

HH hour of day (01-12)
HH12 hour of day (01-12)
HH24 hour of day (00-23)
M minute (00-59)

SS second (00-59)

95

Chapter 6. Functions and Operators

Pattern Description

MS millisecond (000-999)

us microsecond (000000-999999)

SSSS seconds past midnight (0-86399)

IAMor A.M. or PMor P.M. meridian indicator (upper case)

amora.m. Or pmor p.m. meridian indicator (lower case)

Y,YYY year (4 and more digits) with comma

YYYY year (4 and more digits)

YYY last 3 digits of year

YY last 2 digits of year

Y last digit of year

BCorB.C. orADorA.D. era indicator (upper case)

bc orb.c. orad ora.d. era indicator (lower case)

MONTH full upper case month name (blank-padded to (9
chars)

Month full mixed case month name (blank-padded to|9
chars)

month full lower case month name (blank-padded to 9
chars)

MON abbreviated upper case month name (3 chars

Mon abbreviated mixed case month name (3 chars

mon abbreviated lower case month name (3 chars)

MM month number (01-12)

DAY full upper case day name (blank-padded to 9
chars)

Day full mixed case day name (blank-padded to 9
chars)

day full lower case day name (blank-padded to 9
chars)

DY abbreviated upper case day name (3 chars)

Dy abbreviated mixed case day name (3 chars)

dy abbreviated lower case day hame (3 chars)

DDD day of year (001-366)

DD day of month (01-31)

D day of week (1-7; SUN=1)

W week of month (1-5) where first week start on the
first day of the month

WwW week number of year (1-53) where first week
start on the first day of the year

W ISO week number of year (The first Thursday of
the new year is in week 1.)

CC century (2 digits)

J Julian Day (days since January 1, 4712 BC)

Q quarter

96

Chapter 6. Functions and Operators

Pattern Description

RM month in Roman Numerals (I-XII; I=January) -
upper case

rm month in Roman Numerals (I-XII; I=January) -
lower case

TZ time-zone name - upper case

tz time-zone name - lower case

Certain modifiers may be applied to any template pattern to alter its behavior. For example,
“FMMonth” is the “Month " pattern with the ¥M prefix. Table 6-14shows the modifier patterns for
date/time formatting.

Table 6-14. Template pattern modifiers for date/time conversions

Modifier Description Example
FMprefix fill mode (suppress padding [FMMonth
blanks and zeroes)
TH suffix add upper-case ordinal numbepDTH
suffix
th suffix add lower-case ordinal numbelDDth
suffix
FX prefix fixed format global option (see|FX Month DD Day
usage notes)
SP suffix spell mode (not yet DDSP

implemented)

Usage notes for the date/time formatting:

« FMsuppresses leading zeroes and trailing blanks that would otherwise be added to make the output
of a pattern be fixed-width.

« to_timestamp andto_date skip multiple blank spaces in the input string if e option is not
used.FX must be specified as the first item in the template; for exaneplémestamp('2000
JUN’,’YYYY MON’) s right, butto_timestamp(’2000 JUN’,FXYYYY MON’) returns an er-
ror, becauséo_timestamp expects one blank space only.

. If a backslash (") is desired in a string constant, a double backslashj‘must be entered; for
example\W\HH\MMNSS’ . This is true for any string constant in PostgreSQL.

« Ordinary text is allowed imo_char templates and will be output literally. You can put a substring
in double quotes to force it to be interpreted as literal text even if it contains pattern keywords. For
example, in"Hello Year "YYYY’ , theYYYYwill be replaced by the year data, but the single
in “Year” will not be.

- If you want to have a double quote in the output you must precede it with a backslash, for example
WYYYY Month\\"

« YYYYconversion from string tmestamp or date is restricted if you use a year with more than
4 digits. You must use some non-digit character or template #ft®iy, otherwise the year is al-
ways interpreted as 4 digits. For example (with year 200003tate('200001131", "YYYYM-
MDD’) will be interpreted as a 4-digit year; better is to use a non-digit separator after the year, like
to_date(’20000-1131", 'YYYY-MMDD’) or to_date('’20000Nov31’, 'YYYYMonDD’)

97

Chapter 6. Functions and Operators

« Millisecond MSand microsecontdSvalues in a conversion from string to time stamp are used as
part of the seconds after the decimal point. For examplgmestamp('12:3’, 'SS:MS’) is
not 3 milliseconds, but 300, because the conversion counts it as 12 + 0.3. This means for the format
SS:MS, the input valued2:3 , 12:30 , and12:300 specify the same number of milliseconds. To
get three milliseconds, one must use003 , which the conversion counts as 12 + 0.003 = 12.003
seconds.

Here is a more complex exampte: timestamp('15:12:02.020.001230’,'HH:MI:SS.MS.US’)
is 15 hours, 12 minutes, and 2 seconds + 20 milliseconds + 1230 microseconds = 2.021230
seconds.

Table 6-15shows the template patterns available for formatting numeric values.

Table 6-15. Template patterns for numeric conversions

Pattern Description

9 value with the specified number of digits

0 \value with leading zeros

. (period) decimal point

, (comma) group (thousand) separator

PR negative value in angle brackets

S negative value with minus sign (uses locale)
L currency symbol (uses locale)

D decimal point (uses locale)

G group separator (uses locale)

MI minus sign in specified position (if number0)
PL plus sign in specified position (if number 0)
SG plus/minus sign in specified position

RN roman numeral (input between 1 and 3999)
THorth convert to ordinal number

\Y shift n digits (see notes)

EEEE scientific notation (not implemented yet)

Usage notes for the numeric formatting:

- Asign formatted usin@G PL, or Ml is not an anchor in the number; for exampte char(-12,
’'S9999") produces -12° , butto_char(-12, 'MI9999’) produces- 12 . The Oracle im-
plementation does not allow the useMifahead 0B, but rather requires thatprecedemi.

- 9 specifies a value with the same number of digits as theresatéa digit is not available it outputs
a space.

. THdoes not convert values less than zero and does not convert decimal numbers.
« PL, SG andTHare PostgreSQL extensions.

-V effectively multiplies the input values b30” n, wheren is the number of digits followingy.
to_char does not support the use wfcombined with a decimal point. (E.g29.9v99 is not

98

allowed.)

Chapter 6. Functions and Operators

Table 6-16shows some examples of the use ofthechar function.

Table 6-16.to_char Examples

Input

Output

to_char(now(),'Day, DD HH12:MI:SS’)

'Tuesday , 06 05:39:18’

to_char(now(),’FMDay, FMDD
HH12:MI:SS’)

'Tuesday, 6 05:39:18’

to_char(-0.1,'99.99") 10
to_char(-0.1,’FM9.99’) -1
to_char(0.1,'0.9") " 0.1
to_char(12,'9990999.9") ' 0012.0'
to_char(12,'/FM9990999.9") ‘0012’
to_char(485,'999’) ' 485’
to_char(-485,"999’) '-485’
to_char(485,9 9 9) 485
to_char(1485,'9,999’) ' 1,485
to_char(1485,'9G999) " 1 485
to_char(148.5,'999.999") ' 148.500'
to_char(148.5,/999D999’) ' 148,500’
to_char(3148.5,/9G999D999’) ' 3 148,500’
to_char(-485,'999S) '485-’
to_char(-485,"999MI") '485-’
to_char(485,'999MI’) '485’
to_char(485,'PL999") '+485’
to_char(485,'SG999’) '+485’
to_char(-485,'SG999’) '-485’
to_char(-485,/9SG99) '4-85'
to_char(-485,'999PR’) - <485>’
to_char(485,'L999) 'DM 485
to_char(485,’RN’) " CDLXXXV'
to_char(485,’FMRN’) 'CDLXXXV’
to_char(5.2,FMRN’) \%
to_char(482,999th’) " 482nd’

to_char(485, ™Good number:"999’)

'Good number: 485’

to_char(485.8,"Pre:"999" Post:"
.999")

'Pre: 485 Post: .800’

to_char(12,'99vV999) " 12000’
to_char(12.4,/99V999") ' 12400’
to_char(12.45, '99V9’) ' 125

99

Chapter 6. Functions and Operators

6.8. Date/Time Functions and Operators

Table 6-18shows the available functions for date/time value processing, with details appearing in
the following subsectionstable 6-17illustrates the behaviors of the basic arithmetic operateys (

*, etc.). For formatting functions, refer ®ection 6.7 You should be familiar with the background
information on date/time data types (s®ection 5.5.

All the functions and operators described below that take time or timestamp inputs actually come in
two variants: one that takes time or timestamp with time zone, and one that takes time or timestamp
without time zone. For brevity, these variants are not shown separately.

Table 6-17. Date/Time Operators

Name Example Result

+ timestamp '2001-09-28 timestamp '2001-09-29
01:00" + interval '23 00:00
hours’

+ date '2001-09-28" + timestamp '2001-09-28
interval '1 hour’ 01:00’

+ time '01:00" + interval time '04:00’
'3 hours’

- timestamp '2001-09-28 timestamp '2001-09-28’
23:00' - interval '23
hours’

- date '2001-09-28' - timestamp '2001-09-27
interval '1 hour’ 23:00

- time '05:00" - interval time '03:00’
'2 hours’

- interval '2 hours’ - time '03:00:00’
time '05:00’

* interval '1 hour’ * int interval '03:00’
3

/ interval '1 hour’ / int interval '00:20’
3

Table 6-18. Date/Time Functions

Name Return Type Description Example Result
age (timestamp) |finterval Subtract from age(timestamp 43 years 8
today '1957-06-13) mons 3 days
age (timestamp , |finterval Subtract argumentsge('2001-04- 43 years 9
timestamp) 10’, timestamp mons 27 days
'1957-06-13")
current_date date Today’s date; see
Section 6.8.4
current_time time with time Time of day; see
zone Section 6.8.4
current_timestamp ftimestamp with Date and time; see
time zone Section 6.8.4

100

Chapter 6. Functions and Operators

Name Return Type Description Example Result
date_part (text , [double Get subfield date_part(hour’, 20
timestamp) precision (equivalent to timestamp
extract); see als@2001-02-16
below 20:38:40°)
date_part (text , [double Get subfield date_part(month’, |3
interval) precision (equivalent to interval 2
extract); see alsqgyears 3
below months’)
date_trunc (text jftimestamp Truncate to date_trunc(’hour’, [2001-02-16
timestamp) specified precisiorntimestamp 20:00:00+00
see alsdection [2001-02-16
6.8.2 20:38:40")
extract (field double Get subfield; see |extract(hour 20
from timestamp) |precision alsoSection 6.8.1 from timestamp
'2001-02-16
20:38:40)
extract (field double Get subfield; see extract(month 3
frominterval) |precision alsoSection 6.8.1 from interval
'2 years 3
months’)
isfinite (timestanfpo)ean Test for finite time fisfinite(timestamp ftrue
stamp (neither [2001-02-16
invalid nor infinity) [21:28:30")
isfinite (interval [baplean Test for finite isfinite(interval true
interval '4 hours’)
localtime time Time of day; see
Section 6.8.4
localtimestamp timestamp Date and time; see
Section 6.8.4
now() timestamp with |Current date and
time zone time (equivalent to
cur-
rent_timestamp)
seeSection 6.8.4
timeofday() text Current date and timeofday() Wed Feb 21
time; seeSection 17:01:13.000126
6.8.4 2001 EST

6.8.1. EXTRACT date_part

EXTRACT field FROMsource)

Theextract function retrieves subfields from date/time values, such as year or $munce is
a value expression that evaluates to tyipeestamp or interval . (Expressions of typeate or
time will be cast totimestamp and can therefore be used as wdle)d is an identifier or string
that selects what field to extract from the source value.édact function returns values of type
double precision . The following are valid values:

101

Chapter 6. Functions and Operators

century
The year field divided by 100

SELECT EXTRACT(CENTURY FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 20

Note that the result for the century field is simply the year field divided by 100, and not the
conventional definition which puts most years in the 1900’s in the twentieth century.

day
The day (of the month) field (1 - 31)
SELECT EXTRACT(DAY FROM TIMESTAMP ’'2001-02-16 20:38:40");
Result: 16
decade
The year field divided by 10
SELECT EXTRACT(DECADE FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 200
dow
The day of the week (0 - 6; Sunday is 0) (fonestamp values only)
SELECT EXTRACT(DOW FROM TIMESTAMP '2001-02-16 20:38:40’);
Result: 5
doy
The day of the year (1 - 365/366) (fomestamp values only)
SELECT EXTRACT(DOY FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 47
epoch
Fordate andtimestamp values, the number of seconds since 1970-01-01 00:00:00-00 (can be
negative); forinterval values, the total number of seconds in the interval
SELECT EXTRACT(EPOCH FROM TIMESTAMP '2001-02-16 20:38:40);
Result: 982352320
SELECT EXTRACT(EPOCH FROM INTERVAL '5 days 3 hours’);
Result: 442800
hour

The hour field (0 - 23)

SELECT EXTRACT(HOUR FROM TIMESTAMP '2001-02-16 20:38:40’);
Result: 20

microseconds

The seconds field, including fractional parts, multiplied by 1 000 000. Note that this includes full
seconds.

SELECT EXTRACT(MICROSECONDS FROM TIME '17:12:28.5");
Result: 28500000

millennium
The year field divided by 1000

SELECT EXTRACT(MILLENNIUM FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 2

102

Chapter 6. Functions and Operators

Note that the result for the millennium field is simply the year field divided by 1000, and not the
conventional definition which puts years in the 1900’s in the second millennium.

milliseconds

The seconds field, including fractional parts, multiplied by 1000. Note that this includes full
seconds.

SELECT EXTRACT(MILLISECONDS FROM TIME '17:12:28.5);
Result: 28500

minute

The minutes field (0 - 59)

SELECT EXTRACT(MINUTE FROM TIMESTAMP '2001-02-16 20:38:40);
Result: 38

month

Fortimestamp values, the number of the month within the year (1 - 12) jdf@rval values
the number of months, modulo 12 (0 - 11)

SELECT EXTRACT(MONTH FROM TIMESTAMP '2001-02-16 20:38:40’);

Result: 2

SELECT EXTRACT(MONTH FROM INTERVAL '2 years 3 months’);
Result: 3

SELECT EXTRACT(MONTH FROM INTERVAL 2 years 13 months’);
Result: 1
quarter
The quarter of the year (1 - 4) that the day is in (forestamp values only)

SELECT EXTRACT(QUARTER FROM TIMESTAMP '2001-02-16 20:38:40%;
Result: 1

second
The seconds field, including fractional parts (0 2)59
SELECT EXTRACT(SECOND FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 40
SELECT EXTRACT(SECOND FROM TIME '17:12:28.5");
Result: 285
timezone_hour
The hour component of the time zone offset.
timezone_minute
The minute component of the time zone offset.
week

From atimestamp value, calculate the number of the week of the year that the day is in. By
definition (ISO 8601), the first week of a year contains January 4 of that year. (The ISO week
starts on Monday.) In other words, the first Thursday of a year is in week 1 of that year.

SELECT EXTRACT(WEEK FROM TIMESTAMP '2001-02-16 20:38:40’);
Result: 7

60 if leap seconds are implemented by the operating system

103

Chapter 6. Functions and Operators

year
The year field

SELECT EXTRACT(YEAR FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 2001

Theextract function is primarily intended for computational processing. For formatting date/time
values for display, seSection 6.7

Thedate_part function is modeled on the traditional Ingres equivalent to the SQL-standard function
extract

date_part(’ field ', source)

Note that here théeld parameter needs to be a string value, not a name. The valid field values for
date_part are the same as fextract

SELECT date_part('day’, TIMESTAMP '2001-02-16 20:38:40);
Result: 16

SELECT date_part(hour’, INTERVAL 4 hours 3 minutes’);
Result: 4

6.8.2. date_trunc

The functiondate_trunc is conceptually similar to theeunc function for numbers.

date_trunc(’ field ', source)

source is a value expression of typienestamp (values of typelate andtime are cast automati-
cally).field selects to which precision to truncate the time stamp value. The return value is of type
timestamp with all fields that are less than the selected one set to zero (or one, for day and month).

Valid values forfield are:

microseconds
milliseconds
second
minute

hour

day

month

year
decade
century
millennium

Examples:

SELECT date_trunc(hour’, TIMESTAMP '2001-02-16 20:38:40’);
Result: 2001-02-16 20:00:00+00

104

Chapter 6. Functions and Operators

SELECT date_trunc(year’, TIMESTAMP '2001-02-16 20:38:40’);
Result: 2001-01-01 00:00:00+00

6.8.3. AT TIME ZONE

TheAT TIME ZONEconstruct allows conversions of timestamps to different timezones.

Table 6-19. AT TIME ZONE Variants

Expression Returns Description

timestamp without time timestamp with time zone Convert local time in given
zone AT TIME ZONEzone timezone to UTC

timestamp with time timestamp without time Convert UTC to local time in
zone AT TIME ZONEzone zone given timezone

time with time zone AT time with time zone Convert local time across
TIME ZONEzone timezones

In these expressions, the desired tmae can be specified either as a text string (RS’) or as
an interval (e.g.INTERVAL ’-08:00").

Examples (supposing th@imezone is PST8PDT):

SELECT TIMESTAMP ’'2001-02-16 20:38:40° AT TIME ZONE 'MST’
Result: 2001-02-16 19:38:40-08

SELECT TIMESTAMP WITH TIME ZONE °'2001-02-16 20:38:40-05" AT TIME ZONE 'MST’;
Result: 2001-02-16 18:38:40

The first example takes a zone-less timestamp and interprets it as MST time (GMT-7) to produce
a UTC timestamp, which is then rotated to PST (GMT-8) for display. The second example takes a
timestamp specified in EST (GMT-5) and converts it to local time in MST (GMT-7).

The functiontimezone (zone , timestamp) is equivalent to the SQL-compliant constrtiotes-
tamp AT TIME ZONEzone .

6.8.4. Current Date/Time

The following functions are available to obtain the current date and/or time:

CURRENT_DATE

CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_TIME (precision)
CURRENT_TIMESTAMP (recision)
LOCALTIME

LOCALTIMESTAMP

LOCALTIME (precision)
LOCALTIMESTAMP (precision)

CURRENT_TIMEBANdCURRENT_TIMESTAM@&eliver values with time zoné;OCALTIMEandLOCAL-
TIMESTAMPdeliver values without time zone.

105

Chapter 6. Functions and Operators

CURRENT_TIME CURRENT_TIMESTAMPLOCALTIME and LOCALTIMESTAMPcan optionally be

given a precision parameter, which causes the result to be rounded to that many fractional digits.

Without a precision parameter, the result is given to the full available precision.

Note: Prior to PostgreSQL 7.2, the precision parameters were unimplemented, and the result was
always given in integer seconds.

Some examples:

SELECT CURRENT_TIME;
14:39:53.662522-05

SELECT CURRENT_DATE;
2001-12-23

SELECT CURRENT_TIMESTAMP;
2001-12-23 14:39:53.662522-05

SELECT CURRENT_TIMESTAMP(2);
2001-12-23 14:39:53.66-05

SELECT LOCALTIMESTAMP;
2001-12-23 14:39:53.662522

The functionnow() is the traditional PostgreSQL equivalenttORRENT_TIMESTAMP

There is alsdimeofday() , which for historical reasons returns a text string rather thanestamp
value:

SELECT timeofday();
Sat Feb 17 19:07:32.000126 2001 EST

It is important to realize thaCURRENT_TIMESTAM&Nd related functions return the start time of the
current transaction; their values do not change during the transaitienfday() returns the wall
clock time and does advance during transactions.

Note: Many other database systems advance these values more frequently.

All the date/time data types also accept the special literal vadueto specify the current date and
time. Thus, the following three all return the same result:

SELECT CURRENT_TIMESTAMP;
SELECT now();
SELECT TIMESTAMP ’now’;

Note: You do not want to use the third form when specifying a DEFAULTclause while creating
a table. The system will convert now to a timestamp as soon as the constant is parsed, so that
when the default value is needed, the time of the table creation would be used! The first two forms

106

Chapter 6. Functions and Operators

will not be evaluated until the default value is used, because they are function calls. Thus they will
give the desired behavior of defaulting to the time of row insertion.

6.9. Geometric Functions and Operators

The geometric typegsoint , box, Iseg , line , path , polygon , andcircle have alarge set of native
support functions and operators, showTable 6-20 Table 6-21 andTable 6-22

Table 6-20. Geometric Operators

Operator Description Usage

+ Translation box ’((0,0),(1,1))" +
point '(2.0,0)’

- Translation box ’((0,0),(1,1))" -
point '(2.0,0)’

* Scaling/rotation box ’((0,0),(1,1)) *
point '(2.0,0)’

/ Scaling/rotation box ’((0,0),(2,2)) /
point '(2.0,0)’

Intersection '((1,-1),(-1,1))
((1,1),(-1,-1))

Number of points in path or # ’((1,0),(0,1),(-1,0))’

polygon

##t Point of closest proximity point '(0,0)' ## Iseg
((2,0).(0,2))

&& Overlaps? box ’((0,0),(1,1)) &&
box ’((0,0),(2,2))

&< Overlaps to left? box ’((0,0),(1,1))" & <
box '((0,0),(2,2))’

&> Overlaps to right? box ’((0,0),(3,3)) & >
box ’((0,0),(2,2))’

<-> Distance between circle ’((0,0),1) <->
circle '((5,0),1)

<< Left of? circle ’((0,0),1) <<
circle '((5,0),1)

<N Is below? circle ’((0,0),1) <"
circle '((0,5),1)

>> Is right of? circle ’((5,0),1) >>
circle '((0,0),1)

>N Is above? circle ’((0,5),1) >»
circle ’((0,0),1)

H Intersects or overlaps Iseg ’((-1,0),(1,0)) ?#
box '((-2,-2),(2,2))’

107

Chapter 6. Functions and Operators

Operator Description Usage
?- Is horizontal? point '(1,0)' ?- point
'(0,0)
?-| Is perpendicular? Iseg ’((0,0),(0,1)) ?-|
Iseg '((0,0),(1,0))
@-@ Length or circumference @-@ path ’((0,0),(1,0))
?| Is vertical? point '(0,1)’ ?| point
'(0,0)
?|| Is parallel? Iseg '((-1,0),(1,0))’
?|| Iseg
((-1,2),(1,2))
@ Contained or on point '(1,1)’ @ circle
'((0,0).2)
@@ Center of @@ circle ’((0,0),10)
~= Same as polygon ’((0,0),(1,1))’
~= polygon
((1,1),0,0))
Table 6-21. Geometric Functions
Function Returns Description Example
area (object) double precision area of item area(box
'((0,0),(1,1)))
box (box, box) box intersection box box(box
'((0,0),(1,1))",box
'((0.5,0.5),(2,2))")
center (object) point center of item center(box
'((0,0),(1,2)))
diameter (circle) double precision diameter of circle diameter(circle
'((0,0),2.0)")
height (box) double precision \vertical size of box height(box
'((0,0),(1,1)))
isclosed (path) boolean a closed path? isclosed(path
'((0,0),(1,1),(2,0)))
isopen (path) boolean an open path? isopen(path
'1(0,0),(1,1),(2,0)])
length (object) double precision length of item length(path
'((-1,0),(1,0)))
npoints (path) integer number of points npoints(path
1(0,0),(1,1),(2,0)])
npoints (polygon) integer number of points npoints(polygon
'((1,1),(0,0)))

108

Chapter 6.

Functions and Operators

Function Returns Description Example
pclose (path) path convert path to closed [popen(path
1(0,0),(1,1),(2,0)])
popen (path) path convert path to open [popen(path
path '((0,0),(1,1),(2,0)))

radius (circle)

double precision

radius of circle

radius(circle

'((0,0),2.0)")
width (box) double precision horizontal size width(box
((0,0),(1,1)))
Table 6-22. Geometric Type Conversion Functions
Function Returns Description Example
box (circle) box circle to box box(circle
'((0,0),2.0)")
box (point , point) box points to box box(point ’(0,0)’,
point '(1,1))
box (polygon) box polygon to box box(polygon
'((0,0),(1,1).(2,0)))
circle (box) circle to circle circle(box
'((0,0),(1,1)))
circle (point circle point to circle circle(point
double precision) '(0,0), 2.0)
Iseg (box) Iseg box diagonal tdseg Iseg(box
'((-1,0).(1,0)))
Iseg (point , point) |[seg points tolseg Iseg(point
'(-1,0)", point
'(1,0))
path (polygon) point polygon to path path(polygon
'((0,0),(1,1).(2,0)))
point (circle) point center point(circle
'((0,0),2.0)")
point (Iseg , Iseg) point intersection point(Iseg
'((-1,0),(1,0))",
Iseg
'((-2,-2).(2,2)))
point (polygon) point center point(polygon
'((0,0),(1,1).(2,0)))
polygon (box) polygon 4-point polygon polygon(box
'((0,0),(1,1)))

109

Chapter 6. Functions and Operators

Function Returns Description Example
polygon (circle) polygon 12-point polygon polygon(circle
'((0,0),2.0)")
polygon (npts , polygon npts polygon polygon(12, circle
circle) '((0,0),2.0)")
polygon (path) polygon path to polygon polygon(path
'((0,0),(1,1),(2,0)))

It is possible to access the two component numbers ofiet as though it were an array with
subscripts 0, 1. For example tip is apoint column therSELECT p[0] FROM t retrieves the X
coordinateJUPDATE t SET p[l] = ... changes the Y coordinate. In the same walyp®a or an
Iseg may be treated as an array of tyaint s.

6.10. Network Address Type Functions

Table 6-23shows the operators available for thet andcidr types. The operators<, <<=, >>,
>>= test for subnet inclusion: they consider only the network parts of the two addresses, ignoring
any host part, and determine whether one network part is identical to or a subnet of the other.

Table 6-23.cidr andinet Operators

Operator Description Usage

< Less than inet '192.168.1.5' <
inet '192.168.1.6’

<= Less than or equal inet '192.168.1.5' <=
inet '192.168.1.5’

= Equals inet '192.168.1.5" =
inet '192.168.1.5’

>= Greater or equal inet '192.168.1.5’ >=
inet '192.168.1.5’

> Greater inet '192.168.1.5’ >
inet '192.168.1.4’

<> Not equal inet '192.168.1.5' <>
inet '192.168.1.4’

<< is contained within inet '192.168.1.5' <<
inet '192.168.1/24’

<<= is contained within or equals |inet '192.168.1/24' <<=
inet '192.168.1/24’

>> contains inet'192.168.1/24’ >>
inet '192.168.1.5’

>>= contains or equals inet '192.168.1/24' >>=
inet '192.168.1/24’

Table 6-24shows the functions available for use with thet andcidr types. Thehost() ,text()
andabbrev() functions are primarily intended to offer alternative display formats. You can cast a
text field to inet using normal casting syntanet(expression) or colname::inet

110

Chapter 6. Functions and Operators

Table 6-24.cidr andinet Functions

Function Returns Description Example Result

broadcast (inet) finet broadcast addressbroadcast('192.168.[.822168.1.255/24
for network

host (inet) text extract IP addressjhost('192.168.1.5/24192.168.1.5
as text

masklen (inet) finteger extract netmask |masklen('192.168.1.,3/4’)
length

set_masklen (inet ineteger) set netmask lengthset_masklen('192.1682 368L'11%/) 6
for inet value

netmask (inet) [finet construct netmaskinetmask('192.168.1|3851955.255.0
for network

network (inet) [cidr extract network network('192.168.1.8/22:168.1.0/24
part of address

text (inet) text extract IP addresstext(inet 192.168.1.5/32
and masklen as [192.168.1.5")
text

abbrev (inet) text extract abbreviateg@bbrev(cidr 10.1/16
display astext [10.1.0.0/16’)

Table 6-25shows the functions available for use with thec type. The functiortrunc (macaddr)

returns a MAC address with the last 3 bytes set to 0. This can be used to associate the remaining prefix
with a manufacturer. The directoegntrib/mac in the source distribution contains some utilities to
create and maintain such an association table.

Table 6-25.macaddr Functions

Function Returns Description Example Result
trunc (macaddr) |macaddr set last 3 bytes to trunc(macaddr 12:34:56:00:00:00
zero '12:34:56:78:90:ab’)

Themacaddr type also supports the standard relational operaters<g, etc.) for lexicographical
ordering.

6.11. Sequence-Manipulation Functions

This section describes PostgreSQL's functions for operatingeguence objectSequence objects
(also called sequence generators or just sequences) are special single-row tables created-with
ATE SEQUENCEH sequence object is usually used to generate unique identifiers for rows of a table.
The sequence functions, listed Table 6-26 provide simple, multiuser-safe methods for obtaining
successive sequence values from sequence objects.

Table 6-26. Sequence Functions

Function Returns Description

111

Chapter 6. Functions and Operators

Function Returns Description

nextval (text) bigint)Advance sequence and return
new value

currval (text) bigint Return value most recently
obtained withnextval

setval (text ,bigint) bigint Set sequence’s current value

setval (text ,bigint ,boolean)bigint Set sequence’s current value and

is_called flag

For largely historical reasons, the sequence to be operated on by a sequence-function call is specified
by a text-string argument. To achieve some compatibility with the handling of ordinary SQL names,
the sequence functions convert their argument to lower case unless the string is double-quoted. Thus

nextval(’foo’) operates on sequence foo
nextval('FOO’) operates on sequence foo
nextval("Foo™) operates on sequence Foo

The sequence name can be schema-qualified if necessary:

nextval(’myschema.foo’) operates on myschema.foo
nextval("'myschema".foo’) same as above
nextval('foo’) searches search path for foo

Of course, the text argument can be the result of an expression, not only a simple literal, which is
occasionally useful.

The available sequence functions are:

nextval

Advance the sequence object to its next value and return that value. This is done atomically: even
if multiple sessions executextval concurrently, each will safely receive a distinct sequence
value.

currval

Return the value most recently obtaineddgxtval for this sequence in the current session.

(An error is reported ihextval has never been called for this sequence in this session.) Notice
that because this is returning a session-local value, it gives a predictable answer even if other
sessions are executingxtval meanwhile.

setval

Reset the sequence object's counter value. The two-parameter form sets the sequence’s
last_value field to the specified value and setsiiscalled field totrue , meaning that

the nextnextval will advance the sequence before returning a value. In the three-parameter
form,is_called may be set eitharue orfalse . Ifit's settofalse ,the nexmextval will

return exactly the specified value, and sequence advancement commences with the following
nextval . For example,

SELECT setval(foo’, 42); Next nextval() will return 43
SELECT setval(‘foo’, 42, true); Same as above
SELECT setval('foo’, 42, false); Next nextval() will return 42

The result returned bsetval s just the value of its second argument.

112

Chapter 6. Functions and Operators

Important: To avoid blocking of concurrent transactions that obtain numbers from the same se-
guence, a nextval operation is never rolled back; that is, once a value has been fetched it is con-
sidered used, even if the transaction that did the nextval later aborts. This means that aborted
transactions may leave unused “holes” in the sequence of assigned values. setval operations
are never rolled back, either.

If a sequence object has been created with default parametstgal() calls on it will return
successive values beginning with one. Other behaviors can be obtained by using special parameters
in the CREATE SEQUENG®mMMmand; see its command reference page for more information.

6.12. Conditional Expressions

This section describes the SQL-compliant conditional expressions available in PostgreSQL.

Tip: If your needs go beyond the capabilities of these conditional expressions you might want to
consider writing a stored procedure in a more expressive programming language.

6.12.1. CASE

CASE WHENondition THEN result
[WHEN ..]
[ELSE result]

END

The SQLCASEexpression is a generic conditional expression, similar to if/else statements in other
languagesCASEclauses can be used wherever an expression is ealidlition is an expression

that returns &oolean result. If the result is true then the value of thaSEexpression isesult

If the result is false any subsequéMHEN|auses are searched in the same manner. WiHENON-

dition s true then the value of the case expression igdéBalt in the ELSE clause. If theELSE
clause is omitted and no condition matches, the result is null.

An example:

=> SELECT * FROM test;
a

2
3
=> SELECT a,
CASE WHEN a=1 THEN ’one’
WHEN a=2 THEN ’two’
ELSE ’other’
END
FROM test;
a | case
e
1| one
2 | two
3 | other

113

Chapter 6. Functions and Operators

The data types of all theesult ~ expressions must be coercible to a single output type S&eton
7.5for more detail.

CASE expression
WHENvalue THEN result

[WHEN ..]
[ELSE result]

END

This “simple” CASEexpression is a specialized variant of the general form aboveeXpression

is computed and compared to all thalue s in thewHENIlauses until one is found that is equal. If
no match is found, theesult in theELSE clause (or a null value) is returned. This is similar to the
switch statementin C.

The example above can be written using the singASEsyntax:

=> SELECT a,
CASE a WHEN 1 THEN ’one’
WHEN 2 THEN ’two’
ELSE ’other’
END
FROM test;
a | case

6.12.2. COALESCE
COALESCEvalue [, ...])

The COALESCHunction returns the first of its arguments that is not null. This is often useful to
substitute a default value for null values when data is retrieved for display, for example:

SELECT COALESCE(description, short_description, '(none)’) ...

6.12.3. NULLIF
NULLIF (valuel , value2)

TheNULLIF function returns a null value if and onlyvluel andvalue2 are equal. Otherwise it
returnsvaluel . This can be used to perform the inverse operation o€tbeLESCExample given
above:

SELECT NULLIF(value, '(none)) ...

114

Chapter 6. Functions and Operators
Tip: COALESCENnd NULLIF are just shorthand for CASEexpressions. They are actually converted
into CASEexpressions at a very early stage of processing, and subsequent processing thinks it is

dealing with CASE Thus an incorrect COALESCBr NULLIF usage may draw an error message that
refers to CASE

6.13. Miscellaneous Functions

Table 6-27shows several functions that extract session and system information.

Table 6-27. Session Information Functions

Name Return Type Description

current_database() name name of current database

current_schema() name name of current schema

current_schemas(boolean) name(] names of schemas in search path
optionally including implicit
schemas

current_user name user name of current executior
context

session_user name session user name

user name equivalent tacurrent_user

version() text PostgreSQL version informatign

The session_user is the user that initiated a database connection; it is fixed for the duration of
that connection. Theurrent_user is the user identifier that is applicable for permission checking.
Normally, it is equal to the session user, but it changes during the execution of functions with the
attribute SECURITY DEFINER In Unix parlance, the session user is the “real user” and the current
user is the “effective user”.

Note: current_user , session_user , and user have special syntactic status in SQL: they must
be called without trailing parentheses.

current_schema returns the name of the schema that is at the front of the search path (or a null
value if the search path is empty). This is the schema that will be used for any tables or other named
objects that are created without specifying a target schean@nt_schemas(boolean) returns

an array of the names of all schemas presently in the search path. The boolean option determines
whether or not implicitly included system schemas such as pg_catalog are included in the search path
returned.

The search path may be altered by a run-time setting. The command to \&&TiISSEARCH_PATH
" schema’[,) schema’]...

version() returns a string describing the PostgreSQL server’s version.

Table 6-28shows the functions available to query and alter run-time configuration parameters.

115

Chapter 6. Functions and Operators

Table 6-28. Configuration Settings Information Functions

Name Return Type Description

cur- text \value of current setting
rent_setting (setting_name |)

text new value of current setting
set_config(setting_name
new_value , is_local)
The current_setting is used to obtain the current value of thetting_name setting, as a

query result. It is the equivalent to the S@HOVWommand. For example:

select current_setting('DateStyle’);
current_setting

ISO with US (NonEuropean) conventions
(1 row)

set_config allows thesetting_name setting to be changed teew_value . If is_local is

set totrue , the new value will only apply to the current transaction. If you want the new value to
apply for the current session, utsdse instead. It is the equivalent to the SGET command. For
example:

select set_config('show_statement_stats’, off’,'f");
set_config

Table 6-29ists functions that allow the user to query object access privileges programmatically. See
Section 2.for more information about privileges.

Table 6-29. Access Privilege Inquiry Functions

Name Return Type Description

has_table_privilege (user ,poolean does user have access to table
table ,access)

has_table_privilege (table [poolean does current user have access to
access) table

has_database_privilege (uséroglean does user have access to
database , access) database

has_database_privilege (datadidsan , does current user have access to
access) database

has_function_privilege (uséoglean does user have access to
function , access) function

has_function_privilege (funiobignan , does current user have access to
access) function

116

Chapter 6. Functions and Operators

Name Return Type Description

has_language_privilege (usgoglean does user have access to

language , access) language

has_language_privilege (lanoesigen , does current user have access to
access) language

has_schema_privilege (user |hoolean does user have access to schegma
schema, access)

has_schema_privilege (schetbeglean does current user have accessto
access) T’ED schema

has_table_privilege checks whether a user can access a table in a particular way. The user can

be specified by name or by Ipd user .usesysid), or if the argument is omittecurrent_user

is assumed. The table can be specified by name or by OID. (Thus, there are actually six variants of
has_table_privilege , Which can be distinguished by the number and types of their arguments.)
When specifying by name, the name can be schema-qualified if necessary. The desired access type
is specified by a text string, which must evaluate to one of the va8&e&CT, INSERT, UPDATE

DELETE RULE REFERENCESr TRIGGER (Case of the string is not significant, however.) An exam-

ple is:

SELECT has_table_privilege('myschema.mytable’, ’'select’);

has_database_privilege checks whether a user can access a database in a particular way. The
possibilities for its arguments are analogoush#s table privilege . The desired access type
must evaluate t€REATE TEMPORARYor TEMP(which is equivalent tfEMPORARY

has_function_privilege checks whether a user can access a function in a particular way. The
possibilities for its arguments are analogoubds table_privilege . When specifying a function

by a text string rather than by OID, the allowed input is the same as foegbeocedure data type.

The desired access type must currently evaluaBX®CUTE

has_language_privilege checks whether a user can access a procedural language in a particular
way. The possibilities for its arguments are analogossotable_privilege . The desired access
type must currently evaluate USAGE

has_schema_privilege checks whether a user can access a schema in a particular way. The pos-
sibilities for its arguments are analogoushts_table_privilege . The desired access type must
evaluate ta€CREATEOr USAGE

Table 6-30shows functions that determine whether a certain objegisible in the current schema

search path. A table is said to be visible if its containing schema is in the search path and no table
of the same name appears earlier in the search path. This is equivalent to the statement that the table
can be referenced by name without explicit schema qualification. For example, to list the names of all
visible tables:

SELECT relname FROM pg_class WHERE pg_table_is_visible(oid);

Table 6-30. Schema Visibility Inquiry Functions

Name Return Type Description

117

Chapter 6. Functions and Operators

Name Return Type Description

pg_table_is_visible (tableQbidolgan is table visible in search path

pg_type_is_visible (typeOlbgolean is type visible in search path

pg_function_is_visible (funodaa&iD) is function visible in search path

pg_operator_is_visible (optxaties@ID) is operator visible in search path

pg_opclass_is_visible (opclassedd) is operator class visible in search
path

pg_table_is_visible performs the check for tables (or views, or any other kinggfclass

entry). pg_type_is_visible , Pg_function_is_visible , Pg_operator_is_visible , and

pg_opclass_is_visible perform the same sort of visibility check for types, functions, operators,

and operator classes, respectively. For functions and operators, an object in the search path is visible
if there is no object of the same naraad argument data type(€arlier in the path. For operator
classes, both name and associated index access method are considered.

All these functions require object OIDs to identify the object to be checked. If you want to test an
object by name, it is convenient to use the OID alias typegclass , regtype , regprocedure
or regoperator), for example

SELECT pg_type_is_visible(myschema.widget'::regtype);

Note that it would not make much sense to test an unqualified name in this way --- if the name can be
recognized at all, it must be visible.

Table 6-31lists functions that extract information from the system catalpgsget_viewdef() ,
pg_get_ruledef() , pg_get_indexdef() , andpg_get_constraintdef() respectively recon-
struct the creating command for a view, rule, index, or constraint. (Note that this is a decompiled
reconstruction, not the verbatim text of the command.) At prgsgrget_constraintdef() only

works for foreign-key constraintgg_get_userbyid() extracts a user's name giverusesysid

value.

Table 6-31. Catalog Information Functions

Name Return Type Description

pg_get viewdef (viewname) fext GetCREATE VIEWeommand
for view (deprecatedl

pg_get_viewdef (viewOID) fext GetCREATE VIEWcommand
for view

pg_get_ruledef (ruleOID) fext GetCREATE RULEommand
for rule

pg_get_indexdef (indexOID)ext GetCREATE INDEXcommand
for index

pg_get_constraintdef (constr@intOID) Get definition of a constraint

pg_get userbyid (userid) |pame Get user name with given ID

The function shown iMable 6-32extract comments previously stored with t@ MMENTommand.

118

Chapter 6. Functions and Operators

A null value is returned if no comment can be found matching the specified parameters.

Table 6-32. Comment Information Functions

Name Return Type Description

obj_description (objectOID text Get comment for a database

tablename) object

obj_description (objectOID (tgxt Get comment for a database
object feprecatell

col_description (tableOID ext Get comment for a table column

columnnumber)

The two-parameter form ofobj_description() returns the comment for a database
object specified by its OID and the name of the containing system catalog. For example,
obj_description(123456,'pg_class’) would retrieve the comment for a table with OID
123456. The one-parameter formafj_description() requires only the object OID. It is now
deprecated since there is no guarantee that OIDs are unique across different system catalogs;
therefore, the wrong comment could be returned.

col_description() returns the comment for a table column, which is specified by the OID of its
table and its column numbaexbj_description() cannot be used for table columns since columns
do not have OIDs of their own.

6.14. Aggregate Functions

Aggregate functionsompute a single result value from a set of input valdedle 6-33show the
built-in aggregate functions. The special syntax considerations for aggregate functions are explained
in Section 1.2.5Consult thePostgreSQL Tutorialor additional introductory information.

Table 6-33. Aggregate Functions

Function Argument Type |Return Type Description
smallint numeric for any the average

avg(expression)finteger ,bigint , [integer type (arithmetic mean)
real , double argumentdouble (of all input values
precision precision fora
numeric , Or floating-point
interval . argument,

otherwise the same
as the argument

data type

count(*) bigint number of input
values

count(expression @y bigint number of input
\values for which
the value of
expression is
not null

119

Chapter 6. Functions and Operators

Function Argument Type |Return Type Description
max(expression) any numeric, same as argumentmaximum value of
string, or date/timetype expression
type across all input
\values
min(expression) any numeric, same as argumentminimum value of
string, or date/timetype expression
type across all input
values
std- smallint double sample standard
dev(expression)finteger ,bigint , precision for deviation of the
real , double floating-point input values
precision , or arguments,
numeric . otherwise
numeric .
sum(expression)|smallint bigint for sum of
integer |, bigint , [smallint ~ or expression
real , double integer across all input
precision arguments, \values
numeric , Or numeric for
interval bigint
arguments,
double
precision for
floating-point
arguments,
otherwise the same
as the argument
data type
vari- smallint double sample variance of
ance (expression (fiNteger , bigint , precision for the input values
real , double floating-point (square of the
precision , or arguments, sample standard
numeric . otherwise deviation)
numeric .

It should be noted that except fasunt , these functions return a null value when no rows are selected.
In particular,sum of no rows returns null, not zero as one might expect. The funcbalesce may
be used to substitute zero for null when necessary.

6.15. Subquery Expressions

This section describes the SQL-compliant subquery expressions available in PostgreSQL. All of the
expression forms documented in this section return Boolean (true/false) results.

6.15.1. EXISTS

EXISTS (subquery)

120

Chapter 6. Functions and Operators

The argument 0EXISTS is an arbitrarySELECT statement, osubquery The subquery is evaluated
to determine whether it returns any rows. If it returns at least one row, the reEXt9fS is “true”;
if the subquery returns no rows, the resulexfiSTS is “false”.

The subquery can refer to variables from the surrounding query, which will act as constants during
any one evaluation of the subquery.

The subquery will generally only be executed far enough to determine whether at least one row is
returned, not all the way to completion. It is unwise to write a subquery that has any side effects (such
as calling sequence functions); whether the side effects occur or not may be difficult to predict.

Since the result depends only on whether any rows are returned, and not on the contents of those
rows, the output list of the subquery is normally uninteresting. A common coding convention is to
write all EXISTS tests in the formEXISTS(SELECT 1 WHERE ...) . There are exceptions to this

rule however, such as subqueries thatINM§&ERSECT.

This simple example is like an inner join @nl2 , but it produces at most one output row for each
tabl row, even if there are multiple matchimgp2 rows:

SELECT coll FROM tabl
WHERE EXISTS(SELECT 1 FROM tab2 WHERE col2 = tabl.col2);

6.15.2. IN (scalar form)
expression IN (value [, ...])

The right-hand side of this form ¢fl is a parenthesized list of scalar expressions. The result is “true”
if the left-hand expression’s result is equal to any of the right-hand expressions. This is a shorthand
notation for

expression = valuel
OR
expression = value2
OR

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least
one right-hand expression yields null, the result of teconstruct will be null, not false. This is in
accordance with SQL's normal rules for Boolean combinations of null values.

Note: This form of IN is not truly a subquery expression, but it seems best to document it in the
same place as subquery IN .

6.15.3. IN (subquery form)
expression IN (subquery)

The right-hand side of this form aN is a parenthesized subquery, which must return exactly one
column. The left-hand expression is evaluated and compared to each row of the subquery result. The
result ofIN is “true” if any equal subquery row is found. The result is “false” if no equal row is found
(including the special case where the subquery returns no rows).

121

Chapter 6. Functions and Operators

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at
least one right-hand row yields null, the result of theconstruct will be null, not false. This is in
accordance with SQL's normal rules for Boolean combinations of null values.

As with EXISTS, it's unwise to assume that the subquery will be evaluated completely.
(expression [, expression) IN(subquery)

The right-hand side of this form dN is a parenthesized subquery, which must return exactly as
many columns as there are expressions in the left-hand list. The left-hand expressions are evaluated
and compared row-wise to each row of the subquery result. The resit isf“true” if any equal
subquery row is found. The result is “false” if no equal row is found (including the special case where
the subquery returns no rows).

As usual, null values in the expressions or subquery rows are combined per the normal rules of SQL
Boolean expressions. Two rows are considered equal if all their corresponding members are non-null
and equal; the rows are unequal if any corresponding members are non-null and unequal; otherwise
the result of that row comparison is unknown (null). If all the row results are either unequal or null,
with at least one null, then the resultiof is null.

6.15.4. NOT IN (scalar form)
expression NOT IN (value [, ...])

The right-hand side of this form ™OT INis a parenthesized list of scalar expressions. The result
is “true” if the left-hand expression’s result is unequal to all of the right-hand expressions. This is a
shorthand notation for

expression <> valuel
AND
expression <> value2
AND

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least
one right-hand expression yields null, the result of K@ IN construct will be null, not true as one
might naively expect. This is in accordance with SQL's normal rules for Boolean combinations of null
values.

Tip: x NOT IN y is equivalentto NOT (x IN y) in all cases. However, null values are much more
likely to trip up the novice when working with NOT IN than when working with IN. It's best to
express your condition positively if possible.

6.15.5. NOT IN (subquery form)
expression NOT IN (subquery)

The right-hand side of this form ®OT INis a parenthesized subquery, which must return exactly
one column. The left-hand expression is evaluated and compared to each row of the subquery result.
The result ofNOT INis “true” if only unequal subquery rows are found (including the special case
where the subquery returns no rows). The result is “false” if any equal row is found.

122

Chapter 6. Functions and Operators

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least
one right-hand row yields null, the result of th®©T IN construct will be null, not true. This is in
accordance with SQL's normal rules for Boolean combinations of null values.

As with EXISTS, it's unwise to assume that the subquery will be evaluated completely.

(expression [, expression ...]) NOT IN (subquery)

The right-hand side of this form ofOT INis a parenthesized subquery, which must return exactly as
many columns as there are expressions in the left-hand list. The left-hand expressions are evaluated
and compared row-wise to each row of the subquery result. The resNtDDfIN is “true” if only

unequal subqguery rows are found (including the special case where the subquery returns no rows).
The result is “false” if any equal row is found.

As usual, null values in the expressions or subquery rows are combined per the normal rules of SQL
Boolean expressions. Two rows are considered equal if all their corresponding members are non-null
and equal; the rows are unequal if any corresponding members are non-null and unequal; otherwise
the result of that row comparison is unknown (null). If all the row results are either unequal or null,
with at least one null, then the result®®T INis null.

6.15.6. ANY/SOME

expression operator ANY (subquery)
expression operator SOME 6ubquery)

The right-hand side of this form &NYis a parenthesized subquery, which must return exactly one
column. The left-hand expression is evaluated and compared to each row of the subquery result using
the givenoperator , which must yield a Boolean result. The resultaNy is “true” if any true

result is obtained. The result is “false” if no true result is found (including the special case where the
subquery returns no rows).

SOMHSs a synonym foANY. IN is equivalent to= ANY.

Note that if there are no successes and at least one right-hand row yields null for the operator’s result,
the result of theANY construct will be null, not false. This is in accordance with SQL's normal rules
for Boolean combinations of null values.

As with EXISTS, it's unwise to assume that the subquery will be evaluated completely.

(‘expression [, expression) operator ANY (subquery)
(expression [, expression) operator SOME 6ubquery)

The right-hand side of this form iNYis a parenthesized subquery, which must return exactly as
many columns as there are expressions in the left-hand list. The left-hand expressions are evaluated
and compared row-wise to each row of the subquery result, using the gpezator . Presently,

only = and <> operators are allowed in row-wigeNY queries. The result oANYis “true” if any

equal or unequal row is found, respectively. The result is “false” if no such row is found (including
the special case where the subquery returns no rows).

As usual, null values in the expressions or subquery rows are combined per the normal rules of SQL
Boolean expressions. Two rows are considered equal if all their corresponding members are non-null
and equal; the rows are unequal if any corresponding members are non-null and unequal; otherwise
the result of that row comparison is unknown (null). If there is at least one null row result, then the
result of ANYcannot be false; it will be true or null.

123

Chapter 6. Functions and Operators

6.15.7. ALL
expression operator ALL (subquery)

The right-hand side of this form @&LL is a parenthesized subquery, which must return exactly one
column. The left-hand expression is evaluated and compared to each row of the subquery result using
the givenoperator , which must yield a Boolean result. The resultaad. is “true” if all rows yield

true (including the special case where the subquery returns no rows). The result is “false” if any false
result is found.

NOT INis equivalent to<> ALL.

Note that if there are no failures but at least one right-hand row yields null for the operator’s result,
the result of theALL construct will be null, not true. This is in accordance with SQL's normal rules
for Boolean combinations of null values.

As with EXISTS, it's unwise to assume that the subquery will be evaluated completely.

(‘expression [, expression)] operator ALL (subquery)

The right-hand side of this form ofLL is a parenthesized subquery, which must return exactly as
many columns as there are expressions in the left-hand list. The left-hand expressions are evaluated
and compared row-wise to each row of the subquery result, using the gpgator . Presently,

only = and <> operators are allowed in row-wige L queries. The result oALL is “true” if all
subquery rows are equal or unequal, respectively (including the special case where the subquery
returns no rows). The result is “false” if any row is found to be unequal or equal, respectively.

As usual, null values in the expressions or subquery rows are combined per the normal rules of SQL
Boolean expressions. Two rows are considered equal if all their corresponding members are non-null
and equal; the rows are unequal if any corresponding members are non-null and unequal; otherwise
the result of that row comparison is unknown (null). If there is at least one null row result, then the
result ofALL cannot be true; it will be false or null.

6.15.8. Row-wise Comparison

(‘expression [, expression) operator (subquery)
(‘expression [, expression) operator (expression [[expression)

The left-hand side is a list of scalar expressions. The right-hand side can be either a list of scalar
expressions of the same length, or a parenthesized subquery, which must return exactly as many
columns as there are expressions on the left-hand side. Furthermore, the subquery cannot return more
than one row. (If it returns zero rows, the result is taken to be null.) The left-hand side is evaluated and
compared row-wise to the single subquery result row, or to the right-hand expression list. Presently,
only = and <> operators are allowed in row-wise comparisons. The result is “true” if the two rows

are equal or unequal, respectively.

As usual, null values in the expressions or subquery rows are combined per the normal rules of SQL
Boolean expressions. Two rows are considered equal if all their corresponding members are non-null
and equal; the rows are unequal if any corresponding members are non-null and unequal; otherwise
the result of the row comparison is unknown (null).

124

Chapter 7. Type Conversion

SQL queries can, intentionally or not, require mixing of different data types in the same expression.
PostgreSQL has extensive facilities for evaluating mixed-type expressions.

In many cases a user will not need to understand the details of the type conversion mechanism. How-
ever, the implicit conversions done by PostgreSQL can affect the results of a query. When necessary,
these results can be tailored by a user or programmer egjigit type coercion.

This chapter introduces the PostgreSQL type conversion mechanisms and conventions. Refer to the
relevant sections i€hapter sandChapter &or more information on specific data types and allowed
functions and operators.

ThePostgreSQL Programmer’s Guidies more details on the exact algorithms used for implicit type
conversion and coercion.

7.1. Overview

SQL is a strongly typed language. That is, every data item has an associated data type which deter-
mines its behavior and allowed usage. PostgreSQL has an extensible type system that is much more
general and flexible than other SQL implementations. Hence, most type conversion behavior in Post-
greSQL should be governed by general rules rather thasdblyocheuristics, to allow mixed-type
expressions to be meaningful even with user-defined types.

The PostgreSQL scanner/parser decodes lexical elements into only five fundamental categories: inte-
gers, floating-point numbers, strings, names, and key words. Most extended types are first tokenized
into strings. The SQL language definition allows specifying type names with strings, and this mecha-
nism can be used in PostgreSQL to start the parser down the correct path. For example, the query

tgl=> SELECT text 'Origin’ AS "Label", point ’(0,0) AS "Value";
Label | Value
________ SR

Origin | (0,0)
1 row)

has two literal constants, of typext andpoint . If a type is not specified for a string literal, then

the placeholder typenknownis assigned initially, to be resolved in later stages as described below.
There are four fundamental SQL constructs requiring distinct type conversion rules in the PostgreSQL
parser:

Operators

PostgreSQL allows expressions with prefix and postfix unary (one-argument) operators, as well
as binary (two-argument) operators.

Function calls

Much of the PostgreSQL type system is built around a rich set of functions. Function calls have
one or more arguments which, for any specific query, must be matched to the functions available
in the system catalog. Since PostgreSQL permits function overloading, the function name alone
does not uniquely identify the function to be called; the parser must select the right function
based on the data types of the supplied arguments.

125

Chapter 7. Type Conversion

Query targets

SQL INSERT andUPDATEstatements place the results of expressions into a table. The expres-
sions in the query must be matched up with, and perhaps converted to, the types of the target
columns.

UNIONandCASEconstructs

Since all select results from a unioniz&ELECT statement must appear in a single set of
columns, the types of the results of es8#LECTclause must be matched up and converted to a
uniform set. Similarly, the result expressions a&SEconstruct must be coerced to a common
type so that th€ASEexpression as a whole has a known output type.

Many of the general type conversion rules use simple conventions built on the PostgreSQL function
and operator system tables. There are some heuristics included in the conversion rules to better support
conventions for the SQL standard native types sucimadiint , integer , andreal .

The system catalogs store information about which conversions, caltg between data types are
valid, and how to perform those conversions. Additional casts can be added by the user with the
CREATE CASTommand. (This is usually done in conjunction with defining new data types. The set
of casts between the built-in types has been carefully crafted and should not be altered.)

An additional heuristic is provided in the parser to allow better guesses at proper behavior for SQL
standard types. There are several bagie categorieslefined:boolean , numeric , string , bit-

string , datetime , timespan , geometric , network , and user-defined. Each category, with the
exception of user-defined, hapreferred typevhich is preferentially selected when there is ambigu-

ity. In the user-defined category, each type is its own preferred type. Ambiguous expressions (those
with multiple candidate parsing solutions) can often be resolved when there are multiple possible
built-in types, but they will raise an error when there are multiple choices for user-defined types.

All type conversion rules are designed with several principles in mind:

- Implicit conversions should never have surprising or unpredictable outcomes.

- User-defined types, of which the parser hasmriori knowledge, should be “higher” in the type
hierarchy. In mixed-type expressions, native types shall always be converted to a user-defined type
(of course, only if conversion is necessary).

- User-defined types are not related. Currently, PostgreSQL does not have information available to
it on relationships between types, other than hardcoded heuristics for built-in types and implicit
relationships based on available functions in the catalog.

- There should be no extra overhead from the parser or executor if a query does not need implicit type
conversion. That is, if a query is well formulated and the types already match up, then the query
should proceed without spending extra time in the parser and without introducing unnecessary
implicit conversion functions into the query.

Additionally, if a query usually requires an implicit conversion for a function, and if then the user
defines an explicit function with the correct argument types, the parser should use this new function
and will no longer do the implicit conversion using the old function.

126

Chapter 7. Type Conversion

7.2. Operators

The operand types of an operator invocation are resolved following the procedure below. Note that
this procedure is indirectly affected by the precedence of the involved operatoSe&emn 1.1.60r
more information.

Operand Type Resolution

1.

Select the operators to be considered fromgfpeoperator system catalog. If an unqualified
operator name is used (the usual case), the operators considered are those of the right name
and argument count that are visible in the current search pattSésgimn 2.8.R If a qualified
operator name was given, only operators in the specified schema are considered.

a. |If the search path finds multiple operators of identical argument types, only the one
appearing earliest in the path is considered. But operators of different argument types
are considered on an equal footing regardless of search path position.

Check for an operator accepting exactly the input argument types. If one exists (there can be only
one exact match in the set of operators considered), use it.

a. If one argument of a binary operatorusknown type, then assume it is the same type
as the other argument for this check. Other cases involuikgown will never find a
match at this step.

Look for the best match.

a. Discard candidate operators for which the input types do not match and cannot be co-
erced (using an implicit coercion function) to matchknown literals are assumed to
be coercible to anything for this purpose. If only one candidate remains, use it; else
continue to the next step.

b. Run through all candidates and keep those with the most exact matches on input types.
Keep all candidates if none have any exact matches. If only one candidate remains, use
it; else continue to the next step.

c. Run through all candidates and keep those with the most exact or binary-compatible
matches on input types. Keep all candidates if none have any exact or binary-compatible
matches. If only one candidate remains, use it; else continue to the next step.

d. Run through all candidates and keep those that accept preferred types at the most posi-
tions where type coercion will be required. Keep all candidates if none accept preferred
types. If only one candidate remains, use it; else continue to the next step.

e. If any input arguments are “unknown”, check the type categories accepted at those
argument positions by the remaining candidates. At each position, select the "string"
category if any candidate accepts that category (this bias towards string is appropriate
since an unknown-type literal does look like a string). Otherwise, if all the remaining
candidates accept the same type category, select that category; otherwise fail because
the correct choice cannot be deduced without more clues. Also note whether any of
the candidates accept a preferred data type within the selected category. Now discard
operator candidates that do not accept the selected type category; furthermore, if any
candidate accepts a preferred type at a given argument position, discard candidates that
accept non-preferred types for that argument.

f. If only one candidate remains, use it. If no candidate or more than one candidate re-
mains, then fail.

127

Chapter 7. Type Conversion

Examples

Example 7-1. Exponentiation Operator Type Resolution

There is only one exponentiation operator defined in the catalog, and it takes argumentsiofitype
ble precision . The scanner assigns an initial typeiaeger to both arguments of this query
expression:
tgl=> SELECT 2 ~ 3 AS "Exp";
Exp

1 row)

So the parser does a type conversion on both operands and the query is equivalent to
tgl=> SELECT CAST(2 AS double precision) » CAST(3 AS double precision) AS "Exp";
Exp

or

Exp

Note: This last form has the least overhead, since no functions are called to do implicit type
conversion. This is not an issue for small queries, but may have an impact on the performance of
queries involving large tables.

Example 7-2. String Concatenation Operator Type Resolution

A string-like syntax is used for working with string types as well as for working with complex ex-
tended types. Strings with unspecified type are matched with likely operator candidates.

An example with one unspecified argument:

tgl=> SELECT text 'abc’ || 'def’ AS "Text and Unknown";
Text and Unknown

In this case the parser looks to see if there is an operator takingfor both arguments. Since there
is, it assumes that the second argument should be interpreted as afxtype

Concatenation on unspecified types:

tgl=> SELECT ’abc’ || 'def AS "Unspecified";
Unspecified

abcdef
(1 row)

128

Chapter 7. Type Conversion

In this case there is no initial hint for which type to use, since no types are specified in the query.
So, the parser looks for all candidate operators and finds that there are candidates accepting both
string-category and bit-string-category inputs. Since string category is preferred when available, that
category is selected, and then the “preferred type” for stritegs, , is used as the specific type to
resolve the unknown literals to.

Example 7-3. Absolute-Value and Factorial Operator Type Resolution

The PostgreSQL operator catalog has several entries for the prefix op@raltaf which implement
absolute-value operations for various numeric data types. One of these entries is fiwatyge,
which is the preferred type in the numeric category. Therefore, PostgreSQL will use that entry when
faced with a non-numeric input:
tgl=> select @ text -4.5' as "abs";
abs

4.5
(1 row)
Here the system has performed an implicit text-to-float8 conversion before applying the chosen oper-

ator. We can verify that float8 and not some other type was used:
tgl=> select @ text -4.5e500' as "abs";
ERROR: Input -4.5e500’ is out of range for float8

On the other hand, the postfix operato(factorial) is defined only for integer data types, not for
float8. So, if we try a similar case with we get:

tgl=> select text '20’ ! as "factorial”;
ERROR: Unable to identify a postfix operator " for type 'text’
You may need to add parentheses or an explicit cast
This happens because the system can’t decide which of the several possjigeators should be

preferred. We can help it out with an explicit cast:
tgl=> select cast(text '20' as int8) ! as "factorial”;
factorial

2432902008176640000
(1 row)

7.3. Functions

The argument types of function calls are resolved according to the following steps.

Function Argument Type Resolution

1. Selectthe functions to be considered fromgheproc system catalog. If an unqualified function
name is used, the functions considered are those of the right name and argument count that are
visible in the current search path (sgection 2.8.3 If a qualified function name was given, only
functions in the specified schema are considered.

a. If the search path finds multiple functions of identical argument types, only the one
appearing earliest in the path is considered. But functions of different argument types
are considered on an equal footing regardless of search path position.

129

Chapter 7. Type Conversion

2. Check for a function accepting exactly the input argument types. If one exists (there can be only
one exact match in the set of functions considered), use it. (Cases invahkngwn will never
find a match at this step.)

3. If no exact match is found, see whether the function call appears to be a trivial type coercion
request. This happens if the function call has just one argument and the function name is the same
as the (internal) name of some data type. Furthermore, the function argument must be either an
unknown-type literal or a type that is binary-compatible with the named data type. When these
conditions are met, the function argument is coerced to the named data type without any explicit
function call.

4. Look for the best match.

a. Discard candidate functions for which the input types do not match and cannot be co-
erced (using an implicit coercion function) to matahknown literals are assumed to
be coercible to anything for this purpose. If only one candidate remains, use it; else
continue to the next step.

b. Run through all candidates and keep those with the most exact matches on input types.
Keep all candidates if none have any exact matches. If only one candidate remains, use
it; else continue to the next step.

c. Run through all candidates and keep those with the most exact or binary-compatible
matches on input types. Keep all candidates if none have any exact or binary-compatible
matches. If only one candidate remains, use it; else continue to the next step.

d. Runthrough all candidates and keep those that accept preferred types at the most posi-
tions where type coercion will be required. Keep all candidates if none accept preferred
types. If only one candidate remains, use it; else continue to the next step.

e. If any input arguments arenknown, check the type categories accepted at those ar-
gument positions by the remaining candidates. At each position, selestritite
category if any candidate accepts that category (this bias towards string is appropriate
since an unknown-type literal does look like a string). Otherwise, if all the remaining
candidates accept the same type category, select that category; otherwise fail because
the correct choice cannot be deduced without more clues. Also note whether any of
the candidates accept a preferred data type within the selected category. Now discard
candidates that do not accept the selected type category; furthermore, if any candidate
accepts a preferred type at a given argument position, discard candidates that accept
non-preferred types for that argument.

f. If only one candidate remains, use it. If no candidate or more than one candidate re-
mains, then fail.

Examples

Example 7-4. Factorial Function Argument Type Resolution

There is only onént4fac function defined in theg_proc catalog. So the following query auto-
matically converts that2 argument tant4 :
tgl=> SELECT int4fac(int2 '4’);
int4fac

24
1 row)
and is actually transformed by the parser to

130

Chapter 7. Type Conversion

tgl=> SELECT int4fac(int4(int2 '4"));
int4fac

Example 7-5. Substring Function Type Resolution

There are twasubstr functions declared ipg_proc . However, only one takes two arguments, of
typestext andint4 .

If called with a string constant of unspecified type, the type is matched up directly with the only
candidate function type:

tgl=> SELECT substr(’1234’, 3);
substr

34
(1 row)

If the string is declared to be of typarchar , as might be the case if it comes from a table, then the
parser will try to coerce it to becomext :

tgl=> SELECT substr(varchar '1234’, 3);
substr

34
1 row)
which is transformed by the parser to become
tgl=> SELECT substr(text(varchar '1234’), 3);
substr

Note: Actually, the parser is aware that text and varchar are binary-compatible, meaning that
one can be passed to a function that accepts the other without doing any physical conversion.
Therefore, no explicit type conversion call is really inserted in this case.

And, if the function is called with aimt4 , the parser will try to convert that text :

tgl=> SELECT substr(1234, 3);
substr
34
1 row)
which actually executes as
tgl=> SELECT substr(text(1234), 3);
substr
34
(1 row)
This succeeds because there is a conversion function text(int4) in the system catalog.

131

Chapter 7. Type Conversion

7.4. Query Targets

Values to be inserted into a table are coerced to the destination column’s data type according to the
following steps.

Query Target Type Resolution

1. Check for an exact match with the target.

2. Otherwise, try to coerce the expression to the target type. This will succeed if the two types are
known binary-compatible, or if there is a conversion function. If the expression is an unknown-
type literal, the contents of the literal string will be fed to the input conversion routine for the

target type.

3. Ifthe target is a fixed-length type (echar orvarchar declared with a length) then try to find
a sizing function for the target type. A sizing function is a function of the same name as the type,
taking two arguments of which the first is that type and the second is an integer, and returning
the same type. If one is found, it is applied, passing the column’s declared length as the second
parameter.

Example 7-6.character ~ Storage Type Conversion

For a target column declared esaracter(20) the following query ensures that the target is sized
correctly:

tgl=> CREATE TABLE wv (v character(20));
CREATE
tgl=> INSERT INTO vv SELECT ’abc’ || 'def’;
INSERT 392905 1
tgl=> SELECT v, length(v) FROM wv;
\Y | length
abcdef | 20
(1 row)
What has really happened here is that the two unknown literals are resolead tby default, allow-
ing the|| operator to be resolved &t concatenation. Then thext result of the operator is co-
erced tdbpchar (“blank-padded char”, the internal name of the character data type) to match the tar-
get column type. (Since the parser knows teat andbpchar are binary-compatible, this coercion
is implicit and does not insert any real function call.) Finally, the sizing fundijgahar(bpchar,
integer) is found in the system catalogs and applied to the operator’s result and the stored column
length. This type-specific function performs the required length check and addition of padding spaces.

7.5. UNIONand CASEConstructs

SQL UNION constructs must match up possibly dissimilar types to become a single result set. The
resolution algorithm is applied separately to each output column of a union querniNTBRSECT

and EXCEPTconstructs resolve dissimilar types in the same wayMEON A CASEconstruct also

uses the identical algorithm to match up its component expressions and select a result data type.

132

Chapter 7. Type Conversion

UNIONand CASEType Resolution

1. If all inputs are of typeunknown, resolve as typeext (the preferred type for string category).
Otherwise, ignore thenknown inputs while choosing the type.

2. Ifthe non-unknown inputs are not all of the same type category, fail.

3. Choose the first non-unknown input type which is a preferred type in that category or allows all
the non-unknown inputs to be implicitly coerced to it.

4. Coerce all inputs to the selected type.

Examples

Example 7-7. Underspecified Types in a Union

tgl=> SELECT text 'a’ AS "Text" UNION SELECT 'b’;
Text

(2 rows)

Here, the unknown-type literdd” will be resolved as type text.

Example 7-8. Type Conversion in a Simple Union

tgl=> SELECT 1.2 AS "Numeric" UNION SELECT 1;
Numeric

1.2
(2 rows)

The literal1.2 is of typenumeric , and the integer value can be cast implicitly teumeric , so that
type is used.

Example 7-9. Type Conversion in a Transposed Union

tgl=> SELECT 1 AS "Real"
tgl-> UNION SELECT CAST(2.2" AS REAL);
Real

2.2
(2 rows)

Here, since typeeal cannot be implicitly cast tinteger , butinteger can be implicitly cast to
real , the union result type is resolved @al .

133

Chapter 8. Indexes

Indexes are a common way to enhance database performance. An index allows the database server to
find and retrieve specific rows much faster than it could do without an index. But indexes also add
overhead to the database system as a whole, so they should be used sensibly.

8.1. Introduction

The classical example for the need of an index is if there is a table similar to this:

CREATE TABLE testl (
id integer,
content varchar

)i
and the application requires a lot of queries of the form

SELECT content FROM testl WHERE id = constant

Ordinarily, the system would have to scan the entis1 table row by row to find all matching
entries. If there are a lot of rows tastl and only a few rows (possibly zero or one) returned by the
query, then this is clearly an inefficient method. If the system were instructed to maintain an index on
theid column, then it could use a more efficient method for locating matching rows. For instance, it
might only have to walk a few levels deep into a search tree.

A similar approach is used in most books of non-fiction: Terms and concepts that are frequently
looked up by readers are collected in an alphabetic index at the end of the book. The interested reader
can scan the index relatively quickly and flip to the appropriate page, and would not have to read the
entire book to find the interesting location. As it is the task of the author to anticipate the items that the
readers are most likely to look up, it is the task of the database programmer to foresee which indexes
would be of advantage.

The following command would be used to create the index omdtheolumn, as discussed:

CREATE INDEX testl_id_index ON testl (id);

The nameestl_id_index can be chosen freely, but you should pick something that enables you
to remember later what the index was for.

To remove an index, use tEROP INDEXcommand. Indexes can be added to and removed from
tables at any time.

Once the index is created, no further intervention is required: the system will use the index when it
thinks it would be more efficient than a sequential table scan. But you may have to riRAh®ZE
command regularly to update statistics to allow the query planner to make educated decisions. Also
readChapter 1(for information about how to find out whether an index is used and when and why
the planner may choose tmt use an index.

Indexes can benefilPDATE andDELETEs with search conditions. Indexes can also be used in join
queries. Thus, an index defined on a column that is part of a join condition can significantly speed up
gueries with joins.

When an index is created, the system has to keep it synchronized with the table. This adds overhead to
data manipulation operations. Therefore indexes that are non-essential or do not get used at all should
be removed. Note that a query or data manipulation command can use at most one index per table.

134

Chapter 8. Indexes

8.2. Index Types

PostgreSQL provides several index types: B-tree, R-tree, GiST, and Hash. Each index type is more
appropriate for a particular query type because of the algorithm it uses. By defaullRE¥TE

INDEX command will create a B-tree index, which fits the most common situations. In particular,
the PostgreSQL query optimizer will consider using a B-tree index whenever an indexed column is
involved in a comparison using one of these operatars:=, =, >=, >

R-tree indexes are especially suited for spatial data. To create an R-tree index, use a command of the
form

CREATE INDEXname ON table USING RTREE ¢olumn);

The PostgreSQL query optimizer will consider using an R-tree index whenever an indexed column is
involved in a comparison using one of these operators: &<, &>, >>, @ ~=, && (Refer toSection
6.9about the meaning of these operators.)

The query optimizer will consider using a hash index whenever an indexed column is involved in a
comparison using the operator. The following command is used to create a hash index:

CREATE INDEXname ON table USING HASH ¢olumn);
Note: Testing has shown PostgreSQL's hash indexes to be similar or slower than B-tree indexes,

and the index size and build time for hash indexes is much worse. Hash indexes also suffer poor
performance under high concurrency. For these reasons, hash index use is discouraged.

The B-tree index is an implementation of Lehman-Yao high-concurrency B-trees. The R-tree index
method implements standard R-trees using Guttman’s quadratic split algorithm. The hash index is an
implementation of Litwin’s linear hashing. We mention the algorithms used solely to indicate that all

of these access methods are fully dynamic and do not have to be optimized periodically (as is the case
with, for example, static hash access methods).

8.3. Multicolumn Indexes

An index can be defined on more than one column. For example, if you have a table of this form:
CREATE TABLE test2 (
major int,

minor int,
name varchar

)i
(Say, you keep youdev directory in a database...) and you frequently make queries like
SELECT name FROM test2 WHERE major =constant AND minor = constant ;
then it may be appropriate to define an index on the columajsr andminor together, e.g.,

CREATE INDEX test2_mm_idx ON test2 (major, minor);

135

Chapter 8. Indexes

Currently, only the B-tree and GiST implementations support multicolumn indexes. Up to 32 columns
may be specified. (This limit can be altered when building PostgreSQL; see thg filenfig.h .)

The query optimizer can use a multicolumn index for queries that involve thenficseinsecutive
columns in the index (when used with appropriate operators), up to the total number of columns spec-
ified in the index definition. For example, an index@n b, c) can be used in queries involving

all of a, b, andc, or in queries involving both andb, or in queries involving onlg, but not in other
combinations. (In a query involving andc the optimizer might choose to use the index doonly

and treat like an ordinary unindexed column.)

Multicolumn indexes can only be used if the clauses involving the indexed columns are joined with
AND For instance,

SELECT name FROM test2 WHERE major =constant OR minor = constant
cannot make use of the indest2_mm_idx defined above to look up both columns. (It can be used

to look up only themajor column, however.)

Multicolumn indexes should be used sparingly. Most of the time, an index on a single column is
sufficient and saves space and time. Indexes with more than three columns are almost certainly inap-
propriate.

8.4. Unique Indexes

Indexes may also be used to enforce uniqueness of a column’s value, or the uniqueness of the com-
bined values of more than one column.

CREATE UNIQUE INDEXhame ON table (column [, ..]);

Currently, only B-tree indexes can be declared unique.

When an index is declared unique, multiple table rows with equal indexed values will not be allowed.
NULL values are not considered equal.

PostgreSQL automatically creates unique indexes when a table is declared with a unique constraint
or a primary key, on the columns that make up the primary key or unique columns (a multicolumn
index, if appropriate), to enforce that constraint. A unique index can be added to a table at any later
time, to add a unique constraint.

Note: The preferred way to add a unique constraint to a table is ALTER TABLE ... ADD CON-
STRAINT. The use of indexes to enforce unique constraints could be considered an implementa-
tion detail that should not be accessed directly.

8.5. Functional Indexes

For afunctional indexan index is defined on the result of a function applied to one or more columns
of a single table. Functional indexes can be used to obtain fast access to data based on the result of
function calls.

For example, a common way to do case-insensitive comparisons is to usedhefunction:

SELECT * FROM testl WHERE lower(coll) = ‘value’;

136

Chapter 8. Indexes

This query can use an index, if one has been defined on the resultlofthé&olumn) operation:

CREATE INDEX testl_lower_coll_idx ON testl (lower(coll));

The function in the index definition can take more than one argument, but they must be table columns,
not constants. Functional indexes are always single-column (namely, the function result) even if the
function uses more than one input field; there cannot be multicolumn indexes that contain function
calls.

Tip: The restrictions mentioned in the previous paragraph can easily be worked around by defin-
ing a custom function to use in the index definition that computes any desired result internally.

8.6. Operator Classes

An index definition may specify aoperator clasgor each column of an index.

CREATE INDEXname ON table (column opclass [, ...]);

The operator class identifies the operators to be used by the index for that column. For example, a
B-tree index on four-byte integers would use thi@_ops class; this operator class includes com-
parison functions for four-byte integers. In practice the default operator class for the column’s data
type is usually sufficient. The main point of having operator classes is that for some data types, there
could be more than one meaningful ordering. For example, we might want to sort a complex-number
data type either by absolute value or by real part. We could do this by defining two operator classes for
the data type and then selecting the proper class when making an index. There are also some operator
classes with special purposes:

- The operator class&®x_ops andbigbox_ops both support R-tree indexes on thex data type.
The difference between them is thedbox_ops scales box coordinates down, to avoid floating-
point exceptions from doing multiplication, addition, and subtraction on very large floating-point
coordinates. If the field on which your rectangles lie is about 20 000 units square or larger, you
should useigbox_ops

The following query shows all defined operator classes:

SELECT am.amname AS acc_method,
opc.opcname AS ops_name
FROM pg_am am, pg_opclass opc
WHERE opc.opcamid = am.oid
ORDER BY acc_method, ops_name;

It can be extended to show all the operators included in each class:

SELECT am.amname AS acc_method,
opc.opchame AS ops_name,
opr.oprname AS ops_comp
FROM pg_am am, pg_opclass opc, pg_amop amop, pg_operator opr

137

Chapter 8. Indexes

WHERE opc.opcamid = am.oid AND
amop.amopclaid = opc.oid AND
amop.amopopr = opr.oid

ORDER BY acc_method, ops_name, ops_comp;

8.7. Partial Indexes

A partial indexis an index built over a subset of a table; the subset is defined by a conditional expres-
sion (called thepredicateof the partial index). The index contains entries for only those table rows
that satisfy the predicate.

A major motivation for partial indexes is to avoid indexing common values. Since a query searching
for a common value (one that accounts for more than a few percent of all the table rows) will not use
the index anyway, there is no point in keeping those rows in the index at all. This reduces the size of
the index, which will speed up queries that do use the index. It will also speed up many table update
operations because the index does not need to be updated in allEEgsemle 8-1shows a possible
application of this idea.

Example 8-1. Setting up a Partial Index to Exclude Common Values

Suppose you are storing web server access logs in a database. Most accesses originate from the IP
range of your organization but some are from elsewhere (say, employees on dial-up connections). If
your searches by IP are primarily for outside accesses, you probably do not need to index the IP range
that corresponds to your organization’s subnet.

Assume a table like this:

CREATE TABLE access_log (
url varchar,
client_ip inet,

)i
To create a partial index that suits our example, use a command such as this:

CREATE INDEX access_log_client_ip_ix ON access_log (client_ip)
WHERE NOT (client_ip > inet '192.168.100.0' AND client_ip < inet '192.168.100.255’);

A typical query that can use this index would be:

SELECT * FROM access_log WHERE url = ’findex.html’ AND client_ip = inet '212.78.10.32’;
A query that cannot use this index is:
SELECT * FROM access_log WHERE client_ip = inet '192.168.100.23’;

Observe that this kind of partial index requires that the common values be predetermined. If the
distribution of values is inherent (due to the nature of the application) and static (not changing over
time), this is not difficult, but if the common values are merely due to the coincidental data load this
can require a lot of maintenance work.

Another possibility is to exclude values from the index that the typical query workload is not interested
in; this is shown inExample 8-2 This results in the same advantages as listed above, but it prevents
the “uninteresting” values from being accessed via that index at all, even if an index scan might be

138

Chapter 8. Indexes

profitable in that case. Obviously, setting up partial indexes for this kind of scenario will require a lot
of care and experimentation.

Example 8-2. Setting up a Partial Index to Exclude Uninteresting Values

If you have a table that contains both billed and unbilled orders, where the unbilled orders take up a
small fraction of the total table and yet those are the most-accessed rows, you can improve perfor-
mance by creating an index on just the unbilled rows. The command to create the index would look
like this:

CREATE INDEX orders_unbilled_index ON orders (order_nr)
WHERE billed is not true;

A possible query to use this index would be

SELECT * FROM orders WHERE billed is not true AND order_nr < 10000;

However, the index can also be used in queries that do not ineedee nr at all, e.qg.,
SELECT * FROM orders WHERE billed is not true AND amount > 5000.00;

This is not as efficient as a partial index on gmeount column would be, since the system has to scan
the entire index. Yet, if there are relatively few unbilled orders, using this partial index just to find the
unbilled orders could be a win.

Note that this query cannot use this index:

SELECT * FROM orders WHERE order_nr = 3501,
The order 3501 may be among the billed or among the unbilled orders.

Example 8-2also illustrates that the indexed column and the column used in the predicate do not need
to match. PostgreSQL supports partial indexes with arbitrary predicates, so long as only columns of
the table being indexed are involved. However, keep in mind that the predicate must match the condi-
tions used in the queries that are supposed to benefit from the index. To be precise, a partial index can
be used in a query only if the system can recognize that the query’'s WHERE condition mathemati-
cally impliesthe index’s predicate. PostgreSQL does not have a sophisticated theorem prover that can
recognize mathematically equivalent predicates that are written in different forms. (Not only is such
a general theorem prover extremely difficult to create, it would probably be too slow to be of any real
use.) The system can recognize simple inequality implications, for examptel™implies “x < 2”;
otherwise the predicate condition must exactly match the query’s WHERE condition or the index will
not be recognized to be usable.

A third possible use for partial indexes does not require the index to be used in queries at all. The idea
here is to create a unique index over a subset of a table,Easimple 8-3 This enforces uniqueness
among the rows that satisfy the index predicate, without constraining those that do not.

Example 8-3. Setting up a Partial Unique Index

Suppose that we have a table describing test outcomes. We wish to ensure that there is only one
“successful” entry for a given subject and target combination, but there might be any number of
“unsuccessful” entries. Here is one way to do it

CREATE TABLE tests (subject text,
target text,
success bool,
)
CREATE UNIQUE INDEX tests_success_constraint ON tests (subject, target)
WHERE success;

139

Chapter 8. Indexes

This is a particularly efficient way of doing it when there are few successful trials and many unsuc-
cessful ones.

Finally, a partial index can also be used to override the system’s query plan choices. It may occur that
data sets with peculiar distributions will cause the system to use an index when it really should not.
In that case the index can be set up so that it is not available for the offending query. Normally, Post-
greSQL makes reasonable choices about index usage (e.g., it avoids them when retrieving common
values, so the earlier example really only saves index size, it is not required to avoid index usage), and
grossly incorrect plan choices are cause for a bug report.

Keep in mind that setting up a partial index indicates that you know at least as much as the query
planner knows, in particular you know when an index might be profitable. Forming this knowledge
requires experience and understanding of how indexes in PostgreSQL work. In most cases, the advan-
tage of a partial index over a regular index will not be much.

More information about partial indexes can be founde case for partial indexePartial indexing
in POSTGRES: research projeeindGeneralized Partial Indexes

8.8. Examining Index Usage

Although indexes in PostgreSQL do not need maintenance and tuning, it is still important to check
which indexes are actually used by the real-life query workload. Examining index usage is done with
the EXPLAIN command,; its application for this purpose is illustrate®ection 10.1

It is difficult to formulate a general procedure for determining which indexes to set up. There are a
number of typical cases that have been shown in the examples throughout the previous sections. A
good deal of experimentation will be necessary in most cases. The rest of this section gives some tips
for that.

« Always runANALYZEfirst. This command collects statistics about the distribution of the values in
the table. This information is required to guess the number of rows returned by a query, which is
needed by the planner to assign realistic costs to each possible query plan. In absence of any real
statistics, some default values are assumed, which are almost certain to be inaccurate. Examining
an application’s index usage without having ANKALYZEis therefore a lost cause.

- Use real data for experimentation. Using test data for setting up indexes will tell you what indexes
you need for the test data, but that is all.

It is especially fatal to use proportionally reduced data sets. While selecting 1000 out of 100000
rows could be a candidate for an index, selecting 1 out of 100 rows will hardly be, because the
100 rows will probably fit within a single disk page, and there is no plan that can beat sequentially
fetching 1 disk page.

Also be careful when making up test data, which is often unavoidable when the application is not
in production use yet. Values that are very similar, completely random, or inserted in sorted order
will skew the statistics away from the distribution that real data would have.

- When indexes are not used, it can be useful for testing to force their use. There are run-time
parameters that can turn off various plan types (described irPtstgreSQL Administrator’s
Guidg. For instance, turning off sequential scarsaple_seqscan) and nested-loop joins
(enable_nestloop), which are the most basic plans, will force the system to use a different
plan. If the system still chooses a sequential scan or nested-loop join then there is probably a more

140

Chapter 8. Indexes

fundamental problem for why the index is not used, for example, the query condition does not
match the index. (What kind of query can use what kind of index is explained in the previous
sections.)

If forcing index usage does use the index, then there are two possibilities: Either the system is
right and using the index is indeed not appropriate, or the cost estimates of the query plans are not
reflecting reality. So you should time your query with and without indexesEKRAIN ANALYZE
command can be useful here.

If it turns out that the cost estimates are wrong, there are, again, two possibilities. The total cost is
computed from the per-row costs of each plan node times the selectivity estimate of the plan node.
The costs of the plan nodes can be tuned with run-time parameters (describedPastipeSQL
Administrator's Guidg An inaccurate selectivity estimate is due to insufficient statistics. It may be
possible to help this by tuning the statistics-gathering parametera(S&R TABLEreference).

If you do not succeed in adjusting the costs to be more appropriate, then you may have to resort to
forcing index usage explicitly. You may also want to contact the PostgreSQL developers to examine
the issue.

141

Chapter 9. Concurrency Control

This chapter describes the behavior of the PostgreSQL database system when two or more sessions
try to access the same data at the same time. The goals in that situation are to allow efficient access for
all sessions while maintaining strict data integrity. Every developer of database applications should
be familiar with the topics covered in this chapter.

9.1. Introduction

Unlike traditional database systems which use locks for concurrency control, PostgreSQL maintains
data consistency by using a multiversion model (Multiversion Concurrency Control, MVCC). This
means that while querying a database each transaction sees a snapshot oflathase version

as it was some time ago, regardless of the current state of the underlying data. This protects the
transaction from viewing inconsistent data that could be caused by (other) concurrent transaction
updates on the same data rows, providiagsaction isolatiorfor each database session.

The main difference between multiversion and lock models is that in MVCC locks acquired for query-
ing (reading) data don’t conflict with locks acquired for writing data, and so reading never blocks
writing and writing never blocks reading.

Table- and row-level locking facilities are also available in PostgreSQL for applications that cannot
adapt easily to MVCC behavior. However, proper use of MVCC will generally provide better perfor-
mance than locks.

9.2. Transaction Isolation

The SQL standard defines four levels of transaction isolation in terms of three phenomena that must
be prevented between concurrent transactions. These undesirable phenomena are:

dirty read
A transaction reads data written by a concurrent uncommitted transaction.
nonrepeatable read

Atransaction re-reads data it has previously read and finds that data has been modified by another
transaction (that committed since the initial read).

phantom read

A transaction re-executes a query returning a set of rows that satisfy a search condition and
finds that the set of rows satisfying the condition has changed due to another recently-committed
transaction.

The four transaction isolation levels and the corresponding behaviors are descriladtei9-1

Table 9-1. SQL Transaction Isolation Levels

Isolation Level Dirty Read Nonrepeatable Phantom Read
Read
Read uncommitted Possible Possible Possible

142

Chapter 9. Concurrency Control

Isolation Level Dirty Read Nonrepeatable Phantom Read
Read

Read committed Not possible Possible Possible

Repeatable read Not possible Not possible Possible

Serializable Not possible Not possible Not possible

PostgreSQL offers the read committed and serializable isolation levels.

9.2.1. Read Committed Isolation Level

Read Committes the default isolation level in PostgreSQL. When a transaction runs on this isolation
level, aSELECTquery sees only data committed before the query began; it never sees either uncom-
mitted data or changes committed during query execution by concurrent transactions. (However, the
SELECTdoes see the effects of previous updates executed within its own transaction, even though they
are not yet committed.) In effect, SELECTquery sees a snapshot of the database as of the instant
that that query begins to run. Notice that two succesSBIEECT can see different data, even though

they are within a single transaction, if other transactions commit changes during execution of the first
SELECT

UPDATE DELETE andSELECT FOR UPDATEommands behave the sameSH ECTin terms of
searching for target rows: they will only find target rows that were committed as of the query start
time. However, such a target row may have already been updated (or deleted or marked for update) by
another concurrent transaction by the time it is found. In this case, the would-be updater will wait for
the first updating transaction to commit or roll back (if it is still in progress). If the first updater rolls
back, then its effects are negated and the second updater can proceed with updating the originally
found row. If the first updater commits, the second updater will ignore the row if the first updater
deleted it, otherwise it will attempt to apply its operation to the updated version of the row. The query
search conditionWHERElause) is re-evaluated to see if the updated version of the row still matches
the search condition. If so, the second updater proceeds with its operation, starting from the updated
version of the row.

Because of the above rule, it is possible for updating queries to see inconsistent snapshots --- they can
see the effects of concurrent updating queries that affected the same rows they are trying to update,
but they do not see effects of those queries on other rows in the database. This behavior makes Read
Committed mode unsuitable for queries that involve complex search conditions. However, it is just
right for simpler cases. For example, consider updating bank balances with transactions like

BEGIN;

UPDATE accounts SET balance = balance + 100.00 WHERE acctnum = 12345;
UPDATE accounts SET balance = balance - 100.00 WHERE acctnum = 7534;
COMMIT;

If two such transactions concurrently try to change the balance of account 12345, we clearly want
the second transaction to start from the updated version of the account’s row. Because each query is
affecting only a predetermined row, letting it see the updated version of the row does not create any
troublesome inconsistency.

Since in Read Committed mode each new query starts with a new snapshot that includes all transac-
tions committed up to that instant, subsequent queries in the same transaction will see the effects of
the committed concurrent transaction in any case. The point at issue here is whether or not within a
singlequery we see an absolutely consistent view of the database.

The partial transaction isolation provided by Read Committed mode is adequate for many applica-
tions, and this mode is fast and simple to use. However, for applications that do complex queries and

143

Chapter 9. Concurrency Control

updates, it may be necessary to guarantee a more rigorously consistent view of the database than the
Read Committed mode provides.

9.2.2. Serializable Isolation Level

Serializableprovides the strictest transaction isolation. This level emulates serial transaction execu-
tion, as if transactions had been executed one after another, serially, rather than concurrently. However,
applications using this level must be prepared to retry transactions due to serialization failures.

When a transaction is on the serializable levedFaAECTquery sees only data committed before the
transaction began; it never sees either uncommitted data or changes committed during transaction
execution by concurrent transactions. (However 3BeECTdoes see the effects of previous updates
executed within its own transaction, even though they are not yet committed.) This is different from
Read Committed in that th@ELECTsees a shapshot as of the start of the transaction, not as of the
start of the current query within the transaction. Thus, succeS&IVECT within a single transaction
always see the same data.

UPDATE DELETE andSELECT FOR UPDATEommands behave the sameSH& ECTin terms of
searching for target rows: they will only find target rows that were committed as of the transaction start
time. However, such a target row may have already been updated (or deleted or marked for update)
by another concurrent transaction by the time it is found. In this case, the serializable transaction will
wait for the first updating transaction to commit or roll back (if it is still in progress). If the first updater
rolls back, then its effects are negated and the serializable transaction can proceed with updating the
originally found row. But if the first updater commits (and actually updated or deleted the row, not
just selected it for update) then the serializable transaction will be rolled back with the message

ERROR: Can't serialize access due to concurrent update

because a serializable transaction cannot modify rows changed by other transactions after the serial-
izable transaction began.

When the application receives this error message, it should abort the current transaction and then
retry the whole transaction from the beginning. The second time through, the transaction sees the
previously-committed change as part of its initial view of the database, so there is no logical conflict
in using the new version of the row as the starting point for the new transaction’s update.

Note that only updating transactions may need to be retried --- read-only transactions will never have
serialization conflicts.

The Serializable mode provides a rigorous guarantee that each transaction sees a wholly consistent
view of the database. However, the application has to be prepared to retry transactions when concur-
rent updates make it impossible to sustain the illusion of serial execution. Since the cost of redoing
complex transactions may be significant, this mode is recommended only when updating transactions
contain logic sufficiently complex that they may give wrong answers in Read Committed mode. Most
commonly, Serializable mode is necessary when a transaction performs several successive queries
that must see identical views of the database.

9.3. Explicit Locking

PostgreSQL provides various lock modes to control concurrent access to data in tables. These modes
can be used for application-controlled locking in situations where MVCC does not give the desired
behavior. Also, most PostgreSQL commands automatically acquire locks of appropriate modes to
ensure that referenced tables are not dropped or modified in incompatible ways while the command

144

Chapter 9. Concurrency Control

executes. (For examplaLTER TABLEcannot be executed concurrently with other operations on the
same table.)

9.3.1. Table-Level Locks

The list below shows the available lock modes and the contexts in which they are used automatically
by PostgreSQL. Remember that all of these lock modes are table-level locks, even if the name con-
tains the word “row”. The names of the lock modes are historical. To some extent the names reflect
the typical usage of each lock mode --- but the semantics are all the same. The only real difference be-
tween one lock mode and another is the set of lock modes with which each conflicts. Two transactions
cannot hold locks of conflicting modes on the same table at the same time. (However, a transaction
never conflicts with itself --- for example, it may acquik€ CESS EXCLUSIVHock and later ac-
quireACCESS SHARIMBck on the same table.) Non-conflicting lock modes may be held concurrently
by many transactions. Notice in particular that some lock modes are self-conflicting (for example,
ACCESS EXCLUSIVEannot be held by more than one transaction at a time) while others are not
self-conflicting (for exampleACCESS SHAREan be held by multiple transactions). Once acquired,

a lock mode is held till end of transaction.

To examine a list of the currently outstanding locks in a database server, ysg theks system
view. For more information on monitoring the status of the lock manager subsystem, refer to the
PostgreSQL Administrator's Guide

Table-level lock modes
ACCESS SHARE
Conflicts with theACCESS EXCLUSIVEock mode only.

The SELECTcommand acquires a lock of this mode on referenced tables. In general, any query
that only reads a table and does not modify it will acquire this lock mode.

ROW SHARE
Conflicts with theEXCLUSIVEandACCESS EXCLUSIVEock modes.

The SELECT FOR UPDATEommand acquires a lock of this mode on the target table(s) (in
addition toACCESS SHARIbcks on any other tables that are referenced but not seleciBd
UPDATE.

ROW EXCLUSIVE

Conflicts with theSHARE SHARE ROW EXCLUSIVEXCLUSIVE and ACCESS EXCLUSIVE
lock modes.

The command&JPDATE DELETE andINSERT acquire this lock mode on the target table (in
addition toACCESS SHARIBcks on any other referenced tables). In general, this lock mode will
be acquired by any query that modifies the data in a table.

SHARE UPDATE EXCLUSIVE

Conflicts with the SHARE UPDATE EXCLUSIVE SHARE SHARE ROW EXCLUSIVE
EXCLUSIVE, and ACCESS EXCLUSIVElock modes. This mode protects a table against
concurrent schema changes afkCUUNUNS.

Acquired byVACUUMwithout FULL).

145

Chapter 9. Concurrency Control

SHARE

Conflicts with theROW EXCLUSIVESHARE UPDATE EXCLUSIVESHARE ROW EXCLUSIVE
EXCLUSIVE andACCESS EXCLUSIVEock modes. This mode protects a table against concur-
rent data changes.

Acquired byCREATE INDEX
SHARE ROW EXCLUSIVE

Conflicts with theROW EXCLUSIVESHARE UPDATE EXCLUSIVESHARE SHARE ROW EX-
CLUSIVE, EXCLUSIVE andACCESS EXCLUSIVEock modes.

This lock mode is not automatically acquired by any PostgreSQL command.
EXCLUSIVE

Conflicts with theROW SHARROW EXCLUSIVESHARE UPDATE EXCLUSIYBHARESHARE
ROW EXCLUSIVEEXCLUSIVE, andACCESS EXCLUSIVHBock modes. This mode allows only
concurrentACCESS SHAREH.e., only reads from the table can proceed in parallel with a trans-
action holding this lock mode.

This lock mode is not automatically acquired by any PostgreSQL command.
ACCESS EXCLUSIVE

Conflicts with locks of all modesACCESS SHARROW SHARROW EXCLUSIVESHARE UP-
DATE EXCLUSIVESHARE SHARE ROW EXCLUSIVEXCLUSIVE andACCESS EXCLUSIVE
This mode guarantees that the holder is the only transaction accessing the table in any way.

Acquired by theALTER TABLE DROP TABLEandVACUUM FULcommands. This is also the
default lock mode fotOCK TABLEstatements that do not specify a mode explicitly.

Note: Only an ACCESS EXCLUSIVBock blocks a SELECT(without FOR UPDATEStatement.

9.3.2. Row-Level Locks

In addition to table-level locks, there are row-level locks. A row-level lock on a specific row is auto-
matically acquired when the row is updated (or deleted or marked for update). The lock is held until
the transaction commits or rolls back. Row-level locks don't affect data querying; theyutiteks

to the same rovenly. To acquire a row-level lock on a row without actually modifying the row, se-
lect the row withSELECT FOR UPDATHENote that once a particular row-level lock is acquired, the
transaction may update the row multiple times without fear of conflicts.

PostgreSQL doesn’t remember any information about modified rows in memory, so it has no limit
to the number of rows locked at one time. However, locking a row may cause a disk write; thus, for
example, SELECT FOR UPDAT®ill modify selected rows to mark them and so will result in disk
writes.

In addition to table and row locks, page-level share/exclusive locks are used to control read/write
access to table pages in the shared buffer pool. These locks are released immediately after a tuple is
fetched or updated. Application writers normally need not be concerned with page-level locks, but we
mention them for completeness.

146

Chapter 9. Concurrency Control

9.3.3. Deadlocks

Use of explicit locking can causieadlockswherein two (or more) transactions each hold locks that
the other wants. For example, if transaction 1 acquires an exclusive lock on table A and then tries to
acquire an exclusive lock on table B, while transaction 2 has already exclusive-locked table B and
now wants an exclusive lock on table A, then neither one can proceed. PostgreSQL automatically
detects deadlock situations and resolves them by aborting one of the transactions involved, allowing
the other(s) to complete. (Exactly which transaction will be aborted is difficult to predict and should
not be relied on.)

The best defense against deadlocks is generally to avoid them by being certain that all applications
using a database acquire locks on multiple objects in a consistent order. One should also ensure that
the first lock acquired on an object in a transaction is the highest mode that will be needed for that
object. If it is not feasible to verify this in advance, then deadlocks may be handled on-the-fly by
retrying transactions that are aborted due to deadlock.

So long as no deadlock situation is detected, a transaction seeking either a table-level or row-level lock
will wait indefinitely for conflicting locks to be released. This means it is a bad idea for applications
to hold transactions open for long periods of time (e.g., while waiting for user input).

9.4. Data Consistency Checks at the Application Level

Because readers in PostgreSQL don't lock data, regardless of transaction isolation level, data read
by one transaction can be overwritten by another concurrent transaction. In other words, if a row
is returned bySELECTIt doesn’t mean that the row is still current at the instant it is returned (i.e.,
sometime after the current query began). The row might have been modified or deleted by an already-
committed transaction that committed after this one started. Even if the row is still valid “now”, it
could be changed or deleted before the current transaction does a commit or rollback.

Another way to think about it is that each transaction sees a snapshot of the database contents, and
concurrently executing transactions may very well see different snapshots. So the whole concept of
“now” is somewhat suspect anyway. This is not normally a big problem if the client applications are
isolated from each other, but if the clients can communicate via channels outside the database then
serious confusion may ensue.

To ensure the current validity of a row and protect it against concurrent updates one magt use
LECT FOR UPDATEr an appropriateOCK TABLEstatement.ELECT FOR UPDATIBCKS just the
returned rows against concurrent updates, whileK TABLHocks the whole table.) This should be
taken into account when porting applications to PostgreSQL from other environments.

Note: Before version 6.5 PostgreSQL used read locks, and so the above consideration is also the
case when upgrading from PostgreSQL versions prior to 6.5.

Global validity checks require extra thought under MVCC. For example, a banking application might
wish to check that the sum of all credits in one table equals the sum of debits in another table, when
both tables are being actively updated. Comparing the results of two succesSsEeT SUMC(...)
commands will not work reliably under Read Committed mode, since the second query will likely
include the results of transactions not counted by the first. Doing the two sums in a single serializable
transaction will give an accurate picture of the effects of transactions that committed before the seri-
alizable transaction started --- but one might legitimately wonder whether the answer is still relevant
by the time it is delivered. If the serializable transaction itself applied some changes before trying to

147

Chapter 9. Concurrency Control

make the consistency check, the usefulness of the check becomes even more debatable, since now it
includes some but not all post-transaction-start changes. In such cases a careful person might wish to
lock all tables needed for the check, in order to get an indisputable picture of current reslHpRE

mode (or higher) lock guarantees that there are no uncommitted changes in the locked table, other

than those of the current transaction.

Note also that if one is relying on explicit locks to prevent concurrent changes, one should use Read
Committed mode, or in Serializable mode be careful to obtain the lock(s) before performing queries.

An explicit lock obtained in a serializable transaction guarantees that no other transactions modifying

the table are still running --- but if the snapshot seen by the transaction predates obtaining the lock,
it may predate some now-committed changes in the table. A serializable transaction’s snapshot is
actually frozen at the start of its first querSELECT, INSERT, UPDATE or DELETB), so it's possible

to obtain explicit locks before the snapshot is frozen.

9.5. Locking and Indexes

Though PostgreSQL provides nonblocking read/write access to table data, nonblocking read/write
access is not currently offered for every index access method implemented in PostgreSQL.

The various index types are handled as follows:

B-tree indexes

Short-term share/exclusive page-level locks are used for read/write access. Locks are released
immediately after each index tuple is fetched or inserted. B-tree indexes provide the highest
concurrency without deadlock conditions.

GiST and R-tree indexes

Share/exclusive index-level locks are used for read/write access. Locks are released after the
statement (command) is done.

Hash indexes

Share/exclusive page-level locks are used for read/write access. Locks are released after the page
is processed. Page-level locks provide better concurrency than index-level ones but are liable to
deadlocks.

In short, B-tree indexes are the recommended index type for concurrent applications.

148

Chapter 10. Performance Tips

Query performance can be affected by many things. Some of these can be manipulated by the user,
while others are fundamental to the underlying design of the system. This chapter provides some hints
about understanding and tuning PostgreSQL performance.

10.1. Using EXPLAIN

PostgreSQL devises guery planfor each query it is given. Choosing the right plan to match the
query structure and the properties of the data is absolutely critical for good performance. You can use
the EXPLAIN command to see what query plan the system creates for any query. Plan-reading is an
art that deserves an extensive tutorial, which this is not; but here is some basic information.

The numbers that are currently quotedEXPLAIN are:

- Estimated start-up cost (Time expended before output scan can start, e.g., time to do the sorting in
a sort node.)

- Estimated total cost (If all rows are retrieved, which they may not be --- a query witkli&
clause will stop short of paying the total cost, for example.)

- Estimated number of rows output by this plan node (Again, only if executed to completion.)

- Estimated average width (in bytes) of rows output by this plan node

The costs are measured in units of disk page fetches. (CPU effort estimates are converted into disk-
page units using some fairly arbitrary fudge factors. If you want to experiment with these factors, see
the list of run-time configuration parameters in PastgreSQL Administrator's Guide

It's important to note that the cost of an upper-level node includes the cost of all its child nodes. It's
also important to realize that the cost only reflects things that the planner/optimizer cares about. In
particular, the cost does not consider the time spent transmitting result rows to the frontend --- which
could be a pretty dominant factor in the true elapsed time, but the planner ignores it because it cannot
change it by altering the plan. (Every correct plan will output the same row set, we trust.)

Rows output is a little tricky because iti®t the number of rows processed/scanned by the query ---

it is usually less, reflecting the estimated selectivity of SfiyERElause constraints that are being
applied at this node. Ideally the top-level rows estimate will approximate the number of rows actually
returned, updated, or deleted by the query.

Here are some examples (using the regress test database\afievedM ANALYZENd 7.3 develop-
ment sources):

regression=# EXPLAIN SELECT * FROM tenkl;
QUERY PLAN

Seq Scan on tenkl (cost=0.00..333.00 rows=10000 width=148)

This is about as straightforward as it gets. If you do

SELECT * FROM pg_class WHERE relname = ’tenkl’;

149

Chapter 10. Performance Tips

you will find out thattenkl has 233 disk pages and 10000 rows. So the cost is estimated at 233
page reads, defined as costing 1.0 apiece, plus 10@p0_*tuple_cost which is currently 0.01
(try SHOW cpu_tuple_cost).

Now let's modify the query to add WHEREondition:

regression=# EXPLAIN SELECT * FROM tenkl WHERE uniquel < 1000;
QUERY PLAN

Seq Scan on tenkl (cost=0.00..358.00 rows=1033 width=148)
Filter: (uniquel < 1000)

The estimate of output rows has gone down because &fHERElause. However, the scan will still
have to visit all 10000 rows, so the cost hasn’t decreased; in fact it has gone up a bit to reflect the extra
CPU time spent checking theHEREonNdition.

The actual number of rows this query would select is 1000, but the estimate is only approximate. If
you try to duplicate this experiment, you will probably get a slightly different estimate; moreover,
it will change after eacANALYZEcommand, because the statistics produced XL YZEare taken

from a randomized sample of the table.

Modify the query to restrict the condition even more:

regression=# EXPLAIN SELECT * FROM tenkl WHERE uniquel < 50;
QUERY PLAN

Index Scan using tenkl_uniquel on tenkl (cost=0.00..179.33 rows=49 width=148)
Index Cond: (uniquel < 50)

and you will see that if we make th#HEREonNdition selective enough, the planner will eventually
decide that an index scan is cheaper than a sequential scan. This plan will only have to visit 50 rows
because of the index, so it wins despite the fact that each individual fetch is more expensive than
reading a whole disk page sequentially.

Add another clause to th#HEREoONdition:
regression=# EXPLAIN SELECT * FROM tenkl WHERE uniquel < 50 AND

regression-# stringul = 'xxx’;
QUERY PLAN

Index Scan using tenkl_uniquel on tenkl (cost=0.00..179.45 rows=1 width=148)
Index Cond: (uniquel < 50)
Filter: (stringul = ’'xxx’::name)

The added clausstringul = 'xxx’ reduces the output-rows estimate, but not the cost because we
still have to visit the same set of rows. Notice thatshimgul clause cannot be applied as an index
condition (since this index is only on theiquel column). Instead it is applied as a filter on the rows
retrieved by the index. Thus the cost has actually gone up a little bit to reflect this extra checking.

Let’s try joining two tables, using the fields we have been discussing:

regression=# EXPLAIN SELECT * FROM tenkl t1, tenk2 t2 WHERE tl.uniquel < 50
regression-# AND tl.unique2 = t2.uniquez;
QUERY PLAN

Nested Loop (cost=0.00..327.02 rows=49 width=296)

150

Chapter 10. Performance Tips

-> Index Scan using tenkl_uniquel on tenkl tl1
(cost=0.00..179.33 rows=49 width=148)
Index Cond: (uniquel < 50)
-> Index Scan using tenk2_unique2 on tenk2 t2
(cost=0.00..3.01 rows=1 width=148)
Index Cond: ("outer".unique2 = t2.unique2)

In this nested-loop join, the outer scan is the same index scan we had in the example before last, and
so its cost and row count are the same because we are applyimgdhel < 50 WHERElause at

that node. Thél.unique2 = t2.unique2 clause is not relevant yet, so it doesn't affect row count

of the outer scan. For the inner scan, tihgjue2 value of the current outer-scan row is plugged into

the inner index scan to produce an index condition fikenique2 = constant . So we get the

same inner-scan plan and costs that we'd get from,ESégLAIN SELECT * FROM tenk2 WHERE
unique2 = 42 . The costs of the loop node are then set on the basis of the cost of the outer scan, plus
one repetition of the inner scan for each outer row (49 * 3.01, here), plus a little CPU time for join
processing.

In this example the loop’s output row count is the same as the product of the two scans’ row counts, but
that’s not true in general, because in general you can WaiERElauses that mention both relations

and so can only be applied at the join point, not to either input scan. For example, if weVaHE&E

... AND tl.hundred < t2.hundred , that would decrease the output row count of the join node,
but not change either input scan.

One way to look at variant plans is to force the planner to disregard whatever strategy it thought was
the winner, using the enable/disable flags for each plan type. (This is a crude tool, but useful. See also
Section 10.3

regression=# SET enable_nestloop = off;

SET
regression=# EXPLAIN SELECT * FROM tenkl t1, tenk2 t2 WHERE tl.uniquel < 50
regression-# AND tl.unique2 = t2.uniquez;

QUERY PLAN

Hash Join (cost=179.45..563.06 rows=49 width=296)
Hash Cond: ("outer".unique2 = "inner".unique2)
-> Seq Scan on tenk2 t2 (cost=0.00..333.00 rows=10000 width=148)
-> Hash (cost=179.33..179.33 rows=49 width=148)
-> Index Scan using tenkl_uniquel on tenkl tl
(cost=0.00..179.33 rows=49 width=148)
Index Cond: (uniquel < 50)

This plan proposes to extract the 50 interesting romel using ye same olde index scan, stash
them into an in-memory hash table, and then do a sequential saankaf, probing into the hash

table for possible matches df.unique2 = t2.unique2 at eachtenk2 row. The cost to read

tenkl and set up the hash table is entirely start-up cost for the hash join, since we won't get any rows
out until we can start readingnk2 . The total time estimate for the join also includes a hefty charge
for the CPU time to probe the hash table 10000 times. Note, however, that wetatearging 10000

times 179.33; the hash table setup is only done once in this plan type.

It is possible to check on the accuracy of the planner’s estimated costs byEx$hgIN ANALYZE

This command actually executes the query, and then displays the true run time accumulated within
each plan node along with the same estimated costs that agX&inAIN shows. For example, we
might get a result like this:

151

Chapter 10. Performance Tips

regression=# EXPLAIN ANALYZE

regression-# SELECT * FROM tenkl tl1, tenk2 t2

regression-# WHERE tl.uniquel < 50 AND tl.unique2 = t2.unique2;
QUERY PLAN

Nested Loop (cost=0.00..327.02 rows=49 width=296)
(actual time=1.18..29.82 rows=50 loops=1)
-> Index Scan using tenkl_uniquel on tenkl tl
(cost=0.00..179.33 rows=49 width=148)
(actual time=0.63..8.91 rows=50 loops=1)
Index Cond: (uniquel < 50)
-> Index Scan using tenk2_unique2 on tenk2 t2
(cost=0.00..3.01 rows=1 width=148)
(actual time=0.29..0.32 rows=1 loops=50)
Index Cond: ("outer".unique2 = t2.unique2)
Total runtime: 31.60 msec

Note that the “actual time” values are in milliseconds of real time, whereas the “cost” estimates are
expressed in arbitrary units of disk fetches; so they are unlikely to match up. The thing to pay attention
to is the ratios.

In some query plans, it is possible for a subplan node to be executed more than once. For example,
the inner index scan is executed once per outer row in the above nested-loop plan. In such cases, the
“loops” value reports the total number of executions of the node, and the actual time and rows values
shown are averages per-execution. This is done to make the numbers comparable with the way that
the cost estimates are shown. Multiply by the “loops” value to get the total time actually spent in the
node.

TheTotal runtime shown byEXPLAIN ANALYZEincludes executor start-up and shut-down time,

as well as time spent processing the result rows. It does not include parsing, rewriting, or planning
time. For aSELECTquery, the total run time will normally be just a little larger than the total time
reported for the top-level plan node. ANISERT, UPDATE andDELETEcommands, the total run time

may be considerably larger, because it includes the time spent processing the result rows. In these
commands, the time for the top plan node essentially is the time spent computing the new rows and/or
locating the old ones, but it doesn’t include the time spent making the changes.

It is worth noting thaEXPLAIN results should not be extrapolated to situations other than the one you
are actually testing; for example, results on a toy-sized table can’t be assumed to apply to large tables.
The planner’s cost estimates are not linear and so it may well choose a different plan for a larger or
smaller table. An extreme example is that on a table that only occupies one disk page, you'll nearly
always get a sequential scan plan whether indexes are available or not. The planner realizes that it's
going to take one disk page read to process the table in any case, so there’s no value in expending
additional page reads to look at an index.

10.2. Statistics Used by the Planner

As we saw in the previous section, the query planner needs to estimate the number of rows retrieved
by a query in order to make good choices of query plans. This section provides a quick look at the
statistics that the system uses for these estimates.

One component of the statistics is the total number of entries in each table and index, as well as the
number of disk blocks occupied by each table and index. This information is ket ofass 's
reltuples andrelpages columns. We can look at it with queries similar to this one:

152

Chapter 10. Performance Tips

regression=# SELECT relname, relkind, reltuples, relpages FROM pg_class
regression-# WHERE relname LIKE 'tenk1%’;

relname | relkind | reltuples | relpages
+ + +
tenkl | r | 10000 | 233
tenkl_hundred | i [10000 | 30
tenk1_uniquel | i | 10000 | 30
tenkl_unique2 | i | 10000 | 30
(4 rows)

Here we can see th&nkl contains 10000 rows, as do its indexes, but the indexes are (unsurpris-
ingly) much smaller than the table.

For efficiency reasonsgeltuples andrelpages are not updated on-the-fly, and so they usually
contain only approximate values (which is good enough for the planner’s purposes). They are ini-
tialized with dummy values (presently 1000 and 10 respectively) when a table is created. They are
updated by certain commands, preseyCUUMANALYZE andCREATE INDEXA stand-alon&\N-

ALYZE, that is one not part o0fACUUMgenerates an approximatgtuples value since it does not

read every row of the table.

Most queries retrieve only a fraction of the rows in a table, due to havingRElauses that restrict the
rows to be examined. The planner thus needs to make an estimateseféhtvityof WHERElauses,

that is, the fraction of rows that match each clause ofMiEREONdition. The information used for

this task is stored in thpg_statistic system catalog. Entries jpy_statistic are updated by
ANALYZEandVACUUM ANALYZtbmmands, and are always approximate even when freshly updated.

Rather than look gig_statistic directly, it's better to look at its viewg_stats when examining

the statistics manuallyg_stats is designed to be more easily readable. Furthermmyestats

is readable by all, whereag_statistic is only readable by the superuser. (This prevents unpriv-
ileged users from learning something about the contents of other people’s tables from the statistics.
Thepg_stats view is restricted to show only rows about tables that the current user can read.) For
example, we might do:

regression=# SELECT attname, n_distinct, most_common_vals FROM pg_stats WHERE table-
name = ’road’;
attname | n_distinct |

+ +
1 1

name | -0.467008 | {"I- 580 Ramp","l- 880
road ""l- 580 ""l- 680
80 Ramp","14th St ","5th
sion Blvd","l- 880 "

thepath | 20 | {"[(-122.089,37.71),(-122.0886,37.711)]"}

(2 rows)

regression=#

Table 10-1shows the columns that existpg_stats

Table 10-1.pg_stats Columns

Name Type Description

153

Chapter 10. Performance Tips

Name Type Description

tablename name Name of the table containing the
column

attname name Column described by this row

null_frac real Fraction of column’s entries that
are null

avg_width integer Average width in bytes of the
column’s entries

n_distinct real If greater than zero, the

estimated number of distinct
values in the column. If less than
zero, the negative of the number
of distinct values divided by the
number of rows. (The negated
form is used whe®ANALYZE
believes that the number of
distinct values is likely to
increase as the table grows; th
positive form is used when the
column seems to have a fixed
number of possible values.) Far
example, -1 indicates a unique
column in which the number off
distinct values is the same as the
number of rows.

D

most_common_vals text[] A list of the most common
\values in the column. (Omitted
if no values seem to be more
common than any others.)

most_common_freqs real[] A list of the frequencies of the
most common values, i.e.,

number of occurrences of eacl
divided by total number of rows.

histogram_bounds text(] A list of values that divide the
column’s values into groups of
approximately equal population.
Themost_common_vals , if
present, are omitted from the
histogram calculation. (Omitted
if column data type does not
have a< operator, or if the
most_common_vals list
accounts for the entire
population.)

154

Chapter 10. Performance Tips

Name Type Description

correlation real Statistical correlation between
physical row ordering and
logical ordering of the column
values. This ranges from -1 to
+1. When the value is near -1 ¢r
+1, an index scan on the column
will be estimated to be cheaper
than when it is near zero, due 1o
reduction of random access to
the disk. (Omitted if column
data type does not havea
operator.)

The maximum number of entries in thest_common_vals andhistogram_bounds arrays can be

set on a column-by-column basis using M§ER TABLE SET STATISTICScommand. The default

limit is presently 10 entries. Raising the limit may allow more accurate planner estimates to be made,
particularly for columns with irregular data distributions, at the price of consuming more space in
pg_statistic and slightly more time to compute the estimates. Conversely, a lower limit may be
appropriate for columns with simple data distributions.

10.3. Controlling the Planner with Explicit ~ JOIN Clauses

Beginning with PostgreSQL 7.1 it has been possible to control the query planner to some extent by
using the explicittOIN syntax. To see why this matters, we first need some background.

In a simple join query, such as
SELECT * FROM a, b, ¢ WHERE a.id = b.id AND b.ref = c.id;

the planner is free to join the given tables in any order. For example, it could generate a query plan
that joins A to B, using th&vHEREoONditiona.id = b.id , and then joins C to this joined table,
using the othewHEREoNdition. Or it could join B to C and then join A to that result. Or it could join

A to C and then join them with B --- but that would be inefficient, since the full Cartesian product of
A and C would have to be formed, there being no applicable condition iwthERElause to allow
optimization of the join. (All joins in the PostgreSQL executor happen between two input tables, so
it's necessary to build up the result in one or another of these fashions.) The important point is that
these different join possibilities give semantically equivalent results but may have hugely different
execution costs. Therefore, the planner will explore all of them to try to find the most efficient query
plan.

When a query only involves two or three tables, there aren’t many join orders to worry about. But the
number of possible join orders grows exponentially as the number of tables expands. Beyond ten or
so input tables it's no longer practical to do an exhaustive search of all the possibilities, and even for
six or seven tables planning may take an annoyingly long time. When there are too many input tables,
the PostgreSQL planner will switch from exhaustive searchgereeticprobabilistic search through a
limited number of possibilities. (The switch-over threshold is set by@B®0O_THRESHOLUDN-time
parameter described in tHRostgreSQL Administrator's GuideThe genetic search takes less time,

but it won't necessarily find the best possible plan.

When the query involves outer joins, the planner has much less freedom than it does for plain (inner)
joins. For example, consider

155

Chapter 10. Performance Tips
SELECT * FROM a LEFT JOIN (b JOIN ¢ ON (b.ref = c.id)) ON (a.id = b.id);

Although this query’s restrictions are superficially similar to the previous example, the semantics are
different because a row must be emitted for each row of A that has no matching row in the join of B
and C. Therefore the planner has no choice of join order here: it must join B to C and then join A to
that result. Accordingly, this query takes less time to plan than the previous query.

The PostgreSQL query planner treats all explictN syntaxes as constraining the join order, even
though it is not logically necessary to make such a constraint for inner joins. Therefore, although all
of these queries give the same result:

SELECT * FROM a, b, ¢ WHERE a.id = b.id AND b.ref = c.id;
SELECT * FROM a CROSS JOIN b CROSS JOIN ¢ WHERE a.id = b.id AND b.ref = c.id:;
SELECT * FROM a JOIN (b JOIN ¢ ON (bref = c.id)) ON (aid = b.id);

but the second and third take less time to plan than the first. This effect is not worth worrying about
for only three tables, but it can be a lifesaver with many tables.

You do not need to constrain the join order completely in order to cut search time, because it's OK to
useJOIN operators in a plaifROMist. For example,

SELECT * FROM a CROSS JOIN b, ¢, d, e WHERE ..,

forces the planner to join A to B before joining them to other tables, but doesn’t constrain its choices
otherwise. In this example, the number of possible join orders is reduced by a factor of 5.

If you have a mix of outer and inner joins in a complex query, you might not want to constrain the
planner’s search for a good ordering of inner joins inside an outer join. You can’t do that directly in
theJOIN syntax, but you can get around the syntactic limitation by using subselects. For example,

SELECT * FROM d LEFT JOIN
(SELECT * FROM a, b, ¢ WHERE ...) AS ss
ON (..);

Here, joining D must be the last step in the query plan, but the planner is free to consider various join
orders for A, B, C.

Constraining the planner’s search in this way is a useful technique both for reducing planning time
and for directing the planner to a good query plan. If the planner chooses a bad join order by default,
you can force it to choose a better order W&N syntax --- assuming that you know of a better order,
that is. Experimentation is recommended.

10.4. Populating a Database

One may need to do a large number of table insertions when first populating a database. Here are
some tips and techniques for making that as efficient as possible.

10.4.1. Disable Autocommit

Turn off autocommit and just do one commit at the end. (In plain SQL, this means iEGIiy at

the start andCOMMITat the end. Some client libraries may do this behind your back, in which case
you need to make sure the library does it when you want it done.) If you allow each insertion to be
committed separately, PostgreSQL is doing a lot of work for each record added. An additional benefit
of doing all insertions in one transaction is that if the insertion of one record were to fail then the

156

Chapter 10. Performance Tips

insertion of all records inserted up to that point would be rolled back, so you won't be stuck with
partially loaded data.

10.4.2. Use COPY FROM

UseCOPY FROM STDIto load all the records in one command, instead of using a seri®SBRT
commands. This reduces parsing, planning, etc. overhead a great deal. If you do this then it is not
necessary to turn off autocommit, since it is only one command anyway.

10.4.3. Remove Indexes

If you are loading a freshly created table, the fastest way is to create the table, bulk-lo&DRith
then create any indexes needed for the table. Creating an index on pre-existing data is quicker than
updating it incrementally as each record is loaded.

If you are augmenting an existing table, you @GROP INDEXload the table, then recreate the index.

Of course, the database performance for other users may be adversely affected during the time that
the index is missing. One should also think twice before dropping unique indexes, since the error
checking afforded by the unique constraint will be lost while the index is missing.

10.4.4. Run ANALYZE Afterwards

It's a good idea to ruANALYZEor VACUUM ANALYZ&nytime you've added or updated a lot of data,
including just after initially populating a table. This ensures that the planner has up-to-date statistics
about the table. With no statistics or obsolete statistics, the planner may make poor choices of query
plans, leading to bad performance on queries that use your table.

157

Appendix A. Date/Time Support

PostgreSQL uses an internal heuristic parser for all date/time input support. Dates and times are input
as strings, and are broken up into distinct fields with a preliminary determination of what kind of
information may be in the field. Each field is interpreted and either assigned a numeric value, ignored,
or rejected. The parser contains internal lookup tables for all textual fields, including months, days of
the week, and time zones.

This appendix includes information on the content of these lookup tables and describes the steps used
by the parser to decode dates and times.

A.1. Date/Time Input Interpretation

The date/time types are all decoded using a common set of routines.

Date/Time Input Interpretation

1. Break the input string into tokens and categorize each token as a string, time, time zone, or
number.

a. If the numeric token contains a colon)(this is a time string. Include all subsequent
digits and colons.

b. If the numeric token contains a dash,(slash (), or two or more dots.(), this is a
date string which may have a text month.

c. Ifthe token is numeric only, then it is either a single field or an ISO 8601 concatenated
date (e.g.19990113 for January 13, 1999) or time (e.;#1516 for 14:15:16).

d. If the token starts with a plus-{ or minus ¢), then it is either a time zone or a special
field.

2. Ifthe token is a text string, match up with possible strings.
a. Do a binary-search table lookup for the token as either a special stringtéeay.,),
day (e.g.,Thursday), month (e.g.January), or noise word (e.gat , on).

Set field values and bit mask for fields. For example, set year, month, daydéyr ,
and additionally hour, minute, second faw.

b. If not found, do a similar binary-search table lookup to match the token with a time
zone.

c. If not found, throw an error.
3. The token is a number or number field.
a. If there are more than 4 digits, and if no other date fields have been previously read,
then interpret as a “concatenated date” (.§990118). 8 and 6 digits are interpreted

as year, month, and day, while 7 and 5 digits are interpreted as year, day of year, respec-
tively.

b. If the token is three digits and a year has already been decoded, then interpret as day
of year.

c. If four or six digits and a year has already been read, then interpret as a time.

d. If four or more digits, then interpret as a yeatr.

158

Appendix A. Date/Time Support
e. Ifin European date mode, and if the day field has not yet been read, and if the value is
less than or equal to 31, then interpret as a day.

f. If the month field has not yet been read, and if the value is less than or equal to 12, then
interpret as a month.

g. Ifthe day field has not yet been read, and if the value is less than or equal to 31, then
interpret as a day.

h. If two digits or four or more digits, then interpret as a year.
i. Otherwise, throw an error.

4. If BC has been specified, negate the year and add one for internal storage. (There is no year zero
in the Gregorian calendar, so numericalBC becomes year zero.)

5. If BC was not specified, and if the year field was two digits in length, then adjust the year to 4
digits. If the field was less than 70, then add 2000; otherwise, add 1900.

Tip: Gregorian years AD 1-99 may be entered by using 4 digits with leading zeros (e.g., 0099 is
AD 99). Previous versions of PostgreSQL accepted years with three digits and with single
digits, but as of version 7.0 the rules have been tightened up to reduce the possibility of
ambiguity.

A.2. Date/Time Key Words

Table A-1shows the tokens that are permissible as abbreviations for the names of the month.

Table A-1. Month Abbreviations

Month Abbreviations
April Apr
August Aug
December Dec
February Feb
January Jan

July Jul

June Jun
March Mar
November Nov
October Oct
September Sep, Sept

Note: The month May has no explicit abbreviation, for obvious reasons.

Table A-2shows the tokens that are permissible as abbreviations for the names of the days of the
week.

159

Appendix A. Date/Time Support

Table A-2. Day of the Week Abbreviations

Day IAbbreviation
Sunday Sun

Monday Mon

Tuesday Tue, Tues
Wednesday \Wed, Weds
Thursday Thu, Thur, Thurs
Friday Fri

Saturday Sat

Table A-3shows the tokens that serve various modifier purposes.

Table A-3. Date/Time Field Modifiers

Identifier Description

IABSTIME Key word ignored

AM Time is before 12:00

AT Key word ignored

JULIAN, JD, J Next field is Julian Day

ON Key word ignored

PM Time is on or after after 12:00
T Next field is time

The key wordABSTIME s ignored for historical reasons; in very old releases of PostgreSQL invalid
fields of typeabstime were emitted agwalid Abstime

this key word will likely be dropped in a future release.

. This is no longer the case however and

Table A-4shows the time zone abbreviations recognized by PostgreSQL. PostgreSQL contains inter-
nal tabular information for time zone decoding, since there is no standard operating system interface
to provide access to general, cross-time zone information. The underlying operatingisystechto

provide time zone information fayutput however.

The table is organized by time zone offset from UTC, rather than alphabetically; this is intended to
facilitate matching local usage with recognized abbreviations for cases where these might differ.

Table A-4. Time Zone Abbreviations

Time Zone Offset from UTC Description

NzZDT +13:00 New Zealand Daylight Time

IDLE +12:00 International Date Line, East

NZST +12:00 New Zealand Standard Time

NZT +12:00 New Zealand Time

AESST +11:00 Australia Eastern Summer
Standard Time

ACSST +10:30 Central Australia Summer
Standard Time

CADT +10:30 Central Australia Daylight
Savings Time

160

Appendix A. Date/Time Support

Time Zone Offset from UTC Description

SADT +10:30 South Australian Daylight Time

AEST +10:00 /Australia Eastern Standard Time

EAST +10:00 East Australian Standard Time

GST +10:00 Guam Standard Time, USSR
Zone 9

LIGT +10:00 Melbourne, Australia

SAST +09:30 South Australia Standard Time

CAST +09:30 Central Australia Standard Time

AWSST +09:00 Australia Western Summer
Standard Time

JST +09:00 Japan Standard Time, USSR
Zone 8

KST +09:00 Korea Standard Time

MHT +09:00 Kwajalein Time

WDT +09:00 West Australian Daylight Time

MT +08:30 Moluccas Time

AWST +08:00 Australia Western Standard
Time

CCT +08:00 China Coastal Time

WADT +08:00 West Australian Daylight Time

WST +08:00 \West Australian Standard Time

JT +07:30 Java Time

ALMST +07:00 Almaty Summer Time

WAST +07:00 West Australian Standard Time

CXT +07:00 Christmas (Island) Time

MMT +06:30 Myannar Time

ALMT +06:00 Almaty Time

MAWT +06:00 Mawson (Antarctica) Time

[o1) +05:00 Indian Chagos Time

MVT +05:00 Maldives Island Time

TFT +05:00 Kerguelen Time

AFT +04:30 IAfganistan Time

EAST +04:00 Antananarivo Savings Time

MUT +04:00 Mauritius Island Time

RET +04:00 Reunion Island Time

SCT +04:00 Mahe Island Time

IRT, IT +03:30 Iran Time

EAT +03:00 /Antananarivo, Comoro Time

BT +03:00 Baghdad Time

EETDST +03:00 Eastern Europe Daylight

Savings Time

161

Appendix A. Date/Time Support

Time Zone Offset from UTC Description

HMT +03:00 Hellas Mediterranean Time (?)

BDST +02:00 British Double Standard Time

CEST +02:00 Central European Savings Time

CETDST +02:00 Central European Daylight
Savings Time

EET +02:00 Eastern Europe, USSR Zone 1

FWT +02:00 French Winter Time

IST +02:00 Israel Standard Time

MEST +02:00 Middle Europe Summer Time

METDST +02:00 Middle Europe Daylight Time

SST +02:00 Swedish Summer Time

BST +01:00 British Summer Time

CET +01:00 Central European Time

DNT +01:00 Dansk Normal Tid

FST +01:00 French Summer Time

MET +01:00 Middle Europe Time

MEWT +01:00 Middle Europe Winter Time

MEZ +01:00 Middle Europe Zone

NOR +01:00 Norway Standard Time

SET +01:00 Seychelles Time

SWT +01:00 Swedish Winter Time

WETDST +01:00 \Western Europe Daylight
Savings Time

GMT +00:00 Greenwich Mean Time

uT +00:00 Universal Time

UTC +00:00 Universal Time, Coordinated

z +00:00 Same as UTC

ZULU +00:00 Same as UTC

WET +00:00 \Western Europe

WAT -01:00 \West Africa Time

NDT -02:30 Newfoundland Daylight Time

ADT -03:00 Atlantic Daylight Time

AWT -03:00 (unknown)

NFT -03:30 Newfoundland Standard Time

NST -03:30 Newfoundland Standard Time

AST -04:00 Atlantic Standard Time
(Canada)

ACST -04:00 Atlantic/Porto Acre Summer
Time

ACT -05:00 Atlantic/Porto Acre Standard
Time

EDT -04:00 Eastern Daylight Time

162

Appendix A. Date/Time Support

Time Zone Offset from UTC Description

CDT -05:00 Central Daylight Time

EST -05:00 Eastern Standard Time

CST -06:00 Central Standard Time

MDT -06:00 Mountain Daylight Time
MST -07:00 Mountain Standard Time
PDT -07:00 Pacific Daylight Time

AKDT -08:00 Alaska Daylight Time

PST -08:00 Pacific Standard Time

YDT -08:00 Yukon Daylight Time

AKST -09:00)Alaska Standard Time

HDT -09:00 Hawaii/Alaska Daylight Time
YST -09:00 'Yukon Standard Time

MART -09:30 Marquesas Time

AHST -10:00 /Alaska-Hawaii Standard Time
HST -10:00 Hawaii Standard Time

CAT -10:00 Central Alaska Time

NT -11:00 Nome Time

IDLW -12:00 International Date Line, West

Australian Time Zones. There are three naming conflicts between Australian time zone names with
time zones commonly used in North and South Amer#eg2ST, CST, andEST. If the run-time option
AUSTRALIAN_TIMEZONESs set to true the’CST, CST, EST, andSAT are interpreted as Australian
time zone names, as shownTiable A-5 If it is false (which is the default), theRCST, CST, andEST

are taken as American time zone names, ®adis interpreted as a noise word indicating Saturday.

Table A-5. Australian Time Zone Abbreviations

Time Zone Offset from UTC Description

ACST +09:30 Central Australia Standard Time

CST +10:30 Australian Central Standard
Time

EST +10:00 Australian Eastern Standard
Time

SAT +09:30 South Australian Standard Time

A.3. History of Units

Note: Contributed by José Soares (<jose@sferacarta.com >)

The Julian Day was invented by the French scholar Joseph Justus Scaliger (1540-1609) and probably
takes its name from the Scaliger’s father, the Italian scholar Julius Caesar Scaliger (1484-1558). As-
tronomers have used the Julian period to assign a unique number to every day since 1 January 4713

163

Appendix A. Date/Time Support

BC. This is the so-called Julian Day (JD). JD 0 designates the 24 hours from noon UTC on 1 January
4713 BC to noon UTC on 2 January 4713 BC.

The “Julian Day” is different from the “Julian Date”. The Julian date refers to the Julian calendar,
which was introduced by Julius Caesar in 45 BC. It was in common use until the 1582, when countries
started changing to the Gregorian calendar. In the Julian calendar, the tropical year is approximated
as 365 1/4 days = 365.25 days. This gives an error of about 1 day in 128 years.

The accumulating calendar error prompted Pope Gregory XIII to reform the calendar in accordance
with instructions from the Council of Trent. In the Gregorian calendar, the tropical year is approxi-
mated as 365 + 97 / 400 days = 365.2425 days. Thus it takes approximately 3300 years for the tropical
year to shift one day with respect to the Gregorian calendar.

The approximation 365+97/400 is achieved by having 97 leap years every 400 years, using the fol-
lowing rules:

Every year divisible by 4 is a leap year.
However, every year divisible by 100 is not a leap year.
However, every year divisible by 400 is a leap year after all.

So, 1700, 1800, 1900, 2100, and 2200 are not leap years. But 1600, 2000, and 2400 are leap years.
By contrast, in the older Julian calendar only years divisible by 4 are leap years.

The papal bull of February 1582 decreed that 10 days should be dropped from October 1582 so that
15 October should follow immediately after 4 October. This was observed in Italy, Poland, Portugal,
and Spain. Other Catholic countries followed shortly after, but Protestant countries were reluctant
to change, and the Greek orthodox countries didn’t change until the start of the 20th century. The
reform was observed by Great Britain and Dominions (including what is now the USA) in 1752. Thus

2 September 1752 was followed by 14 September 1752. This is why Unix systems hazt the
program produce the following:

$ cal 9 1752
September 1752
S MTu WTh F S
1 2 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30

Note: The SQL standard states that “Within the definition of a ‘datetime literal’, the ‘datetime
value's are constrained by the natural rules for dates and times according to the Gregorian cal-
endar”. Dates between 1752-09-03 and 1752-09-13, although eliminated in some countries by
Papal fiat, conform to “natural rules” and are hence valid dates.

Different calendars have been developed in various parts of the world, many predating the Gregorian
system. For example, the beginnings of the Chinese calendar can be traced back to the 14th century
BC. Legend has it that the Emperor Huangdi invented the calendar in 2637 BC. The People’s Republic
of China uses the Gregorian calendar for civil purposes. The Chinese calendar is used for determining
festivals.

164

Appendix B. SQL Key Words

Table B-1lists all tokens that are key words in the SQL standard and in PostgreSQL 7.3.2. Background
information can be found iection 1.1.1

SQL distinguishes betwegaservedandnon-reservedey words. According to the standard, reserved

key words are the only real key words; they are never allowed as identifiers. Non-reserved key words
only have a special meaning in particular contexts and can be used as identifiers in other contexts.
Most non-reserved key words are actually the names of built-in tables and functions specified by

SQL. The concept of non-reserved key words essentially only exists to declare that some predefined
meaning is attached to a word in some contexts.

In the PostgreSQL parser life is a bit more complicated. There are several different classes of tokens
ranging from those that can never be used as an identifier to those that have absolutely no special
status in the parser as compared to an ordinary identifier. (The latter is usually the case for functions
specified by SQL.) Even reserved key words are not completely reserved in PostgreSQL, but can be
used as column labels (for examp8ELECT 55 AS CHECKeven thoughCHECKis a reserved key

word).

In Table B-1in the column for PostgreSQL we classify as “hon-reserved” those key words that are
explicitly known to the parser but are allowed in most or all contexts where an identifier is expected.
Some key words that are otherwise non-reserved cannot be used as function or data type names and
are marked accordingly. (Most of these words represent built-in functions or data types with special
syntax. The function or type is still available but it cannot be redefined by the user.) Labeled “reserved”
are those tokens that are only allowed as “AS” column label names (and perhaps in very few other
contexts). Some reserved key words are allowable as names for functions; this is also shown in the
table.

As a general rule, if you get spurious parser errors for commands that contain any of the listed key
words as an identifier you should try to quote the identifier to see if the problem goes away.

It is important to understand before studyihgble B-1that the fact that a key word is not reserved
in PostgreSQL does not mean that the feature related to the word is not implemented. Conversely, the
presence of a key word does not indicate the existence of a feature.

Table B-1. SQL Key Words

Key Word PostgreSQL SQL 99 SQL 92
ABORT non-reserved

ABS non-reserved

ABSOLUTE non-reserved reserved reserved
IACCESS non-reserved

IACTION non-reserved reserved reserved
IADA non-reserved non-reserved
IADD non-reserved reserved reserved
IADMIN reserved

AFTER non-reserved reserved

AGGREGATE non-reserved reserved

ALIAS reserved

ALL reserved reserved reserved
IALLOCATE reserved reserved

165

Appendix B. SQL Key Words

Key Word PostgreSQL SQL 99 SQL 92
ALTER non-reserved reserved reserved
IANALYSE reserved
IANALYZE reserved
IAND reserved reserved reserved
ANY reserved reserved reserved
ARE reserved reserved
ARRAY reserved
AS reserved reserved reserved
ASC reserved reserved reserved
IASENSITIVE non-reserved
IASSERTION non-reserved reserved reserved
IASSIGNMENT non-reserved non-reserved
ASYMMETRIC non-reserved
AT non-reserved reserved reserved
IATOMIC non-reserved
IAUTHORIZATION reserved (can be reserved reserved
function)
AVG non-reserved reserved
BACKWARD non-reserved
BEFORE non-reserved reserved
BEGIN non-reserved reserved reserved
BETWEEN reserved (can be non-reserved reserved
function)
BIGINT non-reserved (cannot be
function or type)
BINARY reserved (can be reserved
function)
BIT non-reserved (cannot heserved reserved
function or type)
BITVAR non-reserved
BIT_LENGTH non-reserved reserved
BLOB reserved
BOOLEAN non-reserved (cannot heserved
function or type)
BOTH reserved reserved reserved
BREADTH reserved
BY non-reserved reserved reserved
C non-reserved non-reserved
CACHE non-reserved
CALL reserved
CALLED non-reserved non-reserved
CARDINALITY non-reserved
CASCADE non-reserved reserved reserved

166

Appendix B. SQL Key Words

Key Word PostgreSQL SQL 99 SQL 92

CASCADED reserved reserved

CASE reserved reserved reserved

CAST reserved reserved reserved

CATALOG reserved reserved

CATALOG_NAME non-reserved non-reserved

CHAIN non-reserved non-reserved

CHAR non-reserved (cannot heserved reserved
function or type)

CHARACTER non-reserved (cannot eserved reserved
function or type)

CHARACTERISTICS non-reserved

CHARACTER_LENGTH non-reserved reserved

CHARACTER_SET_CATALOG

non-reserved

non-reserved

CHARACTER_SET_NAN

1E

non-reserved

non-reserved

CHARACTER_SET_SCHEMA

non-reserved

non-reserved

CHAR_LENGTH non-reserved reserved

CHECK reserved reserved reserved

CHECKED non-reserved

CHECKPOINT non-reserved

CLASS non-reserved reserved

CLASS_ORIGIN non-reserved non-reserved

CLOB reserved

CLOSE non-reserved reserved reserved

CLUSTER non-reserved

COALESCE non-reserved (cannot heon-reserved reserved
function or type)

COBOL non-reserved non-reserved

COLLATE reserved reserved reserved

COLLATION reserved reserved

COLLATION_CATALOG

non-reserved

non-reserved

COLLATION_NAME

non-reserved

non-reserved

COLLATION_SCHEMA

non-reserved

non-reserved

COLUMN

reserved

reserved

reserved

COLUMN_NAME

non-reserved

non-reserved

COMMAND_FUNCTION

non-reserved

non-reserved

COMMAND_FUNCTION|

| CODE

non-reserved

COMMENT non-reserved
COMMIT non-reserved reserved reserved
COMMITTED non-reserved non-reserved non-reserved

167

Appendix B. SQL Key Words

Key Word PostgreSQL SQL 99 SQL 92
COMPLETION reserved

CONDITION_NUMBER non-reserved non-reserved
CONNECT reserved reserved
CONNECTION reserved reserved
CONNECTION_NAME non-reserved non-reserved
CONSTRAINT reserved reserved reserved
CONSTRAINTS non-reserved reserved reserved

CONSTRAINT_CATALO

~
2

non-reserved

non-reserved

CONSTRAINT_NAME

non-reserved

non-reserved

CONSTRAINT_SCHEMA

non-reserved

non-reserved

CONSTRUCTOR reserved

CONTAINS non-reserved

CONTINUE reserved reserved

CONVERSION non-reserved

CONVERT non-reserved (cannot keon-reserved reserved
function or type)

COPY non-reserved

CORRESPONDING reserved reserved

COUNT non-reserved reserved

CREATE reserved reserved reserved

CREATEDB non-reserved

CREATEUSER non-reserved

CROSS reserved (can be reserved reserved
function)

CUBE reserved

CURRENT reserved reserved

CURRENT_DATE reserved reserved reserved

CURRENT_PATH reserved

CURRENT_ROLE reserved

CURRENT_TIME reserved reserved reserved

CURRENT_TIMESTAMPreserved reserved reserved

CURRENT_USER reserved reserved reserved

CURSOR non-reserved reserved reserved

CURSOR_NAME non-reserved non-reserved

CYCLE non-reserved reserved

DATA reserved non-reserved

DATABASE non-reserved

DATE reserved reserved

DATETIME_INTERVAL_

CODE

non-reserved

non-reserved

168

Appendix B. SQL Key Words

Key Word PostgreSQL SQL 99 SQL 92

DATETIME_INTERVAL_PRECISION non-reserved non-reserved

DAY non-reserved reserved reserved

DEALLOCATE non-reserved reserved reserved

DEC non-reserved (cannot heserved reserved
function or type)

DECIMAL non-reserved (cannot heserved reserved
function or type)

DECLARE non-reserved reserved reserved

DEFAULT reserved reserved reserved

DEFERRABLE reserved reserved reserved

DEFERRED non-reserved reserved reserved

DEFINED non-reserved

DEFINER non-reserved non-reserved

DELETE non-reserved reserved reserved

DELIMITER non-reserved

DELIMITERS non-reserved

DEPTH reserved

DEREF reserved

DESC reserved reserved reserved

DESCRIBE reserved reserved

DESCRIPTOR reserved reserved

DESTROY reserved

DESTRUCTOR reserved

DETERMINISTIC reserved

DIAGNOSTICS reserved reserved

DICTIONARY reserved

DISCONNECT reserved reserved

DISPATCH non-reserved

DISTINCT reserved reserved reserved

DO reserved

DOMAIN non-reserved reserved reserved

DOUBLE non-reserved reserved reserved

DROP non-reserved reserved reserved

DYNAMIC reserved

DYNAMIC_FUNCTION

non-reserved

non-reserved

DYNAMIC_FUNCTION_CODE non-reserved

EACH non-reserved reserved

ELSE reserved reserved reserved
ENCODING non-reserved

ENCRYPTED non-reserved

169

Appendix B. SQL Key Words

Key Word PostgreSQL SQL 99 SQL 92
END reserved reserved reserved
END-EXEC reserved reserved
EQUALS reserved
ESCAPE non-reserved reserved reserved
EVERY reserved
EXCEPT reserved reserved reserved
EXCEPTION reserved reserved
EXCLUSIVE non-reserved
EXEC reserved reserved
EXECUTE non-reserved reserved reserved
EXISTING non-reserved
EXISTS non-reserved (cannot heon-reserved reserved
function or type)
EXPLAIN non-reserved
EXTERNAL non-reserved reserved reserved
EXTRACT non-reserved (cannot keon-reserved reserved
function or type)
FALSE reserved reserved reserved
FETCH non-reserved reserved reserved
FINAL non-reserved
FIRST reserved reserved
FLOAT non-reserved (cannot heserved reserved
function or type)
FOR reserved reserved reserved
FORCE non-reserved
FOREIGN reserved reserved reserved
FORTRAN non-reserved non-reserved
FORWARD non-reserved
FOUND reserved reserved
FREE reserved
FREEZE reserved (can be
function)
FROM reserved reserved reserved
FULL reserved (can be reserved reserved
function)
FUNCTION non-reserved reserved
G non-reserved
GENERAL reserved
GENERATED non-reserved
GET non-reserved reserved reserved
GLOBAL non-reserved reserved reserved
GO reserved reserved

170

Appendix B. SQL Key Words

Key Word PostgreSQL SQL 99 SQL 92

GOTO reserved reserved

GRANT reserved reserved reserved

GRANTED non-reserved

GROUP reserved reserved reserved

GROUPING reserved

HANDLER non-reserved

HAVING reserved reserved reserved

HIERARCHY non-reserved

HOLD non-reserved

HOST reserved

HOUR non-reserved reserved reserved

IDENTITY reserved reserved

IGNORE reserved

ILIKE reserved (can be
function)

IMMEDIATE non-reserved reserved reserved

IMMUTABLE non-reserved

IMPLEMENTATION non-reserved

IMPLICIT non-reserved

IN reserved (can be reserved reserved
function)

INCREMENT non-reserved

INDEX non-reserved

INDICATOR reserved reserved

INFIX non-reserved

INHERITS non-reserved

INITIALIZE reserved

INITIALLY reserved reserved reserved

INNER reserved (can be reserved reserved
function)

INOUT non-reserved reserved

INPUT non-reserved reserved reserved

INSENSITIVE non-reserved non-reserved reserved

INSERT non-reserved reserved reserved

INSTANCE non-reserved

INSTANTIABLE non-reserved

INSTEAD non-reserved

INT non-reserved (cannot heserved reserved
function or type)

INTEGER non-reserved (cannot beserved reserved
function or type)

INTERSECT reserved reserved reserved

171

Appendix B. SQL Key Words

Key Word PostgreSQL SQL 99 SQL 92

INTERVAL non-reserved (cannot heserved reserved
function or type)

INTO reserved reserved reserved

INVOKER non-reserved non-reserved

IS reserved (can be reserved reserved
function)

ISNULL reserved (can be
function)

ISOLATION non-reserved reserved reserved

ITERATE reserved

JOIN reserved (can be reserved reserved
function)

K non-reserved

KEY non-reserved reserved reserved

KEY_MEMBER non-reserved

KEY_TYPE non-reserved

LANCOMPILER non-reserved

LANGUAGE non-reserved reserved reserved

LARGE reserved

LAST reserved reserved

LATERAL reserved

LEADING reserved reserved reserved

LEFT reserved (can be reserved reserved
function)

LENGTH non-reserved non-reserved

LESS reserved

LEVEL non-reserved reserved reserved

LIKE reserved (can be reserved reserved
function)

LIMIT reserved reserved

LISTEN non-reserved

LOAD non-reserved

LOCAL non-reserved reserved reserved

LOCALTIME reserved reserved

LOCALTIMESTAMP reserved reserved

LOCATION non-reserved

LOCATOR reserved

LOCK non-reserved

LOWER non-reserved reserved

M non-reserved

MAP reserved

MATCH non-reserved reserved reserved

MAX non-reserved reserved

172

Appendix B. SQL Key Words

Key Word

PostgreSQL

SQL 99

SQL 92

MAXVALUE

non-reserved

MESSAGE_LENGTH

non-reserved

non-reserved

MESSAGE_OCTET_LEN

GTH

non-reserved

non-reserved

MESSAGE_TEXT

non-reserved

non-reserved

METHOD non-reserved
MIN non-reserved reserved
MINUTE non-reserved reserved reserved
MINVALUE non-reserved
MOD non-reserved
MODE non-reserved
MODIFIES reserved
MODIFY reserved
MODULE reserved reserved
MONTH non-reserved reserved reserved
MORE non-reserved non-reserved
MOVE non-reserved
MUMPS non-reserved non-reserved
NAME non-reserved non-reserved
NAMES non-reserved reserved reserved
NATIONAL non-reserved reserved reserved
NATURAL reserved (can be reserved reserved
function)
NCHAR non-reserved (cannot beserved reserved
function or type)
NCLOB reserved
NEW reserved reserved
NEXT non-reserved reserved reserved
NO non-reserved reserved reserved
NOCREATEDB non-reserved
NOCREATEUSER non-reserved
NONE non-reserved (cannot heserved
function or type)
NOT reserved reserved reserved
NOTHING non-reserved
NOTIFY non-reserved
NOTNULL reserved (can be
function)
NULL reserved reserved reserved
NULLABLE non-reserved non-reserved
NULLIF non-reserved (cannot heon-reserved reserved
function or type)
NUMBER non-reserved non-reserved

173

Appendix B. SQL Key Words

Key Word PostgreSQL SQL 99 SQL 92
NUMERIC non-reserved (cannot heserved reserved
function or type)
OBJECT reserved
OCTET_LENGTH non-reserved reserved
OF non-reserved reserved reserved
OFF reserved reserved
OFFSET reserved
OIDS non-reserved
OLD reserved reserved
ON reserved reserved reserved
ONLY reserved reserved reserved
OPEN reserved reserved
OPERATION reserved
OPERATOR non-reserved
OPTION non-reserved reserved reserved
OPTIONS non-reserved
OR reserved reserved reserved
ORDER reserved reserved reserved
ORDINALITY reserved
ouT non-reserved reserved
OUTER reserved (can be reserved reserved
function)
OUTPUT reserved reserved
OVERLAPS reserved (can be non-reserved reserved
function)
OVERLAY non-reserved (cannot heon-reserved
function or type)
OVERRIDING non-reserved
OWNER non-reserved
PAD reserved reserved
PARAMETER reserved
PARAMETERS reserved
PARAMETER_MODE non-reserved
PARAMETER_NAME non-reserved
PARAMETER_ORDINAL| POSITION non-reserved
PARAMETER_SPECIFIG_CATALOG non-reserved
PARAMETER_SPECIFIG_NAME non-reserved
PARAMETER_SPECIFIG_SCHEMA non-reserved
PARTIAL non-reserved reserved reserved

174

Appendix B. SQL Key Words

Key Word PostgreSQL SQL 99 SQL 92

PASCAL non-reserved non-reserved

PASSWORD non-reserved

PATH non-reserved reserved

PENDANT non-reserved

PLACING reserved

PLI non-reserved non-reserved

POSITION non-reserved (cannot beon-reserved reserved
function or type)

POSTFIX reserved

PRECISION non-reserved reserved reserved

PREFIX reserved

PREORDER reserved

PREPARE non-reserved reserved reserved

PRESERVE reserved reserved

PRIMARY reserved reserved reserved

PRIOR non-reserved reserved reserved

PRIVILEGES non-reserved reserved reserved

PROCEDURAL non-reserved

PROCEDURE non-reserved reserved reserved

PUBLIC reserved reserved

READ non-reserved reserved reserved

READS reserved

REAL non-reserved (cannot beserved reserved
function or type)

RECHECK non-reserved

RECURSIVE reserved

REF reserved

REFERENCES reserved reserved reserved

REFERENCING reserved

REINDEX non-reserved

RELATIVE non-reserved reserved reserved

RENAME non-reserved

REPEATABLE non-reserved non-reserved

REPLACE non-reserved

RESET non-reserved

RESTRICT non-reserved reserved reserved

RESULT reserved

RETURN reserved

RETURNED_LENGTH

non-reserved

non-reserved

RETURNED_OCTET_LH

NGTH

non-reserved

non-reserved

RETURNED_SQLSTATE

non-reserved

non-reserved

175

Appendix B. SQL Key Words

Key Word PostgreSQL SQL 99 SQL 92
RETURNS non-reserved reserved
REVOKE non-reserved reserved reserved
RIGHT reserved (can be reserved reserved
function)
ROLE reserved
ROLLBACK non-reserved reserved reserved
ROLLUP reserved
ROUTINE reserved
ROUTINE_CATALOG non-reserved
ROUTINE_NAME non-reserved
ROUTINE_SCHEMA non-reserved
ROW non-reserved (cannot heserved
function or type)
ROWS reserved reserved
ROW_COUNT non-reserved non-reserved
RULE non-reserved
SAVEPOINT reserved
SCALE non-reserved non-reserved
SCHEMA non-reserved reserved reserved
SCHEMA_NAME non-reserved non-reserved
SCOPE reserved
SCROLL non-reserved reserved reserved
SEARCH reserved
SECOND non-reserved reserved reserved
SECTION reserved reserved
SECURITY non-reserved non-reserved
SELECT reserved reserved reserved
SELF non-reserved
SENSITIVE non-reserved
SEQUENCE non-reserved reserved
SERIALIZABLE non-reserved non-reserved non-reserved
SERVER_NAME non-reserved non-reserved
SESSION non-reserved reserved reserved
SESSION_USER reserved reserved reserved
SET non-reserved reserved reserved
SETOF non-reserved (cannot he
function or type)
SETS reserved
SHARE non-reserved
SHOW non-reserved
SIMILAR reserved (can be non-reserved

function)

176

Appendix B. SQL Key Words

Key Word PostgreSQL SQL 99 SQL 92

SIMPLE non-reserved non-reserved

SIZE reserved reserved

SMALLINT non-reserved (cannot bkeserved reserved
function or type)

SOME reserved reserved reserved

SOURCE non-reserved

SPACE reserved reserved

SPECIFIC reserved

SPECIFICTYPE reserved

SPECIFIC_NAME non-reserved

SQL reserved reserved

SQLCODE reserved

SQLERROR reserved

SQLEXCEPTION reserved

SQLSTATE reserved reserved

SQLWARNING reserved

STABLE non-reserved

START non-reserved reserved

STATE reserved

STATEMENT non-reserved reserved

STATIC reserved

STATISTICS non-reserved

STDIN non-reserved

STDOUT non-reserved

STORAGE non-reserved

STRICT non-reserved

STRUCTURE reserved

STYLE non-reserved

SUBCLASS_ORIGIN non-reserved non-reserved

SUBLIST non-reserved

SUBSTRING non-reserved (cannot heon-reserved reserved
function or type)

SUM non-reserved reserved

SYMMETRIC non-reserved

SYSID non-reserved

SYSTEM non-reserved

SYSTEM_USER reserved reserved

TABLE reserved reserved reserved

TABLE_NAME non-reserved non-reserved

TEMP non-reserved

TEMPLATE non-reserved

TEMPORARY non-reserved reserved reserved

177

Appendix B. SQL Key Words

Key Word PostgreSQL SQL 99 SQL 92
TERMINATE reserved
THAN reserved
THEN reserved reserved reserved
TIME non-reserved (cannot heserved reserved
function or type)
TIMESTAMP non-reserved (cannot beserved reserved
function or type)
TIMEZONE_HOUR reserved reserved
TIMEZONE_MINUTE reserved reserved
TO reserved reserved reserved
TOAST non-reserved
TRAILING reserved reserved reserved
TRANSACTION non-reserved reserved reserved
TRANSACTIONS_COMMITTED non-reserved
TRANSACTIONS_ROLLED_BACK non-reserved
TRANSACTION_ACTIVE non-reserved
TRANSFORM non-reserved
TRANSFORMS non-reserved
TRANSLATE non-reserved reserved
TRANSLATION reserved reserved
TREAT non-reserved (cannot heserved
function or type)
TRIGGER non-reserved reserved
TRIGGER_CATALOG non-reserved
TRIGGER_NAME non-reserved
TRIGGER_SCHEMA non-reserved
TRIM non-reserved (cannot heon-reserved reserved
function or type)
TRUE reserved reserved reserved
TRUNCATE non-reserved
TRUSTED non-reserved
TYPE non-reserved non-reserved non-reserved
UNCOMMITTED non-reserved non-reserved
UNDER reserved
UNENCRYPTED non-reserved
UNION reserved reserved reserved
UNIQUE reserved reserved reserved
UNKNOWN non-reserved reserved reserved
UNLISTEN non-reserved
UNNAMED non-reserved non-reserved

178

Appendix B. SQL Key Words

Key Word PostgreSQL SQL 99 SQL 92
UNNEST reserved
UNTIL non-reserved
UPDATE non-reserved reserved reserved
UPPER non-reserved reserved
USAGE non-reserved reserved reserved
USER reserved reserved reserved
USER_DEFINED_TYPE_|CATALOG non-reserved
USER_DEFINED_TYPE_NAME non-reserved
USER_DEFINED_TYPE_SCHEMA non-reserved
USING reserved reserved reserved
VACUUM non-reserved
VALID non-reserved
VALIDATOR non-reserved
VALUE reserved reserved
VALUES non-reserved reserved reserved
VARCHAR non-reserved (cannot heserved reserved
function or type)
VARIABLE reserved
VARYING non-reserved reserved reserved
VERBOSE reserved (can be
function)
VERSION non-reserved
VIEW non-reserved reserved reserved
VOLATILE non-reserved
WHEN reserved reserved reserved
WHENEVER reserved reserved
WHERE reserved reserved reserved
WITH non-reserved reserved reserved
WITHOUT non-reserved reserved
WORK non-reserved reserved reserved
WRITE non-reserved reserved reserved
YEAR non-reserved reserved reserved
ZONE non-reserved reserved reserved

179

Appendix C. SQL Conformance

This section attempts to outline to what extent PostgreSQL conforms to the SQL standard. Full com-
pliance to the standard or a complete statement about the compliance to the standard is complicated
and not particularly useful, so this section can only give an overview.

The formal name of the SQL standard is ISO/IEC 9075 “Database Language SQL". A revised version
of the standard is released from time to time; the most recent one appearing in 1999. That version is
refered to as ISO/IEC 9075:1999, or informally as SQL99. The version prior to that was SQL92.
PostgreSQL development tends to aim for conformance with the latest official version of the standard
where such conformance does not contradict traditional features or common sense. At the time of this
writing, ballotting is under way for a new revision of the standard, which, if approved, will eventually
become the conformance target for future PostgreSQL development.

SQL92 defined three feature sets for conformance: Entry, Intermediate, and Full. Most database prod-
ucts claiming SQL standard conformance were conforming at only the Entry level, since the entire
set of features in the Intermediate and Full levels was either too voluminous or in conflict with legacy
behaviors.

SQL99 defines a large set of individual features rather than the ineffectively broad three levels found
in SQL92. A large subset of these features represents the “core” features, which every conforming
SQL implementation must supply. The rest of the features are purely optional. Some optional features
are grouped together to form “packages”, which SQL implementations can claim conformance to,

thus claiming conformance to particular groups of features.

The SQL99 standard is also split into 5 parts: Framework, Foundation, Call Level Interface, Persistent
Stored Modules, and Host Language Bindings. PostgreSQL only covers parts 1, 2, and 5. Part 3 is
similar to the ODBC interface, and part 4 is similar to the PL/pgSQL programming language, but
exact conformance is not specifically intended in either case.

In the following two sections, we provide a list of those features that PostgreSQL supports, followed
by a list of the features defined in SQL99 which are not yet supported in PostgreSQL. Both of these
lists are approximate: There may be minor details that are nonconforming for a feature that is listed
as supported, and large parts of an unsupported feature may in fact be implemented. The main body
of the documentation always contains the most accurate information about what does and does not
work.

Note: Feature codes containing a hyphen are subfeatures. Therefore, if a particular subfeature
is not supported, the main feature is listed as unsupported even if some other subfeatures are
supported.

C.1. Supported Features

Identifier Package Description Comment
B012 Core Embedded C
B021 Direct SQL
EO011 Core Numeric data types
E011-01 Core INTEGER and
SMALLINT data types

180

Appendix C. SQL Conformance

Identifier Package Description Comment

E011-02 Core REAL, DOUBLE
PRECISON, and
FLOAT data types

E011-03 Core DECIMAL and
NUMERIC data types

E011-04 Core Arithmetic operators

E011-05 Core Numeric comparison

E011-06 Core Implicit casting among
the numeric data types

E021 Core Character data types

E021-01 Core CHARACTER data
type

E021-02 Core CHARACTER
VARYING data type

E021-03 Core Character literals

E021-04 Core CHARACTER_LENGTH
function

E021-05 Core OCTET_LENGTH
function

E021-06 Core SUBSTRING function

E021-07 Core Character concatenation

E021-08 Core UPPER and LOWER
functions

E021-09 Core TRIM function

E021-10 Core Implicit casting among
the character data types

E021-11 Core POSITION function

E011-12 Core Character comparison

E031 Core Identifiers

E031-01 Core Delimited identifiers

E031-02 Core Lower case identifiers

E031-03 Core Trailing underscore

EO051 Core Basic query
specification

E051-01 Core SELECT DISTINCT

E051-02 Core GROUP BY clause

E051-04 Core GROUP BY can
contain columns not in
<select list>

E051-05 Core Select list items can beAS is required
renamed

E051-06 Core HAVING clause

E051-07 Core Qualified * in select list

181

Appendix C. SQL Conformance

Identifier Package Description Comment

E051-08 Core Correlation names in
the FROM clause

E051-09 Core Rename columns in the
FROM clause

E061 Core Basic predicates and
search conditions

E061-01 Core Comparison predicate

E061-02 Core BETWEEN predicate

E061-03 Core IN predicate with list of
values

E061-04 Core LIKE predicate

E061-05 Core LIKE predicate
ESCAPE clause

E061-06 Core NULL predicate

E061-07 Core Quantified comparison
predicate

E061-08 Core EXISTS predicate

E061-09 Core Subqueries in
comparison predicate

E061-11 Core Subqueries in IN
predicate

E061-12 Core Subqueries in quantified
comparison predicate

E061-13 Core Correlated subqueries

E061-14 Core Search condition

EO071 Core Basic query expressions

E071-01 Core UNION DISTINCT
table operator

E071-02 Core UNION ALL table
operator

E071-03 Core EXCEPT DISTINCT
table operator

EO071-05 Core Columns combined vial

table operators need not
have exactly the same

data type
EO071-06 Core Table operators in
subqueries
E081-01 Core SELECT privilege
E081-02 Core DELETE privilege
E081-03 Core INSERT privilege at the
table level
E081-04 Core UPDATE privilege at

the table level

182

Appendix C. SQL Conformance

Identifier Package Description Comment

E081-06 Core REFERENCES
privilege at the table
level

E091 Core Set functions

E091-01 Core AVG

E091-02 Core COUNT

E091-03 Core MAX

E091-04 Core MIN

E091-05 Core SUM

E091-06 Core ALL quantifier

E091-07 Core DISTINCT quantifier

E101 Core Basic data manipulation

E101-01 Core INSERT statement

E101-03 Core Searched UPDATE
statement

E101-04 Core Searched DELETE
statement

E111 Core Single row SELECT
statement

E121-01 Core DECLARE CURSOR

E121-02 Core ORDER BY columns
need not be in select list

E121-03 Core \Value expressions in
ORDER BY clause

E121-08 Core CLOSE statement (cursor)

E121-10 Core FETCH statement
implicit NEXT

E131 Core Null value support
(nulls in lieu of values)

E141 Core Basic integrity
constraints

E141-01 Core NOT NULL constraints

E141-02 Core UNIQUE constraints of
NOT NULL columns

E141-03 Core PRIMARY KEY
constraints

E141-04 Core Basic FOREIGN KEY

constraint with the NO
IACTION default for
both referential delete
action and referential
update action

E141-06 Core CHECK constraints

E141-07 Core Column defaults

183

Appendix C. SQL Conformance

Identifier Package Description Comment

E141-08 Core NOT NULL inferred on
PRIMARY KEY

E141-10 Core Names in a foreign key|
can be specified in any
order

E151 Core Transaction support

E151-01 Core COMMIT statement

E151-02 Core ROLLBACK statement

E152-01 Core SET TRANSACTION
statement: ISOLATION
LEVEL
SERIALIZABLE
clause

E161 Core SQL comments using
leading double minus

F031 Core Basic schema
manipulation

F031-01 Core CREATE TABLE

statement to create
persistent base tables

F031-02 Core CREATE VIEW
statement

F031-03 Core GRANT statement

F031-04 Core ALTER TABLE

statement: ADD
COLUMN clause

F031-13 Core DROP TABLE
statement: RESTRICT
clause

F031-16 Core DROP VIEW
statement: RESTRICT
clause

F032 CASCADE drop
behavior

F033 IALTER TABLE
statement: DROP
COLUMN clause

F041 Core Basic joined table

F041-01 Core Inner join (but not
necessarily the INNER
keyword)

F041-02 Core INNER keyword

F041-03 Core LEFT OUTER JOIN

F041-04 Core RIGHT OUTER JOIN

F041-05 Core Outer joins can be
nested

184

Appendix C. SQL Conformance

Identifier Package Description Comment

F041-07 Core The inner table in a left
or right outer join can
also be used in an inner
join

F041-08 Core All comparison
operators are supported
(rather than just =)

FO051 Core Basic date and time

FO051-01 Core DATE data type
(including support of
DATE literal)

F051-02 Core TIME data type

(including support of
TIME literal) with
fractional seconds
precision of at least O

F051-03 Core TIMESTAMP data type
(including support of
TIMESTAMP literal)
with fractional seconds
precision of at least 0
and 6

F051-04 Core Comparison predicate
on DATE, TIME, and
TIMESTAMP data

types

F051-05 Core Explicit CAST between
datetime types and
character types

F051-06 Core CURRENT_DATE

F051-07 Core LOCALTIME

F051-08 Core LOCALTIMESTAMP

F052 Enhanced datetime |Intervals and datetime

facilities arithmetic

F081 Core UNION and EXCEPT
in views

F111-02 READ COMMITTED
isolation level

F131 Core Grouped operations

F131-01 Core WHERE, GROUP BY,

and HAVING clauses
supported in queries
with grouped views
F131-02 Core Multiple tables
supported in queries
with grouped views

185

Appendix C. SQL Conformance

Identifier Package Description Comment

F131-03 Core Set functions supported
in queries with grouped
views

F131-04 Core Subqueries with
GROUP BY and
HAVING clauses and
grouped views

F131-05 Core Single row SELECT
with GROUP BY and
HAVING clauses and
grouped views

F171 Multiple schemas per
user

F191 Enhanced integrity Referential delete

management actions

F201 Core CAST function

F221 Core Explicit defaults

F222 INSERT statement:
DEFAULT VALUES
clause

F251 Domain support

F261 Core CASE expression

F261-01 Core Simple CASE

F261-02 Core Searched CASE

F261-03 Core NULLIF

F261-04 Core COALESCE

F271 Compound character
literals

F281 LIKE enhancements

F302 OLAP facilities INTERSECT table
operator

F302-01 OLAP facilities INTERSECT
DISTINCT table
operator

F302-02 OLAP facilities INTERSECT ALL table
operator

F304 OLAP facilities EXCEPT ALL table
operator

F311 Core Schema definition
statement

F311-01 Core CREATE SCHEMA

F311-02 Core CREATE TABLE for
persistent base tables

F311-03 Core CREATE VIEW

F311-05 Core GRANT statement

186

Appendix C. SQL Conformance

Identifier Package Description Comment
F321 User authorization
F361 Subprogram support
F381 Extended schema
manipulation
F381-01 ALTER TABLE
statement: ALTER
COLUMN clause
F381-02 IALTER TABLE
statement: ADD
CONSTRAINT clause
F381-03 IALTER TABLE
statement: DROP
CONSTRAINT clause
F391 Long identifiers
F401 OLAP facilities Extended joined table
F401-01 OLAP facilities NATURAL JOIN
F401-02 OLAP facilities FULL OUTER JOIN
F401-03 OLAP facilities UNION JOIN
F401-04 OLAP facilities CROSS JOIN
F411 Enhanced datetime [Time zone specification
facilities
F421 National character
F431-01 FETCH with explicit
NEXT
F431-04 FETCH PRIOR
F431-06 FETCH RELATIVE
Fa441 Extended set function
support
Fa471 Core Scalar subquery values
F481 Core Expanded NULL
predicate
F491 Enhanced integrity Constraint management
management
F511 BIT data type
F531 Temporary tables
F555 Enhanced datetime [Enhanced seconds
facilities precision
F561 Full value expressions
F571 Truth value tests
F591 OLAP facilities Derived tables
F611 Indicator data types
F651 Catalog name qualifiers
F701 Enhanced integrity Referential update

management

actions

187

Appendix C. SQL Conformance

Identifier Package Description Comment
F761 Session management
F791 Insensitive cursors
F801 Full set function
S071 Enhanced object SQL paths in function
support and type name
resolution
S111 Enhanced object ONLY in query
support expressions
S211 Enhanced object User-defined cast
support, SQL/MM functions
support
TO31 BOOLEAN data type
T141 SIMILAR predicate
T151 DISTINCT predicate
T191 Enhanced integrity Referential action
management RESTRICT
T201 Enhanced integrity Comparable data types
management for referential
constraints
T211-01 Enhanced integrity Triggers activated on
management UPDATE, INSERT, or
DELETE of one base
table
T211-02 Enhanced integrity BEFORE triggers
management
T211-03 Enhanced integrity |AFTER triggers
management
T211-04 Enhanced integrity FOR EACH ROW
management triggers
T211-07 Enhanced integrity TRIGGER privilege
management
T231 SENSITIVE cursors
T241 START
TRANSACTION
statement
T312 OVERLAY function
T321-01 Core User-defined functions
with no overloading
T321-03 Core Function invocation
T322 PSM, SQL/MM supportOverloading of
SQL-invoked functions
and procedures
T323 Explicit security for

external routines

188

Appendix C. SQL Conformance

Identifier Package Description Comment

T351 Bracketed SQL
comments (/*...*/
comments)

T441 ABS and MOD
functions

T501 Enhanced EXISTS
predicate

T551 Optional key words for
default syntax

T581 Regular expression
substring function

T591 UNIQUE constraints of
possibly null columns

C.2. Unsupported Features

The following features defined in SQL99 are not implemented in the current release of PostgreSQL.
In a few cases, equivalent functionality is available.

Identifier Package Description Comment

BO11 Core Embedded Ada

B0O13 Core Embedded COBOL

B014 Core Embedded Fortran

B0O15 Core Embedded MUMPS

B0O16 Core Embedded Pascal

BO17 Core Embedded PL/I

B031 Basic dynamic SQL

B032 Extended dynamic SQL

B032-1 <describe input
statement

B041 Extensions to embedded
SQL exception
declarations

B0O51 Enhanced execution
rights

EO081 Core Basic Privileges

E081-05 Core UPDATE privilege at
the column level

E081-07 Core REFERENCES
privilege at the column
level

189

Appendix C. SQL Conformance

Identifier Package Description Comment
E081-08 Core WITH GRANT
OPTION
E121 Core Basic cursor support
E121-04 Core OPEN statement (cursor)
E121-06 Core Positioned UPDATE |(cursor)
statement
E121-07 Core Positioned DELETE |(cursor)
Sstatement
E121-17 Core WITH HOLD cursors |Cursor to stay open
across transactions
E152 Core Basic SET
TRANSACTION
statement
E152-02 Core SET TRANSACTION [|Syntax accepted; REA
statement: READ ONLY not supported
ONLY and READ
WRITE clauses
E153 Core Updatable queries with
subqueries
E171 Core SQLSTATE support
F181 Multiple module
support
E182 Core Module language
FO021 Core Basic information
schema
F021-01 Core COLUMNS view
F021-02 Core TABLES view
F021-03 Core VIEWS view
F021-04 Core TABLE_CONSTRAINT|S
view
F021-05 Core REFERENTIAL_CONSTRAINTS
view
F021-06 Core CHECK_CONSTRAINTS
view
FO031-19 Core REVOKE statement:
RESTRICT clause
FO034 Extended REVOKE
statement
F034-01 REVOKE statement
performed by other than
the owner of a schema
object
F034-02 REVOKE statement:

GRANT OPTION FOR
clause

190

Appendix C. SQL Conformance

Identifier Package Description Comment

F034-03 REVOKE statement to
revoke a privilege that
the grantee has WITH
GRANT OPTION

F111 Isolation levels other
than SERIALIZABLE

F111-01 READ
UNCOMMITTED
isolation level

F111-03 REPEATABLE READ
isolation level

F121 Basic diagnostics
management

F121-01 GET DIAGNOSTICS
statement

F121-02 SET TRANSACTION
statement:
DIAGNOSTICS SIZE
clause

F231 Privilege Tables

F231-01 TABLE_PRIVILEGES
view

F231-02 COLUMN_PRIVILEGES
view

F231-03 USAGE_PRIVILEGES
view

F291 UNIQUE predicate

F301 CORRESPONDING in
query expressions

F311-04 Core CREATE VIEW: WITH
CHECK OPTION

F341 Usage tables

F431 Read-only scrollable
cursors

F431-02 FETCH FIRST

F431-03 FETCH LAST

F431-05 FETCH ABSOLUTE

F451 Character set definition

F461 Named character sets

F501 Core Features and
conformance views

F501-01 Core SQL_FEATURES view

F501-02 Core SQL_SIZING view

F501-03 Core SQL_LANGUAGES
view

191

Appendix C. SQL Conformance

Identifier Package Description Comment
F502 Enhanced
documentation tables
F502-01 SQL_SIZING_PROFILES
view
F502-02 SQL_IMPLEMENTATION_INFO
view
F502-03 SQL_PACKAGES view
F521 Enhanced integrity |Assertions
management
F641 OLAP facilities Row and table
constructors
F661 Simple tables
F671 Enhanced integrity Subqueries in CHECK |intentionally omitted
management
F691 Collation and
translation
F711 IALTER domain
F721 Deferrable constraints foreign keys only
F731 INSERT column
privileges
F741 Referential MATCH |no partial match yet
types
F751 View CHECK
enhancements
F771 Connection
management
F781 Self-referencing
operations
F811 Extended flagging
F812 Core Basic flagging
F813 Extended flagging for
"Core SQL Flagging"
and "Catalog Lookup"
only
F821 Local table references
F831 Full cursor update
F831-01 Updatable scrollable
cursors
F831-02 Updatable ordered
cursors
S011 Core Distinct data types
S011-01 Core USER_DEFINED_TYRES

view

192

Appendix C. SQL Conformance

Identifier

Package

Description

Comment

S023

Basic object support,
SQL/MM support

Basic structured types

S024, SQL/MM suppor

Enhanced object
support

Enhanced structured
types

S041 Basic object support Basic reference types
S043 Enhanced object Enhanced reference
support types
S051 Basic object support [Create table of type
S081 Enhanced object Subtables
support
S091 SQL/MM support Basic array support [PostgreSQL arrays are
different
S091-01 SQL/MM support Arrays of built-in data
types
S091-02 SQL/MM support Arrays of distinct types
S091-03 SQL/MM support Array expressions
S092 SQL/MM support Arrays of user-defined
types
S094 Arrays of reference
types
S151 Basic object support [Type predicate IS OF
S161 Enhanced object Subtype treatment TREAT (expr AS type)
support
S201 SQL routines on arrays
S201-01 Array parameters
S201-02 Array as result type of
functions
S231 Enhanced object Structured type locators
support
S232 Array locators
S241 Enhanced object Transform functions
support
S251 User-defined orderingSCREATE ORDERING
FOR
S261 Specific type method
TO11 Timestamp in
Information Schema
TO41 Basic object support [Basic LOB data type
support
T041-01 Basic object support | BLOB data type
T041-02 Basic object support [CLOB data type

193

Appendix C. SQL Conformance

Identifier Package Description Comment
T041-03 Basic object support |POSITION, LENGTH,
LOWER, TRIM,
UPPER, and
SUBSTRING functions
for LOB data types
T041-04 Basic object support [Concatenation of LOB
data types
T041-05 Basic object support |LOB locator:
non-holdable
T042 Extended LOB data
type support
TO51 Row types
T111 Updatable joins, unions,
and columns
T121 WITH (excluding
RECURSIVE) in query
expression
T131 Recursive query
T171 LIKE clause intable |CREATE TABLE T1
definition (LIKE T2)
T211 Enhanced integrity Basic trigger capability
management, Active
database
T211-05 Enhanced integrity |Ability to specify a
management search condition that

must be true before the
trigger is invoked

T211-06 Enhanced integrity Support for run-time
management rules for the interaction
of triggers and
constraints

T211-08 Enhanced integrity Multiple triggers for the
management same the event are

executed in the order i
which they were created

T212 Enhanced integrity Enhanced trigger
management capability

T251 SET TRANSACTION
statement: LOCAL
option

T261 Chained transactions

T271 Savepoints

T281 SELECT privilege with
column granularity

T301 Functional

Dependencies

194

Appendix C. SQL Conformance

Identifier Package Description Comment

T321 Core Basic SQL-invoked
routines

T321-02 Core User-defined stored
procedures with no
overloading

T321-04 Core CALL statement

T321-05 Core RETURN statement

T321-06 Core ROUTINES view

T321-07 Core PARAMETERS view

T331 Basic roles

T332 Extended roles

T401 INSERT into a cursor

T411 UPDATE statement:
SET ROW option

T431 OLAP facilities CUBE and ROLLUP
operations

T461 Symmetric BETWEEN
predicate

T471 Result sets return value

T491 LATERAL derived
table

T511 Transaction counts

T541 Updatable table
references

T561 Holdable locators

T571 Array-returning external
SQL-invoked functions

T601 Local cursor references

195

Bibliography

Selected references and readings for SQL and PostgreSQL.

Some white papers and technical reports from the original POSTGRES development team are avail-
able at the University of California, Berkeley, Computer Science Department wéb site

SQL Reference Books

Judith Bowman, Sandra Emerson, and Marcy DarnovERg,Practical SQL Handbook: Using Struc-
tured Query Languagérhird Edition, Addison-Wesley, ISBN 0-201-44787-8, 1996.

C. J. Date and Hugh DarweA,Guide to the SQL Standard: A user’s guide to the standard database
language SQLFourth Edition, Addison-Wesley, ISBN 0-201-96426-0, 1997.

C. J. DateAn Introduction to Database Systeriwslume 1, Sixth Edition, Addison-Wesley, 1994.

Ramez Elmasri and Shamkant NavatRandamentals of Database Syste®sl Edition, Addison-
Wesley, ISBN 0-805-31755-4, August 1999.

Jim Melton and Alan R. Simon)nderstanding the New SQL: A complete guidergan Kaufmann,
ISBN 1-55860-245-3, 1993.

Jeffrey D. Ullman Principles of Database and Knowledge: Base Syst&@isime 1, Computer Sci-
ence Press, 1988.

PostgreSQL-Specific Documentation

Stefan SimkovicsEnhancement of the ANSI SQL Implementation of Postgre®@partment of
Information Systems, Vienna University of Technology, November 29, 1998.

Discusses SQL history and syntax, and describes the additibNTBRSECTandEXCEPTcon-
structs into PostgreSQL. Prepared as a Master’s Thesis with the support of O. Univ. Prof. Dr.
Georg Gottlob and Univ. Ass. Mag. Katrin Seyr at Vienna University of Technology.

A. Yu and J. Chen, The POSTGRES Grolipe Postgres95 User Manydlniversity of California,
Sept. 5, 1995.

Zelaine Fong,The design and implementation of the POSTGRES query optfmizeiversity of
California, Berkeley, Computer Science Department.

1. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/
2. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/UCB-MS-zfong.pdf

196

Bibliography

Proceedings and Articles

Nels Olson Partial indexing in POSTGRES: research projedniversity of California, UCB Engin
T7.49.1993 0676, 1993.

L. Ong and J. Goh, “A Unified Framework for Version Modeling Using Production Rules in a
Database SystemERL Technical Memorandum M90/33niversity of California, April, 1990.

L. Rowe and M. Stonebraker, “The POSTGRES data nitdetoc. VLDB Conference, Sept. 1987.

P. Seshadri and A. Swami, “Generalized Partial Inde%eBroc. Eleventh International Conference
on Data Engineering, 6-10 March 1995, IEEE Computer Society Press, Cat. N0.95CH35724,
1995, p. 420-7.

M. Stonebraker and L. Rowe, “The design of POSTGREBroc. ACM-SIGMOD Conference on
Management of Data, May 1986.

M. Stonebraker, E. Hanson, and C. H. Hong, “The design of the POSTGRES rules system”, Proc.
IEEE Conference on Data Engineering, Feb. 1987.

M. Stonebraker, “The design of the POSTGRES storage syst@moc. VLDB Conference, Sept.
1987.

M. Stonebraker, M. Hearst, and S. Potamianos, “A commentary on the POSTGRES ruleg"system
SIGMOD Record 18(3)Sept. 1989.

M. Stonebraker, “The case for partial indeXe$SIGMOD Record 18(4)Dec. 1989, p. 4-11.

M. Stonebraker, L. A. Rowe, and M. Hirohama, “The implementation of POSTEREGnsactions
on Knowledge and Data Engineering 2(1BEE, March 1990.

M. Stonebraker, A. Jhingran, J. Goh, and S. Potamianos, “On Rules, Procedures, Caching and Views
in Database Systeri¥s Proc. ACM-SIGMOD Conference on Management of Data, June 1990.

"@@N@S”PF*’

http://s2k-ftp.CS.Berkeley. EDU:8000/postgres/papers/ERL-M87-13.pdf
http://simon.cs.cornell.edu/home/praveen/papers/partindex.de95.ps.Z

http://s2k-ftp.CS.Berkeley. EDU:8000/postgres/papers/ERL-M85-95. pdf
http://s2k-ftp.CS.Berkeley. EDU:8000/postgres/papers/ERL-M87-06.pdf
http://s2k-ftp.CS.Berkeley. EDU:8000/postgres/papers/ERL-M89-82.pdf
http://s2k-ftp.CS.Berkeley. EDU:8000/postgres/papers/ERL-M89-17.pdf
http://s2k-ftp.CS.Berkeley. EDU:8000/postgres/papers/ERL-M90-34.pdf
0. http://s2k-ftp.CS.Berkeley. EDU:8000/postgres/papers/ERL-M90-36.pdf

197

Index

Symbols

$libdir, ?

aggregate, ?
aggregate function$,

extending, ?
alias

(See label)

for table name in query, ?
all, ?
and

operator, ?
any,70, ?
anyarray,/0
arrays, ?, ?

constants, ?
Australian time zones, ?
auto-increment

(See serial)
autocommit, ?
average, ?

function, ?

B-tree
(See indexes)
backup, ?
betweenB0
bigint, 49
bigserial,52
binary strings
concatenation, ?
length, ?
bison, ?
bit strings
constants3
data type£8
BLOB
(See large object)
Boolean
data type63
operators

(See operators, logical)

box (data type), ?
BSD/OS, ?, ?

case, ?
case sensitivity
SQL commands, ?
catalogs, ?
character set encoding, ?
character strings
concatenation, ?
constants2
data types53
length, ?
cid, 69
cidr, ?
circle, ?
client authentication, ?
cluster, ?
column, ?
columns
system columns, ?
col_description115
comments
in SQL,6
comparison
operatorsy6
concurrency, ?
conditionals, ?
configuration
server, ?
configure, ?
connection loss, ?
constants2
COPY, ?
with libpq, ?
count, ?
CREATE TABLE, ?
createdb, ?
crypt, ?
cstring,70

currval, ?

198

data area
(See database cluster)
data types48, ?
constants, ?
extending, ?
numeric,49
type casts, ?
database, ?
creating, ?
database cluster, ?
date
constants, ?
current, ?
data type, ?
output format, ?
(See Also Formatting)
date style, ?
deadlock
timeout, ?
decimal
(See numeric)
DELETE, ?
Digital UNIX
(See Tru64 UNIX) G
dirty read, ?
disk space, ?
disk usage, ?
DISTINCT, ?,44
double precisior49
DROP TABLE, ?
duplicate, ?
dynamic loading, ?
dynamic_library_path, ?, ?

elog, ?

PL/Perl, ?
embedded SQL

inC,?
environment variables, ?
error message, ?
escaping binary strings, ?
escaping strings, ?
exceptAs
exists, ?
extending SQL, ?

types, ?

Index

false,63
FETCH

embedded SQL, ?
files, ?
flex, ?
float4

(See real)
float8

(See double precision)
floating point,49
foreign key, ?
formatting,94
FreeBSD, ?,?,?
fsync, ?
function, ?, ?

internal, ?

SQL, ?
functions,76

genetic query optimization, ?
GEQO

(See genetic query optimization)
get_bit, ?
get_byte, ?
group,41
GROUP BY, ?

hash

(See indexes)
has_database_privilegkl5
has_function_privilegel 15
has_language_privileg&15
has_schema_privileg#15
has_table_privilegel, 15
HAVING, ?
hierarchical database, ?
HP-UX, ?, ?

199

ident, ?
identifiers,1
in, ?
index scan, ?
indexes 134
B-tree, ?
hash, ?
multicolumn,135
on functions 136
partial, 138
R-tree, ?
unique,136
inet (data type), ?
inheritance, ?, ?
initlocation, ?
input function, ?
INSERT, ?
installation, ?
on Windows, ?, ?
int2
(See smallint)
int4
(See integer)
int8
(See bigint)
integer,49
internal,70
intersection45
interval, ?
IRIX, ?
IS NULL, ?
isolation levels, ?
read committed, ?
read serializable, ?

join, ?
outer, ?
self, ?

joins, 36
cross, ?
left, 49
natural, ?
outer, ?

Index

Kerberos, ?

key words
list of, 165
syntax,1

label
column,44
table,39
language_handlerQ
large object, ?
LC_COLLATE, ?
Idconfig, ?
length
binary strings
(See binary strings, length)
character strings
(See character strings, length)
libperl, ?
libpgtcl, ?
libpq, ?
libpg-fe.h, ?
libpg-int.h, ?, ?
libpython, ?
like, ?
limit, 46
line, ?
Linux, ?,?, ?
locale, ?, ?
locking, ?
log files, ?

MAC address

(See macaddr)
macaddr (data type), ?
MacOS X, ?, ?
make, ?
MANPATH, ?

(See Also man pages)
max, ?
MDS5, ?
min, ?
multibyte, ?

200

Index

P
names password, ?
qualified, ? -pgpass, ?
unqualified, ? PATH, ?
namespaces, ?, ? path (data type), ?
NetBSD, ?, 2, ? Perl, 2
PGDATA, ?
network PGDATABASE, ?
addresse®7 PGHOST, ?
nextval, ? PGPASSWORD, ?
nonblocking connection, ?, ? PGPORT, ?
nonrepeatable read, ? pgtcl
not closing, ?
operator, ? connecting, ?,?,?,?,?,?
not in, ? connection loss, ?
notice processor, ? creating, ?
NOTIFY, 2, ? delete, 7
nullif, ? export, ?
e import, ?
numeric notify, ?
constants, ? opening, ?
numeric (data type}9 positioning, ?, ?
query, ?
reading, ?
writing, ?
PGUSER, ?
object identifier pg_config, ?, ?
data typef9 pg_conndefaults, ?
object-oriented database, ? pg_connect, ?,?,?,?,?
obj_description115 pg_ctl, ?
offset pg_dumpall, ?
with query results46 pg_exeCl_Jte, ’) B
oID, 2,69 pg_functlon_ls_.V|S|ble115
opaque70 pg_get_.constralntdeI,15
pg_get_indexdefl15
OpenBSD, 2,2, ? pg_get_ruledef]15
OpenSSL, ? pg_get_userbyidl15
(See Also SSL) pg_get_viewdef115
operatorsy6 pg_hba.conf, ?
logical, 76 pg_ident.conf, ?
precedences pg_lo_close, ?
syntax,5 pg_lo_creat, ?
or pg_lo_export, ?
operator, ? pg_lo_import, ?
Oracle, ?, ? Pg_lo_Iseek, 7
pg_lo_open, ?
ORDERBY, ?, ? pg_lo_read, ?
output function, ? pg_lo_tell, ?
overlay, ? pg_lo_unlink, ?
overloading, ? pg_lo_write, ?

pg_opclass_is_visiblg,15

201

pg_operator_is_visiblg,15
pg_table_is_visiblel15
pg_type_is_visible115
phantom read, ?
PIC, ?
PL/Perl, ?
PL/pgSQL, ?
PL/Python, ?
PL/SQL, ?
PL/Tcl, ?
point, ?
polygon, ?
port, ?
postgres user, ?
postmaster, ?, ?
ps

to monitor activity, ?
psql, ?
Python, ?

qualified names, ?
query, ?
quotes
and identifiers, ?
escaping, ?

R-tree
(See indexes)
range table, ?
readline, ?
real,49
record,70
referential integrity, ?
regclassg9
regoper69
regoperator69
regproc,69
regprocedure59
regression test, ?
regtype,69
regular expression8y1, 92
(See Also pattern matching)
reindex, ?
relation, ?
relational database, ?
row, ?

Index

rules, ?
and views, ?

schema
current,115
schemas, ?
current schema, ?
SCO OpenServer, ?
search path, ?
changing at runtime, ?
current,115
search_path, ?
SELECT, ?
select list, ?
semaphores, ?
sequences, ?
and serial type, ?
sequential scan, ?
serial,52
serial4,52
serial8,52
SETOF, ?
(See Also function)
setting
current,115
set,115
setval, ?
set_bit, ?
set_byte, ?
shared libraries, ?
shared memory, ?
SHMMAX, ?
SIGHUP, ?,?,?
similar to, ?
sliced bread
(See TOAST)
smallint,49
Solaris, ?, ?, ?
some, ?
sorting
query results45
SPI
allocating space, ?,?,?,?,?,?
connecting, ?, ?,?, ?
copying tuple descriptors, ?
copying tuples, ?, ?
cursors, ?,?,?,?,?
decoding tuples, ?,?,?,?,?,?,?
disconnecting, ?

202

executing, ?

modifying tuples, ?
SPI_connect, ?
SPI_copytuple, ?
SPI_copytupledesc, ?
SPI_copytupleintoslot, ?
SPI_cursor_close, ?
SPI_cursor_fetch, ?
SPI_cursor_find, ?
SPI_cursor_move, ?
SPI_cursor_open, ?
SPI_exec, ?
SPI_execp, ?
SPI_finish, ?
SPI_fname, ?
SPI_fnumber, ?
SPI_freeplan, ?
SPI_freetuple, ?
SPI_freetuptable, ?
SPI_getbinval, ?
SPI_getrelname, ?
SPI_gettype, ?
SPI_gettypeid, ?
SPI_getvalue, ?
spi_lastoid, ?
SPI_modifytuple, ?
SPI_palloc, ?
SPI_pfree, ?
SPI_prepare, ?
SPI_repalloc, ?
SPI_saveplan, ?
ssh, ?
SSL, ?,?,?
standard deviation, ?
statistics, ?
strings

(See character strings)
subqueries40, ?
subquery?2
substring, ?, ?, ?
sum, ?
superuser, ?
syntax

SQL,1

table, ?
Tcl, ?,?
TCP/IP, ?
text

Index

(See character strings)
threads
with libpq, ?
tid, 69
time
constants, ?
current, ?
data type, ?
output format, ?
(See Also Formatting)
time with time zone
data type, ?
time without time zone
time, ?
time zone, ?
time zonesg2, ?
timeout
authentication, ?
deadlock, ?
timestamp
data type, ?
timestamp with time zone
data type, ?
timestamp without time zone
data type, ?
timezone
conversion, ?
TOAST, ?
and user-defined types, ?
transaction ID
wraparound, ?
transaction isolation level, ?
transactions, ?
trigger, 70
triggers
in PL/Tcl, ?
Tru64 UNIX, ?
true,63
types
(See data types)

union,45
UnixWare, ?, ?
unqualified names, ?
UPDATE, ?
upgrading, ?, ?
user

current,115

203

vacuum, ?

variance, ?

version, ?115

view, ?

views
updating, ?

void, 70

where,40

xid, 69

yacc, ?

Index

204

	PostgreSQL 7.3.2 User's Guide
	Table of Contents
	List of Tables
	List of Examples
	Preface
	1. What is PostgreSQL?
	2. A Short History of PostgreSQL
	2.1. The Berkeley POSTGRES Project
	2.2. Postgres95
	2.3. PostgreSQL

	3. What's In This Book
	4. Overview of Documentation Resources
	5. Terminology and Notation
	6. Bug Reporting Guidelines
	6.1. Identifying Bugs
	6.2. What to report
	6.3. Where to report bugs

	Chapter 1. SQL Syntax
	1.1. Lexical Structure
	1.1.1. Identifiers and Key Words
	1.1.2. Constants
	1.1.2.1. String Constants
	1.1.2.2. BitString Constants
	1.1.2.3. Numeric Constants
	1.1.2.4. Constants of Other Types
	1.1.2.5. Array constants

	1.1.3. Operators
	1.1.4. Special Characters
	1.1.5. Comments
	1.1.6. Lexical Precedence

	1.2. Value Expressions
	1.2.1. Column References
	1.2.2. Positional Parameters
	1.2.3. Operator Invocations
	1.2.4. Function Calls
	1.2.5. Aggregate Expressions
	1.2.6. Type Casts
	1.2.7. Scalar Subqueries
	1.2.8. Expression Evaluation

	Chapter 2. Data Definition
	2.1. Table Basics
	2.2. System Columns
	2.3. Default Values
	2.4. Constraints
	2.4.1. Check Constraints
	2.4.2. NotNull Constraints
	2.4.3. Unique Constraints
	2.4.4. Primary Keys
	2.4.5. Foreign Keys

	2.5. Inheritance
	2.6. Modifying Tables
	2.6.1. Adding a Column
	2.6.2. Removing a Column
	2.6.3. Adding a Constraint
	2.6.4. Removing a Constraint
	2.6.5. Changing the Default
	2.6.6. Renaming a Column
	2.6.7. Renaming a Table

	2.7. Privileges
	2.8. Schemas
	2.8.1. Creating a Schema
	2.8.2. The Public Schema
	2.8.3. The Schema Search Path
	2.8.4. Schemas and Privileges
	2.8.5. The System Catalog Schema
	2.8.6. Usage Patterns
	2.8.7. Portability

	2.9. Other Database Objects
	2.10. Dependency Tracking

	Chapter 3. Data Manipulation
	3.1. Inserting Data
	3.2. Updating Data
	3.3. Deleting Data

	Chapter 4. Queries
	4.1. Overview
	4.2. Table Expressions
	4.2.1. The FROM Clause
	4.2.1.1. Joined Tables
	Join Types
	4.2.1.2. Table and Column Aliases
	4.2.1.3. Subqueries

	4.2.2. The WHERE Clause
	4.2.3. The GROUP BY and HAVING Clauses

	4.3. Select Lists
	4.3.1. SelectList Items
	4.3.2. Column Labels
	4.3.3. DISTINCT

	4.4. Combining Queries
	4.5. Sorting Rows
	4.6. LIMIT and OFFSET

	Chapter 5. Data Types
	5.1. Numeric Types
	5.1.1. The Integer Types
	5.1.2. Arbitrary Precision Numbers
	5.1.3. FloatingPoint Types
	5.1.4. The Serial Types

	5.2. Monetary Type
	5.3. Character Types
	5.4. Binary Strings
	5.5. Date/Time Types
	5.5.1. Date/Time Input
	5.5.1.1. Dates
	5.5.1.2. Times
	5.5.1.3. Time stamps
	5.5.1.4. Intervals
	5.5.1.5. Special values

	5.5.2. Date/Time Output
	5.5.3. Time Zones
	5.5.4. Internals

	5.6. Boolean Type
	5.7. Geometric Types
	5.7.1. Point
	5.7.2. Line Segment
	5.7.3. Box
	5.7.4. Path
	5.7.5. Polygon
	5.7.6. Circle

	5.8. Network Address Data Types
	5.8.1. inet
	5.8.2. cidr
	5.8.3. inet vs cidr
	5.8.4. macaddr

	5.9. Bit String Types
	5.10. Object Identifier Types
	5.11. PseudoTypes
	5.12. Arrays

	Chapter 6. Functions and Operators
	6.1. Logical Operators
	6.2. Comparison Operators
	6.3. Mathematical Functions and Operators
	6.4. String Functions and Operators
	6.5. Binary String Functions and Operators
	6.6. Pattern Matching
	6.6.1. LIKE
	6.6.2. SIMILAR TO and SQL99 Regular Expressions
	6.6.3. POSIX Regular Expressions

	6.7. Data Type Formatting Functions
	6.8. Date/Time Functions and Operators
	6.8.1. EXTRACT, datepart
	6.8.2. datetrunc
	6.8.3. AT TIME ZONE
	6.8.4. Current Date/Time

	6.9. Geometric Functions and Operators
	6.10. Network Address Type Functions
	6.11. SequenceManipulation Functions
	6.12. Conditional Expressions
	6.12.1. CASE
	6.12.2. COALESCE
	6.12.3. NULLIF

	6.13. Miscellaneous Functions
	6.14. Aggregate Functions
	6.15. Subquery Expressions
	6.15.1. EXISTS
	6.15.2. IN (scalar form)
	6.15.3. IN (subquery form)
	6.15.4. NOT IN (scalar form)
	6.15.5. NOT IN (subquery form)
	6.15.6. ANY/SOME
	6.15.7. ALL
	6.15.8. Rowwise Comparison

	Chapter 7. Type Conversion
	7.1. Overview
	7.2. Operators
	7.3. Functions
	7.4. Query Targets
	7.5. UNION and CASE Constructs

	Chapter 8. Indexes
	8.1. Introduction
	8.2. Index Types
	8.3. Multicolumn Indexes
	8.4. Unique Indexes
	8.5. Functional Indexes
	8.6. Operator Classes
	8.7. Partial Indexes
	8.8. Examining Index Usage

	Chapter 9. Concurrency Control
	9.1. Introduction
	9.2. Transaction Isolation
	9.2.1. Read Committed Isolation Level
	9.2.2. Serializable Isolation Level

	9.3. Explicit Locking
	9.3.1. TableLevel Locks
	Tablelevel lock modes

	9.3.2. RowLevel Locks
	9.3.3. Deadlocks

	9.4. Data Consistency Checks at the Application Level
	9.5. Locking and Indexes

	Chapter 10. Performance Tips
	10.1. Using EXPLAIN
	10.2. Statistics Used by the Planner
	10.3. Controlling the Planner with Explicit JOIN Clauses
	10.4. Populating a Database
	10.4.1. Disable Autocommit
	10.4.2. Use COPY FROM
	10.4.3. Remove Indexes
	10.4.4. Run ANALYZE Afterwards

	Appendix A. Date/Time Support
	A.1. Date/Time Input Interpretation
	A.2. Date/Time Key Words
	A.3. History of Units

	Appendix B. SQL Key Words
	Appendix C. SQL Conformance
	C.1. Supported Features
	C.2. Unsupported Features

	Bibliography
	SQL Reference Books
	PostgreSQLSpecific Documentation
	Proceedings and Articles

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

