
R. M. Hristev

The ANN Book

The ANN Book | R. M. Hristev | Edition 1

(supercede the draft (edition 0) named \Arti�cial Neural Networks")

Copyright 1998 by R. M. Hristev

This book is released under the GNU Public License, ver. 2 (the copyleft license). Basically

\...the GNU General Public License is intended to guarantee your freedom to share and

change free software|to make sure the software is free for all its users...". It also means

that, as is free of charge, there is no warranty.

Preface

➧ About This Book

In recent years arti�cial neural networks (ANN) have emerged as a mature and viable

framework with many applications in various areas. ANN are mostly applicable wherever

some hard to de�ne (exactly) patterns have to be dealt with. \Patterns" are taken here in

the broadest sense, applications and models have been developed from speech recognition to

(stock)market time series prediction with almost anything in between and new ones appear

at a very fast pace.

However, to be able to (correctly) apply this technology it is not enough just to throw some

data at it randomly and wait to see what happens next. At least some understanding of the

underlying mechanism is required in order to make e�cient use of it.

Please note that this book is released in electronic format (LATEX) and under the

GNU Public Licence (ver. 2) which allow for free copying and redistribution as long

as you do not restrict the same rights for others. See the licence terms included

in �le \LICENCE.txt". A freeware version of LATEX is available for almost any type of

computer/OS combination and is practically guaranteed to produce the same high quality

typesetting output. On Internet the URL where you can �nd the latest edition/version of

this book is \ftp://ftp.funet.fi/pub/sci/neural/books/". Note that you may �nd

two �les there: one being this book in Postscript format and the other containing the source

�les, the source �les contain the LATEX �les as well as some additional programs | e.g. a pro-

gram showing an animated learning process into a Kohonen network. The programs used in

this book were developed mostly under Scilab, available under a very generous licence (basi-

cally: free and with source code included) from \http://www-rocq.inria.fr/scilab/".

SciLab is very similar to Octave and Matlab. Octave is also released under the GNU licence,

so it's free.

This book make an attempt to cover some of the basic ANN development: some theories,

principles and ANN architectures which have found a way into the mainstream.

First part covers some of the most widely used ANN architectures. New ones or variants

appear at a fast rate so it is not possible to cover them all, but these are among the few ones

with wide applications. This part would be of use as an introduction and for those who have

to implement them but do not have to worry about their applications (e.g. programmers

required to implement a particular ANN engine for some applications | but note that some

important algorithmic improvements are explained in the second part).

Second part takes a deeper insight at the fundamentals as well as establishing the most

important theoretical results. It also describes some algorithmic optimizations/variants for

i

ii Preface

ANN simulators which require a more advanced math apparatus. It is important for those

who want to develop applications using ANN. As ANN have been revealed to be statistical by

their nature it requires some basic knowledge of statistical methods. An appendix containing

a small introduction to statistics (very bare but essential for those who did not studied

statistics) have been developed.

Third part is reserved to topics which are very recent developments and usually open-ended.

For each section (chapter, sub-section, e.t.c.) there is a special footnote designed in partic-

ular to refer some bibliographic information. These footnotes are marked with the section

number (e.g. 2.3.1 for sub-section numbered 2.3.1) or with a number and an \.*" for chap-

ters (e.g. 3.* for the third chapter). To avoid an ugly appearance they are hidden from the

section's title. Follow them for further references.

The appendix(es) contains also some information which have not been deemed appropriate

for the main text (e.g. some useful mathematical results).

The next section describes the notational system used in this book.

➧ Mathematical Notations and Conventions

The following notational system will be used (hopefully into a consistent manner) trough

the whole book. There will be two kind of notations: one which will be described here and

most of the time will not be explained in the text again; the other ones will be local (to the

chapter, section, e.t.c.) and will appear also in the marginal notes in the place where they

are de�ned/used �rst, marked with the symbol ❖ like the one appearing here.❖ marginal note

So, when you encounter a symbol you don't know what it is: �rst look in this section, if

is not here follow the marginal notes upstream from the point where you encountered it

till you �nd it and there should be its de�nition (you should not go beyond the current

chapter).

Proofs are typeset in a smaller (8 pt.) font size and refer to previous formulas when not

explicitly speci�ed. The reader may skip them, however following them will enhance its

skills in mathematical methods used in this �eld.

Do not worry about (fully) understanding all notations de�ned here, right now. Return here

when the text will send you (automatically) back.

* * *

ANN involves heavy manipulations of vectors and matrices. A vector will be often repre-

sented by a column matrix:

x =

0B@x1
...

xN

1CA
and in text will be often represented by its transposed xT =

�
x1 � � � xN

�
(for aesthetic

reasons and readability). Also it will be represented by lowercase bold letters.

A scalar product between two vectors may be represented by a product between the corre-

Preface iii

spondent matrices:

x � y =
X
i

xiyi = x
T
y

The other matrices will be represented by uppercase letters. A inverse of a matrix will be

marked by (�)�1.

There is an important distinction between scalar and vectorial functions. When a scalar

function is applied to a vector or matrix it means in fact that is applied to each element in

turn, i.e.

f(x) =

0B@f(x1)
...

f(xN)

1CA ; f : R ! R

is a scalar function and application to a vector is just a convenient notation, while:

g(x) =

0B@ g1(x)
...

gK(x)

1CA ; g : RN ! RK

is a vectorial function and generally K 6= N . Note that bold letters are used for vectorial

functions.

One operator which will be used is the ":". The A(i; :) notation will represent row i of ❖ :

matrix A, while A(:; j) will stand for column j of the same matrix.

Another operation used will be the Hadamard product, i.e. the element-wise product Hadamard

between matrices (or vectors) which will be marked with �. The terms and result have

to have same dimensions (number of rows and columns) and the elements of result are the ❖ �
product of the corresponding elements of terms, i.e.

A =

0B@a11 � � � a1n
...

. . .

ak1 � � � akn

1CA ; B =

0B@b11 � � � b1n
...

. . .

bk1 � � � bkn

1CA)

C = A�B =

0B@a11b11 � � � a1nb1n
...

. . .

ak1bk1 � � � aknbkn

1CA

ANN acronym for Arti�cial Neural Network(s).

� Hadamard product of matrices (see above for de�nition).

(�)�n a convenient notation for (�)� � � � � (�)| {z }
n

� (�)�n

: matrix \scissors" operator: A(i : j; k : `) selects a submatrix from matrix

A, made from rows i to j and columns k to `. A(i; :) represents row i
while A(:; k) represents column k.

(�)T transposed of matrix (�).

iv Preface

(�)C complement of vector (�). it involves swapping 0$ 1 for binary vectors

and �1$ +1 for bipolar vectors.

j � j module of (�) (absolute value), when applied to a matrix is an element-

wise operation (by contrast to the norm operation).

k � k norm of a vector or matrix | the actual de�nition may di�er depending

of the metric used.

h�i mean value of a variable.

Eff jgg expectation of event f (mean value), given event g. As f and g are

usually functions then Eff jgg is a functional.

Vffg variance of f . As f is usually a function then Vffg is a functional.

sign(x) the sign function, de�ned as sign(x) =

8><>:
1 if x > 0

0 if x = 0

�1 if x < 0

.

In case of a matrix, it applies to each element individually.e1 a matrix having all elements equal to 1, its dimensions will be always

such that the mathematical operations in which is involved are correct.b1 a (column) vector having all elements equal to 1, its dimensions will be

always such that the mathematical operations in which is involved are

correct.e0 a matrix having all elements equal to 0, its dimensions will be always

such that the mathematical operations in which is involved are correct.b0 a (column) vector having all elements equal to 0, its dimensions will be

always such that the mathematical operations in which is involved are

correct.

I the unit square matrix, assumed always to have the correct dimensions

for the operations in which is involved.

xi component i of the input vector.

x the input vector: xT =
�
x1 � � � xN

�
yj output of the output neuron j.

y the output vector of output layer: yT =
�
y1 � � � yK

�
zk output of a hidden neuron k.

z the output vector of a hidden layer: zT =
�
z1 � � � zM

�
tk component k of the target pattern.

t the target vector | desired output corresponding to input x.

wi; wji wi the weight associated with i-th input of a neuron; wji the weight

associated with connection to neuron j, from neuron i.

Preface v

W the weight matrix W =

0B@w11 � � � w1N

...
. . .

...

wK1 � � � wKN

1CA, note that all weights

associated with a particular neuron j (j = 1;K) are on the same row.

aj total input to a neuron j, the weighted sum of its inputs, e.g. aj =P
all i

wjixi | for a neuron receiving input x, wji being the weights.

a the vector containing total inputs aj for all neurons in a same layer,

usually a =Wzprev., where zprev. is the output of previous layer.

f activation function of the neuron; the neuron output is f(aj) and the
output of current layer is z = f(a).

f 0 the derivative of the activation function f .

E the error function.

Ck class k.

P (Ck) prior probability of a pattern x to belong to class k.

P (X`) distribution probability of a pattern x to be in pattern subspace X`.

P (Ck; X`) join probability of a pattern x to belong to class k and pattern subspace

X`.

P (X`jCk) class-conditional probability of a pattern x to belonging to class k to be

in pattern subspace X`.

P (CkjX`) posterior probability of a pattern x to belong to class k when is from

subspace X`.

p probability density.

Note also that wherever possible will try to reserve index i for input components, j for hidden
neurons, k for output neurons and p for training patterns with P as the total number of

(lerning) patterns.

Ryurick M. Hristev

Contents

Preface i

About This Book . i

Mathematical Notations and Conventions . ii

I ANN Architectures 1

1 Basic Neuronal Dynamics 3

1.1 Simple Neurons and Networks . 3

1.2 Neurons as Functions . 5

1.3 Common Signal Functions . 6

2 The Backpropagation Network 9

2.1 Network Structure . 9

2.2 Network Dynamics . 10

2.2.1 Neuron Output Function . 10

2.2.2 Network Running Function . 11

2.2.3 Network Learning Function . 11

2.2.4 Initialization and Stop . 15

2.3 The Algorithm . 16

2.4 Bias . 18

2.5 Algorithm Enhancements . 20

2.5.1 Momentum . 20

2.5.2 Adaptive Backpropagation . 21

2.5.3 SuperSAB . 23

2.6 Applications . 24

2.6.1 Identity Mapping Network . 24

2.6.2 The Encoder . 26

vii

viii CONTENTS

3 The SOM/Kohonen Network 29

3.1 Network Structure . 29

3.2 Types of Neuronal Learning . 31

3.2.1 The Learning Process . 31

3.2.2 The Trivial Equation . 32

3.2.3 The Simple Equation . 32

3.2.4 The Riccati Equation . 33

3.2.5 More General Equations . 35

3.3 Network Dynamics . 39

3.3.1 Network Running Function . 39

3.3.2 Network learning function . 39

3.3.3 Initialization and Stop condition 40

3.3.4 Remarks . 40

3.4 The algorithm . 40

3.5 Applications . 41

3.5.1 The Trivial Model with Forgetting Function 41

3.5.2 Square mapping . 44

4 The BAM/Hop�eld Memory 47

4.1 Associative Memory . 47

4.2 The BAM Architecture . 48

4.3 BAM Dynamics . 49

4.3.1 Network Running . 49

4.3.2 The BAM Energy Function . 51

4.4 The BAM Algorithm . 53

4.5 The Hop�eld Memory . 54

4.5.1 The Discrete Hop�eld Memory . 54

4.5.2 The Continuous Hop�eld Memory 57

4.6 Applications . 60

4.6.1 The Traveling Salesperson Problem 60

5 The Counterpropagation Network 67

5.1 The CPN Architecture . 67

5.1.1 The Input Layer . 68

5.1.2 The Hidden Layer . 71

5.1.3 The Output Layer . 76

CONTENTS ix

5.2 CPN Dynamics . 78

5.2.1 Network Running . 78

5.2.2 Network Learning . 79

5.3 The Algorithm . 81

5.4 Applications . 83

5.4.1 Letter classi�cation . 83

6 Adaptive Resonance Theory (ART) 85

6.1 The ART1 Architecture . 85

6.2 ART1 Dynamics . 87

6.2.1 The F1 layer . 87

6.2.2 The F2 layer . 90

6.2.3 Learning on F1: The W weights 93

6.2.4 Learning on F2: The W
0 weights 94

6.2.5 Subpatterns . 96

6.2.6 The Reset Unit . 97

6.3 The ART1 Algorithm . 99

6.4 The ART2 Architecture . 100

6.5 ART2 Dynamics . 102

6.5.1 The F1 layer . 102

6.5.2 The F2 Layer . 103

6.5.3 The Reset Layer . 103

6.5.4 Learning and Initialization . 104

6.6 The ART2 Algorithm . 107

II Basic Principles 109

7 Pattern Recognition 111

7.1 Patterns: The Statistical Approach . 111

7.1.1 Patterns and Classi�cation . 111

7.1.2 Feature Extraction . 113

7.1.3 Model Complexity . 114

7.1.4 Classi�cation: Making Decisions and Minimizing Risk 116

7.2 Likelihood Function . 120

7.2.1 The Discriminant Functions . 120

7.2.2 Likelihood Function and Maximum Likelihood Procedure 121

7.3 Statistical Models . 125

x CONTENTS

8 Single Layer Neural Networks 129

8.1 Linear Separability . 129

8.1.1 Discriminant Functions . 129

8.1.2 Neuronal Memory Capacity . 132

8.1.3 Logistic discrimination . 134

8.1.4 Binary pattern vectors . 136

8.1.5 Generalized linear discriminants . 137

8.2 The Least Squares Technique . 137

8.2.1 The Error Function . 137

8.2.2 The Pseudo{inverse solution . 139

8.2.3 The Gradient Descent Solution . 142

8.3 The Perceptron . 144

8.3.1 The Error Function . 144

8.3.2 The Learning Procedure . 145

8.3.3 Convergence of Learning . 145

8.4 Fisher Linear Discriminant . 147

8.4.1 Two Classes Case . 147

8.4.2 Connections With The Least Squares Technique 149

8.4.3 Multiple Classes Case . 151

9 Multi Layer Neural Networks 153

9.1 Feed-Forward Networks . 153

9.2 Threshold Neurons . 154

9.2.1 Binary Vectors . 155

9.2.2 Continuous Vectors . 155

9.3 Sigmoidal Neurons . 157

9.3.1 Three Layer Networks . 158

9.3.2 Two Layer Networks . 158

9.4 Weight-Space Symmetry . 160

9.5 Higher-Order Neuronal Networks . 161

9.6 Backpropagation Algorithm . 161

9.6.1 Error Backpropagation . 161

9.6.2 Application: Sigmoidal Neurons and Sum-of-squares Error 163

9.7 Jacobian Matrix . 164

9.8 Hessian Tensor . 166

9.8.1 Diagonal Approximation . 166

CONTENTS xi

9.8.2 Outer Product Approximation . 167

9.8.3 Inverse Hessian . 167

9.8.4 Finite Di�erences . 168

9.8.5 Exact Hessian . 169

9.8.6 Multiplication with Hessian . 170

10 Radial Basis Function Networks 173

10.1 Exact Interpolation . 173

10.2 Radial Basis Function Networks . 174

10.3 Relation to Other Theories . 175

10.3.1 Relation to Regularization Theory 175

10.3.2 Relation to Interpolation Theory 177

10.3.3 Relation to Kernel Based Method 178

10.4 Classi�cation . 178

10.5 Network Learning . 180

10.5.1 Radial Basis Functions . 180

10.5.2 Output Layer Weights . 182

11 Error Functions 185

11.1 Generalities . 185

11.2 Sum-of-Squares Error . 186

11.2.1 Linear Output Units . 187

11.2.2 Linear Sum Rules . 188

11.2.3 Signi�cance of Network Output . 189

11.2.4 Outer product approximation of Hessian 191

11.3 Minkowski Error . 192

11.4 Input-dependent Variance . 193

11.5 Modeling Conditional Distributions . 194

11.6 Classi�cation using Sum-of-Squares . 197

11.6.1 Hidden Neurons . 198

11.6.2 Weighted Sum-of-Squares . 199

11.6.3 Loss Matrix . 201

11.7 Cross Entropy . 202

11.7.1 Two Classes Case . 202

11.7.2 Sigmoidal Activation Functions . 203

11.7.3 Cross-Entropy Properties . 203

xii CONTENTS

11.7.4 Multiple Independent Features . 204

11.7.5 Multiple Classes Case . 205

11.8 Entropy . 207

11.9 Outputs as Probabilities . 212

12 Parameter Optimization 215

12.1 Error Surfaces . 215

12.2 Local Quadratic Approximation . 216

12.3 Initialization and Termination of Learning 217

12.4 Gradient Descent . 218

12.4.1 Learning Parameter and Convergence 220

12.4.2 Momentum . 221

12.4.3 Other Gradient Descent Improvement Techniques 223

12.5 Line Search . 225

12.6 Conjugate Gradients . 225

12.6.1 Conjugate Search Directions . 225

12.6.2 Quadratic Error Function . 226

12.6.3 The Algorithm . 229

12.6.4 Scaled Conjugated Gradients . 231

12.7 Newton's Method . 233

12.8 Levenberg-Marquardt Algorithm . 234

13 Feature Extraction 237

13.1 Pre/Post-processing . 237

13.2 Input Normalization . 238

13.3 Missing Data . 239

13.4 Time Series Prediction . 240

13.5 Feature Selection . 241

13.6 Dimensionality Reduction . 243

13.6.1 Principal Component Analysis . 243

13.6.2 Non-linear Dimensionality Reduction Trough ANN 245

13.7 Invariance . 247

13.7.1 The Tangent Prop Method . 247

13.7.2 Preprocessing . 248

13.7.3 Shared Weights . 250

13.7.4 Higher-order ANNs . 250

CONTENTS xiii

14 Learning Optimization 253

14.1 The Bias-Variance Tradeo� . 253

14.2 Regularization . 255

14.2.1 Weight Decay . 255

14.2.2 Linear Transformation And Weight Decay 257

14.2.3 Early Stopping . 258

14.2.4 Curvature Smoothing . 259

14.2.5 Choosing weight decay hyperparameter 259

14.3 Adding Noise . 260

14.4 Soft Weight Sharing . 261

14.5 Growing And Pruning Methods . 264

14.5.1 Cascade Correlation . 264

14.5.2 Pruning Techniques . 266

14.5.3 Neuron Pruning . 268

14.6 Committees of Networks . 268

14.7 Mixture Of Experts . 271

14.8 Other Training Techniques . 272

14.8.1 Cross-validation . 272

14.8.2 Stacked Generalization . 273

14.8.3 Complexity Criteria . 273

14.8.4 Model For Mixed Discrete And Continuous Data 274

15 Bayesian Techniques 275

15.1 Bayesian Learning . 275

15.1.1 Weight Distribution . 275

15.1.2 Gaussian Prior Weight Distribution 276

15.1.3 Application | Simple Classi�er . 276

15.1.4 Gaussian Noise Model . 279

15.1.5 Gaussian Posterior Weight Distribution 280

15.1.6 Consistent Prior Weight Distribution 280

15.1.7 Approximation Of Weight Distribution 280

15.2 Network Outputs Distribution . 281

15.2.1 Generalized Linear Networks . 283

15.3 Classi�cation . 284

15.4 The Evidence Approximation For � And � 287

15.5 Integration Over � And � . 291

xiv CONTENTS

15.6 Model Comparison . 292

15.7 Committee Of Networks . 294

15.8 Monte Carlo Integration . 295

15.9 Minimum Description Length . 297

15.10Performance Of Models . 298

15.10.1Risk Averaging . 298

16 Tree Based Classi�ers 301

16.1 Tree Classi�ers . 301

16.2 Splitting . 302

16.2.1 Impurity based method . 302

16.2.2 Deviance based method . 303

16.3 Pruning . 304

16.4 Missing Data . 306

17 Belief Networks 307

17.1 Graphs . 307

17.1.1 Markov Properties . 308

17.1.2 Markov Trees . 310

17.1.3 Decomposable Trees . 312

17.2 Casual Networks . 313

17.3 The Boltzmann Machine . 314

III Advanced Topics 317

18 Matrix Operations on ANN 319

18.1 New Matrix Operations . 319

18.2 Algorithms . 320

18.2.1 Backpropagation . 320

18.2.2 SOM/Kohonen Networks . 321

18.2.3 BAM/Hop�eld Networks . 322

18.3 Conclusions . 323

A Mathematical Sidelines 325

A.1 Distances . 325

A.1.1 Euclidean Distance . 325

A.1.2 Hamming Distance . 325

CONTENTS xv

A.2 Generalized Spherical Coordinates . 326

A.3 Properties of Symmetric Matrices . 327

A.3.1 Eigenvectors and Eigenvalues . 327

A.3.2 Rotation . 329

A.3.3 Quadratic Forms . 329

A.4 The Gaussian Integrals . 329

A.4.1 The Unidimensional Case . 329

A.4.2 The Multidimensional Case . 330

A.4.3 The multidimensional Gaussian integral with a linear term 331

A.5 The Euler Functions . 331

A.5.1 The Euler function . 331

A.5.2 The sphere volume in the n{dimensional space 332

A.6 The Lagrange Multipliers . 333

A.7 Useful Mathematical equations . 334

A.7.1 Combinatorics . 334

A.7.2 The Jensen's inequality . 334

A.7.3 The Stirling Formula . 336

A.8 Calculus of Variations . 337

A.9 Principal Components . 338

B Statistical Sidelines 341

B.1 Probabilities . 341

B.1.1 Probabilities and Bayes Theorem 341

B.1.2 Probability Density, Expectation and Variance 343

B.2 Modeling the Density of Probability . 344

B.2.1 The Parametric Method . 345

B.2.2 The non-parametric method . 350

B.2.3 The Semi{Parametric Method . 354

B.3 The Bayesian Inference . 361

B.4 The Robbins�Monro algorithm . 364

B.5 Learning vector quantization . 366

Bibliography 369

Index 371

ANN Architectures

CHAPTER 1

Basic Neuronal Dynamics

➧ 1.1 Simple Neurons and Networks

First attempts at building arti�cial neural networks (ANN) were motivated by the desire to

create models for natural brains. Much later it was discovered that ANN are a very general

statistical1 framework for modelling posterior probabilities given a set of samples (the input

data).

The basic building block of a (arti�cial) neural network (ANN) is the neuron. A neuron is a

processing unit which have some (usually more than one) inputs and only one output. See

�gure 1.1 on the following page. First each input xi is weighted by a factor wi and the

whole sum of inputs is calculated
P

all inputs

wixi = a. Then a activation function f is applied

to the result a. The neuronal output is taken to be f(a).

Generally the ANN are build by putting the neurons in layers and connecting the outputs of

neurons from one layer to the inputs of the neurons from the next layer. See �gure 1.2 on

the next page. The type of network depicted there is also named feedforward (a feedforward

network do not have feedbacks, i.e. no \loops"). Note that there is no processing on the

layer 0, its role is just to distribute the inputs to the next layer (data processing really starts

with layer 1); for this reason its representation will be omitted most of the time.

Variations are possible: the output of one neuron may go to the input of any neuron,

including itself; if the outputs on neuron from one layer are going to the inputs of neurons

from previous layers then the network is called recurrent, this providing feedback; lateral

1.*For more information see also [BB95], it provides with some detailed theoretical neuronal models for

true neurons.
1In the second part of this book it is explained in greater detail how the ANN output have a statistical

signi�cance.

3

4 CHAPTER 1. BASIC NEURONAL DYNAMICS

weighted sum

unit unit

activation

outputinputs

a f(a)�wixi f(a)
P

Figure 1.1: The neuron

layer L� 1 layer L

outputinput

layer 1(layer 0)

i

xi

xi

xi

Figure 1.2: The general layout of a (feedforward) neural network.

Layer 0 distributes the input to the input layer 1. The

output of the network is (generally) the output of the out-

put layer L (last layer).

feedback is done when the output of one neuron goes to the other neurons on the same

layer2.

So, to compute the output, an \activation function" is applied on the weighted sum of

inputs:

total input � a =
X

all inputs

wi � xi

output = activation function

0@ X
all inputs

wi � xi

1A = f(a)

2This is used into the SOM/Kohonen architecture.

1.2. NEURONS AS FUNCTIONS 5

More general designs are possible, e.g. higher order ANNs where the total input to a neurons

contains also higher order combinations between inputs (e.g. 2-nd order terms, of the form

wijxixj); however these are seldom used in practice as it involves huge computational e�orts

without clear-cut bene�ts.

The tunable parameters of an ANN are the weights fwig. They are found by di�erent

mathematical procedures3 by using a given set of data. The procedure of �nding the

weights is named learning or training. The data set is called learning or training set and

contain pairs of input vectors associated with the desired output vectors: f(xi;yi)g. Some
ANN architectures do not need a learning set in order to set their weights, in this case the

learning is said to be unsupervised (otherwise the learning being supervised).

✍ Remarks:

➥ Usually the inputs are distributed to all neurons of the �rst layer, this one being

called the input layer | layer 1 in �gure 1.2 on the facing page. Some networks

may use an additional layer which neurons receive each one single component

of the total input and distribute it to all neurons of the input layer. This layer

may be seen as a sensor layer and (usually) doesn't do any (real) processing. In

some other architectures the input layer is also the sensor layer. Unless otherwise

speci�ed it will be omitted.

➥ The last layer is called the output layer. The output set of the output neurons

is (commonly) the desired output (of the network).

➥ The layers between input and output are called hidden layers.

➧ 1.2 Neurons as Functions

Neurons behave as functions. Neurons transduce an unbounded input activation x(t) at a
time t into a bounded output signal f(x(t)). Usually a sigmoidal or S{shaped curve, as

in �gure 1.3 on the next page describes the transduction. This function (f) is called the

activation or signal function.

The most used function is the logistic signal function:

f(a) =
1

1 + e�ca

which is sigmoidal and strictly increases for positive scaling constant c > 0. Strict mono- ❖ c
tonicity implies that the activation derivative of f is positive:

f 0 �
df

da
= cf(1� f) > 0

The threshold signal function (dashed line) in �gure 1.3 on the following page illustrates

a non-di�erentiable signal function. The family of logistic signal function, indexed by c,
approaches asymptotically the threshold function as c ! +1. Then f transduce positive

activations signals a to unity signals and negative activations to zero signals. A discontinuity

3Most usual is the gradient-descent method and derivatives.

6 CHAPTER 1. BASIC NEURONAL DYNAMICS

f(a)

�1 � 0 +
a
1

Figure 1.3: Signal f(a) as a bounded monotone-nondecreasing func-

tion of activation a. Dashed curve de�nes a threshold

signal function.

occurs at the zero activation value (which equals the signal function's \threshold"). Zero

activation values seldom occur in large neural networks4.

The signal velocity df=dt, denoted _f , measures the signal's instantaneous time change. _f❖ _f
is the product between the change in the signal due to the activation and the change in the

activation with time:

_f =
df

da

da

dt
= f 0 _a

➧ 1.3 Common Signal Functions

The following activation functions are more often encountered in practice:

1. Logistic:

f(a) =
1

1 + e�ca

where c > 0 ; c = const. is a positive scaling constant. The activation derivative is

f 0 =
df

da
= cf(1� f) and so f is monotone increasing (f > 0). This function is the

most common one.

2. Hyperbolic-tangent:

f(a) = tanh(ca) =
eca � e�ca

eca + e�ca

where c > 0 ; c = const. is a positive scaling constant. The activation derivative is

f 0 =
df

da
= c(1� f2) > 0 and so f is monotone increasing (f < 1).

4Threshold activation functions were used in early developments of ANN, e.g. perceptrons, however

because they were not di�erentiable they represented an obstacle in the development of ANNs till the
sigmoidal functions were adopted and gradient descent techniques (for weight adaptation) were developed.

1.3. COMMON SIGNAL FUNCTIONS 7

3. Threshold:

f(a) =

8><>:
1 if a > 1

c

0 if a < 0

ca otherwise (x 2 [0; 1=c])

where c > 0 ; c = const. is a positive scaling constant. The activation derivative is:

f 0(a) =
df

da
=

(
0 if a 2 (�1; 0) [[1=c;1)

c otherwise

Note that is not a true threshold function as it have a non-in�nite slope between 0

and c.

4. Exponential-distribution:

f(a) = max(0; 1� e�ca)

where c > 0 ; c = const. is a positive scaling constant. The activation derivative is:

f 0(a) =
df

da
= ce�ca

and for a > 0, supra-threshold signals are monotone increasing (f 0 > 0). Note: since

the second derivative f 00 = �c2e�ca the exponential-distribution function is strictly

convex.

5. Ratio-polynomial:

f(a) = max

�
0;

an

c+ an

�
for n > 1

where c > 0 ; c = const.. The activation derivative is:

f 0 =
df

da
=

cnan�1

(c+ an)2

and for positive activation supra-threshold signals are monotone increasing.

6. Pulse-coded: In biological neuronal systems the information seems to be carried

by pulse trains rather than individual pulses. Train-pulse coded information can be

decoded more reliably than shape-pulse coded information (arriving individual pulses

can be somewhat corrupted in shape and still accurately decoded as present or absent).

The exponentially weighted time average of sampled binary pulses function is:

f(t) =

Z t

�1
g(s) es�t ds

t being time, where the function g is: ❖ t, g

g(t) =

(
1 if a pulse occurs at t

0 if no pulse at t

and equals one if a pulse arrives at time t or zero if no pulse arrives.

The pulse-coded signal function is: f(t) : [0; 1]! [0; 1].

8 CHAPTER 1. BASIC NEURONAL DYNAMICS

Proof. If g(t) = 0; 8 t then f(t) = 0 (trivial).

If g(t) = 1; 8 t then

f(t) =

Z t

�1
e
s�t

ds = e
t�t � lim

s!�1
e
s�t = 1

When the number of arriving pulses increase then the \pulse count" can only increase so f is

monotone nondecreasing.

CHAPTER 2

The Backpropagation Network

The backpropagation network represents one of the most classical example of an ANN,

being also one of the most simple in terms of the overall design.

➧ 2.1 Network Structure

The network consists of several layers of neurons. The �rst one (let it be layer 0) distributes

the inputs to the input layer 1. There is no processing in layer 0, it can be seen just as a

sensory layer | each neuron receive just one component of the input (vector) x which gets

distributed, unchanged, to all neurons from the input layer. The last layer is the output

layer which outputs the processed data; each output of individual output neurons being a

component of the output vector y. The layers between the input one and the output one

are hidden layers.

✍ Remarks:

➥ Layer 0 have to have the same number of neurons as the number of input com-

ponents (dimension of input vector x).

➥ The output layer have to have the same number of neurons as the desired output

have (i.e. the dimension of the output vector y dictates the number of neurons

on the output layer).

➥ In general the input and hidden layers may have any number of neurons, however

their number may be chosen to achieve some special e�ects in some practical

cases.

The network is a straight feedforward network: each neuron receives as input the outputs feedforward

network

9

10 CHAPTER 2. THE BACKPROPAGATION NETWORK

layer L

input output|{z}
xp

|{z}
N`

|{z}
tp

z`�1;j

w`kj

k
z`k

j

i

(layer 0) layer 1 layer `� 1 layer ` layer L� 1

xi xi

xi

Figure 2.1: The backpropagation network structure.

of all neurons from the previous layer (excepting the �rst sensory layer). See �gure 2.1.

The following notations are used:❖ z`k, w`kj , xp,
tp(xp), z0i, N`, L,
P

� z`k is the output of neuron j from layer `.

� w`kj is the weight by which output of neuron j from layer `� 1 contribute to input

of neuron k from layer `.

� xp is training input vector no. p.

� tp(xp) is the target (desired output) vector no. p (at training time).

� z0i is the i component of input vector. By notation, at training time, z0i � xi, where
xi is the component i of one of input vectors, for some p.

� N` is the number of neurons in layer `.

� L is the number of layers (the input layer is no. 0, the output layer is no. L).

� P is the number of training vectors, p = 1; P

The learning set is (according to the above notation) f(xp; tp)gp=1;P .

➧ 2.2 Network Dynamics

2.2.1 Neuron Output Function

The activation function used is usually the logistic:

f(a) =
1

1 + exp(�ca)
; f : R ! (0; 1) ; c > 0 ; c = const. (2.1)

df

da
=

c exp(�ca)
[1 + exp(�ca)]2

= cf(a) [1� f(a)] (2.2)

2.2. NETWORK DYNAMICS 11

but note that the backpropagation algorithm is not particularly tied up to it.

2.2.2 Network Running Function

Each neuron compute at output the weighted sum of its input to which it applies the signal

function (see also �gure 2.1 on the facing page):

z`k = f

0@N`�1X
j=1

w`kjz`�1;j

1A (2.3)

It must be computed in succession for each layer, starting from input and going trough all

layer in succession till the output layer is reached.

A more compact matrix notation may be developed as follows. For each layer (except 0), a

matrix of weights W` is build as: ❖ W`

W` =

0B@ w`11 � � � w`1N`�1

...
. . .

...

w`N`1 � � � w`N`N`�1

1CA
(note that all weights associated with a particular neuron are on the same row) then,

considering the output vector of the previous layer z`�1 ❖ z`

z
T
`�1 =

�
z`�1;1 � � � z`�1;N`�1

�
the output of the actual layer ` may be calculated as:

z
T
` = f(aT`) =

�
f(a`1) � � � f(a`N`

)
�

where a` =W` z`�1. ❖ a`

2.2.3 Network Learning Function

The network learning process is supervised i.e. the network receives (at training phase) both

the raw data as inputs and the targets as output. The learning involves adjusting weights

so that errors will be minimized. The function used to measure errors is usually the sum-of-

squares de�ned below but note that backpropagation algorithm is not particularly tied up

to it.

De�nition 2.2.1. For an input pattern x and the associated target t, the sum-of-squares ❖ Ep, W
error function E(W) (E is dependent on all weights W) is de�ned as:

E(W) �
1

2

NLX
q=1

[zLq(x) � tq(x)]
2

where zLq is the output of neuron q from the output layer i.e. the component q of the ❖ zLq
output vector.

Note that all components of input vector will inuence any component of output vector,

thus zLq = zLq(x).

12 CHAPTER 2. THE BACKPROPAGATION NETWORK

✍ Remarks:

➥ Considering all learning samples (the full training set) then the total sum-of-❖ Etot.

squares error sum-of-squares error Etot.(W) (Etot. is also dependent of all weights

as E) is de�ned as:

Etot.(W) �
1

2

PX
p=1

E(W) =

PX
p=1

NLX
q=1

[zLq(xp)� tq(xp)]
2 (2.4)

The network weights are found (weights are adapted/changed) step by step. Considering

NW the total number of weights then the error function E : RNW ! R may be represented❖ NW

as a surface in the RNW +1 space. The gradient vector rE =

(
@E(W)

@w`ji

)
shows the

direction of (local) maximum of square mean error and fw`jig are to be changed in the

opposite direction (so \�" have to be used) | see also �gure 2.3 on the next page.

In the discrete time t approximation, at step t+1, given the weights at step t, the weights❖ t
are adjusted as:

w`ji(t+ 1) = w`ji(t) � �
@E(W)

@w`ji

����
W (t)

= w`ji(t)� �

PX
p=1

@Ep(W)

@w`ji

�����
W (t)

where � = const., � > 0 is named the learning constant and it is used for tuning the speed❖ �
and quality of the learning process.

In matrix notation the above equation may be written simply as:

W (t+ 1) =W (t)� �rE (2.5)

because the error gradient may also be considered as a matrix or tensor, it have the same

dimensions as W .

✍ Remarks:

➥ The above method does not provide for a starting point. In practice, weights are

initialized with small random values (usually in the [�1; 1] interval).

➥ The (2.5) equation represents the basics of weight adjusting, i.e. learning, indelta rule

many ANN architectures; it is known as the delta rule:

�W =W (t+ 1)�W (t) / �rE

➥ If � is too small then the learning is slow and it may stop the learning process

into a local minimum (of E), being unable to overtake a local maximum. See

�gure 2.3 on the facing page.

➥ If � is too large then the learning is fast but it may jump over local minimum

(of E) which may be deeper than the next one. See �gure 2.3 on the next page

(Note that in general that is a surface).

➥ Another point to consider is the problem of oscillations. When approaching error

minima, a learning step may overshot it, the next one may again overshot it

2.2. NETWORK DYNAMICS 13

E(w)

w

w(t)
w(t+ 3)

w(t+ 1)w(t+ 2)

Figure 2.2: Oscillations in learning process. The weights move

around E minima without being able to reach it (arrows

show the jumps made by the learning process).

w

E(w)

local maximum

local minimum

rE

Figure 2.3: E(w) | Total square error as function of weights. rE
points towards the (local) maximum.

bringing back the weights to a similar point to previous one. The net result is

that weights are changed to values around minima but never able to reach it.

See �gure 2.2. This problem is particularly likely to occur for deep and narrow

minima because in this case rE is large (deep � steep) and subsequently �W
is large (narrow � easy to overshot).

The problem is to �nd the error gradient rE. Considering the \standard" approach (i.e.

frEg`ji �
�E

�w`ji
for some small �w`ji) this would require an computational time of the

order O(N2
W), because each calculation of E require O(NW) and it have to be repeated

for each w`ji in turn.

The importance of the backpropagation algorithm resides in the fact that it reduces the

computational time of rE to O(NW), thus greatly improving the speed of learning.

Theorem 2.2.1. Backpropagation algorithm. For each layer (except 0, input), an error backpropagation

gradient matrix may be build as follows: ❖ (rE)`

14 CHAPTER 2. THE BACKPROPAGATION NETWORK

(rE)` �

0BB@
@E

@w`11
� � � @E

@w`1N`�1
...

. . .
...

@E
@w`N`1

� � � @E
@w`N`N`�1

1CCA ; ` = 1; L

For each layer, except L the error gradient, with respect to neuronal outputs, may be de�ned❖ rz`E
as:

rz`E �
�
@E
@z`1

� � � @E
@z`N`

�
; ` = 1; L� 1

The error gradient with respect to network output zL is considered to be known and de-

pendent only on network outputs fzL(xp)g and the set of targets ftpg.

rzLE = known.

Then considering the error function E and the activation function f and its total derivative

f 0 then the error gradient may be computed recursively according to the formulas:

rzlE =WT
`+1 �

�
rz`+1E � f 0(a`+1)

�
calculated recursively from L� 1 to 1 (2.6a)

(rE)` = [rz`E � f 0(a`)] � zT`�1 for layers ` = 1; L (2.6b)

where z0 � x.❖ z0

Proof. The error E(W) is dependent on w`ji trough the output of neuron (j; i) i.e. z`j :

@E

@w`ji

=
@E

@z`j

@z`j

@w`ji

and each derivative is computed separately

❐ term
@z`j

@w`ji

@z`j

@w`ji

=
@

@w`ji

24f
0@N`�1X
m=1

w`jmz`�1;m

1A35 =

= f
0

0@N`�1X
m=1

w`jmz`�1;m

1A � @

@w`ji

0@N`�1X
m=1

w`jmz`�1;m

1A =

= f
0(a`j) � z`�1;i

because weights are mutually independent.

❐ term
@E

@z`j

Neuron z`j a�ect E trough all following layers that are intermediate between layer ` and output (the

inuence being exercised through the interposed neurons).

First a�ected is next, ` + 1, layer, trough term
@z`+1;m

@z`j

(and then the dependency is carried on next

successive layers):

@E

@z`j

=

N`+1X
m=1

@E

@z`+1;m

@z`+1;m

@z`j

=

2.2. NETWORK DYNAMICS 15

=

N`+1X
m=1

@E

@z`+1;m

� @

@z`j

24f
0@ NX̀
q=1

w`+1;mqz`q

1A35 =

=

N`+1X
m=1

@E

@z`+1;m

� f 0
0@NX̀
q=1

w`+1;mqz`q

1A � @

@z`j

0@ NX̀
q=1

w`+1;mqz`q

1A =

=

N`+1X
m=1

@E

@z`+1;m

f
0(a`+1;m)w`+1;mj

which represents exactly the element j of column matrix rz`E as build from (2.6a). The above formula

applies iteratively from layer L� 1 to 1, for layer L, rzLE is assumed known.

Finally, the desired derivative is:

@E

@w`ji

=
@E

@z`j

@z`j

@w`ji

=

24N`+1X
m=1

@E

@z`+1;m

f
0(a`+1;m)w`+1;mj

35 f
0(a`j) z`�1;i

representing the element found at row j, column i of matrix (rE)` as build from (2.6b).

Proposition 2.2.1. If using the logistic activation function and sum-of-squares error func-

tion then the error gradient may be computed recursively according to the formulas:

rzLE = zL(x) � t (2.7a)

rz`E = cWT
`+1 �

h
rz`+1E � z`+1 � (b1� z`+1)

i
for ` = 1; L� 1 (2.7b)

(rE)` = c
h
rz`E � z` � (b1� z`)

i
� zT`�1 for ` = 1; L (2.7c)

where z0 � x

Proof. From de�nition 2.2.1:

@E

@zLj

= zLj � tj) rzLE = zL � t

By using (2.2) in the main results (2.6a) and (2.6b) of theorem 2.2.1, and considering that f(a`) = z` the

other two formulas are deducted immediately.

2.2.4 Initialization and Stop

Weights are initialized (in practice) with small random values and the adjusting process

continue by iteration.

The stopping of the learning process can be done by one of the following methods:

➀ choosing a �xed number of steps t = 1; T .

➁ the learning process continue until the adjusting quantity �w`ji = w`ji(at time t+1) �
w`ji(at time t) is under some speci�ed value, 8`, 8j, 8i.

➂ learning stops when the total error, e.g. the total sum-of-squaresEtot., attain a minima

on a test set, not used for learning.

✍ Remarks:

➥ If the trained network performs well on the training set but have bad results

on previously unseen patterns (i.e. it have pour generalization capabilities) then

16 CHAPTER 2. THE BACKPROPAGATION NETWORK

this is usually a sign of overtraining (assuming, of course, that the network is

reasonably build and there are a su�cient number of training patterns).

➧ 2.3 The Algorithm

The algorithm is based on discrete time approximation, i.e. time is t = 0; 1; 2; : : : .

The activation and error functions and the stop condition are presumed to be chosen (known)

and �xed.

Network running procedure:

1. The input layer is initialised, i.e. the output of input layer is made to be x:

z0 � x

For all layers ` = 1; L | starting with �rst hidden layer 1 | do:

z` = f (W`z`�1)

2. The output of the network is taken to be the output of the output layer, i.e. y � zL.

Network learning procedure:

1. Initialize all fw`jig weights with (small) random values.

2. For all training sets (xp; tp) (as long as the stop condition is not met) do:

(a) Run the network to �nd the activations on all neurons a` and then the derivatives

f 0(a`). The network output yp � zL(xp) = f(aL) will also be required on next

step.

NOTE: The algorithm require the derivatives of activation functions for all neu-

rons. For most activation functions this may be expressed in terms of activation

itself, i.e. f 0(a`) = g(z`), as is the case for logistic, see (2.2). This approach may
reduce the memory usage or increase speed (or both in case of logistic function).

(b) Using (yp; tp), calculate rzLE, e.g. for sum-of-squares use (2.7a).

(c) Compute the error gradient.

� For output layer (rE)L is calculated directly from (2.6b) (or from (2.7c)

for sum-of-squares and logistic).

� For all other layers ` = 1; L� 1, going backwards from L�1 to 1, calculate
�rst rz`E using (2.6a) (or (2.7b) for sum-of-squares and logistic).

Then calculate (rE)` using (2.6b) (or respectively (2.7c)).

(d) Update the W weights according to the delta rule (2.5).

(e) Check the stop condition and exit if it have been met.

✍ Remarks:

➥ In most cases1 a better performance is obtained when training repeatedly with

the whole training set. A shu�ing of patterns is recommended, between repeats.

1But e.g. not when patterns form a time series.

2.3. THE ALGORITHM 17

➥ Trying to stop error backpropagation when is below some threshold value � may ❖ �
also improve learning, e.g. in case of sum-of-squares the rzLE may be changed

to:

@E

@zLq
=

(
zLq � tq if jzLq � tqj > �

0 otherwise
for q = 1; NL

i.e. rounding towards 0 the elements of rzLE smaller than �.

➥ The classical way of calculating the gradient, i.e.

@E

@w`ji
�

E(w`ji + ")�E(w`ji � ")

2"
; " & 0

while too slow for direct usage, is an excellent tool for checking the correctness

of algorithm implementation.

➥ There are not (yet) good theoretical methods of choosing the learning parameters

(constants) � and �. The practical, hands-on, approach is still the best. Usual

values for � are in the range [0:1; 1] (but some networks may learn even faster

with � > 1) and [0; 0:1] for �.

➥ In accordance with neuron output function (2.1) the output of the neuron have

values within (0; 1) (in practice, due to rounding errors, the range is in fact [0; 1]).

If the desired outputs have values within [0;1) then the following transforming

function may be used:

y(x) = 1� exp(��x) ; � > 0 ; � = const.

which have the inverted:

y�1(x) =
1

�
ln

1

1� x

The same procedure described above may be used for inputs.

This kind of transformation can be used each time the desired input/output falls

beyond neuron activation function range.

➥ By no means reaching the absolute minima of E is guaranteed. First the training

set is limited and the error minima with respect to the learning set may will

generally not coincide with the minima considering all possible patterns, but in

most cases should be close enough for practical applications.

On the other hand, the error surface have a symmetry, e.g. swapping two neu-

rons from the same layer (or in fact their weights) will not a�ect the network

performance, so the algorithm will not search trough the whole weight space but

rather a small area of it. This is also the reason for which the starting point,

given randomly, will not a�ect substantially the learning process.

18 CHAPTER 2. THE BACKPROPAGATION NETWORK

z`0 z`1 z`N`

layer `

layer `+ 1

1

w`+1;1;0

Figure 2.4: Bias may be emulated with the help of an additional neu-

ron z`0 those output is always 1 and is distributed to all

neurons from next layer (exactly as for a \regular" neu-

ron).

➧ 2.4 Bias

Some problems, while having an obvious solution, cannot be solved with the architecture

described above2. To solve these, the neuronal activation (2.3) is changed to:

z`k = f

0@w`k0 + N`�1X
j=1

w`kjz`�1;j

1A (2.8)

and the new parameter w`k0 introduced is named bias.bias

❖ w`k0 As it may be immediately be seen the change is equivalent to inserting a new neuron z`0,
whose activation (output) is always 1, on all layers except output. See �gure 2.4.

The required changes in neuronal outputs and weight matrices are:

ezT` =
�
1 z`1 � � � z`N`

�
and fW` =

0B@ w`10 w`11 � � � w`1N`�1

...
...

. . .
...

w`N`0 w`N`1 � � � w`N`N`�1

1CA
biases being added as a �rst column in W`, and then the neuronal output is calculated as

z` = f(a`) = f(fW` ez`�1).
The error gradient matrix (̂rE)` associated with fW` is:❖ (̂rE)`

(̂rE)` =

0BB@
@E

@w`10

@E
@w`11

� � � @E
@w`1N`�1

...
... � � �

...
@E

@w`N`0

@E
@w`N`1

� � � @E
@w`N`N`�1

1CCA
Following the changes from above, the backpropagation theorem becomes:

2E.g. the tight encoder described later.

2.4. BIAS 19

Theorem 2.4.1. Backpropagation with biases. If the error gradient with respect to backpropagation

neuronal outputs rzLE is known, and depends only on (actual) network outputs fzL(xp)g
and targets ftpg:

rzLE = known.

then the error gradient (with respect to weights) may be calculated recursively according to

formulas:

rz`E =WT
`+1 �

�
rz`+1E � f 0(a`+1)

�
calculated recursively from L� 1 to 1 (2.9a)

(̂rE)` = [rz`E � f 0(a`)] � ezT`�1 for layers ` = 1; L (2.9b)

where z0 � x.

Proof. See theorem 2.2.1 and its proof.

Equation (2.9a) results directly from (2.6a).

Columns 2 to N`�1 + 1 of (̂rE)` represents (rE)` given by (2.6b).

The only terms to be calculated remains those of �rst column of (̂rE)`, i.e. terms of the form @E
@w`j0

,

j being the row index. But these terms may be written as (see proof of theorem 2.2.1):

@E

@w`j0

=
@E

@z`j

@z`j

@w`j0

where @E
@z`j

is term j of rz` , already calculated, and from (2.8):

@z`j

@w`j0

= f
0(a`j) � 1 = f

0(a`j)

As ez`�1;1 � 1 (by construction) then formula (2.9b) proves correct.

Proposition 2.4.1. If using the logistic activation function and the sum-of-squares error

function then the error gradient may be computed recursively using the formulas:

rzLE = zL(x) � t (2.10a)

rz`E = cWT
`+1 �

h
rz`+1E � z`+1 � (b1� z`+1)

i
for ` = 1; L� 1 (2.10b)

(̂rE)` = c
h
rz`E � z` � (b1� z`)

i
� ezT`�1 for ` = 1; L (2.10c)

where z0 � x.

Proof. It is proved the same way as proposition 2.2.1 but using theorem 2.4.1 instead.

✍ Remarks:

➥ The algorithm for a backpropagation ANN with biases is (mutatis mutandi) iden-

tical to the one described in section 2.3.

➥ In practice, biases are usually initialized with 0.

20 CHAPTER 2. THE BACKPROPAGATION NETWORK

➧ 2.5 Algorithm Enhancements

2.5.1 Momentum

The weight adaption described in standard (\vanilla") backpropagation (see section 2.2.3)

is very sensitive to small perturbations. If a small \bump" appears in the error surface the

algorithm is unable to jump over it and it will change direction.

This situation is avoided by taking into account the previous adaptations in learning process

(see also (2.5)):

�W (t) =W (t+ 1)�W (t) = � �rEjW (t) + ��W (t� 1) (2.11)

This procedure is named backpropagation with momentum and � 2 [0; 1) is named themomentum

❖ � momentum (learning) parameter.

The algorithm is very similar (mutatis mutandi) to the one described in section 2.3. As

the main memory consumption is given by the requirement to store the weight matrix

(especially true for large ANN), the momentum algorithm requires double the amount of

standard backpropagation, to store �W for next step.

✍ Remarks:

➥ When choosing the momentum parameter the following results have to be con-

sidered:

� if � > 1 then the contribution of each �w`ji grows in�nitely.

� if � & 0 then the momentum contribution is insigni�cant.

so � should be chosen somewhere in [0:5; 1) (in practice, usually � � 0:9).

➥ The momentum method assumes that the error gradient slowly decreases when

approaching the absolute minimum. If this is not the case then the algorithm

may jump over it.

➥ Another improvement over momentum is the at spot elimination. If the error

surface is very at then rE � e0 and subsequently �W � e0. This may lead to

a very slow learning due to the increased number of training steps required. To

avoid this problem, a change to the calculation of error gradient (2.6b) may be

performed as follows:

(2.6b) ! (rE)`;pseudo =
n
rz`E �

h
f 0(a`) + cf � b1io � zT`�1

where (rE)`;pseudo is no more the real (rE)`. The cf is named at spot elimi-❖ cf
nation constant.

Several points to note here:

� The procedure of adding a term to f 0 instead of multiplying it means that

(rE)`;pseudo is more a�ected when f 0 is smaller | a desirable e�ect.

2.5.1[BTW95] p. 50

2.5. ALGORITHM ENHANCEMENTS 21

� �rEjW (t)

rEjW (t)

W (t)

��W (t � 1)

W (t+ 1)

Figure 2.5: Learning with momentum. A contributing term from the

previous step is added.

� The error gradient terms corresponding to a weight close to input layer is

smaller than a similar term for a weight more closely to the output layer

because the e�ect of changing the weight gets attenuated when propagated

trough layers. So another e�ect of cf is the speed up of weight adaptation

in layers close to input, again a desirable e�ect.

� The formulas (2.7c), (2.9b) and (2.10c) change the same way:

(rE)`;pseudo = c
n
rz`E �

h
z` � (b1� z`) + cf � b1io � zT`�1 (2.12a)

(̂rE)`;pseudo =
n
rz`E �

h
f 0(a`) + cf � b1io � ezT`�1 (2.12b)

(̂rE)`;pseudo = c
n
rz`E �

h
z` � (b1� z`) + cf � b1io � ezT`�1 (2.12c)

➥ In physical terms: The set of weights W may be though as a set of coordinates

de�ning a point in the space RNW . During learning, this point is moved towards

reducing the error E. The moment introduce an \inertia" proportional to �,
such that when changing direction under the inuence of rE \force" it have a

tendency to keep the old direction of movement and \overshot" the point given

by ��rE. See �gure 2.5.

The momentum method assumes that if the weights have been moved in some

direction then this direction is good for the next steps and is kept as a trend:

unwinding the weight adaptation over 2 steps (applying (2.11) twice, for t � 1

and t) it gives:

�W (t) = �� rEjW (t) � �� rEjW (t�1) + �2�W (t� 2)

and it can be seen that the contributions of previous �W gradually disappear

with the increase of power of � (as � < 1).

2.5.2 Adaptive Backpropagation

The main idea of this algorithm came from the following observations:

� If the slope of the error surface is gentle then a big learning parameter could be used

to speed up learning over at spot areas.

2.5.2[BTW95] p. 50

22 CHAPTER 2. THE BACKPROPAGATION NETWORK

� If the slope of the error surface is step then a small learning parameter should be used

to avoid overshooting the error minima.

� In general the slopes are gentle in some directions and step in the other ones.

This algorithm is based on assigning individual learning rates for each weight w`ji based on

the previous behavior. This means that the learning constant � becomes a matrix of the

same dimension as W .

The learning rate is increased if the gradient kept the direction over last two steps (i.e. is

likely to continue) and decreased otherwise:

�`ji(t) =

(
I�`ji(t� 1) if �w`ji(t)�w`ji(t� 1) > 0

D�`ji(t� 1) if �w`ji(t)�w`ji(t� 1) < 0
(2.13)

where I > 1 and D 2 (0; 1). The I parameter is named the adaptive increasing factor and❖ I, D
the D parameter is named the adaptive decreasing factor.

In matrix form, equation (2.13) may be written considering the matrix of�w`ji sign changes,

i.e. sign[�W (t)��W (t� 1)]:

�(t) =
n
(I � D) sign

h
sign(�W (t)��W (t� 1)) + e1i+D � e1o� �(t� 1) (2.14)

Proof. The problem is to build a matrix containing 1-es corresponding to each �w`ij(t)�w`ji(t � 1) > 0

and 0-es in rest. This matrix multiplied by I will be used to increase the corresponding �`ji elements. The

complementary matrix will be used to modify the matching �`ji which have to be decreased.

The sign(�W (t) � �W (t � 1)) matrix have elements consisting only of 1, 0 and �1. By adding e1 and

taking the sign again, all 1 and 0 elements are transformed to 1 while the �1 elements are transformed to

zero. So the desired matrix is

sign
h
sign(�W (t) ��W (t� 1)) + e1i

while its complementary is

e1� sign
h
sign(�W (t) ��W (t� 1)) + e1i

Then the updating formula for � �nally becomes:

�(t) = I �(t � 1)� sign
h
sign(�W (t) ��W (t� 1)) + e1i

+D �(t � 1)�
ne1� sign

h
sign(�W (t) ��W (t� 1)) + e1io

✍ Remarks:

➥ f�`jig is initialized with a constant �0 and �W (t� 1) = e0. Learning parameter❖ �0
matrix � is updated after each training session (considering the current �W (t)).
For the rest the same main algorithm as described in section 2.3 apply.

Note that after initialization, when �(0) = �0 and �W (0) = e0, the �rst step

will lead automatically to the increase �(1) = I�0, so �0 should be chosen

accordingly.

Also, this algorithm requires three times as much memory compared to standard

backpropagation, to store � and �W for next step, both being of the same size

as W .

2.5. ALGORITHM ENHANCEMENTS 23

➥ If I = 1 and D = 1 then the e�ect of algorithm is obviously void.

In practice I 2 [1:1; 1:3] and D . 1=I gives the best results for a wide spectrum

of applications.

➥ Note that sign(�W (t) � �W (t � 1)) could be replaced by sign(�W (t)) �
sign(�W (t � 1)). This is a tradeo� between one oating point multiplication

followed by a sign versus two sign operations followed by an integer multiplication;

whatever is faster may depend on the actual system used.

Due to the fact that the next change is not exactly in the direction of the error gradient

(because each component of rE is multiplied with a di�erent constant) this technique may

cause problems. This may be avoided by testing the output after an adaptation has taken

place: if there is an increase in output error then the adaptation should be rejected and the

next step calculated with the classical method; then the adaptation process can be resumed

at next step.

2.5.3 SuperSAB

SuperSAB (Super Self-Adapting Backpropagation) is a combination of momentum and

adaptive backpropagation algorithms.

The algorithm uses adaptive backpropagation for the w`ji terms who continue to move in

the same direction and momentum for the others, i.e.:

� If �w`ji(t)�w`ji(t� 1) > 0 then:

�`ji(t) = I �`ji(t� 1)

�w`ji(t+ 1) = ��`ji(t)
@E

@w`ji

����
W (t)

the momentum being 0 because it's not necessary, the learning rate grows in geomet-

rical progression due to the adaptive algorithm.

� If �w`ji(t)�w`ji(t� 1) < 0 then:

�`ji(t) = D �`ji(t� 1)

�w`ji(t+ 1) = ��`ji
@E

@w`ji

����
W (t)

� ��w`ji(t)

Note the \�" sign in front of � which being used to cancel the previous \wrong"

weight adaption (not to boost �w`ji as in momentum method); the corresponding

�`ji is decreased to get smaller steps.

In matrix notation SuperSAB rules are written as:

�(t) =
n
(I � D) sign

h
sign(�W (t)��W (t� 1)) + e1i+D � e1o� �(t� 1)

�W (t+ 1) = ��(t)�rE � ��W (t)�
ne1� sign

h
sign(�W (t) ��W (t� 1)) + e1io

2.5.3[BTW95] p. 51

24 CHAPTER 2. THE BACKPROPAGATION NETWORK

Proof. The �rst equation came directly from (2.14).

For the second equation, the matrix

e1� sign
h
sign(�W (t) ��W (t� 1)) + e1i

contains, as elements, 1 if �w`ji(t)�w`ji < 0 and zero in rest, so momentum terms are added exactly to

the w`ji requiring it, see proof of (2.14).

✍ Remarks:

➥ While this algorithm uses the same main algorithm as described in section 2.3 (of

course with the required changes) note however that the memory requirement is

four times higher than for standard backpropagation, to store supplementary �
and two �W .

➥ Arguably, the matrix notation for this algorithm may be less bene�cial in terms of

speed. However: there is a bene�t of splitting the e�ort of implementation into

two levels, a lower one, dealing with matrix operations and a higher one dealing

with the implementation of the algorithm itself. Beyond this an e�cient matrix

operations implementation may be already developed for the targeted system (e.g.

an e�cient matrix multiplication algorithm may be several times faster than the

classical one when written speci�cally for the system used3, there is also the

possibility of taking advantage of the hardware, threaded matrix operation on

multiprocessor systems e.t.c.).

All algorithms presented here may be sees as predictors (of error surface features) from

the simple momentumto the more sophisticated SuperSAB. Based on previous behaviour of

error gradient, they try to predict the future behaviour and change learning path accordingly.

➧ 2.6 Applications

2.6.1 Identity Mapping Network

The network consists of 1 input, 1 hidden and 1 output neurons with 2 weights: w1 and

w2. See �gure 2.6 on the next page.

This particular network, while of little practical usage, it presents some interesting fea-

tures:

� there are only 2 weights so it is possible to visualize exactly the error surface see

�gure 2.7 on the facing page;

� the error surface have a local maxima and a local minima, note that if the weights are

\trapped" into the local minima the standard backpropagation can't move forward as

rE becomes zero there.

The problem is to con�gure w1 and w2 such that the identity mapping is realized for binary

input.

3For a fast implementation of a matrix multiplication on a RISC processor , 8 times speed increase, see
[Mos97]. For a multi-threaded matrix multiplication see [McC97].
2.6.1[BTW95] pp. 48{49

2.6. APPLICATIONS 25

w1 w2

input hidden output

Figure 2.6: The identity mapping network

1:237

0:250

0
10

�10w2
0
w1

10
�10 �10 10

10

�10
0 w2

0

w1

local minimumlocal maximum

E(w1; w2)

Figure 2.7: The error surface for identity mapping network.

The output of input neuron is xp = z01 (by notation). The output of hidden neuron z11 is

(see (2.3)):

z11 =
1

1 + exp(�cw1z01)

The output of the output neuron is:

z21 =
1

1 + exp(�cw2z11)
=

1

1 + exp
�

cw2

1+exp(�cw1z01)

�
The identity mapping network tries to map its input to output i.e.

for x1 = z01 = 0) t1(z01) = 0

for x2 = z01 = 1) t2(z01) = 1

The square mean error is (2.4), where P = 2 and NL = 1:

Etot.(w1; w2) =
1

2

PX
p=1

1X
q=1

[z2q(xp)� tq(xp)]
2

26 CHAPTER 2. THE BACKPROPAGATION NETWORK

hidden

output

input

Figure 2.8: The 4-2-4 encoder: 4 inputs, 2 hidden, 4 outputs.

=
1

2

"
1

1 + exp
��cw2

2

�#2 + " 1

1 + exp
�

�cw2

1+exp(�cw1)

� � 1

#2

For c = 1 the error surface is shown in �gure 2.7 on the page before. The surface have a

local minimum and a local maximum.

2.6.2 The Encoder

This network is also an identity mapping ANN (targets are the same as inputs) with a single

hidden layer which is smaller in size than the input/output layers. See �gure 2.8.

Beyond any possible practical applications, this network shows the following:

� the architecture of an backpropagation ANN may be important with respect to its

purpose;

� the output of a hidden layer is not necessary meaningless,

� the importance of biases.

The input vectors and targets are:

x1 =

0BB@
1

0

0

0

1CCA ; x2 =

0BB@
0

1

0

0

1CCA ; x3 =

0BB@
0

0

1

0

1CCA ; x4 =

0BB@
0

0

0

1

1CCA ; ti � xi ; i = 1; 4

The idea is that the inputs have to be \squeezed" trough the bottleneck represented by

hidden layer, before being reproduced at output. The network have to �nd a way to encode

the 4-component vectors on a 2-component vector, the output of hidden layer. Obviously

the encoding is given by:

z1 =

�
0

0

�
; z2 =

�
0

1

�
; z3 =

�
1

0

�
; z4 =

�
1

1

�

2.6. APPLICATIONS 27

Note that one of xi vectors will be encoded by z1. On a network without biases this

means that the output layer will receive total input a and considering the logistic activation

function then the corresponding output will always be yT =
�
0:5 0:5 0:5 0:5

�
and this

particular output will be weights-independent. One of the input vectors may never be learned

by the encoder. In practice usually (but not always) the net will enter in oscillation trying to

learn two vectors on one encoding so there will be two unlearn vectors. When using biases

this do not happen as the output layer will always receive something weight-dependent.

An ANN was trained with the following parameters:

learning parameter = � = 2:5

momentum = � = 0:9

at spot elimination = cf = 0:25

and after 200 epochs the outputs of hidden layer became:

z1 =

�
1

0

�
; z2 =

�
0

0

�
; z3 =

�
1

1

�
; z1 =

�
0

1

�
and the corresponding output:

y1 =

0BB@
0:9975229
0:0047488
0:0015689
1:876 � 10�8

1CCA ; y2 =

0BB@
0:0000140
0:9929489
8:735 � 10�9
0:0045821

1CCA ;

y3 =

0BB@
0:0020816

7:241 � 10�11
0:997392
0:0010320

1CCA ; y4 =

0BB@
7:227 � 10�11
0:0000021
0:0021213
0:9960705

1CCA

✍ Remarks:

➥ The encoders with N1 = log2N0 are called tight encoders, those with N1 <
log2N0 are loose and those with N1 > log2N0 are supertight.

➥ It is possible to train a loose encoder on an ANN without biases as the null vector

doesn't have to be among the outputs of hidden neurons.

CHAPTER 3

The SOM/Kohonen Network

The Kohonen network represents an example of an ANN with unsupervised learning.

➧ 3.1 Network Structure

A SOM (Self Organizing Map, known also as Kohonen) network have one single layer, let ❖ N , K
name this one the output layer. The additional input (\sensory") layer just distribute the

inputs to output layer, there is no data processing on it. Into the output layer a lateral

(feedback) interaction is provided (see also section 3.3). The number of neurons on input

layer is N | equal to the dimension of input vector and for output layer is K. See �gure 3.1

on the next page.

✍ Remarks:

➥ Here the output layer have been considered unidimensional. Taking into account

the \mapping" feature of the Kohonen networks the output layer may be consid-

ered | more convenient for some particular applications | multidimensional.

➥ A multidimensional output layer may be trivially mapped to a unidimensional one

and the discussion below will remain the same.

E.g. a bidimensional layer K � K may be mapped to a unidimensional layer

having K2 neurons just by �nding a function f : K �K ! K to do the relabel-

ing/numbering of neurons. Such a function may be e.g. f(j; `) = (`� 1)K + j
which maps �rst row of neurons (1; 1) : : : (1;K) to the �rst K unidimensional

chunk and so on (j; ` = 1;K).

3.1See [BTW95] pp. 83{89 and [Koh88] pp. 119{124.

29

30 CHAPTER 3. THE SOM/KOHONEN NETWORK

input

lateral feedback
layer

output

Figure 3.1: The Kohonen network structure.

distance between

output neurons

feedback strenght

+

� �

+

Figure 3.2: The lateral feedback interaction function of the \mexican

hat" type.

The important thing is that all output neurons receive all components of the

input vector and a little bit of care is to be taken when establishing the neuronal

neighborhood (see below).

In general, the lateral feedback interaction function is indirect | i.e. neurons do not receive

the inputs of their neighbors | and of \mexican hat" type. See �gure 3.2. The closest

neurons receive a positive feedback, the more distant ones receive negative feedback and

the far away ones are not a�ected.

✍ Remarks:

➥ The distance between neuron neighbors in output layer is (obvious) a discreteinter-neuronal

distances one. It may be de�ned as being 0 for the neuron itself (auto-feedback), 1 for the

closest neighbors, 2 for the next ones, and so on. On multidimensional output

layers there are several choices, the most obvious one being the Euclidean.

➥ The feedback function determines the quantity by which the weights of neuron

neighbors are updated during the learning process (as well as which weights are

updated).

3.2. TYPES OF NEURONAL LEARNING 31

➥ The area a�ected by the lateral feedback is named neuronal neighborhood. neuronal

neighborhood
➥ For su�ciently large neighborhoods the distance may be considered continue

when carrying some types of calculations.

➧ 3.2 Types of Neuronal Learning

3.2.1 The Learning Process

Let W = fwjigj=1;K
i=1;N

be the weight matrix and x = fxigi=1;N be the input vector for a

(output) neuron, i.e. the total input to the (output) layer is a = Wx. Note that each row

from W represents the weights associated with one neuron and may be seen as a vector

W (j; :) of the same size and from the same space RN as the input vector x. RN is named ❖ W (j; :)
the weight space. weight space

When an input vector x is presented to the network, the neuron having its associated weight

vector W (k; :) closest to x, i.e. the one for which:

kW (k; :)T � xk = min
j=1;K

kW (j; :)T � xk

is declared \winner". All neurons included in its vicinity (neuronal neighborhood), including

itself, will participate to the \learning" of x. The other ones are not a�ected.

The learning process consists of changing the weight vectors W (j; :) towards the input

vector (positive feedback) There is also a \forgetting" process which tries to slow down the

progress (negative feedback).

It can be immediately seen why the feedback is indirect: the neurons are a�ected by being

in the neuronal neighborhood of the winner, not by receiving directly the winner's output.

Considering a linear learning | changes are restricted to occur only in the direction of a

linear combination of x and W (j; :) for each neuron | then:

dW

dt
= �(x;W) � (x;W)

where � and are scalar (possibly nonlinear) functions, � representing the positive feedback, ❖ �,
 being the negative one. These two functions have to be build in such a way as to a�ect

only the neuronal neighborhood of winning neuron k, which vary in time as the input vector
is function of time x = x(t). Note that here the winning neuron appears implicitly as it

may be determined from x and W .

Various adaptation models (di�erential equations forW) can be build for the neurons (from

the output layer) of the Kohonen network. Some of the more simple ones which may

be analyzed (at least to some extent) analytically are discussed in the following sections.

To simplify further the discussion it will be considered (at this stage) that the neuronal

neighborhood is su�ciently large to contain the whole network. Later it will be shown

how to limit weight change/adaptation to targeted neurons by using the lateral feedback

function.

3.2See [Koh88] pp. 92{98.

32 CHAPTER 3. THE SOM/KOHONEN NETWORK

3.2.2 The Trivial Equation

One of the most simple equations is a linear di�erential:❖ �, �

dW (j; :)

dt
= �xT � �W (j; :) ; �; � > 0 ; �; � = const. ; j = 1;K

which in matrix form becomes:

dW

dt
= �b1xT � �W (3.1)

and with initial condition W (0) �W0 the solution is:

W (t) =

24�b1
0@ tZ

0

x
T(t0) e�t

0

dt0

1A+W0

35 e��t
which shows that for t!1, W (j; :) is the exponentially weighted average of x(t) and do

not produce any interesting e�ects.

Proof. The equation is solved by the method of variation of parameters. First, the homogeneous equation:

dW

dt
+ �W = 0

have a solution of the form:

W (t) = Ce
��t

; C = matrix of constants

The general solution for the nonhomogeneous equation (3.1) is found by considering C = C(t). Then:

dW

dt
=

dC

dt
e
��t � �C(t) e��t

and by replacing in (3.1) it gives:

dC

dt
e
��t � �C(t) e��t = �b1xT(t) � �C(t) e��t)

) dC

dt
= �b1xT(t) e�t) C(t) = �b1 tZ

0

x
T(t0) e�t

0

dt
0 + C

0 (C0 = matrix of constants)

and, at t = 0, W (0) = C0 �W0.

3.2.3 The Simple Equation

The simple equation is de�ned as:

dW (j; :)

dt
= �aj(t)x

T � �W (j; :) ; �; � > 0 ; �; � = const. ; j = 1;K

and in matrix notation it becomes:

dW

dt
= �a(t)xT � �W

and consequently, as a =Wx then:

dW

dt
=W (�xxT � �I)

3.2. TYPES OF NEURONAL LEARNING 33

In the time-discrete approximation:

dW

dt
!

�W

�t
=
W (t+ 1)�W (t)

(t+ 1)� t
=W (t) [�x(t)xT(t)� �I]

) W (t+ 1) =W (t) [�x(t)xT(t)� �I + I] ; t 2 N+ ; W (0) �W0 (initial condition)

so the general solution is:

W (t) =W0

t�1Y
t0=0

�
�x(t0)xT(t0)� �I + I

�
(3.2)

✍ Remarks:

➥ For most cases the solution (3.2) is either divergent or converges to zero, both

cases unacceptable. However, for a relatively short time, the simple equation may

approximate a more complicated, asymptotically stable, process.

For t or � relatively small, such that the superior order terms O(�2) may be neglected, and
considering b = 0 (no \forgetting" e�ect) then from (3.2):

W (t) 'W0

"
I + �

t�1X
t0=0

x(t0)xT(t0)

#

3.2.4 The Riccati Equation

The Riccati equation is de�ned as:

dW (j; :)

dt
= �xT � �ajW (j; :) ; �; � > 0 ; �; � = const. ; j = 1;K (3.3)

and after the replacement aj = W (j; :)x = x
TW (j; :)T (note that [W (j; :)]T � W (j; :)T ❖ W (j; :)T

for brevity), it becomes:

dW (j; :)

dt
= x

T
�
�I � �W (j; :)TW (j; :)

�
(3.4)

or in matrix notation:

dW

dt
= �b1xT � �(Wxb1T)�W (3.5)

Proof. Equation (3.3) may be written as: dW
dt

= �b1xT � �(ab1T)�W and a = Wx.

For general x = x(t), the Riccati equation is not integrable directly (of course beyond the

trivial xT =W (j; :) = b0). However a statistical approach may be performed.

Proposition 3.2.1. Considering a statistical approach to the Riccati equation (3.4), if there

is a solution, i.e. lim
t!1

W exists, then the solution of W is of the form:

lim
t!1

W =

r
�

�
b1 hxiT

khxik
if hxi 6= b0

34 CHAPTER 3. THE SOM/KOHONEN NETWORK

where hxi = EfxjWg = const., independent of W and time; i.e. all W (j; :) became parallel

with hxi in RN and will have the norm kW (j; :)k =
p
�=� (the Euclidean metric being

used here).

Proof. As x and W (j; :) may be seen as vectors in RN space, then let � be the angle between them. From❖ �

the scalar product, cos � is:

cos � =
W (j; :) x

kW (j; :)k kxk

where kxk2 = x
T
x and kW (j; :)k2 = W (j; :)WT(j; :), the Euclidean metric being used here.❖ kxk, kW (j; :)k

When bringing under the Ef�jWg operator, as x is obviously independent ofW (is the input vector), it goes

to x! hxi. Then the expected value of d cos �=dt is:

E
�
d cos �

dt

����W� = E
(

dW (j;:)hxi
dt

kW (j; :)k khxik �
W (j; :)hxi dkW (j;:)k

dt

kW (j; :)k2 khxik

�����W
)

(3.6)

❐ Term
dW (j;:)hxi

dt
kW (j;:)k khxik

First
dW (j;:)hxi

dt
kW (j;:)k khxik =

dW (j;:)
dt

hxi
kW (j;:)k khxik , as hxi is time independent. Then, by multiplying (3.4) to the right

by x:

dW (j; :)

dt
x = �x

T
x� �x

T
W

T(j; :)W (j; :)x = �kxk2 � �[W (j; :)x]2

(as for two matrices (AB)T = BTAT is true), and then this term becomes:

dW (j;:)hxi
dt

kW (j; :)k khxik =
�khxik2 � �[W (j; :) hxi]2

kW (j; :)k khxik
(as x! hxi under Ef�jWg operator).

❐ Term
W (j;:)hxi dkW(j;:)k

dt

kW (j;:)k2 khxik

First the derivative dkW (j; :)k=dt is found as follows:

dkW (j; :)k2
dt

=

8<:2kW (j; :)k dkW (j;:)k
dt

2 dW (j;:)

dt
W (j; :)T (because kW (j; :)k2 =W (j; :)W (j; :)T)

)

dkW (j; :)k
dt

=
dW (j; :)

dt

W (j; :)T

kW (j; :)k
and by using (3.4) then

dkW (j; :)k
dt

=
h
�x

T � �x
T
W (j; :)TW (j; :)

i
W (j; :)T

kW (j; :)k

=
h
�x

T
W (j; :)T � �x

T
W (j; :)TW (j; :)W (j; :)T

i 1

kW (j; :)k

=
1

kW (j; :)k x
T
W (j; :)T

h
�� �W (j; :)W (j; :)T

i
=

W (j; :)x

kW (j; :)k
�
�� �kW (j; :)k2� (3.7)

(as xTW (j; :)T = W (j; :)x and W (j; :)W (j; :)T � kW (j; :)k2). By replacing back into the wanted term

and as x! hxi:
dW (j;:)hxi

dt

kW (j; :)k khxik =
[W (j; :)hxi]2(� � �kW (j; :)k2)

kW (j; :)k3khxik

3.2. TYPES OF NEURONAL LEARNING 35

Replacing back into (3.6) gives

E
�
d cos �

dt

����W� = E
�
�khxik2 � �[W (j; :) hxi]2

kW (j; :)k khxik � [W (j; :)hxi]2(� � �kW (j; :)k2)
kW (j; :)k3khxik

����W�

= E
�
�khxik2kW (j; :)k2 � �[W (j; :) hxi]2

kW (j; :)k3khxik

����W�

= �khxik E
�
1� cos2 �

kW (j; :)k

����W� = �khxik E
�

sin2 �

kW (j; :)k

����W� (3.8)

Existence of lim
t!1

W means that � stabilizes in time and then its derivative limit is zero and the expected

value of the derivative is also zero (as it will remain zero after reaching the limit):

lim
t!1

d cos �

dt
= 0 = E

�
d cos �

dt

����W�
By using (3.8), it follows immediately that Efsin �jWg = 0 and then Ef�jWg = 0, i.e. all EfW (j; :)jWg
are parallel to hxi.

The norm of W (j; :) is found from (3.7). If lim
t!1

W (j; :) does exists then the expectation of dkW (j; :)k=dt
have to be zero:

E
�
dkW (j; :)k

dt

����W� = E
�
W (j; :)x

kW (j; :)k
�
�� �kW (j; :)k2�����W� = 0

but as W (j; :) 6= b0, this may happen only if

E ��� �kW (j; :)k2
��W	 = 0) (EfkW (j; :)kg)2 =

�

�

Finally, combining all previously obtained results:8<: lim
t!1

cos(\W (j; :); hxi) = 1) lim
t!1

W (j;:)

kW (j;:)k = hxiT

khxik

lim
t!1

kW (j; :)k =
q

�
�

) lim
t!1

W (j; :) =

r
�

�

hxiT
khxik

3.2.5 More General Equations

Theorem 3.2.1. Let � > 0, a =Wx and (a) an arbitrary function such that Ef(a)jWg ❖ �, a,
exists. Let x = x(t) a vector with stationary statistical properties (and independent of W).

Then, if a learning model (process) of type:

dW (j; :)

dt
= �xT � (aj)W (j; :) ; j = 1;K (3.9)

or, in matrix notation:

dW

dt
= �b1xT � h(a) b1Ti�W

have nonzero bounded W solutions for t!1, then it must be of the form:

lim
t!1

W / b1 � hxiT
where hxi is the mean of x(t); i.e. all W (j; :) become parallel to hxi in RN .

36 CHAPTER 3. THE SOM/KOHONEN NETWORK

Proof. Let � be the angle between hxi and W (j; :) vectors in RN then, from the scalar product: cos � = ❖ �

W (j;:)hxi
kW (j;:)k khxik . The Efd cos �=dtjWg is calculated in similar way as in proof of proposition 3.2.1.

E
�
d cos �

dt

����W� = E
(

dW (j;:)

dt
hxi

kW (j; :)k khxik �
[W (j; :)hxi] dkW (j;:)k

dt

kW (j; :)k2 khxik

�����W
)

(3.10)

Multiplying (3.9) by x, to the right, gives:

dW (j; :)

dt
x = �x

T
x� (aj)W (j; :)x = �kxk2 � (aj) [W (j; :)x] (3.11)

The dkW (j; :)k=dt derivative is calculated in similar way as in proof of proposition 3.2.1 to give:

dkW (j; :)k
dt

=
dW (j; :)

dt

W (j; :)T

kW (j; :)k
and then, by using (3.9):

dkW (j; :)k
dt

= �
x
TW (j; :)T

kW (j; :)k � (aj)
W (j; :)W (j; :)T

kW (j; :)k = �
[W (j; :)x]

kW (j; :)k � (aj) kW (j; :)k (3.12)

The (3.11) and (3.12) results are used in (3.10) (and also x! hxi) to give:

E
�
d cos �

dt

����W� = E
�
�khxik2 � (aj) [W (j; :)hxi]

kW (j; :)k khxik

�
[W (j; :)hxi]

�
�

[W (j;:) hxi]
kW (j;:)k � (aj) kW (j; :)k

�
kW (j; :)k2 khxik

����W�
and, after simpli�cation, it becomes:

E
�
d cos �

dt

����W� = �E
� khxik2kW (j; :)k2 � [W (j; :)hxi]2

kW (j; :)k3khxik

����W�

Existence of lim
t!1

W means that the � stabilizes in time and then lim
t!1

(d cos �=dt) = 0, and then the

expected value is zero as well: Efd cos �=dtjWg = 0. But this may happen only if:

E
�
d cos �

dt

����W� = 0 , E � khxik2kW (j; :)k2 � [W (j; :)hxi]2
��W	 = 0 ,

E
�

W (j; :)hxi
kW (j; :)k khxik

����W� = 1 , E f cos �jWg = 1

i.e. lim
t!1

� = 0 and then W (j; :) and hxi become parallel for t!1, i.e. lim
t!1

W (j; :) / hxiT.

Theorem 3.2.2. Let � > 0, a =Wx and (a) an arbitrary function such that Ef(a)jWg
exists. Let hxxTi = EfxxTjWg (in fact xxT does not depend on W as is the covariance❖ hxxTi, �max,

umax matrix of input vector). Let �max = max
`

�` the maximum eigenvalue of hxxTi and umax

the associated eigenvector.

Then, if a learning model (process) of type:

dW (j; :)

dt
= �ajx

T � (aj)W (j; :) (3.13)

or, in matrix notation:

dW

dt
= �axT �

h
(a) b1Ti�W

3.2.5See [Koh88] pp. 98{101.

3.2. TYPES OF NEURONAL LEARNING 37

have nonzero bounded W solutions for t!1, they have to be of the form:

W / b1uT
max

provided that Wumax 6= b0, where W (0) � W0; i.e. all W (j; :) become parallel to umax ❖ W0

in RN .

Proof. Let �` be an eigenvalue and u` the corresponding eigenvector of hxxTi such that hxxTiu` = �`u`. ❖ �`, u`

Let �` be the angle between W (j; :) and u` such that cos �` =
W (j;:)u`

kW (j;:)k ku`k
. ❖ �`

Efd cos �`=dtjWg is calculated the same way as in proof of theorem 3.2.1:

E
�
d cos �`

dt

����W� = E
(

dW (j;:)

dt
u`

kW (j; :)k ku`k
� [W (j; :)u`]

dkW (j;:)k
dt

kW (j; :)k2 ku`k

�����W
)

(3.14)

Note that xxT ! hxxTi when passing under the Ef�jWg operator.
From (3.13), knowing that aj = W (j; :)x then:

dW (j; :)

dt
= �W (j; :)xxT � (aj)W (j; :)

then, multiplying by u` to the right and knowing that hxxTiu` = �`u`, it follows that

dW (j; :)

dt
u` = �W (j; :)xxTu` � (aj)W (j; :)u`

under�����!
Ef�jWg

�W (j; :)hxxTiu` � (aj)W (j; :)u` = (��` � (aj)) [W (j; :)u`] (3.15)

The other required term is dkW (j; :)k=dt which again is calculated in similar way as in proof of theorem 3.2.1:

dkW (j; :)k
dt

=
dW (j; :)

dt

W (j; :)T

kW (j; :)k
and, by using (3.13), aj =W (j; :)x and W (j; :)W (j; :)T = kW (j; :)k2, then:

dkW (j; :)k
dt

= �
W (j; :)xxTW (j; :)T

kW (j; :)k � (aj)
W (j; :)W (j; :)T

kW (j; :)k
under�����!

Ef�jWg
�
W (j; :)hxxTiW (j; :)T

kW (j; :)k � (aj) kW (j; :)k (3.16)

Replacing (3.15) and (3.16) results back into (3.14) gives:

E
�
d cos �`

dt

����W� = E
�
(��` � (aj)) [W (j; :)u`]

kW (j; :)k ku`k

�
[W (j; :)u`]

�
�
W (j;:) hxxTiW (j;:)T

kW (j;:)k � (aj) kW (j; :)k
�

kW (j; :)k2 ku`k

����W�
and, after simpli�cation, it may be written as:

E
�
d cos �`

dt

����W� = �E
��

�` �
W (j; :) hxxTiW (j; :)T

kW (j; :)k2
�

[W (j; :)u`]

kW (j; :)k ku`k

����W�
Lets take u` = umax and the corresponding �` = �max. The above formula becomes:

E
�
d cos �max

dt

����W� = �E
��

�max � W (j; :)hxxTiW (j; :)T

kW (j; :)k2
�

[W (j; :)umax]

kW (j; :)k kumaxk

����W�

The existence of lim
t!1

W means that �max stabilizes in time and thus lim
t!1

d cos �max=dt = 0 and so is its

expected value. As W (j; :)umax 6= 0 then:

E
�
�max �

W (j; :)hxxTiW (j; :)T

kW (j; :)k2
����W� = 0 , E

�
W (j; :)hxxTiW (j; :)T

kW (j; :)k2
����W� = �max (3.17)

38 CHAPTER 3. THE SOM/KOHONEN NETWORK

the equality being possible only for �max, in accordance to the Rayleigh quotient (See the mathematical

appendix).

As the matrix xxT is symmetrical (and so is hxxTi, i.e. hxxTi = (hxxTi)T) then an orthogonal set of

eigenvectors may be build (see the mathematical appendix). A transformation of coordinates to the system

fu`g`=1;N
may be performed by using the matrix U build using the set of eigenvectors as columns (and then

U
T
U = I as uT

`
uk = �`k, �`k being the Kroneker symbol). Then W (j; :)T ! W

0(j; :)T = UW (j; :)T,

W (j; :)!W 0(j; :) = W (j; :)UT, also

kW (j; :)k2 ! kW 0(j; :)k2 = W (j; :)UT
UW (j; :)T = W (j; :)IW (j; :)T = kW (j; :)k2

and W 0(j; :) may be represented as a linear combination of fu`g:

W
0(j; :) =

X
`

!`u
T

`

!` being the coe�cients of the linear combination (u` appear transposed because W (j; :) is a row matrix).

Knowing that UThxxTiU is a diagonal matrix with eigenvalues on the main diagonal (and all others being

zero, see again the mathematical appendix) and using again the orthogonality of fu`g (i.e. uT
`
uk = �`k)

then:

W
0(j; :)hxxTiW 0(j; :)T =

X
`

�`!
2

` and kW 0(j; :)k2 =
X
`

!
2

`

Replacing back into (3.17) (with W 0(j; :) replacing W (j; :)) gives:

E
(P

` �`!
2

`P
` !

2

`

�����W
)

= �max

which may happen only if all !` ! 0 except the one !max corresponding to umax, i.e. lim
t!1

W (j; :) =

!maxu
T
max / u

T
max.

At �rst glance the condition Wumax 6= 0 at all t, met in theorem 3.2.2 seems to be very

hard. In fact it is, but in practice have a smaller importance and this deserves a discussion.

First, the initial value of W , let W (0) � W0 be that one, should be chosen such that❖ W0, P?umax

W0umax 6= 0. ButW (j; :)umax 6= 0 means thatW (j; :) 6? umax, i.e.W (j; :) is not contained

in a hyperplane P?umax
perpendicular on umax (in RN). Even a random selection on W0

would have good chances to stand this condition, even more so as umax is seldom known

exactly in practice, being dependent on the stochastic input variable x (an exact knowledge

of umax would mean a knowledge of an in�nite series of x(t)).

Second, theorem 3.2.2 says that, statistically, W (j; :) vectors will move towards either umax

or �umax depending upon what side of P?umax
is W0(j; :), i.e. away from P?umax

. However

the proof is statistical in nature and there is a small but �nite probability that, at same t,
W (j; :)(t) falls into P?umax

. What happens then, tell us (3.15): as W (j; :)umax = 0 then

dW (j;:)
dt

umax = 0 and this means that all further changes inW (j; :) are contained in P?umax
,

i.e. W (j; :) becomes trapped in P?umax
.

The conclusion is then that the condition Wumax 6= 0, 8t, may be neglected, with the

remark that there is a small probability that some W (j; :) weight vectors may become

trapped and then learning will be incomplete.

3.3. NETWORK DYNAMICS 39

➧ 3.3 Network Dynamics

3.3.1 Network Running Function

As previously discussed, x;W (j; :) 2 RN , the weight space.

For each input vector x, the neuron k for which:

kx�W (k; :)Tk = min
j=1;K

kx�W (j; :)Tk

is declared winner, i.e. the one with for which the associated weight vectorW (k; :) is closest
to x (in weight space). The winner is used to decide which weights get changed using the

current input vector x. All and only the neurons found into the winner's neighborhood

participate to learning, i.e. will have their weights changed/adapted. All other weights

remain unchanged at this stage; later a new input vector may change the winner and thus

the area of change.

✍ Remarks:

➥ kx �W (j; :)Tk is the (mathematical) distance between vectors x and W (j; :).

This distance is user de�nable but most used is the Euclidean

s
NP
i=1

(xi � wji).

➥ As the learning of the network is unsupervised, i.e. there are no targets.

➥ If the input vectors x and weight vectors fW (j; :)gj=1;K are normalized kxk =
kW (j; :)k (to the same value, not necessary 1), e.g. in an Euclidean space:vuut NX

i=1

x2i =

vuut NX
i=1

w2
ji ; j = 1;K

i.e. x(t) and W (j; :) are points on a hyper-sphere in RN , then the dot vector

product can be used to �nd the matching. The winner neuron is that k one for

which:

W (k; :)x = max
j=i;K

W (j; :)x

i.e. the winner is that neuron for which the weight vector W (k; :) points to the

closest direction to that one to which points the input vector x.

This operation is a little faster as it skips a subtraction operation of type: x �
W (j; :)T, however it requires normalization of x and W (j; :) which is not always

desirable in practice.

3.3.2 Network learning function

The learning process is an unsupervised one. Time is considered to be discrete t = 1; 2; : : : .
The weights are time dependent W =W (t). The learning network is feed with data x(t).

At time t = 0 the weights are initialized with (small) random values. The weights at time

t are updated as follows:

40 CHAPTER 3. THE SOM/KOHONEN NETWORK

➀ For x(t) �nd the winning (output) neuron k. See section 3.3.1.

➁ Update weights according to the model chosen, see section 3.2 for a selection of

learning models:

dW =

�
dW

dt

�
� dt

which in discrete time approximation (dt! t� (t� 1) = 1) becomes:

�W =W (t)�W (t� 1) =
dW

dt
(3.18)

3.3.3 Initialization and Stop condition

Weights are initialized (in practice) with small random values (normalized or not) and the

adjusting process continue by iteration.

The stopping of the learning process may be done by one of the following methods:

➀ choosing a �xed number of steps t = 1; T .

➁ the learning process continue until the adjusting quantity �wji = wji(t+1)�wji(t)
falls under some speci�ed value, i.e. �wji 6 ", where " is the threshold.

3.3.4 Remarks

The mapping feature of Kohonen networks

Due to the fact that the Kohonen algorithm \moves" the weights vectors towards the input

vectors the Kohonen network tries to map the input vectors, i.e. the weights vectors will try

to copy the topology of input vectors in the weight space. The mapping occurs in the

weight space. See section 3.5.2 for an example. For this reason Kohonen networks are

also called self ordering maps or SOM.SOM

Activation Function

Note that the activation function, as well as the neuronal output is irrelevant to the learning

process.

Incomplete Learning

Even if the learning is unsupervised, in fact, a poor choice of learning parameters may lead to

an incomplete learning (so, in fact, a full successful learning is \supervised" at a \highest"

level). See section 3.5.2 and �gure 3.6 for an example of an incomplete learning.

➧ 3.4 The algorithm

1. For all neurons in output layer: initialize weights with random values.

2. If working with normalized vectors then normalize the weights.

3. Choose a model | type of neuronal learning. See section 3.2 for some examples.

3.5. APPLICATIONS 41

4. Choose a model for the neuronal neighborhood | lateral feedback function. See also

section 3.5 for some examples.

5. Choose a stop condition. See section 3.3.3.

6. Knowing the learning model, the neuronal neighborhood function and the stop condi-

tion, build the �nal equation giving the weight adaptation formula. See section 3.5.1

for an example of how to do this.

7. In discrete time approximation repeat the following steps till the stop condition is

met:

(a) Get the input vector x(t).

(b) For all neurons j in output layer, �nd the \winner" | the neuron k for which:

kx(t)�W (k; :)Tk = min
j=1;K

kx(t)�W (j; :)Tk

or, if working with normalized vectors:

W (k; :)x = max
j=1;K

W (j; :)x

(c) Knowing the winner, change weights by using the adaptation formula built at

step 6.

➧ 3.5 Applications

3.5.1 The Trivial Model with Forgetting Function

This application is without practical value but it shows how to build a weight adaptation

formula. It also gives some examples of neuronal neighborhood models. The topics discussed

here apply to many types of Kohonen networks.

Let choose the trivial equation (3.1) as learning model:

dW

dt
= �b1xT � �W (3.19)

Next let consider h(k; j) the function modelling neuronal neighborhood, i.e. the lateral ❖ h
neuronal

neighborhood

lateral feedback

feedback. This function should be of \mexican hat" type, i.e.

h(k; j)

8><>:
> 0 for j relatively close to k

6 0 for j far, but not too much, from k

= 0 for j far away from k

This function will be generally a function of \distance" between k and j, the distance being

user de�nable. Considering xk and xj the \coordinates" then h = h(jxj�xkj). Let xT(K) = ❖ x(K)�
x1 � � �xK

�
be the vector containing the neuron coordinates, then h(jx(K) � x(K)k

b1j) will
give the vector containing adaptation height around winner k, for the whole network.

42 CHAPTER 3. THE SOM/KOHONEN NETWORK

jk

h

k + n+ + n�

k + n+

h+

h�

Figure 3.3: The simple lateral feedback function.

To account for the neuronal neighborhood model chosen, equation (3.19) have to be changed

to:

dW

dt
=
h
h(jx(K) � x(K)k

b1j) b1Ti� h�b1xT � �W
i

(3.20)

Note that the elements of h(jx(K) � x(K)k
b1j) corresponding to neurons outside neuronal

neighborhood of winner are zero and thus, for these neurons:
dW (j;:)

dt
= 0, i.e. their weights

remain unchanged for current x.

Various neuronal neighborhood may be of the form:

� Simple lateral feedback function:

h(j; k) =

8>>>>><>>>>>:

h+ for j 2 fk � n+; : : : ; k; k + n+g (positive feedback)
�h� for j 2fk � n+ � n�; : : : ; k � n+ � 1g [

fk + n+ + 1; : : : ; k + n+ + n�g
(negative feedback)

0 in rest

where h� 2 [0; 1], h� = const. de�nes the height of positive/negative feedback and❖ h+, h�
n� > 1, n� 2 N de�nes the neural neighborhood. See �gure 3.3.

� Exponential lateral feedback function:

h(j; k) = h+e
�(k�j)2 ; for jj � kj 6 n

where h+ > 0, h+ = const. de�nes the positive feedback and there is no negative

one and n > 0, n = const. de�nes the neuronal neighborhood. See �gure 3.4 on the

facing page.

Finally the stop condition may be implemented by multiplying the right side of equationstop condition

❖ � (3.20) by a function �(t) with the property lim
t!1

�(t) = 0. This way (3.20) becomes:

dW

dt
= �(t)

h
h(jx(K) � x(K)k

b1j) b1Ti� h�b1xT � �W
i

(3.21)

3.5. APPLICATIONS 43

0�3 3

0

1

Figure 3.4: The exponential lateral feedback function h(x) = e�x
2

.

The convergence of �(t) to zero ensures that lim
t!1

dW
dt

= 0 and thus the weight adaptation,

i.e. learning process, stops eventually.

Various stop functions may be of the form:

� Geometrical progression function:

�(t) = �init�
t
ratio ; �init; �ratio 2 (0; 1) ; �init; �ratio = const.

where �init and �ratio are the initial/ratio values.

� Exponential function:

�(t) = �inite
�f(t)

where f(t) : N ! [0;1) is a monotone increasing function.

Note that for f(t) = t and t 2 N+ this function is a geometrical progression.

In discrete time approximation, using (3.21) into (3.18) gives:

W (t+ 1) =W (t) + �(t)
h
h(jx(K) � x(K)k

b1j) b1Ti� h�b1xT � �W
i

(3.22)

(note also that the winner k is also time dependent, i.e. x(K)k = x(K)k(x(t))).

✍ Remarks:

➥ The above considerations are easily extensible to multidimensional Kohonen net-

works. E.g. for a bidimensional K � K layer, considering the winner k, the
interneuronal Euclidean distance, squared, will be:

(x(K) � x(K)k
b1)�2 + (y(K) � y(K)k

b1)�2
y(K) holding the second coordinate. Of course h also changes to:

h = h((x(K) � x(K)k
b1)�2 + (y(K) � y(K)k

b1)�2)

44 CHAPTER 3. THE SOM/KOHONEN NETWORK

3.5.2 Square mapping

This example shows the mapping feature of a Kohonen network, a way (among many other

possibilities) to build multidimensional networks and possible defects in learning process.

Let be a Kohonen network with 2 inputs and 8�8 neurons (bidimensional output layer with

K = 8). The trivial equation model, in discrete time approximation, will be used here, see

section 3.5.1.

As the network is bidimensional will do the following changes:

� The \x" coordinates of neurons, in terms of interneuronal distances, are kept in a❖ X(K)

matrix X(K) of the form:

X(K) = b1 �1 2 � � � 8
�
=

0BB@
1 2 � � � 8

1 2 � � � 8

: : : : : : : : : : : : :
1 2 � � � 8

1CCA
while the \y" coordinates are:❖ Y(K)

Y(K) =

0BBB@
1

2
...

8

1CCCAb1T =

0BB@
1 1 � � � 1

2 2 � � � 2

: : : : : : : : : : : : :
8 8 � � � 8

1CCA
and it becomes immediately that the layout of network is (coordinates (x; y) are in

parentheses):

(1; 1) � � � (8; 1)
...

...

(1; 8) � � � (8; 8)

A particular neuron will be then identi�ed by two numbers (jx; jy).

� Considering (x(K)kxky ; y(K)kxyy) the coordinates of winner then the interneuronal❖ D(k)

squared distances may be kept in a matrix D(kx; ky) as:

D(kx; ky) = (X(K) � x(K)kxky
e1)�2 + (Y(K) � y(K)kxky

e1)�2
� The lateral feedback function is

h((kx; ky); t) = h+ exp

�
�
D(kx; ky)

(dinitd
t
rate)

2

�
where h+ = 0:6, dinit = 5 and drate = 0:993.

� The stop function is

�(t) = �init�
t
rate

where �init = 1 and �rate = 0:993.

� The weights are kept in two matrices W1 and W2 corresponding to the two compo-

nents of input vector. The weight vector associated to a particular neuron (jx; jy) is

(w1jxjy ; w2jxjy).

3.5. APPLICATIONS 45

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.0

0.1

0.20.0 0.1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.9

1.0

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0

Figure 3.5: Mapping of the [0; 1]� [0; 1] square by an 8� 8 network.

These are snapshots taken at t = 0 (upper-left), t = 7

(upper-right), t = 15 (lower-left) and t = 120 (lower-

right).

� The constants of trivial equation are taken to be � = 1 and � = 1.

Then the general weights updating formulas are:

W1(t+ 1) =W1(t) + �(t)h((kx; ky); t)�
h
x1(t)e1�W1(t)

i
W2(t+ 1) =W2(t) + �(t)h((kx; ky); t)�

h
x2(t)e1�W2(t)

i
The pair of weights associated with each neuron (w1jxjy ; w2jxjy) may also be represented as

points in the [0; 1]� [0; 1] square. A successful learning will try to cover as much as possible

of the area. See �gure 3.5 where the evolution of training is shown from t = 0 (upper{left)

to �nal stage (down{right). Lines are drawn between closest neighbors (network topology

wise). The weights are the points at intersections.

✍ Remarks:

➥ Even if the learning is unsupervised, in fact, a poor choice of learning parameters

(�, h+, e.t.c.) may lead to an incomplete learning. See �gure 3.6 on the

following page: small values of feedback function at the beginning of learning

makes the network to be unable to \deploy" itself fast enough leading to the

46 CHAPTER 3. THE SOM/KOHONEN NETWORK

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Figure 3.6: Incomplete learning of the [0; 1]� [0; 1] square by an 8�8

network.

appearance of a \twist' in the mapping. The network was the same as the one

used to generate �gure 3.5 including same inputs and same weights initial values.

The only parameters changed were: h+ = 0:35, dinit = 3:5, drate = 0:99 and

�rate = 0:9999.

CHAPTER 4

The BAM/Hopfield Memory

This network illustrate an associative memory. Unlike the classical von Neumann systems

where there is no link between memory address and its contents, in ANN, part of information

is used to retrieve the rest associated with it This kind of memory is named associative.

➧ 4.1 Associative Memory

De�nition 4.1.1. Let be P pairs of vectors f(x1;y1); : : : (xP ;yP)g with xp 2 RN and ❖ xp, vp, P

yp 2 RK , N;K;P 2 N+ called exemplars.

Then the mapping M : RN ! RK is said to implement an heteroassociative memory if: heteroassociative

memory
M(xp) = yp 8p = 1; P

M(x) = yp 8x such that kx� xpk < kx� x`k 8` = 1; P ; ` 6= p

De�nition 4.1.2. Let be P pairs of vectors f(x1;y1); : : : (xP ;yP)g with xp 2 RN and

yp 2 RK , N;K;P 2 N+ called exemplars.

Then the mapping M : RN ! RK is said to implement an interpolative associative interpolative asso-

ciative memorymemory if:

M(xp) = yp 8p = 1; P and

8d) 9 e such that M(xp + d) = yp + e ; d 2 RN ; e 2 RK ; d; e 6= b0
i.e. if x 6= xp, then y =M(x) 6= yp, 8p = 1; P .

4.1See [FS92] pp. 130{131.

47

48 CHAPTER 4. THE BAM/HOPFIELD MEMORY

The interpolative associative memory may be build from a set of orthonormal set of exem-

plars fxpg. The M function is then de�ned as:

M(x) =

PX
p=1

ypx
T
p

!
x (4.1)

Proof. Orthogonality of fxpg means that xTp x` = �p`, where �p` is the Kroneker symbol.Kroneker symbol

From equation 4.1:

M(x`) =

0@ PX
p=1

ypx
T

p

1Ax` = PX
p=1

ypx
T

p x` =
PX
p=1

yp�p` = y`

and for some x = x` + d:

M(x) =M(x` + d) = y` + e where e =
PX
p=1

ypx
T

p d

(obviously M(x` + d) =M(x`) +M(d)).

De�nition 4.1.3. Let be a set of P vectors fx1; : : :xP g with xp 2 RN and N;P 2 N+
called exemplars.

Then, the mapping M : RN ! RN is said to implement an autoassociative memory if:autoassociative

memory
M(xp) = xp 8p = 1; P

M(x) = xp 8x such that kx� xpk < kx� x`k 8` = 1; P ; ` 6= p

In general x will be used to denote the input vector and y the output vector into an

associative memory.

➧ 4.2 The BAM Architecture

The BAM (Bidirectional Associative Memory) implements a interpolative associative mem-

ory and consists of 2 layers of neurons fully interconnected.

The �gure 4.1 on the facing page shows the net as M(x) = y but the input and output

may swap places, i.e. the direction of connection arrows may be reversed and y play the

role of input, using the same weight matrix (but transposed, see below).

Considering the weight matrix W then the network output is y = Wx, i.e. the activation

function is identity f(x) = x.

According to (4.1), the weight matrix may be build using a set of orthogonal fxpg and the

associated fypg, as:

W =

PX
p=1

ypx
T
p (4.2)

4.2See [FS92] pp. 131{132.

4.3. BAM DYNAMICS 49

x layer

y layer

Figure 4.1: The BAM network structure.

If the fypg are also orthogonal then the network is reversible. Considering y layer as input

then:

x =WT
y

Proof. As for two matrices it is true that (AB)T = B
T
A
T then from (4.2):

W
T =

PX
p=1

xpy
T

p

By using the orthogonality property yTp y` = �p`, the proof is very similar to the one for (4.1) (replacing

x$ y).

✍ Remarks:

➥ According to (4.2) the weights can be computed exactly (within the limitations

of rounding errors).

➥ The activation function of neurons was assumed to be the identity: f(a) = a.

Because the output function of a neuron should be bounded so should be the

data network is working with (i.e. x and y vectors).

➥ The network can be used as autoassociative memory considering x � y. The

weight matrix becomes:

W =

PX
p=1

xpx
T
p

➧ 4.3 BAM Dynamics

4.3.1 Network Running

The BAM functionality di�er from others by the fact that weights are not adjusted dur-

ing a training period but calculated from the start from the set of vectors to be stored

fxp;ypgp=1;P .
4.3.1See [FS92] pp. 132{136.

50 CHAPTER 4. THE BAM/HOPFIELD MEMORY

The procedure is developed for vectors belonging to Hamming space1 H. Due to the fact

that most information can be encoded in binary form this is not a signi�cant limitation and

it does improve the reliability and speed of the net.

Bipolar vectors are used (with components having values either +1 or �1). A transition to

and from binary vectors (having component values either 0 or 1) can be easily done using

the following relation: x = 2ex�b1 where x is a bipolar (Hamming) vector and ex is a binary

vector.

From a set of vectors fxp;ypg the weight matrix is calculated by using (4.2). Both fxpg
and fypg have to be orthogonal because the network works in both directions.

The procedure works in discrete time approximation. An initial x(0) is applied to the input.

The goal is to retrieve a vector y` corresponding to the closest x` to x(0), where fx`;y`g
are from the exemplars set (stored into the net, at the initialization time, by the mean of

the calculated weight matrix).

The information is propagated forward and back between layers x and y till a stable state

is reached and subsequently a pair fx`;y`g belonging to the set of exemplars is found (at

the output of x respectively y layers).

The procedure is as follows:

� At t = 0 the x(0) is applied to the net and the corresponding y(0) = Wx(0) is

calculated.

� The outputs of x and y layers are propagated back and forward, till a stable state is

reached, according to the formulas (for convenience [W (:; i)]T �W (:; i)T):

xi(t+ 1) = f(W (:; i)T y(t)) =

8>>><>>>:
+1 if W (:; i)T y(t) > 0

xi(t) if W (:; i)T y(t) = 0

�1 if W (:; i)T y(t) < 0

; i = 1; N

yj(t+ 1) = f(W (j; :)x(t + 1)) =

8>>><>>>:
+1 if W (j; :)x(t+ 1) > 0

yj(t) if W (j; :)x(t+ 1) = 0

�1 if W (j; :)x(t+ 1) < 0

; j = 1;K

Note that the activation function f is not the identity.

In matrix notation the formulas may be written as:

x(t+ 1) = sign(WT
y(t)) + j sign(WT

y(t))jC � x(t)

y(t+ 1) = sign(Wx(t+ 1)) + j sign(Wx(t + 1))jC � y(t)
(4.3)

and the stable condition means: sign(WT
y(t)) = sign(Wx(t + 1)) = b0.

Proof. sign(WT
y(t)) gives the correct (�1) values of x(t + 1) for the changing components and

make xi(t+ 1) = 0 if W (:; i)Ty = 0.

The vector j sign(Wy(t))jC have its elements equal to 1 only for those xi components which have

to remain unchanged and thus restores the values of x to the previous ones (only for those elements

requiring it).

1See math appendix.

4.3. BAM DYNAMICS 51

The proof for second formula is similar.

Convergence of the process is ensured by theorem 4.3.1.

When working in reverse y(0) is applied to the net, x(0) = WT
y(0) is calculated and the

formulas change to:

y(t+ 1) = sign(Wx(t)) + j sign(Wx(t))jC � y(t)

x(t+ 1) = sign(WT
y(t + 1)) + j sign(WT

y(t + 1))jC � x(t)
(4.4)

4.3.2 The BAM Energy Function

De�nition 4.3.1. The following function: ❖ E
BAM energy

functionE(x;y) = �yTWx (4.5)

is called BAM energy function
2.

Theorem 4.3.1. The BAM energy function have the following properties:

1. Any change in x or y during BAM running results in a decrease in E i.e.:

Et+1(x(t + 1);y(t+ 1)) 6 Et(x(t);y(t))

2. E is bounded below by Emin = �
P
j;i

jwjij.

3. When E changes it must change by an �nite amount, i.e. �E = Et+1 �Et is �nite.

Proof. 1. Let consider that just one component k of vector y changes from t to t+1, i.e. yk(t+1) 6= yk(t).

Then from equation (4.5):

�E = Et+1 �Et =

=

0BB@� NX
i=1

yk(t+ 1)wkixi �
KX
j=1

j 6=k

NX
i=1

yjwjixi

1CCA�

0BB@� NX
i=1

yk(t)wkixi �
KX
j=1

j 6=k

NX
i=1

yjwjixi

1CCA
= [yk(t) � yk(t + 1)]

NX
i=1

wkixi = [yk(t) � yk(t+ 1)]W (k; :)x

According to the updating procedure, see section 4.3.1:

yk(t + 1) =

8><>:
+1 if W (k; :)x > 0

yk(t) if W (k; :)x = 0

�1 if W (k; :)x < 0

As it was assumed that yk changes then there are two cases

� yk(t) = +1 and it changes to yk(t + 1) = �1. Then yk(t) � yk(t + 1) > 0 and W (k; :)x < 0

(according to the algorithm) so �E < 0.

� yk(t) = �1 and it changes to yk(t+ 1) = +1. Analogous the preceding case: �E < 0.

4.3.2See [FS92] pp. 136{141.
2This is the Liapunov function for BAM. All state change, with respect to time (x = x(t) and y = y(t))

involves a decrease in the value of the function.

52 CHAPTER 4. THE BAM/HOPFIELD MEMORY

If more than one term is changing then �E is of the form:

�E = Et+1 �Et =
KX
k=1

�ykW (k; :)x < 0

which represents a sum of negative terms.

A similar discussion may be performed for an x change.

2. The fyjgj=1;K
and fxigi=1;N

have all values either +1 or �1.

The lowest possible value for E is obtained when all sum terms yjwjixi (see (4.5)) are positive.

Emin = �
X
j;i

jyjwjixij = �
X
j;i

jyj jjwjijjxij = �
X
j;i

jwjij

3. The energy function decreases, it doesn't increase, so �E 6= +1. On the other hand the energy function

is limited on the low end (according to the second part of the theorem) so it cannot decrease by an in�nite

amount: �E 6= �1.

Also the value of �E can't be in�nitesimally small resulting into an in�nite amount of time before it reaches

it's minimum. The minimum amount by which E may change is that k for which W (k; :)x is minimum

and occurs when yk is changing; the minimum amount being:

�E = �2jW (k; :)xj

because jyk(t) � yk(t+ 1)j = 2.

Proposition 4.3.1. If the input pattern x` is exactly one of stored fxpg then the corre-

sponding y` is retrieved.

Proof. Theorem 4.3.1 ensures convergence of the process.

According to the procedure, eventually a vector y = sign(Wx`) is obtained. The zeros generated by sign

disappear by procedure de�nition: previous values of yj are kept instead. But as xpx` = �p` (orthogonality)

then:

y = sign(Wx`) = sign

0@ PX
p=1

ypx
T

p x`

1A = sign

0@ PX
p=1

yp�p`

1A = sign(y`) = y`

✍ Remarks:

➥ The existence of BAM energy function with the outlined properties ensures that

the running process is convergent and a for any input vector and solution is

reached in �nite time.

➥ If an input vector is slightly di�erent from one of the stored, i.e. there is noise in

data, then the corresponding associated vector is eventually retrieved. However

the process is not guaranteed. Results may vary depending upon the amount of

noise and the saturation of memory (see below).

➥ The theoretical upper limit (number of vectors to be stored) of BAM is 2N�1

(i.e. 2N=2 because the x and �x carry the same amount of information due to

symmetry). But if the possibility to work with noisy data is sought then the

real capacity is much lower. A crosstalk may appear (a di�erent vector from thecrosstalk

desired one is retrieved).

➥ The Hamming vectors are symmetric with respect to the �1 notation. For this

reason an Hamming vector u carry the same information as its complement xC

4.4. THE BAM ALGORITHM 53

and a BAM network stores automatically both, because xC = �x and yp =Wxp,

8p = 1; P so:

y
C
p = �yp = �Wxp =W (�xp) =Wx

C
p

such that the same W matrix is used.

➥ When trying to retrieve a vector, if the initial one x(0) is closer to the complement

of an stored one xCp then the complement pair will be retrieved fxC;yCg (because
both exemplars and their complements are stored with equal precedence).

The conclusion is that BAM stores the direction of the exemplar vectors and

not their values.

➧ 4.4 The BAM Algorithm

Network initialization

The weight matrix is calculated directly from the desired set to be stored:

W =

PX
p=1

ypx
T
p

Note that there is no learning process. Weights are directly initialized with their �nal values.

Network running forward

The network runs in discrete time approximation. Given x(0), calculate y(0) =Wx(0)

Propagate: repeat the following steps

x(t+ 1) = sign(WT
y(t)) + j sign(WT

y(t))jC � x(t)

y(t + 1) = sign(Wx(t+ 1)) + j sign(Wx(t+ 1))jC � y(t)

till network stabilize, i.e. sign(WT
y(t)) = sign(Wx(t+ 1)) = b0.

Note that in both forward and backward running cases the intermediate vectors Wx or

WT
y may not be of Hamming type.

Network running backwards

In the same discrete time approximation, given y(0), calculate x() = WT
y(0). Then

propagate using the formulas:

y(t + 1) = sign(Wx(t)) + j sign(Wx(t))jC � y(t)

x(t + 1) = sign(WT
y(t + 1)) + j sign(WT

y(t + 1))jC � x(t)

till the network stabilize, i.e. sign(WT
y(t)) = sign(Wx(t + 1)) = b0.

54 CHAPTER 4. THE BAM/HOPFIELD MEMORY

,

x layer

y layer

Figure 4.2: The autoassociative memory structure.

input x

Figure 4.3: The Hop�eld network structure.

➧ 4.5 The Hopfield Memory

4.5.1 The Discrete Hop�eld Memory

Let consider an autoassociative memory. The weight matrix, build from a set fypg is:

W =

PX
p=1

ypy
T
p

and it's square (K �K) and symmetric (W =WT).

An autoassociative memory is similar to a BAM with the remark that the 2 layers (x and

y) are identical. In this case the 2 layers may be replaced with one fully interconnected

layer, including a feedback for each neuron | see �gure 4.2: the output of each neuron is

connected to the inputs of all neurons, including itself.

The discrete Hop�eld memory is build from the autoassociative memory described above by

replacing the autofeedback (feedback from a neuron to itself) by an external input signal x

| see �gure 4.3.❖ x

The di�erences from autoassociative memory or BAM are as follows:

4.5.1See [FS92] pp. 141{144.

4.5. THE HOPFIELD MEMORY 55

➀ The discrete Hop�eld memory is working with binary vectors rather than bipolar ones

| see section 4.3.1 | so here and below the y vectors are considered binary and so

are the input x vectors.

➁ The weight matrix is obtained from the following matrix:

PX
p=1

(2yp � b1)(2yp � b1)T
by replacing the diagonal values with 0 (zeroing the diagonal elements of W is im-

portant for a e�cient matrix notation3).

➂ The algorithm is similar with the BAM one but the updating formula is:

yj(t+ 1) =

8>>>>>>>>>>><>>>>>>>>>>>:

+1 if
KP
i=1
i6=j

wjiyi + xj > tj

yj(t) if
KP
i=1
i6=j

wjiyi + xj = tj

0 if
KP
i=1
i6=j

wjiyi + xj < tj

(4.6)

where the ftjgj=1;K = t is named the threshold vector. ❖ t

In matrix notation the equation become:

A(t) = sign(Wy(t) + x� t)

y(t+ 1) =
1

2

h
A(t) + b1� jA(t)jCi+ jA(t)jC � y(t)

Proof. First as diagonal elements of W are zero (wii = 0) then
KP
i=1

i6=j

wjiyi = W (j; :)y. Also the

elements of A(t) + b1 are:

fA(t) + b1gj =
8><>:
2 if W (j; :)y + xj > tj

1 if W (j; :)y + xj = tj

0 if W (j; :)y + xj < tj

and the elements of jAjC are:

fjAjCgj =
(
1 if W (j; :)y + xj = tj

0 otherwise

De�nition 4.5.1. The following function: ❖ E

E = �
1

2
y
TWy � y

T(x� t) (4.7)

is named the discrete Hop�eld memory energy function.

3This helps towards an e�cient simulation implementation as well.

56 CHAPTER 4. THE BAM/HOPFIELD MEMORY

✍ Remarks:

➥ Comparing to the BAM energy function the discrete Hop�eld energy function

have a factor of 1=2 because there is just one layer of neurons (in BAM both

forward and backward passes contribute to the energy function).

Theorem 4.5.1. The discrete Hop�eld energy function have the following properties:

1. Any change in y (during running) results in a decrease in E:

Et+1(y(t + 1)) 6 Et(y(t))

2. E is bounded below by:

Emin = �
1

2

X
j;i

jwjij �K

3. When E changes it must change by an �nite amount, i.e. �E = Et+1 �Et is �nite.

Proof. 1. Consider that, from t to t+ 1, just one component of vector y changes: yk. Then from (4.7):

�E = Et+1 � Et =

= 2[yk(t + 1) � yk(t)]

�
�1

2

KX
i=1

i6=k

wkiyi

�
� (xk + tk)[yk(t + 1) � yk(t)]

because in the sum
KP

i;j=1

i6=j

yjwjiyi, yk appears twice: once at the left and once at the right and wij = wji.

According to the updating procedure (4.6):

yk(t + 1) =

8>>>>>>>>>>><>>>>>>>>>>>:

+1 if �
KP
i=1

i6=k

wkiyi � xk + tk < 0

yk(t) if �
KP
i=1

i6=k

wkiyi � xk + tk = 0

0 if �
KP
i=1

i6=k

wkiyi � xk + tk > 0

there are 2 cases (it was assumed that yk(t + 1) 6= yk(t)):

� yk(t) = +1 and it changes to yk(t+1) = 0. Then [yk(t+1)�yk(t)] < 0 and �
KP
i=1

i6=k

wkiyi�xk+ti > 0

(according to the algorithm) so �E < 0.

� yk(t) = 0 and it changes to yk(t + 1) = +1. Analogous the preceding case: �E < 0.

If more than one term is changing then �E is of the form:

�E = Et+1 �Et =
KX
j=1

�yj

KX
i=1

i6=j

wjiyi � xj + tj

!
< 0

which represents a sum of negative terms.

2. The fyigi=1;K
have all values either +1 or 0. The lowest possible value for E is obtained when

fyigi=1;K
= 1, the input vector is also x = b1 and the threshold vector is t = b0 such that the negative

4.5. THE HOPFIELD MEMORY 57

terms are maximum and the positive term is minimum (see (4.7)), assuming that all wji > 0, i; j = 1;K.

Emin = �1

2

KX
j;i=1

j 6=i

jwjij �K

3. The energy function decreases, it doesn't increase, so �E 6= +1. On the other hand the energy function

is limited on the low end (according to the second part of the theorem) so it cannot decrease by an in�nite

amount: �E 6= �1.

Also the value of �E can't be in�nitesimally small resulting into an in�nite amount of time before it reaches

it's minimum. The minimum amount by which E may change is when just one component k is changing,

for which W (k; :)y is minimum, xk = 1 and tk = 0, the amount being:

�E = �
�����
KX
i=1

i6=k

wkiyi

������ xk

(yk appears twice: once at the left and once at the right and wij = wji).

✍ Remarks:

➥ The existence of discrete Hop�eld energy function with the outlined properties

ensures that the running process is convergent and a solution is reached in �nite

time.

4.5.2 The Continuous Hop�eld Memory

The continuous Hop�eld memory model is similar to the discrete one except for the activa-

tion function of the neuron which is of the form:

f(a) =
1 + tanh(�a)

2
; � = const. ; � 2 R+

where � is called the gain parameter . See �gure 4.4 on the next page. The inverse of ❖ f , �, f (�1)

gain parameteractivation is:

f (�1)(y) =
1

2�
ln

y

1� y
(4.8)

See �gure 4.5 on the following page.

The di�erential equation governing the evolution of continuous Hop�eld memory is de�ned

as:

daj
dt

=

KX
i=1
i6=j

wjiyi + xj �
1

�
tjaj (4.9)

or in matrix notation:

da

dt
=Wy + x�

1

�
t� a

4.5.2See [FS92] pp. 144{148.

58 CHAPTER 4. THE BAM/HOPFIELD MEMORY

f(a)
1:0

0:0

�1:0

 = 1

 = 3 a

1:0

 = 50

Figure 4.4: The neuron activation function for continuous Hop�eld

memory (for di�erent values).

f (�1)(y)
1:0

�1:0
0:0

y

1:0

 = 1

 = 3

 = 50

Figure 4.5: The inverse of neuron activation function for continuous

Hop�eld memory (for di�erent values).

In discrete time approximation the updating procedure may be written as:

y(t + 1) = y(t) +

�
Wy(t) + x�

1

�
t� ln

y(t)b1� y(t)

�
� y(t) � [b1� y(t)] (4.10)

(of course operations under ln function are done on each yj separately).

Proof. From (4.9):

df
(�1)(yj)

dt
=

KX
i=1

i6=j

wjiyi + xj �
1

�
tjf

(�1)(yj)

df
(�1)(yj) = d

�
ln

yj

1� yj

�
=

�
1

yj

+
1

1� yj

�
dyj =

1

yj(1� yj)
dyj)

dyj =

KX
i=1

i6=j

wjiui + xj �
1

�
tj ln

yj

1� yj

!
yj(1� yj) dt

and in discrete time approximation dt! �t = t+ 1� t = 1.

4.5. THE HOPFIELD MEMORY 59

De�nition 4.5.2. The following function: ❖ E

E = �
1

2

KX
i;j=1
i6=j

yjwjiyi �
KX
j=1

xjyj +
1

KX
j=1

tj

yjZ
0

f (�1)(y0) dy0 (4.11)

is named the continuous Hop�eld memory energy function.

Theorem 4.5.2. The continuous Hop�eld energy function have the following properties:

1. Any change in y as a result of running (evolution) results in a decrease in E, i.e.

dE

dt
6 0

2. E is bounded below by:

Emin = �
1

2

KX
j;i=1
j 6=i

jwjij �K

Proof. 1. First: Z
ln xdx = x lnx� x)

Z
ln

x

1� x
dx = ln e�1xx(1� x)1�x

lim
x&0

ln xx = lim
x&0

ln x
1

x

(L'Hospital)
= lim

x&0

�x = 0

yiZ
0

ln
y0

1� y0
dy
0 = lim

y0&0

yiZ
y0

ln
y0

1� y0
dy
0 =

= ln yyi
i (1 � yi)

1�yi � lim
y0&0

ln yy0
0
(1� y0)

1�y0 = ln yyi
i (1� yi)

1�yi

d

dt
ln y

yi
i (1 � yi)

1�yi =
d

dyi

�
ln y

yi
i (1� yi)

1�yi
� dyi
dt

=

= (ln yi � ln(1� yi))
dyi

dt
= f

(�1)(yi)
dyi

dt

then, from (4.11) and using (4.9):

dE

dt
= �

KX
j=1

KX
i=1

i6=j

wjiui + xj �
1

tjaj

!
dyj

dt

= �
KX
j=1

daj

dt

dyj

dt
= �

KX
j=1

df
(�1)(yj)

dyj

�
dyj

dt

�
2

< 0

because
df(�1)(yj)

dyj
= 1

yj(1�yj)
> 0 (yj 2 (0; 1)) such that dE

dt
is always negative and E decreases in time.

2. The lowest possible value for E is obtained when fyjgj=1;K
= 1, the input vector is also x = b1 and

the threshold vector is t = b0, such that the negative terms are maximum and the positive term is minimum

(see (4.11)), assuming that all wji > 0, i; j = 1;K.

Emin = �1

2

KX
j;i=1

j 6=i

jwjij �K

60 CHAPTER 4. THE BAM/HOPFIELD MEMORY

✍ Remarks:

➥ The existence of continuous Hop�eld energy function with the outlined properties

ensures that the running process is convergent.

➥ While the process is convergent there is no guarantee that the process will con-

verge to the lowest energy value.

➥ For ! +1 then the continuous Hop�eld becomes identical to the discrete one.

Otherwise:

� For ! 0 then there is only one stable state for the network when y = 1
2
b1.

� For 2 (0;+1) the stable states are somewhere between the corners of

Hamming hypercube (having its center at 1
2
b1) and its center such that as

the gain decreases from +1 to 0 the stable points moves from corners

towards the center and at some point they may merge.

➧ 4.6 Applications

4.6.1 The Traveling Salesperson Problem

This example shows a practical problem of scheduling, e.g. as it arises in communication

networks. A bidimensional Hop�eld continuous memory is being used. It is also a classical

example of an NP-problem but solved with the help of an ANN.

The problem: A traveling salesperson must visit a number of cities, each only once. Moving

from one city to other have a cost e.g. the intercity distance associated. The cost/distance

traveled must be minimized. The salesperson have to return to the starting point.

The problem is of NP (non-polynomial) type.

Proof. Assuming that there are K cities there will be K! paths. For a given tour it doesn't matter which

city is �rst (one division by K) nor does matter the direction (one division by 2). So the number of di�erent

of paths is (K � 1)!=2 (K > 3 otherwise a circuit is not possible).

Adding a new city to the previous set means that now there are K!=2 routes. That means an increase in

the number of paths by a factor of:

K!=2

(K � 1)!=2
= K

so for a arithmetic progression growth of the problem the space of possible solutions grows exponentially.

Let C1; : : : ; CK be the cities involved. To each of theK cities is attached a vector which rep-❖ Ci
resents a number, converted to a binary form, of the order of visiting in the current tour, i.e.

the �rst one to be visited have:
�
1 0 : : : 0

�
, the second one have:

�
0 1 0 : : : 0

�
and so on, the last one to be visited having attached the vector:

�
0 : : : 0 1

�
; i.e. each

vector have one digit \1", all other elements being \0" (this format is di�erent from the

binary representation of the city number j as cities are not visited in their numbering order).

Having the cities C1; : : : ; CK , a squared matrix can be build using their associate vectors

as rows. Because the cities aren't necessary visited in their listed order the matrix is not

4.6.1See [FS92] pp. 148{156.

4.6. APPLICATIONS 61

necessary diagonal.

1 : : : j1 : : : j2 : : : K

1 : : : 0 : : : 0 : : : 0 C1

: :
...

0 : : : 1 : : : 0 : : : 0 Ck1
...

...
...

0 : : : 0 : : : 1 : : : 0 Ck2

: :
...

0 : : : 0 : : : 0 : : : 1 CK

(4.12)

This matrix de�nes the tour: for each column j = 1;K pickup as next city the one having

the corresponding row element equal to 1.

The idea is to build a bidimensional Hop�eld memory such that its output is a matrix Y
(not a vector) having the layout (4.12) and this will give the solution (as each row will

represent the visiting order number in binary format of the respective city).

In order to be an acceptable solution, the Y matrix have to have the following properties:

➀ Each city must not be visited more that once, Each row of the matrix (4.12) should

have no more that one \1", all others elements should be \0".

➁ Two cities can not be visited at the same time (can't have the same order number)

, Each column of the matrix (4.12) should have no more than one \1" all others

elements should be \0".

➂ All cities should be visited , Each row or column of the matrix (4.12) should have

at least one \1".

➃ The total distance/cost of the tour should be minimised. Let dk1k2 be the dis-

tance/cost between cities Ck1 and Ck2 . ❖ dk1k2

As the network is bidimensional, each weight have 4 subscripts: wk2j2k1j1 is the weight

from neuron frow k1; column j1g to neuron frow k2; column j2g. See �gure 4.6 on the

next page.

✍ Remarks:

➥ When using bidimensional Hop�eld networks all the established results will be kept

but each subscript will split in 2 giving the row and column position (instead of

one giving the column position).

The weights cannot be build from a set of some fY`g as these are not known (the idea is

to �nd them) but they may be build considering the following reasoning:

➀ A city must appear only once in a tour: this means that one neuron on a row must

inhibit all others on the same row such that in the end only one will have active output

1, all others will have 0. Then the weight should have a term of the form: ❖ A

w
(1)

k2j2k1j1
= �A�k1k2(1� �j1j2) ; A 2 R+ ; A = const.

where ��� is the Kroneker symbol. This means all w
(1)

k2j2k1j1
= 0 for neurons on

62 CHAPTER 4. THE BAM/HOPFIELD MEMORY

1 j1 j2 K

C1

Ck2

CK

Ck1
w1Kk1j1

wK1k1j1

wKKk1j1

wk2j2k1j1

w11k1j1

Figure 4.6: The bidimensional Hop�eld memory and its weight rep-

resentation.

di�erent rows, w
(1)

k1j2k1j1
< 0 for a given row k1 if j1 6= j2 and w

(1)

k1j1k1j1
= 0 for

feedback.

➁ There must be no cities with the same order number in a tour: this means that one

neuron on a column must inhibit all others on the same column such that in the end

only one will have active output 1, all others will have 0. Then the weight should

have a term of the form:❖ B

w
(2)

k2j2k1j1
= �B�j1j2(1� �k1k2) ; B 2 R+ ; B = const.

This means all w
(2)

k2j2k1j1
= 0 for neurons on di�erent columns, w

(2)

k2j1k1j1
< 0 for a

given column if k1 6= k2 and w
(2)

k1j1k1j1
= 0 for feedback.

➂ Most of the neurons should have output 0 so a global inhibition may be used. Then

the weight should have a term of the form:❖ C

w
(3)

k2j2k1j1
= �C ; C 2 R+ ; C = const.

i.e. all neurons receive the same global inhibition / C.

➃ The total distance/cost have to be minimized so neurons receive a inhibitory input

proportional with the distance between cities represented by them. Only neurons on

adjacent columns, representing cities which may came before or after the current city

in the tour order (only one will actually be selected) should receive this inhibition:❖ D

w
(4)

k2j2k1j1
= �Ddk1k2(�j1;j02+1 + �j1;j002 �1) ; D 2 R+ ; D = const.

where j02 =

(
0 if j1 = 1 and j2 = K

j2 in rest
and j002 =

(
K + 1 if j1 = K and j2 = 1

j2 in rest

to take care of special cases j1 = 1 and j1 = K. The term �j1;j02+1 takes care of❖ j02, j
00
2

the case when column j2 came before j1 (column K came \before" column 1) while

�j1;j002 �1 operate similar for the case when j2 came after j1.

4.6. APPLICATIONS 63

Finally, the weights are:

wk2j2k1j1 = w
(1)

k2j2k1j1
+ w

(2)

k2j2k1j1
+ w

(3)

k2j2k1j1
+ w

(4)

k2j2k1j1
(4.13)

= �A�k1k2(1� �j1j2)�B�j1j2(1� �k1k2)� C �Ddk1k2(�j1;j02+1 + �j1;j002 �1)

Taking Y = fykjg be the network output (matrix) and considering X = Ce1 as input (again
matrix) and T = e0 as the threshold (matrix again) then from the de�nition of continuous

Hop�eld energy function (4.11) and using the weights (4.13):

E =
1

2
A

KX
k=1

KX
j1;j2=1
j1 6=j2

ykj1ykj2 +
1

2
B

KX
k1;k2=1
k1 6=k2

KX
j=1

yk1jyk2j +

+
1

2
C

KX
k1;k2=1

KX
j1;j2=1

yk1j1yk2j2 +
1

2
D

KX
k1;k2=1
k1 6=k2

KX
j=1

dk1k2yk1j(yk2;j0+1 + yk2;j00�1)

� CK

KX
k=1

KX
j=1

ykj

=
1

2
A

KX
k=1

KX
j1;j2=1
j1 6=j2

ykj1iukj2 +
1

2
B

KX
j=1

KX
k1;k2=1
k1 6=k2

yk1jyk2j +

+
1

2
C

0@ KX
k=1

KX
j=1

ykj �K

1A2

+
1

2
D

KX
k1;k2=1
k1 6=k2

KX
j=1

dk1k2yk1j(yk2;j0�1 + yk2;j00+1)

�
1

2
CK2

= E1 +E2 +E3 +E4 �
1

2
CK2 (4.14)

where j0 =

(
j if j 6= 1

K if j = 1
and j00 =

(
j if j 6= K

1 if j = K
. ❖ j0, j00

According to theorem 4.5.2, during network running the energy (4.14) decreases and reaches

a minima. This may be interpreted as follows:

➀ Energy minimum will favor states that have each city only once in the tour:

E1 =
1

2
A

KX
k=1

KX
j1;j2=1
j1 6=j2

ykj1ykj2

which reaches minimum E1 = 0 if and only if each city appears only once in the tour

such that the products ykj1ykj2 are either of type 1 � 0 or 0 � 0, i.e. there is only one
1 in each row of the matrix (4.12).

The 1=2 factor means that the terms ykj1ykj2 = ykj2ykj1 will be added only once,

not twice.

64 CHAPTER 4. THE BAM/HOPFIELD MEMORY

➁ Energy minimum will favor states that have each position of the tour occupied by

only one city, i.e. if city Ck1 is the k2-th to be visited then any other city can't be in

the same k2-th position in the tour:

E2 =
1

2
B

KX
j=1

KX
k1;k2=1
k1 6=k2

yk1jyk2j

which reaches minimum E2 = 0 if and only if each city have di�erent order number

in the tour such that the products yk1jyk2j are either of type 1 � 0 or 0 � 0, i.e. there
is only one 1 in each column of the matrix (4.12).

The 1=2 factor means that the terms yk1jyk2j = yk2jyk1j will be added only once,

not twice.

➂ Energy minimum will favor states that have all cities in the tour:

E3 =
1

2
C

0@ KX
k=1

KX
j=1

ykj �K

1A2

reaching minimum E3 = 0 if all cities are represented in the tour, i.e.
KP
k=1

KP
j=1

ykj = K

| the fact that if a city was present, it was once and only once was taken care in

previous terms (there are K and only K \ones" in the whole matrix (4.12)).

The squaring shows that the module of the di�erence is important (otherwise energy

may decrease for an increase of the number of missed cities, i.e. either
KP
k=1

KP
j=1

ykj 7 K

is bad).

➃ Energy minimum will favor states with minimum distance/cost of the tour:

E4 =
1

2
D

KX
k1;k2=1
K1 6=k2

KX
j=1

dk1k2yk1j(yk2;j0+1 + yk2;j00�1)

If yk1j = 0 then no distance will be added. If yk1j = 1 then 2 cases arises:

(a) yk2;j+1 = 1 that means that the city Ck2 is the next one in the tour and the

distance dk1k2 will be added: dk1k2yk1jyk2;j+1 = dk1k2 .

(b) yk2;j+1 = 0 that means that the city Ck2 isn't the next one on the tour and the

corresponding distance will not be added: dk1k2yk1jyk2;j+1 = 0.

Similar discussion for yk2;j�1.

The 1=2 means that the distances dk1k2 = dk2k1 will be added only once, not twice.

From previous terms it should be only one digit \1" on each row so a distance dk1k2
should appear only once (the factor 1=2 was considered).

➄ The term � 1
2
CK2 is just an additive constant, used to create the square in E3.

4.6. APPLICATIONS 65

To be able to use the running procedure (4.10), a way to convert fwk2j2k1j1g to a matrix

and fykjg to a vector should be found. As indices fk; jg work in pairs this can be easily

done using the lexicographic convention:

wk2j2k1j1 ! ew(k2�1)K+j2;(k1�1)K+j1

ykj ! ey(k�1)K+j

The graphical representation of Y ! ey transformation is very simple: take each column of

Y T and \glue" it at the bottom of previous one. The inverse transformation of ey to get Y
is also very simple:

ey` ! ymodK`+1; `�KmodK`

The updating formula (4.10) then becomes:

ey(t+ 1) = ey(t) + hfW ey(t) + Cb1i� ey(t)� [b1� ey(t)]
and the A, B, C and D constants are used to tune the process.

CHAPTER 5

The Counterpropagation Network

The counterpropagation network | CPN | is an example of an ANN interconnectivity. CPN

From some subnetworks, a new one is created, to form a reversible, heteroassociative mem-

ory1.

➧ 5.1 The CPN Architecture

Let be a set of vector pairs (x1;y1); : : : ; (xP ;yP) who may be classi�ed into several classes
C1; : : : ; CH . The CPN associate an input x vector with an hyik 2 Ck for which the ❖ Ck, hxik, hyik
corresponding hxik is closest to input x. hxik and hyik are the averages over those xp,

respectively yp who are from the same class Ck.

CPN may also work in reverse, inputting an y and retrieving an hxik .

The CPN architecture consists of 5 layers on 3 levels. The input level contains x and y
layers; the middle level contains the hidden layer and the output level contains the x0 and
y0 layers. See �gure 5.1 on the following page. Note that each neuron on x layer, input

level, receive the whole x (and similar for y layer) and also there are direct links between

input and output levels.

Considering a trained network an x vector is applied, y = b0 at input level and the corre-

sponding vector hyik is retrieved. When running in reverse an y vector is applied, x = b0 at

input level and the hyik is retrieved. Both cases are identical, only the �rst will be discussed

in detail.

1See "The BAM/Hop�eld Memory" chapter for de�nition.
5.1See [FS92] pp. 213{234.

67

68 CHAPTER 5. THE COUNTERPROPAGATION NETWORK

level

input

hidden

level

output

level

xpz }| { ypz }| {

| {z }
y
0
p

| {z }
x
0
p

Figure 5.1: The CPN architecture.

This functionality is achieved as follows:

� The �rst level normalize the input vector.

� The second level (hidden layer) does a classi�cation of input vector, outputting an one-

of-k encoded classi�cation, i.e. the outputs of all hidden neurons are zero with the

exception of one: and the number/label of its corresponding neuron identi�es the input

vector as belonging to a class (as being closest to some particular, \representative",

previously stored, vector).

� Based on the classi�cation performed on hidden layer, the output layer actually retrieve

a \representative" vector.

All three subnetworks are quasi-independent and training at one level is performed only after

the training at previous level have been �nished.

5.1.1 The Input Layer

Let consider the x input layer2 Let be N the dimension of vector x and K the dimension of

vector y. Let zx be the output vector of the input x layer. See �gure 5.2 on the next page.❖ zx

The input layer have to achieve a normalization of input; this may be done if the neuronal

activity on the input layer is de�ned as follows:

� each neuron receive a positive excitation proportional to it's corresponding input, i.e.

+Bxi, B = const., B > 0,❖ B

2An identical discussion goes for y layer, as previously speci�ed.

5.1. THE CPN ARCHITECTURE 69

level

input

xz }| {

| {z }
zx

Figure 5.2: The input layer.

� each neuron receive a negative excitation from all neurons on the same layer, including

itself, equal to �zxixj ,

� the input vector x is applied at time t = 0 and removed (x becomes b0) at time t = t0,
and

� in the absence of input xi, the neuronal output zxi decrease to zero following an

exponential, de�ned by A = const., A > 0, i.e. zxi / e�At. ❖ A

Then the neuronal behaviour may be summarized into:

dzxi
dt

= �Azxi +Bxi � zxi

NX
j=1

xj for t 2 [0; t0)

dzxi
dt

= �Azxi for t 2 [t0;1)

or in matrix notation:

dzx
dt

= �Azx +Bx� zxi(x
Tb1)b1 for t 2 [0; t0) (5.1a)

dzx
dt

= �Azx for t 2 [t0;1) (5.1b)

The boundary conditions are zx(0) = b0 (starts from b0, no previously applied signal) and

lim
t!1

zx(t) = b0 (returns to b0 after the signal have been removed). For continuity purposes

the condition lim
t%t0

zx(t) = lim
t&t0

zx(t) should be imposed. With these limit conditions, the

solutions to (5.1a) and (5.1b) are:

zx =
Bx

A+ xTb1
n
1� exp

h
�
�
A+ x

Tb1� tio for t 2 [0; t0) (5.2a)

zx =
Bx

A+ xTb1
n
1� exp

h
�
�
A+ x

Tb1� t0io e�A(t�t0) for t 2 [t0;1) (5.2b)

70 CHAPTER 5. THE COUNTERPROPAGATION NETWORK

Proof. 1. From (5.1a), for t 2 [0; t0):

dzx

dt
+
�
A+ x

Tb1� zxib1 = Bx) dzxi

dt
+

0@A+
NX
j=1

xj

1A zxi = Bxi

First a solution for the homogeneous equation is to be found:

dzxi

dt
+

0@A+
NX
j=1

xj

1A zxi = 0) dzxi

zxi

= �
0@A+

NX
j=1

xj

1A dt)

zxi = zxi0 exp

24�
0@A+

NX
j=1

xj

1A t

35
where zx0 is the integral constant.❖ zx0

The general solution to the non-homogeneous equation is found considering zxi0 = zxi0(t). Then from

(5.1a) (xi = const.):

dzxi0

dt
exp

24�
0@A+

NX
j=1

xj

1A t

35 = Bxi)

zxi0 =

Z
Bxi exp

240@A+
NX
j=1

xj

1A t

35 dt = Bxi

A+
nP
j=1

xj

exp

240@A+
NX
j=1

xj

1A t

35)

zxi =
Bxi

A+
NP
j=1

xj

! = const.

This solution is not convenient because it will mean an instant jump from 0 to maximal value for zxi when

x is applied (see the initial condition) or it will be the trivial solution zx = x = 0. As it was obtained in the

assumption that
dzxi0
dt

6= 0, this means that this is not valid and thus zxi0 have to be considered constant.

Then the general solution to (5.1a) is:

zxi = zxi0 exp

24�
0@A+

NX
j=1

xj

1A t

35+ const. ; zxi0 = const.

and then, replacing back into (5.1a) and using �rst boundary condition gives (5.2a).

2. From equation (5.1a), by separating variables and integrating, for t 2 [t0;1):

zxi = zxi0e
�A(t�t0)

zxi0 = const.

Then, from the continuity condition and (5.2a), the zxi0 is:

zxi0 =
Bxi

A+
NP
j=1

xj

8<:1� exp

24�
0@A+

NX
j=1

xj

1A t
0

35
9=;

The output of a neuron from the input layer as function of time is shown in �gure 5.3 on the

facing page. The maximum value attainable on output is zxmax =
Bx

A+xTb1 , for t = t0 !1.

✍ Remarks:

➥ In practice, due to the exponential nature of the output, close values to zximax

are obtained for t0 relatively small, see again �gure 5.3 on the next page, about

98% of the maximum value was attained at t = t0 = 4.

5.1. THE CPN ARCHITECTURE 71

zxi
Bxi

A+
NP
j=1

xj

0

0 t0 = 4

t

10

Figure 5.3: The output of a neuron from the input layer as function

of time.

➥ Even if the input vector x is big (xi ! 1, i = 1; N) the output is limited but

proportional with the input:

zxmax =
Bx

A+ xTb1 = �x
BxTb1
A+ xTb1 / �x where �xi =

xi
NP
j=1

xj

/ xi

�x being named the reectance pattern and is \normalized" in the sense that ❖ �x

sums to unity:
NP
j=1

�xj = 1.

5.1.2 The Hidden Layer

The Instar

The neurons from the hidden layer are called instars.

The input vector is z = fzigi=1;N+K | here z will contain the outputs from both x and ❖ z, H , zH

y layers, let be H the dimension3 (number of neurons) and zH = fzHkgk=1;H the output

vector of the hidden layer.

Let fwkig k=1;H

i=1;N+K

be the weight matrix (by which z enters the hidden layer) such that the

input to neuron k is W (k; :) z.

The equations governing the behavior of a hidden neuron k are de�ned in a similar way as

those of input layer (z is applied from t = 0 to t = t0): ❖ a, b

dzHk
dt

= �azHk + bW (k; :) z for t 2 [0; t0) (5.3a)

dzHk
dt

= �azHk for t 2 [t0;1) (5.3b)

3The fact that this equals the number of classes is not a coincidence, later it will be shown that there

have to be at least one hidden neuron to represent each class.

72 CHAPTER 5. THE COUNTERPROPAGATION NETWORK

where a; b 2 R+ , a; b = const., and boundary conditions are zHk(0) = 0, lim
t!1

zHk(t) = 0

and, for continuity purposes lim
t%t0

zHk(t) = lim
t&t0

zHk(t).

The weight matrix is de�ned to change as well (the network is learning) according to the

following equation:❖ c, d

dW (k; :)

dt
=

(
�c
�
W (k; :)� z

T
�

if zk 6= 0

0 if zk = 0
(5.4)

where c; d 2 R+ , c; d = const. and boundary condition W (k; :)(0) = b0, second case being

introduced to avoid the forgetting process.

✍ Remarks:

➥ In the absence of the input vector z = 0 if the learning process would continue

then:

dW (k; :)

dt
= �cW (k; :)) W (k; :) = Ce�ct

t!1���! 0

(C being a constant row matrix).

Assuming that the weight matrix is changing much slower that the neuron output then

W (k; :) z ' const. and the solution to (5.3a) and (5.3b) are:

zHk =
b

a
W (k; :) z

�
1� e�at

�
for t 2 [0; t0) (5.5a)

zHk =
b

a
W (k; :) z

�
1� e�at

0

�
e�a(t�t

0) for t 2 [t0;1) (5.5b)

Proof. It is proven in a similar way as for the input layer, see section 5.1.1, proof of equations (5.2a) and

(5.2b).

The output of hidden neuron is similar to the output of input layer, see also �gure 5.3 on

the preceding page, with the remark that the maximal possible value for zHk is zHkmax =
b
a
W (k; :) z for t; t0 !1.

Assuming that an input vector z is applied and kept su�ciently long then the solution to

(5.4) is of the form:

W (k; :) = z
T(1� e�ct)

i.e. W (k; :) moves towards z. If z is kept applied su�ciently long then W (k; :)
t!1���! z

T.

Proof. The di�erential (5.4) is very similar to previous encountered equations. It may be proven also by

direct replacement.

Let be a set of input vectors fzpgp=1;P applied as follows: z1 between t = 0 and t = t1,

: : : , zP between t = tP�1 and t = tP . Then the learning procedure is:

➀ Initialize the weight matrix: W (k; :) = b0.
➁ Considering t0 � 0, calculate the next value for weights:❖ t0

W (k; :)(t1) = z1

�
1� e�ct1

�

5.1. THE CPN ARCHITECTURE 73

zp�1 + zp

zp�1

zp

�
1� e�c(tp�tp�1)

�
zp

W (k; :)(tp)

W (k; :)(tp�1)

Figure 5.4: The directions taken by weight vectors, relatively to input,

in hidden layer.

W (k; :)(t2) = z2

�
1� e�c(t2�t1)

�
+W (k; :)(t1) : : :

W (k; :)(tP) = zP

�
1� e�c(tP�tP�1)

�
+W (k; :)(tP�1)

=

PX
p=1

zp

�
1� e�c(tp�tp�1)

�

The �nal weight vector W (k; :) represents a linear combination of all input vectors

fzpgp=1;P . Because the coe�cients
�
1� e�c(tp�tp�1)

�
are all positive then the �nal

direction of W (k; :) will point to an \average" direction pointed by fzpgp=1;P and

this is exactly the purpose of de�ning (5.4) as it was. See �gure 5.4.

✍ Remarks:

➥ It is also possible to give each zp a time-slice dt and when �nishing with zP to

start over with z1 till some (external) stop conditions are met.

The trained instar is able to classify the direction of input vectors (see (5.5a)):

zHk /W (k; :) z = kW (k; :)k kzk cos(\W (k; :); z) / cos(\W (k; :); z)

The Competitive Network

The hidden layer of CPN is made out of instars interconnected such that each inhibits all

others and eventually there is only one \winner" (the instars compete one against each

other). The purpose of hidden layer is to classify the normalized input vector z (who is

proportional to input). Its output is of the one-of-k encoding type, i.e. all neurons have

output zero except a neuron k. Note that it is assumed that classes do not overlap, i.e. an

input vector may belong to one class only.

74 CHAPTER 5. THE COUNTERPROPAGATION NETWORK

zz }| {

| {z }
zH

f(zH1) f(zH2)

f(zH;N+K)

Figure 5.5: The competitive | hidden | layer.

The property of instars that their associate weight vector moves towards an average of input

have to be preserved, but a feedback function is to be added, to ensure the required output.

Let f = f(zHk) be the feedback function of the instars, i.e. the value added at the neuron❖ f
input. See �gure 5.5

Then the instar equations (5.3a) and (5.3b) are rede�ned as:❖ a, b

dzHk
dt

= �azHk + b[f(zHk) +W (k; :) z]

� zHk

N+KX
`=1

[f(zH`) +W (`; :) z] for t 2 [0; t0) (5.6a)

dzHk
dt

= �azHk for t 2 [t0;1) (5.6b)

where a; b 2 R+ , a; b = const.; the expression W (k; :) z +
N+KP̀
=1

f(zH`) representing the

total input of hidden neuron k. In matrix notation is:

dzH
dt

= �azH + b[f(zH) +Wz]� zH � [f(zH) +Wz] for t 2 [0; t0)

dzH
dt

= �azH for t 2 [t0;1)

The feedback function f have to be selected such that the hidden layer performs as a

competitive layer, i.e. at equilibrium all neurons will have the output zero except one, the

\winner" which will have the output \1". This type of behaviour is also known as \winner-

takes-all".

5.1. THE CPN ARCHITECTURE 75

For a feedback function of type f(z) = zr where r > 1, equations (5.6) de�nes a competitive

layer,

Proof. First a change of variable is performed as follows: ❖ ezHk, zH;tot
ezHk � zHk

N+KP̀
=1

zH`

and zH;tot �
N+KX
`=1

zH` (5.7)

) zHk = ezHkzH;tot and
dzHk

dt
=

dezHk
dt

zH;tot + ezHk dzH;tot
dt

By making the sum over k on (5.6a) (and f(zH`) = f(ezH`zH;tot)):
dzH;tot

dt
= �azH;tot + (b� zH;tot)

N+KX
`=1

[f(ezH`zH;tot) +W (`; :) z] (5.8)

and substituting zHk = ezHkzH;tot in (5.6a):

dzHk

dt
= �aezHkzH;tot + b[f(ezHkzH;tot) +W (k; :) z]� ezHkzH;tot N+KX

`=1

[f(ezH`zH;tot) +W (`; :)z] (5.9)

As
dezHk
dt

zH;tot =
dzHk
dt

� ezHk dzH;tot

dt
and from (5.8) and (5.9):

dezHk
dt

zH;tot = b[f(ezHkzH;tot) +W (k; :) z]� bezHk
"
N+KX
`=1

f(ezHkzH;tot) + N+KX
`=1

W (`; :) z

#
(5.10)

The following cases, with regard to the feedback function, may be discussed:

� The identity function: f(ezHkzH;tot) = ezHkzH;tot. Then, by using
N+KP̀
=1

hi = 1, the above equation

become:

dezHk
dt

zH;tot = bW (k; :) z� bezHk N+KX
`=1

W (`; :) z

The stable value, obtained by stating
dezHk
dt

= 0, is:

ezHk =
W (k; :) z

N+KP
`=1

W (k; :) z

) zHk /
W (k; :) z

N+KP̀
=1

W (`; :) z

� The square function: f(ezHkzH;tot) = (ezHkzH;tot)2. Again, as N+KP̀
=1

ezH` = 1, (5.10) can be rewritten

in the form:

dezHk
dt

zH;tot = b

N+KX
`=1

ezH`f(ezH`zH;tot)� N+KX
`=1

ezH`f(ezH`zH;tot)
+ bW (k; :) z� bezHk N+KX

`=1

W (`; :) z

= bzH;totezHk N+KX
`=1

ezH` � f(ezHkzH;tot)ezHkzH;tot � f(ezH`zH;tot)ezH`zH;tot
�

+ bW (k; :)z� bezHk N+KX
`=1

W (`; :)z

76 CHAPTER 5. THE COUNTERPROPAGATION NETWORK

Then, considering the expression of f , the term:

f(ezHkzH;tot)ezHkzH;tot � f(ezH`zH;tot)ezH`zH;tot
reduces to zH;tot(ezHk � ezH`) which for ezHk > ezH` represents an ampli�cation while for ezHk < ezH`
it represents an inhibition.

The term bW (k; :) z is a constant with respect to ezHk and the term �bezHk N+KP̀
=1

W (`; :) z represents

an inhibitory term.

So the di�erential equations describe the behaviour of a network where all neurons inhibit all others

with less output than theirs and are inhibited by neurons which have greater output. The gap between

neurons with high output and those with low output gets ampli�ed. In this case the layer acts like

an \winner-takes-all" network, eventually only one neuron, that one with the largest ezHk will have a

non zero output.

The same discussion occurs for f(ezHkzH;tot) = (ezHkzH;tot)` where ` > 1.

And �nally, only the winning neuron, let k be the one, have to be a�ected by the learning

process: this neuron will represent the class Ck to which input vector belongs and its

associated weight vector W (k; :) have to be moved towards the average \representative"

fhxik ; hyikg (combined as to form one vector), all other neurons should remain untouched

(weights unchanged).

Two points to note here:

� It becomes obvious that there should be at least one hidden neuron for each class.

� Several neurons may represent the same class (but there will be only one winner

at a time). This is particularly necessary if classes are represented by unconnected

domains in RN+K (because for a single neuron representative, the moving weight

vector, towards the average input for the class, may become stuck somewhere in the

middle and represent another class) or for cases with deep intricacy between various

classes. See also �gure 5.6 on page 81.

5.1.3 The Output Layer

The neurons on the output level are called outstars. The output level contains 2 layers: x0

of dimension N and y0 of dimension K | same as for input layers. For both the discussion

goes the same way. The weight matrix describing the connection strengths between hidden

and output layer is W 0.❖ W 0

The purpose of output level is to retrieve a pair fhxik; hyikg, where hxik is closest to input

x, from an \average" over previously learned training vectors from the same class. The x0

layer is discussed below, the y0 part is, mutatis mutandis, identical.

The di�erential equations governing the behavior of outstars are de�ned as:❖ A0, B0, C 0

dx0i
dt

= �A0x0i + B0xi + C 0W 0(i; :) zH for t 2 [0; t0)

dx0i
dt

= �A0x0i + C 0W 0(i; :) zH for t 2 [t0;1)

where A0; B0; C 0 2 R+ , A0; B0; C 0 = const., or in matrix notation:

dx0

dt
= �A0x0 +B0x+ C 0W 0(1 : N; :) zH for t 2 [0; t0) (5.11a)

5.1. THE CPN ARCHITECTURE 77

dx0

dt
= �A0x0 + C 0W 0(1 : N; :) zH for t 2 [t0;1) (5.11b)

with boundary condition x0(0) = b0.
The weight matrix is changing | the network is learning | by construction, according to ❖ D0, E0

the following equation:

dW 0(1 : N; k)

dt
=

(
�D0W 0(1 : N; k) +E0x if zHk 6= 0b0 if zHk = 0

(5.12)

with the boundary condition W 0(1 : N; k)(0) = b0 (the part for zHk = 0 being de�ned in

order to avoid weight \decaying"). Note that for a particular input vector there is just one

winner on the hidden layer and thus just one column of matrix W 0 gets changed, all other

remain the same (i.e. just the connections coming from the hidden winner to output layer

get updated).

It is assumed that the weight matrix is changing much slower than the neuron output.

Considering that the hidden layer is also much faster than output (only the asymptotic

behaviour is of interest here), i.e. W (i; :) zH ' const. then the solution to (5.11a) is:

x
0 =

�
B0

A0
x+

C 0

A0
W 0(1 : N; :) zH

�
(1� e�A

0t)

Proof. For each x
0
i: B

0
xi + C

0
W

0(i; :) zH = const. and then the solution is built the same way as for

previous di�erential equations by starting to search for the solution for homogeneous equation. See also

proof of equations (5.2). The boundary condition is used to �nd the integration constant.

The solution to weights update formula (5.12) is:

W 0(1 : N; k) =
E0

D0 x(1� e�D
0t)

Proof. Same way as for x0, above, for each wik separately.

The asymptotic behaviour for t!1 of x0 andW 0(1 : N; k) are (from the solutions found):

lim
t!1

x
0 =

B0

A0
x+

C 0

A0
W (1 : N; :) zH and lim

t!1
W 0(1 : N; k) =

E0

D0 x (5.13)

After a training with a set of fxp;ypg vectors, from the same class k, the weights will be:

W 0(1 : N; k) / hxik respectively W 0(N + 1 : N +K; k) / hyik .

At runtime x 6= b0 and y = b0 to retrieve an y0 (or vice-versa to retrieve an x0). But (similar

to x0)

lim
t!1

y
0 =

B0

A0
y +

C 0

A0
W (N + 1 : N +K; :) zH

and, as zH represents an one-of-k encoding, then W (N + 1 : N + K; :) zH selects the

column k out of W 0 (for the corresponding winner) and as y = b0 then

y
0 /W 0(N + 1 : N +K; k) / hyik

78 CHAPTER 5. THE COUNTERPROPAGATION NETWORK

➧ 5.2 CPN Dynamics

✍ Remarks:

➥ In simulations on digital systems the normalization of vectors and the decision

over the winner in the hidden layer may be done in separate processes and such

simplifying and speeding up the network running.

➥ The process uses the asymptotic (equilibrium) values to avoid the actual solving

of di�erential equations.

➥ The vector norm may be written as kxk =
p
xTx.

5.2.1 Network Running

To generate the corresponding y vector for the input x:

➀ The input layer normalizes the input vectors and distributes the result to the hidden

layer. For the y part a null vector b0 is applied:

z(1 : N) =
x

p
xTx

(as kyk = 0)

z(N + 1 : N +K)= b0
i.e. z is the combination of vectors x

kxk and b0 to form a single vector.

➁ The hidden layer is of \winner-takes-all" type.

To avoid a di�erential equation calculation the weight vectorsW (`; :) are normalized.

This way the closest one to normalized input z will be found by doing a simple scalar

product: W (`; :) z / cos(\W (`; :) z).

The \raw" output of the hidden neurons is calculated �rst: zH` /W (`; :) z, then the

neuron with the largest output is declared winner and it gets the output 1, all others

get output 0. Let k be the winning neuron, i.e. W (k; :) z = max
`

W (`; :) z. Then

initialize zH to b0 and afterwards make zHk = 1:

zH = b0 and afterwards zHk = 1

and so all outstars receive an input vector of the form:

z
T
H =

�
0 : : : 1 : : : 0

�
(5.14)

where all zH` are zero, except zHk.

Note that as y = b0 is as all things happen in the space RN � RN+K . The scalar

product may be replaced with the scalar product between x

kxk and the projection of

W (`; :), i.e. W (`; 1 : N).

5.2See [FS92] pp. 235{239.

5.2. CPN DYNAMICS 79

➂ From (5.13) and making y = b0, C 0 = A0 and E0 = D0 then the output of the y0 layer

is y0 =W 0(N +1 : N +K; k), i.e. the winner of hidden layer selects what column of

W 0 will be chosen to be the output (the W 0(1 : N; k) represents the x0 whileW 0(:; k)

represents the joining of x0 and y0) as the multiplication between W 0 and a vector of

type (5.14) selects column k out of W 0.

To generate the corresponding x from y, i.e. working in reverse, the procedure is the same

(by changing x$ y).

5.2.2 Network Learning

➀ An input vector, randomly selected, is applied to the input layer.

➁ The input layer normalize the input vector and distribute it to the hidden layer.

z(1 : N) =
xp

xTx+ yTy

z(N + 1 : N +K)=
yp

xTx+ yTy

i.e. z is the normalized combination of vectors x and y to form a single vector.

➂ The training of the hidden layer is done �rst. The weights are initialized with randomly

selected normalized input vectors. This ensure both the normalization of weight

vectors W (`; :) and a good spread of them.

The hidden layer is of \winner-takes-all" type. To avoid a di�erential equation calcu-

lation, and as W (`; :) are normalized, the closest W (`; :) to z is found by using the

scalar product W (`; :) z / cos(\W (`; :) z).

The \raw" output of the hidden neurons is calculated �rst as scalar products: zH` /
W (`; :) z, then the neuron with the largest output, i.e. the k one for which W (k; :) z
= max

`
W (`; :) z, is declared winner and it gets the output 1, all others get output 0:

zH = b0 and afterwards zHk = 1

and so all outstars receive an input vector of the form

z
T
H =

�
0 : : : 1 : : : 0

�
where all zH` are zero with one exception zHk.

The weight of the winning neuron is updated according to the equation (5.4). In

discrete time approximation: such that:

dt! �t = 1 and dW (k; :)! �W (k; :) =W (k; :)(t+ 1)�W (k; :)(t))

W (k; :)(t+ 1) =W (k; :)(t) + c[zT �W (k; :)(t)]

The above updating is repeated for all input vectors.

The training is repeated until the input vectors are recognized correctly, e.g. till the

angle between the input vector and the output vector is less than some maximum

error speci�ed: cos(\W (k; :); z) < ".

80 CHAPTER 5. THE COUNTERPROPAGATION NETWORK

The network may be tested with some input vectors not used before. If the classi�-

cation is good (the error is under the maximal one) the the training of hidden layer is

done, else the training continues.

➃ After the training of the hidden layer is �nished the training of the output layer begins.

An input vector is applied, the input layer normalizes it and distribute it to the trained

hidden layer. On the hidden layer only one neuron is winner and have output non-zero,

let k be that one, such that the output vector becomes zH =
�
0 : : : 1 : : : 0

�
with 1 on the k position.

The weight of the winning neuron is updated according to the equation (5.12). In

discrete time approximation:

dt! �t = 1 and dW 0(k; :)! �W 0(k; :) =W 0(k; :)(t+ 1)�W 0(k; :)(t))

W 0(1 : N; k)(t+ 1) =W 0(1 : N; k)(t) +E0[x�W 0(1 : N; k)(t)]

W 0(N + 1 : N +K; k)(t+ 1) = W 0(N + 1 : N +K; k)(t)

+E0[y �W 0(N + 1 : N +K; k)(t)]

(5.15)

The above updating is repeated for all input vectors.

The training is repeated until the input vectors are recognized correctly, e.g. till the

error is less than some maximum error speci�ed: w0ik�xi < " for i = 1; N and similar

for y.

✍ Remarks:

➥ From the learning procedure it becomes clear that the CPN is in fact a system

composed of several semi-independent subnetworks:

� the input level who normalize input,

� the hidden layer of \winner-takes-all" type and

� the output level who generate the actual required output.

Each level is independent and the training of next layer starts only after the

learning in precedent layer have been done.

➥ Usually the CPN is used to classify an input vector x as belonging to a class

represented by hxik. A set of input vectors fxpg will be used to train the network
such that it will have the output fhxik; hyikg if x 2 Ck (see also �gure 5.6 on

the facing page).

➥ Unfortunate choice of weight vectors for the hidden layerW (`; :) may lead to the

\stuck-vector" situation when one neuron from the hidden layer may never win.

See �gure 5.6 on the next page: the vector W (2; :) will move towards x1;2;3;4
during learning and will become representative for both classes 1 and 2 | the

corresponding hidden neuron 2 will be a winner for both classes.

The \stuck vector" situation can be avoided by two means. One is to initialize

each weight by a vector belonging to the class for which the corresponding hidden

neuron will win | the most representative if possible, e.g. by averaging over the

training set. The other is to attach to the neuron an \overloading device": if

the neuron wins too often | e.g. during training wins more that the number of

5.3. THE ALGORITHM 81

x1 x2

x3

x4

Class 1

hxi2

Class 2

hxi1
W (2; :)

W (1; :)

Figure 5.6: The \stuck vector" situation.

training vectors from the class it suppose to represents | then it will shut down

allowing other neurons to win and corresponding weights to be changed.

➥ The hidden layer should have at least as many neurons as the number of classes

to be recognized. At least one neuron is needed to win the \competition" for

the class it represents. If classes form unconnected domains in the input space

z 2 RN+K then one neuron at least is necessary for each connected domain.

Otherwise the \stuck vector" situation is likely to appear.

➥ For the output layer the critical point is to select an adequate learning constant

E0: the learning constant can be chosen small 0 . E0 � 1 at the beginning and

increased later when xi � w0ik(t) decreases, see equation (5.15).

➥ Obviously the hidden layer may be replaced by any other system able to perform

an one-of-k encoding.

➧ 5.3 The Algorithm

The running procedure

1. The x vector is assumed to be known and the corresponding hyik is to be retrieved.

For the reverse situation | when y is known and hxik is to be retrieved | the

algorithm is similar changing x$ y.

Make the y null (b0) at input and compute the normalized input vector z:

z(1 : N) =
x

p
xTx

and z(N + 1 : N +K) = b0
2. Find the winning neuron on hidden layer, the k for which: W (k; :) z = max

`
W (`; :) z.

3. Find the y vector in W 0 matrix:

y =W 0(N + 1 : N +K; k)

The learning procedure

1. Let x and y be one set of input vectors

82 CHAPTER 5. THE COUNTERPROPAGATION NETWORK

Let N be the dimension of the \x" part and K the dimension of the \y". Then

N +K is the number of neurons in the input layer.

2. For all fxp;ypg training sets, normalize the input vector , compute zp.

zp(1 : N) =
xpq

xTp xp + yTp yp

zp(N + 1 : N +K)=
ypq

xTp xp + yTp yp

Note that the input layer does just a normalisation of the input vectors. No further

training is required.

3. Initialize weights on hidden layer. For all ` neurons (` = 1; H) in hidden layer select

an representative input vector z` for class ` and then W (`; :) = z
T
` (this way the

weight vectors become automatically normalized).

Note that in extreme case there may be just one vector available for training for each

class. In this case that vector becomes the \representative".

4. Train the hidden layer. For all normalized training vectors zp �nd the winning neuron

on hidden layer, the k one for which W (k; :) zp = max
`

W (`; :) zp.

Update the winner weights:

Wnew(k; :) =Wold(k; :) + c[zTp �Wold(k; :)]

The training of hidden layer have to be �nished before moving forward to the output

layer.

5. Initialize the weights on output layer. As for the hidden layer, select an representative

input vector pair fxk;ykg for each class Ck.

W 0(1 : N; `) = xk

W 0(N + 1 : N +K; `) = yk

Another possibility would be to make an average over several fxp;ypg belonging to

the same class.

6. Train the output layer. For all training vectors zp �nd the winning neuron on hidden

layer, the k one for which W (k; :) zp = max
`

W (`; :) zp.

Update the winner's output weights:

W 0
new(1 : N; k) =W 0

old(1 : N; k) +E0[xp �W 0
old(1 : N; k)]

W 0
new(N + 1 : N +K; k) = W 0

old(N + 1 : N +K; k)

+E0[yp �W 0
old(N + 1 : N +K; k)]

5.4. APPLICATIONS 83

Figure 5.7: The representative set for letters A, B, C.

Figure 5.8: The training set for letters A, B, C.

➧ 5.4 Applications

5.4.1 Letter classi�cation

Being given a set of letters as binary image into a 5�6 matrix the network have to correctly

associate the ASCII code to the image even if there are missing parts or noise in the image.

The letters are uppercase A, B, C so there are 3 classes and corresponding 3 neurons on

the hidden layer. The representative letters are in �gure 5.7.

The x vectors are created by reading the graphical representation of the characters on rows;

a \dot" gets an 1, its absence gets an 0:

x
T
rep.(A) =

(0 0 1 0 0 ;
0 1 0 1 0 ;
1 0 0 0 1 ;
1 1 1 1 1 ;
1 0 0 0 1 ;
1 0 0 0 1)

; x
T
rep.(B) =

(1 1 1 1 0 ;
1 0 0 0 1 ;
1 1 1 1 0 ;
1 0 0 0 1 ;
1 0 0 0 1 ;
1 1 1 1 0)

x
T
rep.(C) =

(0 1 1 1 1 ;
1 0 0 0 0 ;
1 0 0 0 0 ;
1 0 0 0 0 ;
1 0 0 0 0 ;
0 1 1 1 1)

such that they are 30{dimensional vectors.

The ASCII codes are 65 for A, 66 for B and 67 for C. They are converted to binary format

and to a y 8{dimensional vector:

y
T(A) =

�
0 1 0 0 0 0 0 1

�
y
T(B) =

�
0 1 0 0 0 0 1 0

�

84 CHAPTER 5. THE COUNTERPROPAGATION NETWORK

a) b)

c) d)

Figure 5.9: The testing set for letters A, B, C.

y
T(C) =

�
0 1 0 0 0 0 1 1

�
The training letters are depicted in �gure 5.8 on the page before | the �rst set contains

a \dot" less (information missing), the second one contains a supplementary \dot" (noise

added) while the third set contains both.

The test letters are depicted in �gure 5.9 | �rst 3 sets are similar, but not identical, to the

training sets and they where not used in training. The system is able to recognize correctly

even the fourth set (labeled d) from which a large amount of information is missing.

✍ Remarks:

➥ The conversion of training and test sets to binary x vectors is done into a similar

ways as for the representative set.

➥ The training was done just once for the training set (one epoch) with the following

constants:

c = 0:1 and E0 = 0:1

➥ At run-time the y vector becomes b0.
➥ If a large part of the information is missing then the system may miss-classify the

letters due to the fact that there are \dots" in common positions (especially for

letters B and C).

CHAPTER 6

Adaptive Resonance Theory (ART)

The ART networks are an example of ANN composed of several subsystems and able to

resume learning at a later stage without having to restart from scratch.

➧ 6.1 The ART1 Architecture

The ART1 network is made from 2 main layers of neurons: F1 and F2, a gain control unit ART1

❖ F1, F2(neuron) and a reset unit (neuron). See �gure 6.1 on the next page. The ART1 network

works only with binary vectors.

The 2/3 rule. The neurons from F1 layer receive inputs from 3 sources: input, gain control 2/3 rule

and F2. The neurons from F2 layer also receive inputs from 3 sources: F1, gain control and

reset unit. Both layers F1 and F2 are build such that they become active if and only if 2

out of 3 input sources are active.

✍ Remarks:

➥ The input is considered to be active when the input vector is non-zero i.e. it have

at least one non-zero component.

➥ The F2 layer is considered active when its output vector is non-zero i.e. it have

at least one non-zero component.

The propagation of signals trough the network is done as follows:

➀ The input vector is distributed to F1 layer, gain control unit and reset unit. Each ❖ x, N
component of input vector is distributed to a di�erent F1 neuron | F1 have the same
dimension N as input x.

6.1See [FS92] pp. 293{298.

85

86 CHAPTER 6. ADAPTIVE RESONANCE THEORY (ART)

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

to all neurons

to all neurons

fully interconected

layers, both ways

to all neurons

layer F2
with lateral feedback

Input vector

layer F1

Gain Control Reset

	 	

Figure 6.1: The ART1 network architecture. Inhibitory input is

marked with 	 symbol.

➁ The output of F1 is sent as inhibitory signal to the reset unit. The design of the

network is such that the inhibitory signal from F1 cancels the input vector and the

reset unit remains inactive.

➂ The gain control unit send a nonspeci�c excitatory signal to F1 layer (an identical

signal to all neurons from F1).

➃ F2 receives the output of F1 (all neurons between F1 and F2 are fully interconnected).
The F2 layer is of contrast enhancement type: only one neuron should trigger for a

given pattern (or, in a more generalized case only few neurons should \�re" | have

a nonzero output).

➄ The output of F2 is sent back as excitatory signal to F1 and as inhibitory signal to

the gain control unit. The design of the network is such that if the gain control unit

receives an inhibitory signal from F2 it ceases activity.

➅ Then F1 receives signals from F2 and input (the gain control unit have been deac-

tivated). The output of the F1 layer changes such that it isn't anymore identical to

the �rst one, because the overall input had changed: the gain control unit ceases

activity and | instead | the F2 sends its output to F1. Also there is the 2/3 rule

which have to be taken into account: only those F1 neurons who receive input from

both input and F2 will trigger. Because the output of F1 had changed, the reset unit

becomes active.

➆ The reset unit send a reset signal to the active neuron(s) from the F2 layer which forces

6.2. ART1 DYNAMICS 87

it (them) to become inactive for a long period of time, i.e. they do not participate into

the next network pattern matching cycle(s). The inactive neurons are not a�ected.

➇ The output of F2 disappears due to the reset action and the whole cycle is repeated

until a match is found i.e. the output of F2 causes F1 to output a pattern which will

not trigger the reset unit, because is identical to the �rst one, or | no match was

found, the output of F2 is zero | a learning process begins in F2.

The action of the reset unit (see previous step) ensures that a neuron already used in

the \past" will not be used again for pattern matching.

✍ Remarks:

➥ In complex systems an ART network may be just a link into a bigger chain. The

F2 layer may receive signals from some other networks/layers. This will make F2
to send a signal to F1 and, consequently F1 may receive a signal from F2 before

receiving the input signal.

A premature signal from F2 layer usually means an expectation. If the gain expectation

control system and consequently the 2/3 rule would not have been in place then

the expectation from F2 would have triggered an action in absence of the input

signal.

With the presence with the gain unit F2 can't trigger a process by itself but it

can precondition F1 layer such that when the input arrives the process of pattern

matching will start at a position closer to the �nal state and the process takes

less time.

➧ 6.2 ART1 Dynamics

The equation describing the activation (total input) of a neuron j from F1;2 layers is of the
form:

daj

dt
= �aj + (1�Aaj)� excitatory input� (B + Caj)� inhibitory input (6.1)

where A, B, C are positive constants.

✍ Remarks:

➥ These equations do not describe the actual output of neurons with will be ob-

tained from the activation by applying a \digitizing" function which will transform

the activation into a binary vector.

6.2.1 The F1 layer

The neuron on F1 layer receives input x, input z0 from F2 and input from the gain control

unit as excitatory input. The inhibitory input is set to 1. See (6.1).

Let be a0k the activation of the neuron k from the F2 layer, f2(a
0
k) its output (f2 being the ❖ ak, f2, W , y

6.2See [FS92] pp. 298{310.

88 CHAPTER 6. ADAPTIVE RESONANCE THEORY (ART)

activation function on layer F2 and f2(a
0) = y) and wjk the weight when entering neuron

j on layer F1. Then the total input received by the F1 neuron from F2 is W (j; :) f2(a
0).

The F2 layer is of competitive (\winner-takes-all") type | there is only one winning neuron

which have a non-zero output, all others will have null output. The output activation

function for F2 neurons is a binary function1:

output of F2 neuron = f2(a
0
k) =

(
1 if winner is k

0 otherwise

The gain control unit is set such that if input vector x 6= b0 and the vector from F2 is❖ g

f2(a
0) = b0 then its output is 1, otherwise is 0:

g =

(
1 if x 6= b0 and f2(a

0) = b0
0 otherwise

Finally the dynamic equation for a neuron j from the F1 layer becomes (from (6.1)):

daj
dt

= �aj + (1�A1aj)[xj +D1W (j; :) f2(a
0) +B1g]� (B1 + C1aj) (6.2)

where the constants A, B, C and D have been given the subscript 1 to denote that they are❖ A1, B1, C1, D1

for F1 layer. Obviously here D1 controls the amplitude of W weights, it should be chosen

such that all weights are wj` 2 [0; 1].

The following cases may be considered:

➀ Input is inactive (x = b0) and F2 is inactive (f2(a
0) = b0). Then g = 0 and (6.2)

becomes:

daj
dt

= �aj � (B1 + C1aj)

At equilibrium
daj
dt

= 0 and aj = � B1

1+C1
i.e. inactive F1 neurons have negative

activation.

➁ Input is active (x 6= b0) but F2 is still inactive (f2(a
0) = b0) | there was no time for

the signal to travel from F1 to F2 and back (and deactivating the gain control unit

on the way back). The gain control unit is activated: g = 1 and (6.2) becomes:

daj
dt

= �aj + (1�A1aj)(xj +B1)� (B1 + C1aj)

At equilibrium
daj
dt

= 0 and

aj =
xj

1 +A1(xj +B1) + C1

(6.3)

i.e. neurons who received non-zero input (xj 6= 0) have a positive activation (aj > 0)

and the neurons who received a zero input have their activation raised to zero.

1See also the F2 section, below

6.2. ART1 DYNAMICS 89

➂ Input is active (x 6= b0) and F2 is also active (f2(a0) 6= b0). Then the gain control unit
is deactivated (g = 0) and (6.2) becomes:

daj
dt

= �aj + (1�A1aj)[xj +D1W (j; :) f2(a
0)]� (B1 + C1aj)

At equilibrium
daj
dt

= 0 and

aj =
xj +D1W (j; :) f2(a

0)�B1

1 +A1(xj +D1W (j; :) f2(a0)) + C1

(6.4)

The following cases may be discussed here:

(a) Input is maximum: xj = 1 and input from F2 is minimum: a
0 ! b0. Because the

gain control unit have been deactivated and the activity of F2 layer is dropping

to b0 then | according to the 2/3 rule | the neuron have to switch to inactive

state and consequently aj have to switch to a negative value. From (6.4):

lim
a0!b0

aj = lim
a0!b0

�
xj +D1W (j; :) f2(a

0)�B1

1 +A1(xj +D1W (j; :) f2(a0)) + C1

�
< 0)

B1 > 1 (6.5)

(as all constants A1, B1, C1, D1 were positive de�nite).

(b) Input is maximum: xj = 1 and input from F2 is non-zero. F2 layer is of a

contrast enhancement type (\winner takes all") and it have only (maximum)

one winner, let k be that one, i.e. W (j; :) f2(a
0) = wjkf2(a

0
k). Then according

to the 2/3 rule the neuron is active and the activation value should be aj > 0

and (6.4) becomes:

1 +D1wjkf2(a
0
k)�B1 > 0) wjkf2(a

0
k) >

B1 � 1

D1

(6.6)

There is a discontinuity between this condition and the preceding one: from

(6.6), if wjkf2(a
0
k) ! 0 then B1 � 1 < 0 which seems to be in contradiction

with the previous (6.5) condition. Consequently this condition will be imposed

on W weights and not on constants B1 and D1.

(c) Input is maximum xj = 1 and input from F2 is maximum, i.e. wjkf2(a
0
k) = 1

(see above, k is the F2 winning neuron). Then (6.4) gives:

1 +D1 �B1 > 0) B1 < D1 + 1 (6.7)

As f2(a
0
k) = 1 (maximum) and because of the choosing of D1 constant: wjk 2

[0; 1] then wjk = 1.

(d) Input is minimum x ! b0 and input from F2 is maximum. Similarly to the �rst

case above (and (6.4)):

lim
x!b0

aj = lim
x!b0

�
xj +D1W (j; :)f2(a

0)�B1

1 +A1[xj +D1W (j; :) f2(a0)] + C1

�
< 0)

D1 < B1 (6.8)

90 CHAPTER 6. ADAPTIVE RESONANCE THEORY (ART)

(because of the 2/3 rule at limit the F1 neuron have to switch to negative state

and subsequently have a negative activation).

(e) Input is minimum (x ! b0) and input from F2 is also minimum (a0 ! b0).
Similar to the above cases the F1 neuron turns to inactive state, so it will have

a negative activation and (6.4) (on similar premises as above) gives:

lim
x!b0
a
0!b0

aj < 0) �B1 < 0

which is useless because anyway B1 constant is positive de�nite.

Combining all of the above requirements (6.5), (6.7), and (6.8) in one gives:

max(1; D1) < B1 < D1 + 1

which represents one of the condition to be put on F1 constants such that the 2/3

rule will operate.

The output value for the j-th F1 neuron is obtained by applying the following activation❖ f1
function:

f1(aj) =

(
1 if activation aj > 0

0 if activation aj 6 0
(6.9)

6.2.2 The F2 layer

➀ Initially the network is started at a \0" state. There are no signals traveling internally

and no input (x = b0). So, the output of the gain control unit is 0. Even if the F2
layer receive a direct input from the outside environment (another network, e.t.c.)

the 2/3 rule stops F2 from sending any output.

➁ Once an input have arrived on F1 the output of the gain control unit switches to 1,

because the output of F2 (z0) is still 0.

Now the output of F2 is allowed. There are two cases:

(a) There is already an input from outside, then the F2 will output immediately

without waiting for the input from F1 { see the remarks about expectation in

section 6.1.

(b) If there is no external input then the F2 layer have to wait for the output of F1
before being able to send an output.

The conclusion is that on F2 level the gain control unit is used just to turn on/o� the

right of F2 to send an output. Because the output of the gain control unit (i.e. 1) is sent

uniformly to all neurons it doesn't play any other active role and can be left out from the

equations describing the behavior of F2 units.

✍ Remarks:

➥ In fact the equation describing the activation of the F2 neuron is of the form:

output

equation
:

8>>><>>>:
da0k
dt

= � a0k + (1�A2a
0
k)� excitatory input

� (B2 + C2a
0
k)� inhibitory input

if g = 1

a0k = 0 othewise

6.2. ART1 DYNAMICS 91

where a0k is the neuron activation and A2, B2 and C2 are positive constants (see ❖ a
0, A2, B2, C2

(6.1)). The �rst part is analyzed below.

The neuron k on F2 layer receives an excitatory input from F1: W
0(k; :) f1(a) (where W

0 ❖ W 0, h

is the weight matrix of connections from F1 to F2) and from itself: h(a0k); h being the

feedback function:

excitatory input =W 0(k; :) f1(a) + h(a0k)

The same k neuron receive an direct inhibitory input from all other F2 neurons:
KP̀
=1
`6=k

h(a0`)

and an indirect inhibitory input:
KP̀
=1
`6=k

W 0(`; :)f1(a), where K is the number of neurons on

F2. The latter term represents the indirect inhibition (feedback) due to the fact that others ❖ K
neurons will have an positive output (because of their input), while the former is due to

direct inter-connections (lateral feedback) between neurons in F2 layer.

inhibitory input =

KX
`=1
6̀=k

h(a0`) +

KX
`=1
`6=k

W 0(`; :)f1(a)

Eventually, from (6.1):

da0k
dt

= � a0k + (1�A2a
0
k)(D2W (k; :) f1(a) + h(a0k))

� (B2 + C2a
0
k)

KX
`=1
`6=k

[h(a0`) +W 0(`; :) f1(a)]

where D2 is a multiplying positive constant. ❖ D2

Let B2 = 0, C2 = A2 and D2 = 1. Then:

da0k
dt

= �a0k + h(a0k) +W 0(k; :) f1(a) �A2a
0
k

KX
`=1

[h(a0`) +W 0(`; :) f1(a)] (6.10)

or in matrix notation:

da0

dt
= �a0 + h(a0) +W 0f1(a) �A2

b1T[h(a0) +W 0f1(a)]a
0

For an feedback function of the form h(a0k) = a0k
m, where m > 1, the above equations

de�ne an competitive layer.

Proof. First the following change of variable is performed: ❖ ea0
k
, a0tot

ea0k =
a
0
k

KP̀
=1

a0
k

and a
0
tot =

KX
`=1

a
0
`)

a
0
k = ea0ka0tot and

da0
k

dt
=

dea0
k

dt
a
0
tot + ea0k da0tot

dt

92 CHAPTER 6. ADAPTIVE RESONANCE THEORY (ART)

By doing a summation for all k in (6.10) and using the change of variable just introduced:

da0tot

dt
= �atot +

KX
`=1

h(ea0`a0tot) + KX
`=1

W
0(`; :) f1(a)� A2a

0
tot

KX
`=1

[h(ea0`atot) +W
0(`; :) f1(a)] (6.11)

Then, from the substitution introduced and (6.10) and (6.11):

dea0
k

dt
a
0
tot =

da0
k

dt
� ea0k da0tot

dt
= h(ea0katot) +W

0(k; :)f1(a)� ea0k KX
`=1

[h(ea0`a0tot) +W
0(`; :) f1(a)]

As
KP̀
=1

ea0
k
= 1, the above equation may be rewritten as:

dea0
k

dt
a
0
tot =

KX
`=1

ea0`h(ea0ka0tot)� KX
`=1

ea0kh(ea0`a0tot) +W (k; :) f1(a) � ea0k KX
`=1

W (`; :) f1(a)

= ea0ka0tot KX
`=1

ea0`
"
h(ea0

k
a
0
tot)ea0

k
a0tot

� h(ea0
`
a
0
tot)ea0

`
a0tot

#
+W (k; :) f1(a)� ea0k KX

`=1

W (`; :) f1(a)

and on this formula the following cases may be considered:

� Identity function: h(ea0
k
a0tot) = ea0ka0tot then:
dea0
k

dt
a
0
total = W

0(k; :) f1(a)� ea0k KX
`=1

W
0(`; :) f1(a)

and the stable value (obtained from
dea0k
dt

= 0) is:

ea0k =
W 0(k; :) f1(a)
KP̀
=1

W 0(`; :) f1(a)

) a
0
k /

W 0(k; :) f1(a)
KP̀
=1

W 0(`; :)f1(a)

i.e. the output is proportional to the weighted sum of inputs.

� Square function: h(ea0
k
a0tot) = (ea0

k
a0tot)

2 then
h(ea0ka

0

tot
)

ea0
k
a0
tot

� h(ea0`a
0

tot
)

ea0
`
a0
tot

reduces to a0tot(ea0k � ea0`) which for

ea0
k
> ea0

`
represents an ampli�cation while for ea0

k
< ea0

`
represents an inhibition. The W 0(k; :) f1(a) is

constant.

The F2 layer acts as an \winner-takes-all"2 network; the distance between neurons with large output

and those with small output widens | eventually only one neuron will have a non-zero output.

The same discussion goes for h(ea0
k
a0tot) = (ea0

k
a0tot)

m where m > 1.

The winning F2 neuron sends a value of 1 to F1 layer, all other send 0. Let f2(a
0) be the

output (activation) function which value is sent to F1:❖ f2

f2(a
0
k) =

8<:1 if a0k = max
`=1;K

a`

0 otherwise
(6.12)

✍ Remarks:

➥ It seems | at �rst sight | that the F2 neuron have two outputs: one sent to

the F2 layer | h function and one sent to the F1 layer | f2 function. This runs
counter the de�nition of a neuron | it should have just one output. However

this contradiction may be overcome if the neuron is replaced with an ensemble

of three neurons: the main one which calculate the activation a0k and send the

2There is a strong similarity with the functionality of the hidden layer of a counterpropagation network

6.2. ART1 DYNAMICS 93

feedback

main unit

F2 neuron

to F1 to F2

inputs

hf2

Figure 6.2: The F2 neuron structure.

result (it have the identity function as activation function) to two others which

receive its output (they have one input with weight 1), apply the h respectively

f2 functions and send their output wherever is required. See �gure 6.2.

6.2.3 Learning on F1: The W weights

The di�erential equations describing the F1 learning process, (i.e. W weights adaptation)

are:

dwjk
dt

= [�wjk + f1(aj)]f2(a
0
k) ; j = 1; N ; k = 1;K (6.13)

There is just one (at most) \winner" | let k be that one | on F2 for which f2(a
0
k) 6= 0,

for all others f2(a
0
`) = 0, i.e. only the weights related to the winning F2 neuron are adapted

on F1 layer, all other remain unchanged (for a given input).

✍ Remarks:

➥ During the learning process only one (at most) component of the weight vector

W (j; :) changes for each F1 neuron, i.e. only column k of W changes, k being

the F2 winner.

Because of the de�nition of the f1 and f2 functions (see (6.9) and (6.12)) the following

cases may be considered:

➀ F2:k neuron winner (f2(a
0
k) = 1) and F1:j neuron active (f1(aj) = 1), then:

dwjk
dt

= �wjk + 1) wjk = 1� e�t

(solution found by searching �rst for the solution for the homogeneous equation and

then making the \constant" time dependent to �nd the general solution). The weight

asymptotically approaches 1 for t!1.

94 CHAPTER 6. ADAPTIVE RESONANCE THEORY (ART)

➁ F2:k neuron winner (f2(a
0
k) = 1) and F1:j neuron non-active (f1(aj) = 0), then:

dwjk
dt

= �wjk) wjk = wjk(0) e
�t

where wjk(0) is the initial value at t = 0. The weight asymptotically decreases to 0

for t!1.

➂ F2:k neuron non-winner (f2(a
0
k) = 0), then:

dwjk
dt

= 0) wjk = const.

the weights do not change.

A supplementary condition for W weights is required in order for 2/3 rule to function,

see (6.6):

wjk >
B1 � 1

D1

(6.14)

i.e. all weights have to be initialized to a value greater than B1�1
D1

. Otherwise the F1:i

neuron is kept into an inactive state and the weights decrease to 0 (or do not change).

Fast Learning: If the F2:k and F1:j neurons are both active then the weight wjk ! 1,

otherwise it decays towards 0 or remain unchanged. A fast way to achieve the learning is

to set the weights to their asymptotic values as soon is possible, i.e. knowing the neuronal

activities:

wjk =

8><>:
1 if j; k neurons are active

no change if k neuron is non-active

0 otherwise

(6.15)

or in matrix notation:

W (:; k)new = f1(a) and W (:; `)new =W (:; `)old for ` 6= k

Proof. Only column k of W is to be changed (weights related to F2 winner). f1(a) is 1 for active neuron,

0 otherwise, see (6.9).

6.2.4 Learning on F2: The W
0 weights

The di�erential equations describing the F2 learning process are:

dw0kj
dt

= E

�
F (1� w0kj)f1(aj)� w0kj

NX
`=1
`6=j

f1(a`)

�
f2(a

0
k)

where E;F = const. and, because
NP̀
=1
`6=j

f1(a`) =
NP̀
=1

f1(a`)� f1(aj), the equations may be❖ E, F

rewritten as:

dw0kj
dt

= E

"
F (1� w0kj)f1(aj)� w0kj

NX
`=1

f1(a`)� f1(aj)

!#
f2(a

0
k)

6.2. ART1 DYNAMICS 95

For all neurons ` on F2 except winner f2(a
0
`) = 0 so only the winner's weights are adapted,

all other remain unchanged (for a given input).

Analogous previous W weights, and see also (6.9) and (6.12), the following cases are

discussed:

➀ F2:k neuron winner (f2(a
0
k) = 1) and F1:j neuron active (f1(aj) = 1) then:

dw0kj
dt

= E

"
F � w0kj

F � 1 +

NX
`=1

f1(a`)

!#

and the solution is of the form:

w0kj =
F

F � 1 +
NP̀
=1

f1(a`)

� exp

"
�E

F � 1 +

NX
`=1

f1(a`)

!
t

#

(found analogous W). The weight asymptotically approaches F

F�1+
NP
`=1

f1(a`)

for

t!1.

In extreme case it may be possible that
NP̀
=1

f1(a`) = 0 such that the condition F > 1

have to be imposed to keep weights positive.

➁ F2:k neuron winner (f2(a
0
k) = 1) and F1:j neuron non-active (f1(aj) = 0), then:

dw0kj
dt

= �Ew0kj
NX
`=1

f1(a`)) w0kj = w0kj(0) exp

�Et

NX
`=1

f1(a`)

!

where wkj(0) is the initial value at t = 0. The weight asymptotically decreases to 0

for t!1.

➂ F2:k neuron non-winner (f2(a
0
k) = 0) then:

dw0kj
dt

= 0) w0kj = const.

the weight do not change.

Fast learning: If the F2:k and F1:j neurons are both active then the weight wkj ! 1,

otherwise it decays towards 0 or remain unchanged. A fast way to achieve the learning is

to set the weights to their asymptotic values as soon is possible, i.e. knowing the neuronal

activities:

w0kj =

8>>><>>>:
F

F�1+
NP
`=1

f1(a`)

if k; j neurons are active

no change if k non-active

0 otherwise

(6.16)

or, in matrix notation:

W 0(k; :)new =
F

F � 1 + b1Tf1(a) f1(aT) and W 0(`; :)new =W 0(`; :)old for ` 6= k (6.17)

96 CHAPTER 6. ADAPTIVE RESONANCE THEORY (ART)

Proof. Only row k of W 0 is to be changed (weights related to F2 winner). f1(a) is 1 for active neuron, 0

otherwise, see (6.9).

6.2.5 Subpatterns

The input vector is binary xi = 0 or 1. All patterns are subpatterns of the unit input vector❖ x
0, x00, k0, k00 b1. Also it is possible that a pattern x

0 may be a subpattern of another input vector x00:

x
0 � x

00, i.e. either x0i = x00i or x0i = 0. The ART1 network ensures that the proper F2
neuron will win such case may occur, i.e. the winning neurons must be di�erent for x0 and

x
00 | let k0 and k00 be those ones. k0 6= k00 if x0 and x00 correspond to di�erent classes.

Proof. When �rst presented with an input vector the F1 layer outputs the same vector and distribute it to

F2 layer, see (6.3) and (6.9) (the change in F1 activation pattern later is used just to reset the F2 layer).

So at this stage f1(a) = x.

Assuming that k0 neuron have learned x0, its weights should be (from (6.17)):

W
0(k0; :) =

F

F � 1 + b1Tx0 x0T (6.18)

and for k00 neuron which have learned x00 its weights should be:

W
0(k00; :) =

F

F � 1 + b1Tx00 x00T
When x0 is presented as input, total input to k0 neuron is (output of F1 is x0):

a
0
k0 =W

0(k0; :)x0 =
F

F � 1 + b1Tx0 x0Tx0
while the total input to k00 neuron is

a
0
k00 = W

0(k00; :)x0 =
F

F � 1 + b1Tx00 x00Tx0
Because x0 � x

00 then x00Tx0 = x
0T
x
0 but b1Tx00 > b1Tx0 and then a0

k00
< a

0
k0

and k0 wins as it should.

Similarly when x00 is presented as input, the output of k0 neuron is

a
0
k0 = W

0(k0; :)x0 =
F

F � 1 + b1Tx0 x0Tx00
while the total input to k00 neuron is

a
0
k00 = W

0(k00; :)x00 =
F

F � 1 + b1Tx00 x00Tx00
As x0 � x

00 and are binary vectors then

x
0T
x
00 = x

0T
x
0 = b1Tx0 ; x

00T
x
00 = b1Tx00 and b1Tx0 < b1Tx00)

a
0
k0 =

F

F�1
b1
T
x
0
+ 1

< a
0
k00 =

F

F�1
b1
T
x
00
+ 1

and neuron k00 wins as it should.

✍ Remarks:

➥ The input patterns are assumed non zero otherwise x = b0 means no activation.

➥ All inputs are subpatterns of the unit vector b1 and the neuron who have learned

the unit vector have the smallest weights:

W 0(k; :) =
F

F � 1 +N
b1T

6.2. ART1 DYNAMICS 97

and smallest output (when the unit vector is presented as input)

a0k =
F

F�1
N

+ 1

➥ The F2 neurons which aren't used yet should not win over neurons which were

already committed to an input vector.

Then the weights of unused neurons have to be initialized such that they do not

win in the worst case, i.e. when b1 have been already committed to a neuron.

Uncommitted neuronal weights have to be initialized with values:

w0kj 2
�
0;

F

F � 1 +N

�
(the 0 have to be avoided because it will give 0 output)

Also the values by which they are initialized should be random such that when

a new class of inputs are presented at input and none of previous committed

neurons won then only one of the uncommitted neurons wins.

6.2.6 The Reset Unit

The reset neuron is set to detect mismatches between the input vector and the output of

the F1 layer.

At start, when an input is present, the output of F1 is identical to the input and the reset

unit should not activate.

Also the reset unit should not activate if the di�erence between input and F1 output is

below some speci�ed value. Di�erences between input and stored pattern appear due to

noise, missing data or small di�erences between vectors belonging to same class.

All inputs are of equal importance so they receive the same weight; the same happens with

F1 outputs but they came as inhibitory input to the reset unit. See �gure 6.1 on page 86.

Let Q be the weight(s) for inputs and �S the weight(s) for F1 connections (Q;S > 0). ❖ Q, S, aR
The total input to the reset unit is aR:

aR = Q

NX
i=1

xi � S

NX
i=1

f1(ai) ; Q; S = const. ; Q; S 2 R+

The reset unit activates if the net input is positive:

Q

NX
i=1

xi � S

NX
i=1

f1(ai) > 0 ,

NP
i=1

f1(ai)

NP
i=1

xi

<
Q

S
= �

where � is called the vigilance parameter . For

NP
i=1

f1(ai)

NP
i=1

xi

> � the reset unit does not trigger. ❖ �

Because at the beginning (before F2 activate) f1(a) = x then the vigilance parameter

should be � 6 1, i.e. Q 6 S (otherwise it will always trigger).

98 CHAPTER 6. ADAPTIVE RESONANCE THEORY (ART)

Noise in data

The vigilance parameter self scale the di�erence between the actual input pattern and the

stored/learned one. Depending upon the input pattern the di�erence (noise, distance, e.t.c.)

between the two may or may not trigger the reset unit.

For the same di�erence (same set of ones in input vector) the ratio between noise and

information varies depending upon the number of ones in the input vector, i.e. assuming

that the noise vector is the smallest one xT =
�
0 : : : 1 : : : 0

�
(just one \1") and the

input stored vector is similar (have also just one \1") then for an input with noise the ratio

between noise and data is at least 1 : 1; for an input having two ones the ratio drops to half

0:5 : 1 and so on.

New pattern learning

If the reset unit is activated then it deactivates the winning F2 neuron for a su�cient long

time such that all committed F2 neurons have a chance to win (and see if the input pattern

is \theirs") or a new uncommitted neuron is set to learn a new class of inputs.

If none of the already used neurons was able to establish a \resonance" between F1 and F2
then an unused (so far) neuron k (from F2) win. The activity of the F1 neurons are:

aj =
xj +D1W (j; :) f2(a

0)�B1

1 +A1[xj +D1W (j; :) f2(a0)] + C1

=
xj +D1wjk �B1

1 +A1(xj +D1wjk) + C1

(see (6.4) and because f2(a
0) is 1 just for winner k and zero in rest and thenW (j; :) f2(a

0) =

wjk). For newly committed F2 neurons the weights (from F2 to F1) are initialized to a

value wjk >
B1�1
D1

(see (6.14)) and then:

xj +D1wjk �B1 > xj � 1

which means that for xj = 1 the activity aj is positive and f1(aj) = 1 while for xj = 0,

because of the 2/3 rule, the activity is negative and f1(aj) = 0.

Conclusion: when a new F2 neuron is committed to learn the input, the output of F1 layer

is identical to the input, the reset neuron does not activate, and the learning of the new

pattern begins.

✍ Remarks:

➥ The F2 layer should have enough neurons for all classes to be learn, otherwise an
overloading of neurons, and consequently instabilities, may occur.

➥ Learning of new patterns may be stopped and resumed at any time by allowing

or denying the weight adaptation.

Missing data

Let assume that an input vector, which is similar to a stored/learned one, is presented to

the network. Let consider the case where some data is missing, i.e. some components of

input are 0 where the stored one have 1's. Assuming that it is \far" enough from other

stored vectors, only the designated F2 neuron will win | that one which previously learned

the complete pattern (there is no reset).

Assuming that a reset does not occur, the vector sent by the winning F1 neuron to the F2
layer will have more 1-s than the input pattern (after one transmission cycle between F1;2

6.3. THE ART1 ALGORITHM 99

layers). The corresponding weights (see (6.15): j non-active because of 2/3 rule, k active)

are set to 0 and eventually the F2 winner learns the new input | assuming that learning

was allowed, i.e. weights are free to adapt.

If the original, complete, input vector is applied again the original F2 neuron may learn again
the same class of input vectors or otherwise a new unassigned F2 neuron may be committed
to learn.

This kind of behavior may lead to a continuous change in the class of vectors represented

by the F2 neurons, if learning is always allowed.

➧ 6.3 The ART1 Algorithm

Initialization

The size of F1 layer: N is determined by the dimension of the input vectors.

1. The dimension of the F2 layer K is based on the desired number of classes to be

learned now and later. Note also that in special cases some classes may require to be

divided into \subclasses" with di�erent assigned F2 winning neurons.

2. Select the constants: A1 > 0, C1 > 0, D1 > 0, max(1; D1) < B1 < D1 + 1, F > 1

and � 2 (0; 1].

3. Initialize the W weights with random values such that:

wjk >
B1 � 1

D1

; j = 1; N ; k = 1;K

4. Initialize W 0 weights with random values such that:

w0kj 2
�
0;

F

F � 1 + n

�
; k = 1;K ; j = 1; N

Network running and learning

The algorithm uses the fast learning method (asymptotic values for weights).

1. Apply an input vector x. The F1 output becomes

f1(a) = x

(at �rst run, x is a binary vector).

2. Calculate the activities of F2 neurons and �nd the winner. The neuron with the

biggest input from F1 wins (and all other will have zero output). For k the F2 winner
it is true that:

W 0(k; :) f1(a) = max
`

W 0(`; :) f1(a)

3. Calculate the new activities of F1 neurons caused by inputs from F2. The F2 output is
a vector which have all its components 0 with one exception for winner k, multiplying
W by such a vector means that column W (:; k) is selected to become the activity of

F1 and the new F1 output becomes:

f1(a)new = sign(W (:; k))

100 CHAPTER 6. ADAPTIVE RESONANCE THEORY (ART)

4. Calculate the \degree of match" between input and the new output of F1 layer

degree of match =

NP
j=1

f1(aj)new

NP
j=1

xj

=
b1Tf1(a)newb1Tx

5. Compare the \degree of match" computed previously with the vigilance parameter �.

If the vigilance parameter is bigger than the \degree of match" then

(a) Mark the F2:k neuron as inactive for the rest of the cycle while working with

the same input x.

(b) Restart the procedure with the same input vector.

Otherwise continue, the input vector was positively identi�ed (assigned, if the winning

neuron is a previously unused one) as being of class k.

6. Update the weights (if learning is enabled; it have to be always enabled for new

classes). See (6.15) and (6.16).

W (:; k)new = f1(a)new

W 0(k; :)new =
F

F � 1 + b1Tf1(a)new f1(a
T)new

only the weights related to the winning F2 neuron being updated.

7. The information returned by the network is the classi�cation of the input vector given

by the winning F2 neuron (in the one-ofk encoding scheme).

➧ 6.4 The ART2 Architecture

Unlike ART1, the ART2 network is designed to work with analog positive inputs. There

is a broad similarity with ART1 architecture: there is a F1 layer which sends its output to

a F2 layer and a reset layer. The F2 layer is of \winner-takes-all" type and the reset unit

have the same role as in ART1. However the F1 layer is made of 6 sublayers labeled w, s,
u, v, p and q.❖ w, s, u, v, p, q

See �gure 6.3 on the facing page. Each of the sublayers have the same number of neurons

as the number of components in the input vector.

➀ The input vector is sent to the w sublayer.

➁ The output to the w sublayer is sent to s sublayer.

➂ The output of the s sublayer is sent to the v sublayer.

➃ The output of the v sublayer is sent to the u sublayer.

➄ The output of the u sublayer is sent to the p sublayer, to the reset layer r and back

to the w sublayer.

6.4See [FS92] pp. 316{318.

6.4. THE ART2 ARCHITECTURE 101

Reset layer F2 layer

w sublayer

v sublayerp sublayer

u sublayer G

q sublayerG

Gs sublayer

R

GG

Input

F1 layer

Figure 6.3: The ART2 network architecture. Thin arrows represent

neuron-to-neuron connections between (sub)layers; thick

arrows represent full inter-layer connections (from all

neurons to all neurons). The G units are gain-control

neurons which sent an inhibitory signal; the R unit is the

reset neuron.

➅ The output of the p sublayer is sent to the q sublayer and to the reset layer. The

output of the p sublayer represents also the output of the F1 layer and is sent to F2.

✍ Remarks:

➥ Between sublayers there is a one-to-one neuronal connection (neuron j from one

layer to the corresponding neuron j from the other layer)

➥ All (sub)layers receive input from 2 sources, a supplementary gain-control neuron

have been added where necessary such that the layers may be complacent with

the 2/3 rule.

➥ The gain-control unit have the role to normalize the output of the corresponding

layers (see also (6.20) equations); note that all layers have 2 sources of input

either from 2 layers or from a layer and a gain-control unit. The gain-control

neuron receive input from all neurons from the corresponding sublayer and send

the sum of its input as inhibitory input (see also (6.21) and table 6.1), while the

other layers sent an excitatory input.

102 CHAPTER 6. ADAPTIVE RESONANCE THEORY (ART)

➧ 6.5 ART2 Dynamics

6.5.1 The F1 layer

The di�erential equations governing the F1 sublayers behavior are:❖ a, b, e

dwj
dt

= �wj + xj + auj
dvj
dt

= �vj + f(sj) + bf(qj)

dsj
dt

= �esj + wj � sjkwk
dpj
dt

= �pj + uj +W (j; :) f2(a
0)

duj

dt
= �euj + vj � ujkvk

dqj

dt
= �eqj + pj � qjkpk

where a; b; e = const.. The f function determines the contrast enhancement which takes❖ f , �
place inside F1 layer, a possible de�nition would be

f(x) =

(
0 for x < �

x otherwise
(6.19)

where � 2 (0; 1), � = const.. The norm of a vector x is here de�ned as the Euclidean.

When applied to a vector the contrast enhancement function may be written in matrix

format as:

f(x) = x� sign(sign(x� �b1) + b1)
The equilibrium values (from

d(�)
dt

= 0) are:

wj = sj + auj vj = f(sj) + bf(qj)

sj =
wj

e+ kwk
pj = uj +W (j; :) f2(a

0) (6.20)

uj =
vj

e+ kvk
qj =

pj

e+ kpk

These results may be described by the means of one single equation with di�erent parameters

for di�erent sub-layers | see table 6.1:

d(neuron output)

dt
=� C1neuron output+ excitatory input (6.21)

� C2neuron output� inhibitory input

✍ Remarks:

➥ The same (6.21) is applicable to the reset layer with the parameters in table 6.1

(c = const.).

➥ The purpose of the e constant is to limit the output of s, q, u and r (sub)layers
when their input is 0 and consequently e should be chosen e & 0 and may be

neglected when real data is presented to the network.

6.5See [FS92] pp. 318{324 and [CG87].

6.5. ART2 DYNAMICS 103

Layer Neuron output C1 C2 Excitatory input Inhibitory input

w wj 1 1 xj + auj 0

s sj e 1 wj kwk

u uj e 1 vj kvk

v vj 1 1 f(sj) + bf(qj) 0

p pj 1 1 uj +W (j; :) f2(a
0) 0

q qj e 1 pj kpk

r rj e 1 uj + cpj kuk+ ckpk

Table 6.1: The parameters for the general, ART2 di�erential equa-

tion (6.21).

6.5.2 The F2 Layer

The F2 layer of ART2 network is identical to the F2 layer of ART1 network. The total

input into neuron k is a0k =W 0(k; :) f1(a) and the output is:

f2(a
0
k) =

(
d if a0k = max

`
a0`

0 otherwise
(6.22)

where d = const., d 2 (0; 1). ❖ d

Then the output of p sublayer becomes:

pj =

(
uj if F2 is inactive

uj + dwjk for k neuron winner on F2
(6.23)

6.5.3 The Reset Layer

The di�erential equation de�ning the reset layer running is of the form given by (6.21) with

the parameters de�ned in table 6.1:

drj
dt

= �erj + uj + cpj � rjkuk � crjkpk

with the inhibitory input given by the 2 gain-control neurons.

The equilibrium value is:

rj =
uj + cpj

e+ kuk+ ckpk
'

uj + cpj
kuk+ ckpk

, r =
u+ cp

kuk+ ckpk
(6.24)

(see also the remarks regarding the value of e).

By de�nition | considering � the vigilance parameter | the reset occurs when: ❖ �

krk < � (6.25)

104 CHAPTER 6. ADAPTIVE RESONANCE THEORY (ART)

The reset should not activate before an output from F2 layer have arrived | this condition

is used in the ART2 algorithm | and indeed from (6.20) equations, if f2(a
0) = b0 then

p = u and then (6.24) gives krk = 1.

6.5.4 Learning and Initialization

The di�erential equations governing the weights adaptation are de�ned as:

dwjk

dt
= f2(a

0
k)(pj � wjk) and

dw0kj
dt

= f2(a
0
k)(pj � w0kj)

and, considering (6.22) and (6.23):

dwjk

dt
=

(
d(uj + dwjk � wjk) for k winner on F2

0 otherwise

dw0kj
dt

=

(
d(uj + dwjk � w0kj) for k winner on F2

0 otherwise

Fast Learning

The weights related to winning F2 neuron are updated, all others remain unchanged. The

equilibrium values are obtained from
d(�)
dt

= 0 condition. Assuming that k is the winner:

uj + dwjk � wjk = 0 and uj + dw(jk � w0kj = 0

and then

wjk = w0kj =
uj

1� d
)

8<:W (:; k) = u
1�d

W 0(k; :) = u
T

1�d =W (:; k)T
(6.26)

(so this is why the condition 0 < d < 1 is necessary). Eventually the W 0 weight matrix

becomes the transposed of W matrix | when all the F2 neurons have been used to learn

new data.

New pattern learning

The reset unit should not activate when a learning process takes place.

Using the fact that uj =
vj
kvk (e ' 0) and then kuk = 1 and also krk =

p
rTr, from (6.24):

krk =
p
1 + 2ckpk cos(du;p) + c2kpk2

1 + ckpk
(6.27)

where du;p is the angle between u and p vectors and if p k u then a reset does not occur

because � < 1 and the reset condition (6.25) is not met (krk = 1).

If the W weights are initialized to e0 then the output of F2, at the beginning of the learning

process, is zero and p = u (see (6.23)) such that the reset does not occur.

During the learning process the weight vector W (; ; k), associated with connection from F2
winner to F1 (p layer), becomes parallel to u (see (6.26)) and then, from (6.23), p moves

6.5. ART2 DYNAMICS 105

(during the learning process) towards becoming parallel with u and again a reset does not

occur.

Conclusion: The W weights have to be initialized to e0.
Initialization of W 0 weights

Let assume that a k neuron from F2 have learned a input vector and, after some time,

is presented again to the network. The same k neuron should win, and not one of the

uncommitted (yet) F2 neurons. This means that the output of the k neuron, i.e. a0k =

W 0(k; :)p should be bigger than an a0` =W 0(`; :)p for all ` unused F2 neurons:

W 0(k; :)p > W (`; :)p) kW 0(k; :)k kpk > kW 0(`; :)k kpk cos(\W 0(`; :);p)

because p k u kW 0(k; :), see (6.23) and (6.26) (the learning process | weight adaptation

| has been done already previously for k neuron).

The worst possible case is when W 0(`; :) k p such that cos(\W 0(`; :)p) = 1. To ensure that

no other neuron but k wins, the condition:

kW 0(`; :)k < kW 0(k; :)k =
1

1� d
=

 b1T
p
K (1� d)

 (6.28)

have to be imposed for unused ` neurons (for a committed neuron W 0(k; :) = u
T

1�d and

kuk = 1 as uj '
vj
kvk , e ' 0).

To maximize the unused neurons input a0` such that the network will be more sensitive to

new patterns the weights of (unused) neurons have to be uniformly initialized with maximum

values allowed by the condition (6.28), i.e. w0`j .
1p

K (1�d)
.

Conclusion: The W 0 weights have to be initialized with: w0kj .
1p

K (1�d)
.

Constants Restrains

As p = u+ dW (:; k) and kuk = 1 then:

up = kpk cos(du;p) = 1 + dkW (:; k)k cos(\u;W (:; k))

kpk =
p
pTp =

q
1 + 2dkW (:; k)k cos(\u;W (:; k)) + d2kW (:; k)k2

(k being the F2 winner). Replacing kpk cos(du;p) and kpk into (6.27) gives:

krk =

q
(1 + c)2 + 2(1 + c)cdkW (:; k)k cos(\u;W (:; k)) + c2d2kW (:; k)k2

1 +
p
c2 + 2c � cdkW (:; k)k+ c2d2kW (:; k)k2

Figure 6.4 on the next page shows the dependency of krk as function of cdkw(1)kk,
cos \u;w(1)k and c | note that krk decreases for cdkw(1)kk < 1.

Discussion:

� The learning process should increase the mismatch sensitivity between the F1 pattern
sent to F2 and the classi�cation received from F2, i.e. at the end of the learning process,

106 CHAPTER 6. ADAPTIVE RESONANCE THEORY (ART)

2 3

1:0

0:9

0:8

0:7
0 1 4 5

0

2

1:0

0:9

0:8

0:7
0 1 2 3 4 5

krk

cdkW (:; k)k

1

0

a) variable cos(\u;W (:; k))

krk

cdkW (:; k)k

b) variable c

Figure 6.4: krk as function of cdkW ((:; k))k. Figure (a) shows de-

pendency for various angles \u;W (:; k), from �=2 to 0 in

�=20 steps, and c = 0:1 constant. Figure (b) shows de-

pendency for various c values, from 0:1 to 1:9 in 0:2 steps,

and \u;W (:; k) = �=2� �=20 constant.

the network should be able to discern better between di�erent classes of input. This

means that, while the network learns a new input class and W (:; k) increases from

initial value b0 to the �nal value when kW (:; k)k = 1
1�d , the krk value (de�ning the

network sensitivity) have to decrease (such that reset condition (6.25) became easier

to met). In order to achieve this the following condition have to be imposed:

cd

1� d
6 1

(at the end of the learning W (:; k) = 1
1�d).

Or, in other words, when a there is a perfect �t krk reaches its maximal value 1;

when presented with a slightly di�erent input vector, the same F2 neuron should win

and adapt to the new value. During this process the value of krk will �rst decrease

before increasing back to 1. When decreasing it may happen that krk < � and a rest

occurs. This means that the input vector does not belong to the class represented by

the current F2 winner.

� For cd
1�d . 1 the network is more sensitive than for cd

1�d � 1 | the krk value will

drop more for the same input vector (slightly di�erent from the stored/learned one).

See �gure 6.4{a.

� For c � 1 the network is more sensitive than for c . 1 | same reasoning as above.

See �gure 6.4{b.

� What happens in fact into F1 layer may be explained now:

{ s, u and q just normalize w, v and p outputs before sending it further.

6.6. THE ART2 ALGORITHM 107

w v p

s q

u u

Figure 6.5: The F1 dynamics: data communication between sublay-

ers.

{ There are connection between p ! v (via q) and w ! v (via s) and also

back v ! w; p (via u). See �gure 6.5. Obviously v layer acts as a mediator

between input x received via w and the output of p activated by F2. During this
negotiation u and v (as u is the normalization of v) move away from W (:; k)
(krk drops). If it moves too far then an reset occurs (krk becomes smaller than
�) and the process starts over with another F2 neuron and a new W (:; k0). Note
that u represents eventually a normalized combination (�ltered trough f) of x
and p (see (6.20)).

➧ 6.6 The ART2 Algorithm

Initialization

The dimensions of w, s, u, v, p, q and r layers equals N (dimension of input vector). The

norm used is Euclidean: kxk =
p
xTx.

1. Select network learning constants such that:

a; b > 0 � 2 (0; 1)

d 2 (0; 1) c 2 (0; 1)

cd

1� d
6 1

and the size of F2 (similar to ART1 algorithm).

2. Choose a contrast enhancement function, e.g. (6.19).

3. Initialize the weights:

W = e0 w0kj .
1

p
K(1� d)

W 0 to be initialized with random values such that the above condition is met.

Network running and learning

1. Pickup an input vector x.

108 CHAPTER 6. ADAPTIVE RESONANCE THEORY (ART)

2. First initialize:

u = b0 and q = b0
and then iterate the following steps till the output values of F1 sublayers stabilize:

w = x+ au ! s =
w

kwk
!

! v = f(s) + bf(q) ! u =
v

kvk
!

! p =

(
u at �rst iteration

u+ dW (:; k) on next iterations
! q =

p

kpk

(F2 is inactive at �rst iteration). Note that usually two iterations are enough.

3. Calculate the output of the r layer:

r =
u+ cp

kuk+ kpk

If there is a reset, i.e. krk > � then the F2 winner (there should be no reset at �rst

pass as krk = 1 > �) is made inactive for the current input vector and go back to

step number 2. If there is no reset (step 4 is always executed at least once) | a

winner was found on F2 | then the resonance was found and jump to step 6.

4. Find the winner on F2. First calculate total inputs a
0 =W 0

p then �nd the winner k
for which a0k = max

`
a0` and �nally

f2(a
0) = b0 and afterwards f2(a

0
k) = d

as F2 is a contrast enhancement layer (see (6.22)).

5. Go back to step 2 (�nd the new output values for F1 layers).

6. Update the weights (if learning is allowed):

W (:; k) =W 0(k; :)T =
u

1� d

7. The information returned by the network is the classi�cation of the input vector given

by the winning F2 neuron in one-of-k encoding.

Basic Principles

CHAPTER 7

Pattern Recognition

➧ 7.1 Patterns: The Statistical Approach

7.1.1 Patterns and Classi�cation

In most general way an intelligent behavior (living organism, arti�cial intelligence machines)

is represented by the characteristic of being able to recognize/classify patterns | taken in

its broadest de�nition. A pattern may represent a class of objects, a sequence of movements

or even a mixture of feelings. The way the intelligent system reacts to the recognition of a

pattern may also be considered a pattern.

A quantized pattern is represented by a vector x Let Ck, k = 1;K be the classes with

respect to which the pattern x have to be classi�ed. ❖ Ck

✍ Remarks:

➥ Many classes of patterns overlap and, in many cases, it may be quite di�cult

to classify a pattern to a certain class. For this reason a statistical approach is

taken, i.e. a class membership probability is attached to patterns.

➥ One of the things which may be hard sometimes is to quantize the pattern into

a set of numbers such that a processing can be done on them. An image may be

quantized into a set of pixels, a sound may be quantized into a set of frequencies

associated width pitch, volume and time duration, e.t.c.

The pattern x have associated a certain probability to being of class Ck | di�erent for

each class. This probability is a function of variables fxigi=1;N . The main problem is to

�nd/build these functions as to be able to give reliable results on previously unseen patterns

7.1.1See [Bis95] pp. 1{6 and [Rip96] pp. 5, 24.

111

112 CHAPTER 7. PATTERN RECOGNITION

xi

probability

xi

overlap

Ck0 Ck00

Figure 7.1: Overlapping probability: Considering only the xi compo-
nent it's more probable that the x pattern is of class Ck00 ,
however it is possible for x to be of class Ck0 .

(generalization), i.e. to build a statistical model. The probabilities may overlap | see

�gure 7.1.

In ANN �eld, in most cases the probabilities are given by an vector y representing the

network output and it's a function of its input pattern x and some parameters named

weights collected together in a matrix W (or several matrices):weights

❖ W
y = y(x;W)

Usually the mapping from the pattern space X to the output space Y is non-linear. ANN❖ X , Y
learning o�ers a very general framework for �nding out the mapping y : X ! Y (and are particularly

e�cient on building nonlinear models). The process of �nding the adequate W weights is

called learning .

The probabilities and the classes are usually determined from a learning data set already

classi�ed by a supervisor. The ANN learns to classify from the data set | this kind of

learning is called supervised learning . At the end of the learning process the network should

be able to correctly classify an previously unseen pattern, i.e. to generalize. The data set

is called a sample or a training set | because the ANN trains/learns using it | and the

supervisor is usually a human, however there are neural networks with unsupervised learningtraining set,

generalization capabilities. There is also another type called reinforced learning where there is no desired

output present into the data set but there is a positive or negative feedback depending on

output (desired/undesired).

If the output variables are part of a discrete, �nite set then the process of neural network

computing will be called classi�cation; for continuous output variables it will be calledclassi�cation,

regression regression1

✍ Remarks:

➥ It is also possible to have a (more or less) special class containing all patterns xoutliers

which were classi�ed (with some con�dence) as not belonging to any other class.

1Regression refers to functions de�ned as an average over a random quantity.

7.1. PATTERNS: THE STATISTICAL APPROACH 113

These patterns are called outliers. The outliers usually appear due to insu�cient

data.

➥ In some cases there is a \cost" associated to a (mis)classi�cation. If the cost rejects

is too high and the probability of misclassi�cation is also (relatively) high then

the classi�er may decline to classify the input pattern. These patterns are called

rejects or doubts.

➥ Two more \classes" with special meaning may be considered: O for outliers and ❖ O, D
D for rejected patterns (doubts).

7.1.2 Feature Extraction

Usually the straight usage of a pattern (like taking all the pixels from a image and trans-

forming it into a vector) may end up into a very large pattern vector. This may pose some

problems to the neural networks in the process of classi�cation because the training set is

limited.

Let assume that the pattern vector is unidimensional x = (x1) and there are only 2 classes

such that if x1 is less than some threshold value ex1 then is of class C1 otherwise is of class

C2. See �gure 7.2{a.

Let now add a new feature/dimension to the pattern vector: x2 such that it becomes

bidimensional x = (x1; x2). There are 2 cases: either x2 is relevant to the classi�cation or

is not.

If x2 is not relevant to the classi�cation (does not depend on its value) then it shouldn't

have been added; it just increases the useless/useful data ratio, i.e. it just increase the noise

(useless data is noise and each xi component may bear some noise embedded in its value).

Adding more of irrelevant components may increase the noise to a level where it will exceed

the useful information.

If is relevant, then it must have a threshold value ex2 such that if x2 is lower then it is

classi�ed in one class, let C1 be that one (the number is irrelevant for the justi�cation of the
argument, classes may be just renumbered in a convenient way) otherwise is of C2. Now,

instead of just 2 cases to be considered (x1 less or greater that ex1) there are four cases (for
x1 and x2). See �gure 7.2{b. The number of patterns into the training set being constant,

the number of training patterns per each case have halved (assuming a large number of

training pattern vectors spread evenly). A further addition of a new feature x3 increases

the number of cases to 8. See �gure 7.2{c.

In general the number of cases to be considered increases exponentially, i.e. KN . The

training set spreads thinner into the pattern space. The performance of the neural network

with respect to the dimension of the pattern space have a peak and increasing the dimension

further may decreases it. See �gure 7.2{d. The phenomena of performance decreasing as course of

dimensionalitydimensionality of pattern space increases is known as the course of dimensionality.

✍ Remarks:

➥ The performance of a network can be measured as the percent of correct outputs network

performance(correct classi�cation, e.t.c.) with regard to the total number of inputs | after

the learning process have �nished.

The process of extracting the useful information and translating the pattern into a vector is feature

extraction7.1.2See [Bis95] pp. 6{9.

114 CHAPTER 7. PATTERN RECOGNITION

c) 3 dimensions, 8 cases

x1

x2

x3

ex1ex2

ex3

x1

x2

ex1

ex2

b) 2 dimensions, 4 cases

n

network performance

d) The curse of dimensionality

C2ex1 x1
C1

a) One dimension, 2 cases

Figure 7.2: The curse of dimensionality: The increase of pattern vec-

tor dimension n may cause a worsening in neural network

performance. Patterns are represented as dots in the pat-

tern space. The same number of training patterns have

to be spread \thinner" if there are more dimensions.

called feature extraction. This process may be manually, automatic or even done by another

neural network and takes place before entering the actual neural network.

7.1.3 Model Complexity

For a supervised learning, the training set consists of pairs fxp; tpgp=1;P , where tp is the❖ xp, tp

desired network target output vector given input xp.

The W weights are to be found by trying to minimize an error function E = E(x; t;W).❖ E
The most widely used error function is the sum-of-squares de�ned as:

E =
1

2

PX
p=1

[y(xp;W)� tp]
2

7.1.3See [Bis95] pp. 9-15.

7.1. PATTERNS: THE STATISTICAL APPROACH 115

a) medium complexity b) low complexity c) high complexity

x2

C2

C1

x1

x2

C2

C1

x1

x2

x1

C1

C2

Figure 7.3: Model complexity. That training set patterns are marked

with circles, new patterns are marked with squares, ex-

ceptions are marked with �.

another one being root-mean-square ERMS: ❖ ERMS

ERMS =

vuut 1

P

PX
p=1

[y(xp;W)� tp]2

In solving this problem an arbitrary complex model may be build. However there is a trade-o�

between exception handling and generalization.

✍ Remarks:

➥ Exceptions are patterns which are more likely to me member of one class but in

fact are from another. Misclassi�cation usually happens due to overlapping of

probability (see also �gure 7.1) noise in data or missing data.

➥ There may be also a fuzziness between di�erent classes, i.e. they may not be well

de�ned.

A reasonably complex model will be able to handle (recognize/classify) new patterns and

consequently to generalize. See �gure 7.3{a. A too simple model will have a low per-

formance | many patterns misclassi�ed. See �gure 7.3{b. A too complex model may

well handle the exceptions present in the training set but may have poor generalization

capabilities. See �gure 7.3{c.

One widely used way to control the complexity of the model is to add a regularization term regularization

❖
, �
 to the error function:

eE = E + �

which is high for complex models and low for simple models. The � parameter controls the

weight by which
 inuences E.

116 CHAPTER 7. PATTERN RECOGNITION

7.1.4 Classi�cation: Making Decisions and Minimizing Risk

A neural network maps the pattern space X to the classes of patterns. The pattern space is

divided into a K number of areas Xk (which may be of any possible form) such that if the

pattern vector x 2 Xk it is classi�ed as being of class k. These areas are named decision

regions and the boundaries between them are named decision boundaries.decision

boundaries The problem consists in �nding the decision boundaries such that the errors of misclassi�-

cation are minimized or the correctness of the classi�cation is maximized.

Theorem 7.1.1. Bayes rule. Being given a pattern vector x to be classi�ed into one ofBayes rule

the classes fCkgk=1;K | the probability of misclassi�cation is minimized if it is classi�ed

into class Ck for which the posterior probability is maximal:

P (Ckjx) = max
`=1;K

P (C`jx)

Proof. The decision boundaries are found by maximizing the correctness of the classi�cation Let consider

one �nite decision region X1 � X such that all pattern vectors belonging to it will be classi�ed as C1. The
probability of making a correct classi�cation if x 2 X1 is the join-probability associated with that class and

decision region P (C1;X1). Considering two decision region and two classes all patterns with their pattern

vectors in X1 and belonging to class C1 will be classi�ed correctly and the same happens for X2 and C2
| such that the probability of making a correct classi�cation is the sum of the two join-probabilities, i.e.

P (C1; X1) + P (C2;X2). In general, for K classes and respectively decision regions:

Pcorrect =
KX
k=1

P (Ck ;Xk)

The join probability may be written as the product between class-conditional and prior probability2 :

P (Ck;X`) = P (X`jCk)P (Ck)
also as P (X`jCk) =

R
X`

p(xjCk) dx then:

Pcorrect =
KX
k=1

P (XkjCk)P (Ck) =
KX
k=1

Z
Xk

p(xjCk)P (Ck) dx

Each Xk should be chosen such that, inside it, the integrand p(xjCk)P (Ck) is greater that any other

integrand p(xjC`)P (C`), for ` 6= k:

p(xjCk)P (Ck) > p(xjC`)P (C`) ; 8` 2 f1; : : : ;Kj` 6= kg

, p(xjCk)P (Ck)
p(x)

>
p(xjC`)P (C`)

p(x)
(because p(x) > 0)

, P (Ckjx) > P (C`jx) (from Bayes theorem)

✍ Remarks:

➥ The decision boundaries are placed at the points where the highest posterior

probability P (Ckjx) becomes smaller than another P (C`jx). See �gure 7.4 on

the facing page.

De�nition 7.1.1. Given a mapping (classi�cation procedure)M : X ! f1; : : : ;K;Dg the❖ M, Pmc

probability of misclassi�cation a vector x of class Ck is

Pmc(k) = P (M(x) 6= Ck;M(x) 2 fC1; : : : ; CKgjx 2 Ck) =
KX
`=1
`6=k

P (X`jCk)

2See the statistical appendix.

7.1. PATTERNS: THE STATISTICAL APPROACH 117

probability

x

decision boundary

P (C1jx)

X1 X2

P (C2jx)

Figure 7.4: Decision boundary for a unidimensional pattern space

and two classes.

The doubt probability Pd(i) is de�ned similarly: ❖ Pd

Pd(k) = P (M(x) = Djx 2 Ck) =
Z
XD

p(xjCk) dx

The total doubt probability is the probability for a pattern from any class to be unclassi- ❖ P (Djx)
�ed(i.e. classi�ed as doubt)

P (Djx) =
KX
k=1

Pd(k)

More general, the decision boundaries may be de�ned with the help of a set of discriminant discriminant

functionsfunctions fyk(x)gk=1;K such that an pattern vector x is assigned to class Ck if

yk(x) = max
`=1;K

y`(x)

and in particular case yk(x) = P (Ckjx) as in theorem 7.1.1.

In particular cases (in practice, e.g. in medical �eld) there may be necessary to increase

the penalty of misclassi�cation of a pattern from one class to another. Then a loss ma-

trix de�ning penalties for misclassi�cation is used: let Lk` be the penalty associated to loss matrix

misclassi�cation of a pattern belonging to class Ck as being of class C`.

✍ Remarks:

➥ Penalty may be associated with risk : high penalty means high risk in case of risk

misclassi�cation.

The diagonal elements of the loss matrix should be Lkk = 0 because, in this case, there is

no misclassi�cation so no penalty.

The penalty associated with misclassi�cation of a pattern x 2 Ck into a particular class C`
is Lk` multiplied by the probability of misclassi�cation P (X`jCk) (the probability that the

118 CHAPTER 7. PATTERN RECOGNITION

pattern vector is in X` but is of class Ck).

Rk` = Lk`P (X`jCk) = Lk`

Z
X`

p(xjCk) dx

✍ Remarks:

➥ The loss term Lk` have the role of increasing the e�ect of misclassi�cation prob-
ability P (X`jCk).

The total penalty associated with misclassi�cation of a pattern x 2 Ck in any other class is

the sum, over all classes, of penalties for misclassi�cation of x into another class

Rk =

KX
`=1

Rk` =

KX
`=1

Lk`P (X`jCk) =
KX
`=1

Lk`

Z
X`

p(xjCk) dx (7.1)

or, considering the matrix PXjC = fP (X`jCk)g`;k (` row, k column index) then❖ PXjC

Rk = L(k; :)PXjC(:; k)

(Rk are the diagonal terms of LPXjC product).

The total penalty for misclassi�cation is the sum of penalties associated with misclassi�ca-

tion of a pattern x 2 Ck into any other class multiplied by the probability that such penalty

may occur, i.e. P (Ck). De�ning the vector PT
C =

�
P (C1) : : :

�
then:

R =

KX
k=1

RkP (Ck) = PT
C [(L� PT

XjC)
b1] = KX

`=1

Z
X`

"
KX
k=1

Lk`p(xjCk)P (Ck)

#
dx (7.2)

Proof. R represents the multiplication between PC and RT =
�
R1 : : :

�
. L � P

T

XjC creates the

elements of sum appearing in (7.1) while multiplication by e1 sums the L� PT

XjC matrix on rows.

The penalty is minimized when the X` areas are chosen such that the integrand in (7.1) is

minimum:

x 2 X`)
KX
k=1

Lk`p(xjCk)P (Ck) = min
m

KX
k=1

Lkmp(xjCk)P (Ck) (7.3)

✍ Remarks:

➥ (7.3) is equivalent with theorem 7.1.1 if the penalty is 1 for any misclassi�cation,

i.e. Lk` = 1� �k` (�ij being the Kronecker symbol).

Proof. Indeed, in this case (7.3) becomes:

KX
k=1

k 6=`

p(xjCk)P (Ck) <
KX
k=1

k 6=m

p(xjCk)P (Ck) for x 2 X` ; 8m 6= `

and by subtracting the identity
KP
k=1

p(xjCk)P (Ck) =
KP
k=1

p(xjCk)P (Ck) from above equation,

�nally

p(xjC`)P (C`) > p(xjCm)P (Cm) ; 8` 2 f1; : : : ;Kj` 6= mg

7.1. PATTERNS: THE STATISTICAL APPROACH 119

probability

x

decision boundary

X1 X2

reject area

P (C1jx) P (C2jx)

Figure 7.5: Reject area around a decision boundary between two

classes, into a unidimensional pattern space.

which is equivalent to

P (C`jx) > P (Cmjx)

(see the proof for theorem 7.1.1).

In general, most of the misclassi�cation occur in the vicinity of decision boundaries where

the di�erence between the top-most posterior probability and the next one is relatively low.

If the penalty/risk of misclassi�cation is very high then is better to de�ne a reject area

around the decision boundary such that all pattern vectors inside it are rejected from the reject area

classi�cation process (to be analyzed by a higher instance, e.g. a human or a slower but

more accurate ANN), i.e. are classi�ed in class D. See �gure 7.5.

Considering the doubt class D as well, with the associated loss LkD, then the risk terms ❖ LkD
change to:

Rk =

KX
`=1

Rk` + LkDPd(k)

and the total penalty (7.2) also changes accordingly.

To accommodate the reject area and the loss matrix, the Bayes rule 7.1.1 is changed as in

the proposition below.

Proposition 7.1.1. (Bayes rule with reject area and loss matrix). Let consider a pattern

vector x to be classi�ed in one of the classes fCkgk=1;K or D. Let consider the loss matrix

fLk`g and also the loss LkD = d = const., 8k, for the doubt class. Then: ❖ d

1. Neglecting loss, the best classi�cation is obtained when x is classi�ed as Ck if

P (Ckjx) = max
`=1;K

P (C`jx) > P (Djx)

or x is classi�ed as D otherwise, i.e. P (C`jx) < P (Djx), 8` = 1;K.

2. Considering loss, the best classi�cation is obtained when x is classi�ed as Ck if

Rk = min
`=1;K

R` < RD

120 CHAPTER 7. PATTERN RECOGNITION

probability density

xX1 X2

p(C2jx)

decision boundary

p(C1jx)

e12

Figure 7.6: The graphical representation for the elements of the con-

fusion matrix. The hatched area represents element e12.

or x is classi�ed as D otherwise, i.e. R` > RD, 8` = 1;K, where RD is the risk

associated to a classi�cation in the doubt category.❖ RD

Proof. 1. This is simply an extension to theorem 7.1.1 considering a supplementary class D with an
associated decision area XD .

2. This represents just the rule of classi�cation according to the minimum risk.

Another useful tool for estimating the capabilities of a classi�er is the confusion matrixconfusion matrix

whose elements are de�ned as:

ek` = P (x classi�ed as C`jx 2 Ck)

As a simple geometrical representation, the element ek` represents the integral of p(Ckjx)
over the decision area of class C`:

ek` =

Z
X`

p(Ckjx) dx

See �gure 7.6. Note that ekk represents the probability of a correct classi�cation for class Ck.

➧ 7.2 Likelihood Function

7.2.1 The Discriminant Functions

Instead of the most obvious discriminant function yk(x) = P (Ckjx) its logarithm may be

chosen:

yk(x) = lnP (Ckjx) = ln
p(xjCk)P (Ck)

p(x)
= ln p(xjCk) + lnP (Ck) + const.

(see the Bayes theorem and theorem 7.1.1). The p(x) being class independent (normaliza-

tion factor) is just an additive constant.

7.2. LIKELIHOOD FUNCTION 121

✍ Remarks:

➥ Considering each class-conditional probability density p(xjCk) as independent

multidimensional Gaussian distribution3

p(xjCk) =
1

(2�)N=2
p
j�kj

exp

�
�
(x� �k)T�

�1
k (x� �k)
2

�
(each having its �k and �k parameters) then

yk = �
(x� �k)T�

�1
k (x� �k)
2

�
1

2
ln j�kj+ lnP (Ck) + const.

Let �k = �, 8k 2 f1; : : : ;Kg. Then ln j�j is class independent (constant) and
x
T��1�k= �

T
k�

�1
x. Eventually:

yk(x) = �
T
k�

�1
x�

�
T
k�

�1
�k

2
+ lnP (Ck) + x

T��1x+ const.

Because xT��1x is class independent then it may be dropped from the dis-

criminant function yk(x) (being an additive factor, equal for all discriminants).

Eventually:

yk(x) = (�Tk�
�1)x�

�
T
k�

�1
�k

2
+ lnP (Ck)

Let consider � the matrix built using �k as columns and the matrix W de�ned

as:

W (1 : K; 1 : N) = �T��1 and w0k = �
�
T
k�

�1
�k

2
+ lnP (Ck)

and exT =
�
1 x1 : : : xN

�
; then the discriminant functions may be written

simply as

y =W ex
(i.e. the general sought form y = y(W;x)).

The above equation represents a linear form, such that the decision boundaries

are hyper-planes. The equation describing the hyper-plane decision boundary

between class Ck and C` is found by formulating the condition yk(x) = y`(x).
See �gure 7.7 on the next page.

7.2.2 Likelihood Function and Maximum Likelihood Procedure

The maximum likelihood method tries to �nd the best values for the parameters by maxi-

mizing a function named likelihood, using the training set. The procedure below is repeated

for each class Ck in turn.

Let consider a probability density function depending on x and a set of parameters W :

p = p(x;W). Let also the training set be fxpgP = fx1; : : : ;xP g, all xp being taken from ❖ fxpgP
3See statistical appendix

122 CHAPTER 7. PATTERN RECOGNITION

y1(x) = y2(x)

p1

p2

x2

C1
C2

x1

Figure 7.7: The linear discriminant function for a bidimensional

probability density and two classes. At the upper-left cor-

ner p1 > p2, at the lower-right corner p1 < p2.

the same class.

Considering the vectors from the training set randomly selected (training set statistically

signi�cant), the join probability density for the whole fxpgP is:

p(fxpgP jW) =

PY
p=1

p(xpjW) � L(W) (7.4)

where L(W) is named likelihood function. The method is to try to �nd the W set oflikelihood function

❖ L(W) parameters for which L(W) is maximum.

✍ Remarks:

➥ In the case of a Gaussian distribution the W parameters are de�ned4 trough �

and �: � = Efxg and � = Ef(x� �)(x � �)Tg. Then:

e� =
1

P

PX
p=1

xp ����!
P!1

�

e� =
1

P

PX
i=1

(xp � e�)(xp � e�)T ����!
P!1

�

i.e. � | the mean of x is replaced with e� | the mean of the training set❖ e�, e�
(considered statistically representative); and the same happens for �.

➥ Assuming an unidimensional Gaussian distribution then

e� =
1

P

PX
p=1

xp and f�2 = 1

P

PX
p=1

(xp � e�)2
4See statistical appendix

7.2. LIKELIHOOD FUNCTION 123

Considering e� as � and the true value for standard deviation � then the expec-

tation of assumed standard deviation, compared to the true one, is:

Eff�2g = P

P � 1
�2

Proof.

Eff�2g = 1p
2� �

1Z
�1

1

P

PX
p=1

(xp � e�)2 exp �� (xp � e�)2
2�2

�
dxi

The change of variable yp =
xp�e�
�

is done, then xp � e� = P�1
P

xp � 1

P

NP
q=1

q 6=p

xq such that

dyp = P�1
�P

dxp and

Eff�2g = �
2

p
2�(P � 1)

PX
p=1

1Z
�1

y
2

p exp

�y

2
p

2

!
dyp =

P

P � 1
�
2

(integral made by parts, similar to the calculus of E[(x� �)2] | see unidimensional Gaussian

distribution in statistical appendix).

The build probability distribution have a bias with tends to 0 for P !1. bias

➥ In this case the Gaussian distribution is also suited for sequential parameter esti- sequential param-

eter estimationmation.

Assuming that not all patterns from the training set are known at once then new

patterns may be added later as they become available, i.e. the W parameters

may be adapted to the new training set

For the Gaussian distribution, adding a new pattern changes e�P = 1
P

PP
p=1

xp to

the new value:

e�P+1 = 1

P + 1

P+1X
p=1

xp = e�P +
xP+1 � e�P

P + 1

For multiple classes the likelihood function is de�ned as:

L(W) =

PY
p=1

p(xpjW) =

KY
k=1

Y
xp2Ck

p(xpjCk;W)P (CkjW)

Maximizing likelihood function is equivalent to minimizing its negative logarithm, which is

the usual way in practice. Considering that in the training set there are Pk vector patterns

for each class Ck then: ❖ Pk

E = � lnL = �
KX
k=1

PkX
p=1

ln p(x(k)pjCk;W) �
KX
k=1

Pk lnP (CkjW) (7.5)

where x(k)p 2 Ck. ❖ x(k)p

124 CHAPTER 7. PATTERN RECOGNITION

For a given training set the above expression may be reduced to:

E = �
KX
k=1

PkX
p=1

ln p(x(k)pjCk;W) + const. (7.6)

Proof. The expression is reduced by using the Lagrange multipliers method5 using as minimization condition

the normalization of P (CkjW):

KX
k=1

P (CkjW) = 1 (7.7)

which leads to the Lagrange function:

L = E + �

KX
k=1

P (CkjW)� 1

!

and then

@L

@P (CkjW)
= � Pk

P (CkjW)
+ � = 0 k = 1;K

and replacing into (7.7) gives

� =
KX
k=1

Pk) P (CkjW) =
Pk

KP
k=1

Pk

=
Pk

P

As the training set is �xed then fPkg are constant and then the likelihood (7.5) becomes (7.6).

As it can be seen, the formula (7.5) contains the sum both over classes and inside a

class. If the data gathering is easy and the classi�cation (by some supervisor) is di�cult

(\expensive") then the function (7.6) may be replaced by:

E = �
KX
k=1

PkX
p=1

ln p(x(k)pjCk;W)�
P 0X
p=1

ln p(x0pjW)

The unclassi�ed training set fx0pg may still be very useful in �nding the appropriate set of

W parameters.

✍ Remarks:

➥ The maximum likelihood method is based on �nding theW parameters for which

the likelihood function L(W) is maximum, i.e. where its derivative is 0 | W are

the roots of the derivative; The Robbins{Monro algorithm6 may be used to �nd

them.

The maximum of likelihood function L(W) (see equation (7.4)) may be found

from the condition:

rW

"
PY
p=1

p(xpjW)

#�����
fW

= 0 (7.8)

where rW is the vector
�

@
@w1

: : : @
@wNW

�T
, NW being the dimension of W❖ rW , NW

5See mathematical appendix.
6See statistical appendix.

7.3. STATISTICAL MODELS 125

parameter space.

Because ln is a monotone function then lnL may be used instead of L and the

above condition becomes:

1

P
rW

"
PX
p=1

ln p(xpjW)

#�����
fW

= 0

(the factor 1=P is constant and does not a�ect the result).

Considering the vectors from the training set randomly selected then

lim
P!1

1

P
rW

"
PX
p=1

ln p(xpjW)

#
= EfrW ln p(xjW)g

and the condition (7.8) becomes:

EfrW ln p(xjW)g = 0

The roots fW of this function are found using the Robbins{Monro algorithm.

➥ It is not possible to chose the W parameters such that the likelihood function

L(W) =
PQ
p=1

p(xpjW) (see (7.4)) is maximized, because the L(W) may be

increased inde�nitely by over�tting the training set such that the estimated prob-

ability density is reduced to a function similar to � Dirac function, having the

value 1 at the training set points and 0 elsewhere.

➧ 7.3 Statistical Models

It is important to note that the statistical model built as p(xjW) generally di�er from

the true probability density ptrue(x), which is also independent of W parameters. The ❖ ptrue(x),

W0, fWestimated probability density will give the best �t of true p(x) for some W0 parameters.

These parameters may be found given an in�nite training set. However, in practice, as the

learning set (P) is �nite then only an estimate fW of W0 may be found.

It is possible to build a function such that it will measure the \distance" between the

estimated and the real probability densities. Then the W parameters have to be found such

that this function will be minimum.

Let consider the expected value of the minus logarithm of the likelihood function:

Ef� lnLg = � lim
P!1

1

P

PX
p=1

ln p(xpjW) = �
Z
X

ln[p(xjW)] ptrue(x) dx

which, for p(xjW) = ptrue(x), have the value: �
R
X

ptrue(x) ln ptrue(x) dx.

The the following function | called asymmetric divergence7 | is de�ned: asymmetric

divergence7.3See [Rip96] pp. 32{34.
7also known as Fullback{Leiber distance

126 CHAPTER 7. PATTERN RECOGNITION

L = Ef� lnLg+
Z
X

p(x) ln p(x) dx = �
Z
X

ln
p(xjW)

ptrue(x)
ptrue(x) dx (7.9)

Proposition 7.3.1. The asymmetric divergence L is positive de�nite, i.e. L > 0, the equal-

ity being for p(xjW) = ptrue(x).

Proof. Let consider the function f(x) = � lnx + x � 1. Its derivative is df

dx
= � 1

x
+ 1 and is negative

for x < 1 and positive for x > 1. It follows that the f(x) function have a minimum for x = 1 where

f(1) = 0. Because lim
x!1

f(x) = 1 then the function f(x) is positive de�nite, i.e. f(x) > 0, 8x, the
equality happening for x = 1.

Let now consider the function:

f

�
p(xjW)

ptrue(x)

�
= � ln

p(xjW)

ptrue(x)
+
p(xjW)

ptrue(x)
� 1 > 0

and because it is positive de�nite then its expectation is positive:

E
�
f

�
p(xjW)

ptrue(x)

��
= �

Z
X

ln
p(xjW)

ptrue(x)
ptrue(x) dx+

Z
X

p(xjW)

ptrue(x)
ptrue(x) dx� 1

= �
Z
X

ln
p(xjW)

ptrue(x)
ptrue(x) dx > 0

(p(xjW) is normalized such that
R
X

p(xjW) dx = 1) and then L > 0, being 0 when the probability distribu-

tions are equal.

As previously discussed, usually the model chosen for probability density p(xjW) is not even

from the same class of models as the \true" probability density ptrue(x), i.e. they may have
totally di�erent functional expressions. However there is a set of parameters W0 for which

the asymmetric divergence (7.9) is minimized:

min
W

8<:
Z
X

[ln ptrue(x)� ln p(xjW)] p(x) dx

9=; =

Z
X

ln
ptrue(x)

p(xjW0)
ptrue(x) dx (7.10)

The minimization of the negative logarithm of the likelihood function involves �nding a set

of (\optimal") parameters fW . Due to the limitation of training set, in general fW 6= W0

but at the limit P !1 (P being the number of training patterns) fW ����!
P!1

W0.

Considering the Nabla operator r and the negative logarithm of likelihood E:

rT =
�

@
@w1

� � � @
@wW

�
; E = � lnL(W) = � ln

PY
p=1

p(xpjW)

then the following matrices are de�ned:❖ J , K

J = E
��
rrT

�
E
	
= �E

(
PX
p=1

�
rrT

�
ln p(xpjW)

)
= �

PX
p=1

�
rrT

�
ln p(xpjW0)

7.3. STATISTICAL MODELS 127

and

K = E
�
(rE)(rE)T

	
= E

8<:

PX
p=1

r ln p(xjW)

!
PX
p=1

r ln p(xjW)

!T
9=;

=

PX
p=1

r ln p(xjW0)

!
PX
p=1

r ln p(xjW0)

!T

For P su�ciently large it is possible to approximate the distribution of fW �W0 by the

(Gaussian) normal distribution NN (b0; J�1KJ�1) (here and below W are seen as vectors,

i.e. column matrices).

Proof. E is minimized with respect to W , then:

rEj
fW

= b0)
PX
p=1

r ln p(xpjfW) = b0
Considering P reasonably large then fW and W0 are su�ciently close and a Taylor series development may

be done around W0 for rEj
fW
:

b0 = rEj
fW

= rEjW0
+HjW0

(fW �W0) +O((fW �W0)
2)

where H =
�rrT

�
E and is named the Hessian. Note that here and below fW and W0 are to be seen as ❖ H

vectors (column matrices). Finally:fW �W0 ' H
�1jW0

rEjW0
) EffW �W0g = lim

P!1
H
�1jW0

rEjW0
= b0

as fW ����!
P!1

W0.

Also:

E
n
(fW �W0)(fW �W0)

T

o
= E

n
H
�1rE rT

EH
�1T

o
= J

�1
KJ

�1 (7.11)

(by using the matrix property (AB)T = B
T
A
T).

De�nition 7.3.1. The deviance D of a pattern vector is de�ned as being twice the ex- deviance

pectancy of log-likelihood of the best model minus the log-likelihood of current model, the

best model being the true model or an exact �t, also named a saturated model:

D = 2Efln ptrue(x)� ln p(xjfW)g

The deviance may be approximated by:

D ' 2L+Tr(KJ�1)

Proof. Considering the Taylor series development of ln p(xjfW) around W0:

ln p(xjfW) ' ln p(xjW0) +rTln p(xjW)jW0
(cW �W0) +

1

2
(fW �W0)

T
HjW0

(fW �W0)

It is assumed that the gradient of asymptotic divergence (7.10)(see also (7.9)) is zero at W0:

rL = Efr ln p(xjW0)g = b0
(as it hits an minima). The following matrix relation is also true:

(fW �W0)
T
HjW0

(fW �W0) = Tr
�
HjW0

(fW �W0)(fW �W0)
T
�

128 CHAPTER 7. PATTERN RECOGNITION

(may be proven by making HjW0
diagonal, using its eigenvectors, is a symmetrical matrix, see mathematical

appendix) and then, from the de�nition, the deviance approximation is:

D ' 2L� EfTr(HjW0
(fW �W0)(fW �W0)

T)g

and �nally, using also (7.11):

D ' 2L+ Tr
h
JEf(fW �W0)(fW �W0)

Tg
i
= 2L+ Tr(KJ

�1)

Considering a sum over training examples, instead of integration over whole X , the deviance

DN for a given training set may be approximated as❖ DN

DN ' 2

PX
p=1

ln
ptrue(xp)

p(xpjfW)
+ Tr(KJ (�1))

where the left term of above equation is named information criterion.information

criterion

CHAPTER 8

Single Layer Neural Networks

➧ 8.1 Linear Separability

8.1.1 Discriminant Functions

Two Classes Case

Let consider the problem of classi�cation in two classes with linear decision boundary such

that the classes are separated by a hyperplane in the pattern space. Then the discriminant

function is the equation describing that hyperplane and so it is linear in x. See also �gure 8.1

on the following page.

y(x) = w
T
x+ w0 (8.1)

Thew is the parameter vector and w0 is named bias. For y(x) > 0 the pattern x is assigned ❖ w, w0

to one class, for y(x) < 0 it is assigned to the other class, the hyperplane being de�ned by

y(x) = 0.

Considering two vectors x1 and x2 contained within hyperplane (decision boundary) then

y(x) = y(x2) = 0. From (8.1) wT(x1 � x2) = 0, i.e. w is normal to any vector in the

hyperplane and then it is normal to the hyperplane y(w) = 0. See �gure 8.1 on the next

page.

The distance between the origin and the hyperplane is given by the scalar product between

a versor perpendicular on the plane w
kwk and a vector pointing to a point in the plane x,

8.1See [Bis95] pp. 77-89.

129

130 CHAPTER 8. SINGLE LAYER NEURAL NETWORKS

C1

C2

x1

x2

�
w0

kwk

y(w) = 0

w

Figure 8.1: Linear discriminant in a two dimensional pattern space

with two classes.

de�ned by y(x) = 0. Then:

distance =
w
T
x

kwk
= �

w0

kwk

such that the bias de�nes the shift of the hyperplane from origin.

Considering N to be the dimension of the pattern space, the whole classi�cation problem❖ N
may be transferred to a N + 1 dimensional pattern space by considering the translations

x! ex = (1;x) and w! ew = (w0;w)

such that the discriminant equation becomes:

y(x) = ewTex
de�ning a hyperplane in the N + 1 dimension space, passing trough the origin (bias is 0

now).

The whole process may be expressed in terms of one neuron which have N + 1 inputs and

one output being the weighted sum of its inputs y(ex) = 1 � w0 +
NP
i=1

wixi. See �gure 8.2

on the facing page.

Multiple Classes Case

Let consider several classes fCkgk=1;K and one linear discriminant function for each class:

yk(x) = w
T
k x+ wk0 ; k = 1;K (8.2)

such that a pattern x is assigned to class Ck if yk(x) = max
`=1;K

y`(x), K being the dimension

of the output space.❖ K

The decision boundary between classes Ck and C` is given by the equation yk(x) = y`(x):

(wk �w`)
T
x+ (wk0 � w`0) = 0

8.1. LINEAR SEPARABILITY 131

w0 w1 wN

1 x1 xN

y(ex)
Figure 8.2: A single, simple, neuron performs the weighted sum of its

inputs and may act as a linear classi�er.

y1(ex) y2(ex) yK(ex)

ex1 exNex0 = 1

1 K2

Figure 8.3: A single layer of neurons may act as a linear classi�er for

K classes. The connection between input i and neuron k
is weighted by ewki being the component i of vector ewk.

which is the equation of a hyperplane in the pattern space.

The distance from the hyperplane (k; `) to the origin is:

distance(k;`) = �
wk0 � w`0
kwk �w`k

Similarly to the previous two classes case it is possible to move to the N + 1 space by the

transformation:

x! ex = (1;x) and wk ! ewk = (wk0;wk) ; k = 1;K

and then the whole process may be represented by a neural network having one layer of K
neurons and N + 1 inputs. See �gure 8.3.

Note that if a matrix W is built using ewT
k as rows then network output is simply written ❖ W

as:

y(ex) =W ex
The training of the network consists in �nding the adequate W . A new vector x is assigned

to the class Ck for which the corresponding neuron k have the biggest output yk(x).

132 CHAPTER 8. SINGLE LAYER NEURAL NETWORKS

De�nition 8.1.1. Considering a set of pattern vectors, they are called linearly separable iflinear

separability they may be separated by a set of hyperplanes as decision boundaries in the pattern space.

Proposition 8.1.1. The regions Xk de�ned by linear discriminant functions yk(x) are sim-

ply connected and convex.

Proof. Let consider two vector patterns: xa;xb 2 Xk.

Then yk(xa) = max
`=1;K

y`(xa) and yk(xb) = max
`=1;K

y`(xb). Any point on the line connecting xa and xb

may be de�ned by the vector:

xc = txa + (1 � t)xb where t 2 [0; 1]

(see also Jensen's inequality in mathematical appendix).

Also yk(xc) = tyk(xa) + (1 � t)yk(xb) and then yk(xc) = max
`=1;K

y`(xc), i.e. xc 2 Xk (because y` are

linear).

Then any line connecting two points, from the same Xk, is contained in the Xk domain , Xk is convex

and simple connected.

8.1.2 Neuronal Memory Capacity

Let consider one neuron with N inputs and one output which have to learn P pattern

vectors. All input vectors belong to one of two classes, i.e. either C1 or C2 and the output of

neuron indicates to which class the input belongs (e.g. y(x) = 1 for x 2 C1 and y(x) = �1
for x 2 C2) Considering that the input vectors are points in RN space the neuron may learn

only those cases where the inputs are linearly separable by a hyperplane. As the number

of linearly separable cases is limited so is the learning capacity/memory of a single neuron

(and of course the learning capacity of the network is limited as well).

Let consider that there are P �xed points in RN , in general position, i.e. for N > 2 there

are not N or fewer points linearly dependent. Let consider that either of these points maygeneral position

belong to class C1 or C2, the total number of combinations is 2P (as each point brings up

2 cases, independently of the others). From the 2P cases some are linearly separable and

some are not, let F (P;N) be the number of linearly separable cases. Then the probability❖ F (P;N)

of linear separability is:

Probability of linear separability =
F (P;N)

2P

Proposition 8.1.2. The number of linearly separable cases is given by:

F (P;N) = 2

NX
i=0

�
P � 1

i

�
(8.3)

(where 0! = 1 by de�nition).

Proof. It is proven by induction.

A hyperplan in RN is de�ned by the equation aTx+ b = 0 (where x is a point contained in the hyperplan),

i.e. is de�ned by N + 1 parameters.

8.1.2See [Rip96] pp. 119{120.

8.1. LINEAR SEPARABILITY 133

Let consider �rst the case: P 6 N + 1. Then the set of equations:

a
T
xi + b = yi

8><>:
> 0 one side of hyperplan

< 0 other side of hyperplan

= 0 contained in the hyperplan

de�ne the hyperplan parameters. As there are N + 1 parameters and at most N + 1 equations and the

points are in general position then the system of equations with unknowns a and b (hyperplan parameters)

have always a solution, i.e. there is always a way to separate the two classes with a hyperplan (there may

be several solutions); then:

F (P;N) = 2P for P 6 N + 1

Let now consider the case P > N +1. A recurrent formula is attempted for F (P +1;N). Let consider that

P linearly separable points are already \in position", i.e. one case from F (P;N), and a new one is added.

There are two cases to be considered:

� The new point sides on one side only of any separating (the P set) hyperplane. Then the new set is

separable only if the new point is on the \correct" side, i.e. the same as for its class.

� If the above it's not true then it is possible to choose the separating hyperplane as to pass trough the

new point. Then no matter to which class the new point is assigned, the new set is linearly separable.

Let considering again only the P points set and the hyperplane as chosen above. If all points are

projected into a (new) hyperplane perpendicular on the separating one, then the points in the new

hyperplane are linearly separate (by the hyperline given by the intersection of the two hyperplanes).

This means that the number of possibilities in this situation is F (P;N � 1) and the number of

combinations is 2F (P;N � 1), as the P + 1-th point may be assigned to either class.

Finally, the �rst case analyzed above gives F (P;N) minus the number of possibilities in the second case

(i.e. F (P;N � 1)) and the second case gives 2F (P;N � 1). Thus the wanted recurrent formula is:

F (P + 1; N) = [F (P;N)� F (P;N � 1)] + 2F (P;N � 1) = F (P;N) + F (P;N � 1) (8.4)

Induction: for F (P;N � 1), from (8.3), the expression is:

F (P;N � 1) = 2

N�1X
i=0

�
P � 1

i

�
= 2

NX
i=1

�
P � 1

i� 1

�
and then, using (8.4), (8.3) and the above equation, the expression for F (P + 1;N) is:

F (P + 1;N) = F (P;N) + F (P;N � 1) = 2 + 2
NX
i=1

��
P � 1

i

�
+
�
P � 1

i

��
= 2

NX
i=0

�
P

i

�
i.e. is of the same form as (8.3) (the property

�
P�1
i

�
+
�
P�1
i

�
=
�
P

i

�
was used here1).

For P = 4 and N = 2 the total number of cases is 24 = 16 out of which 14 are linearly separable. One of
the two cases which may not be linearly separated is depicted in �gure 8.4 on the following page, the other

one is its mirror image. So the formula (8.3) checks also for an initial case.

The probability of linear separability is then:

Plinear
separability

=

8<:
1 P 6 N + 1

1
2P�1

NP
i=0

�
P�1
i

�
P > N + 1

and then

Plinear
separability

8><>:
> 0:5 for P < 2(N + 1)

= 0:5 for P = 2(N + 1)

< 0:5 for P > 2(N + 1)

1See mathematical appendix.

134 CHAPTER 8. SINGLE LAYER NEURAL NETWORKS

x2

(0; 0)

C1

(0; 1)

C2 C1
(1; 1)

(1; 0)

C2
x1

Figure 8.4: The XOR problem. The vectors marked with black circles

are from one class; the vectors marked with white cir-

cles are from the other class. C1 and C2 are not linearly

separable.

i.e. the memory capacity of a single neuron is around 2(N + 1).

✍ Remarks:

➥ As the points (pattern vectors) from the same class are usually (to some extent)

correlated then the memory capacity of a single neuron is much higher than the

above reasoning suggests.

➥ A simple problem of classi�cation where the pattern vectors are not linear sepa-

rable is the exclusive-or (XOR), in the bidimensional space.

The vectors (0; 0) and (1; 1) are from one class (0 xor 0 = 0, 1 xor 1 = 0); while

the vectors (0; 1) and (1; 0) are from the other (1 xor 0 = 1, 0 xor 1 = 1). See

�gure 8.4.

8.1.3 Logistic discrimination

The discriminant functions may be generalized by replacing the linear functions (8.2) with

a monotone function applied to the linear combination of w and x

yk(x) = f(wT
k x+ wk0) ; k = 1;K

where f is named activation function.activation

function
From the Bayesian theorem:

p(Ckjx) =
p(xjCk)P (Ck)

p(x)
=

p(xjCk)P (Ck)
KP̀
=1

p(xjC`)P (C`)
= (8.5)

=
1

1 +

KP
`=1 ; `6=k

p(xjC`)P (C`)

p(xjCk)P (Ck)

�
1

1 + e�a

8.1. LINEAR SEPARABILITY 135

f(a)

�1 � 0 1+
a

1
2

Figure 8.5: The logistic signal activation function. The particular

case of step function is drawn with a dashed line. The

maximum value of the function is 1.

where:

a � ln
p(xjCk)
KP̀
=1
6̀=k

p(xjC`)
+ ln

P (Ck)
KP̀
=1
` 6=k

P (C`)
(8.6)

✍ Remarks:

➥ For the Gaussian model with the same variance matrix � for all classes:

p(xjCk) =
1

(2�)n=2
p
j�j

exp

�
�
(x� �k)T��1(x� �k)

2

�
; k = 1;K

and two classes C1 and C2 then the expression of a becomes:

a = w
T
x+ w0

where (� is symmetric):

w = ��1(�1 � �2)

w0 = �
�
T
1�

�1
�1 � �T2��1�2

2
+ ln

P (C1)
P (C2)

Then, by choosing the logistic sigmoid activation function as f(a) = 1
1+e�a

| sigmoid

functionsee �gure 8.5 | the meaning of the neuron output becomes simply the posterior

probability P (Ckjx).

➥ The logistic sigmoid activation function have also the property of mapping the

interval (�1;1) into [0; 1] and thus limiting the neuron output.

Another choice for the activation function of neuron is the threshold (step) function: threshold

function

f(a) =

(
1 for a > 0

0 for a < 0
(8.7)

136 CHAPTER 8. SINGLE LAYER NEURAL NETWORKS

and the neurons having it are called perceptrons or adaline.perceptron

adaline

✍ Remarks:

➥ The step function is the particular case of the logistic signal activation function

f(a) = 1
1+e�ca

when c!1. See �gure 8.5 on the page before.

8.1.4 Binary pattern vectors

A binary pattern vector x have its components xi 2 f0; 1g.

Let Pki be the probability that the component i of vector x 2 Ck is xi = 1, respectively

(1� Pki) is the probability of xi = 0. Then:

p(xijCk) = P xi
ki (1� Pki)

1�xi

also named Bernoulli distribution. Assuming that the components of the pattern vector xBernoulli

distribution are statistically independent then:

p(xjCk) =
NY
i=1

P xi
ki (1� Pki)

1�xi

By taking the discriminant function in the form of:

yk(x) = lnP (xjCk) + lnP (Ck)

then it may be written as:

yk(x) = w
T
k x+ w0k

where:

wki = lnPki � ln(1� Pki) ; i = 1; N and

w0k =

NX
i=1

ln(1� Pki) + lnP (Ck)

Similar as above, from the Bayesian theorem, see (8.5) and (8.6), | for two classes C1
and C2 | the posterior probability P (Ckjx) may be expressed as the output of the neuron

having the logistic sigmoidal activation function:

P (C1jx) = f(wT
x+ w0) =

1

1 + exp[�(wTx+ w0)]

where:

wi = ln
P1i
P2i

� ln
1� P1i
1� P2i

; i = 1; N and

w0 =

NX
i=1

ln
1� P1i

1� P2i
+ ln

P (C1)
P (C2)

and P (C2jx) have a similar form (obtainable by swapping 1$ 2).

8.2. THE LEAST SQUARES TECHNIQUE 137

8.1.5 Generalized linear discriminants

Generalized linear discriminant functions are obtained by replacing x with a vectorial function

of it: ' : X ! X having the same dimension. The discriminant functions then becomes

yk(x) = w
T
k'(x) + w0k (8.8)

and, by switching to the N + 1 space:

yk(ex) = ewT
k e'(x)

where e'0(x) � 1.

By building the (N +1)�K matrix W having the weights ewk associated with each output ❖ W
neuron as rows:

W =

0B@ ew10 � � � ew1N

...
. . .ewK0 � � � ewKN

1CA
then:

y(x) =W e'(x)

➧ 8.2 The Least Squares Technique

8.2.1 The Error Function

Let fxpgp=1;P be the training set and ftpgp=1;P the desired output of the network. Then ❖ tp

the sum-of-squares error function is: sum-of-squares

error function

E(W) =
1

2

PX
p=1

KX
k=1

[yk(xp;wk)� tkp]
2 (8.9)

where tkp is the component k of desired vector tp. ❖ tkp

Considering the generalized linear discriminants of the form (8.8) then E(W) is a quadratic

function of weights and its derivatives are linear function of weights and then the minimum

of the error function may be found exactly in closed form.

E(W) =
1

2

PX
p=1

KX
k=1

�ewT
k e'(xp)� tkp

�2
=

1

2

PX
p=1

[W e'(xp)� tp]
T[W e'(xp)� tp] (8.10)

(here W contains ewT on rows).

The geometrical interpretation of error function

Let consider the P -dimensional vector ~yk which components are the outputs of the same ❖ ~yk

8.2See [Bis95] pp. 89{98.

138 CHAPTER 8. SINGLE LAYER NEURAL NETWORKS

neuron k while the network is presented with the xp training vectors:

~yTk =
�ewT

k e'(x1) : : : ewT
k e'(xP)�

Using the components of the e'(x) vectorial function: e'(x)T =
�e'0(x) : : : e'N (x)� and

its value for the training set vectors xp, it is possible to build the vector:

~'Ti =
�e'i(x1) : : : e'i(xP)�

As the component p of vector ~yk is f~ykgp =
NP
i=0

ewki e'i(xp) then ~yk may be written as a

linear combination of ~'i in the N + 1 space:

~yk =

NX
i=0

ewki ~'i (8.11)

(ewki being the component i of vector ewk).

The sum of ~yk vectors is ~ytotal =
KP
k=1

~yk =
NP
i=0

�
KP
k=1

ewki� ~'i and, again, is a linear combi-

nation of ~'i.

Similar, the vector ~tk may be build, using the target values for output neuron k given the

input vector xp as being tkp:

~tTk =
�
tk1 : : : tkP

�
Finally, the sum{of{squares error function (8.9) may be written as:

E =
1

2

PX
p=1

KX
k=1

NX
`=0

ewk` e'`(xp)� tkp

!2

=
1

2

KX
k=1

PX
p=1

(f~ykgp � tkp)
2

(8.12)

=
1

2

KX
k=1

k~yk � ~tkk2

Let make the reasonable assumption that the number of inputs is smaller that the number

of sample vectors in the training set, i.e. N + 1 6 P (what happens if this is not true is

discussed later). Let consider the space of dimension P : the set of N + 1 vectors f~'ig
de�ne a subspace in which all ~yk are contained, the vector ~tk being in general not included.

Then the sum{of{squares error function (8.12) represents simply the sum of all distances

between ~yk and ~tk. See �gure 8.6 on the facing page.

The ~tk may be decomposed into two components:

~tkk 2 S(~'0; : : : ; ~'N) and ~tk? ? S(~'0; : : : ; ~'N)

where S(~'0; : : : ; ~'N) is the sub-space de�ned by the set of functions f~'ig. See �gure 8.6.❖ S

8.2. THE LEAST SQUARES TECHNIQUE 139

~'0

~yk � ~tk

~tkk

~tk

~tk?

~yk

~'1

S(~'0; ~'1)

Figure 8.6: The error vector ~yk � ~tk for output neuron k. S(~'0; ~'1)
represents the subspace de�ned by the set of functions

f~'ig in a bidimensional case | one input neuron plus

bias. The ~yk and ~tkk are included in S(~'0; ~'1) space.

The minimum of error function: E = 1
2

KP
k=1

(~yk�~tk)T(~yk�~tk) (see (8.11) and (8.12)) with

respect to ewki is found from the condition that its derivatives are zero:

@E

@ ewki = 0 , ~'Ti (~yk � ~tk) = 0 ; k = 1;K ; i = 0; N (8.13)

and because ~tk = ~tkk + ~tk? and ~'Ti ~tk? = 0 (by choice of ~tkk and ~tk?) then the above

condition is equivalent with:

~'Ti (~yk � ~tkk) = 0 , ~yk = ~tkk ; k = 1;K (8.14)

i.e. f ewkig should be chosen such that ~yk = ~tkk | see also �gure 8.6.

Note that there is always a \residual" error due to the ~tk?.

Assuming that the network is optimized such that ~yk = ~tkk, 8k 2 f1; : : : ;Kg then

~yk � ~tk = �~tk? and the error function (8.12) becomes:

Emin =
1

2

KX
k=1

k~yk � ~tkk2 =
1

2

KX
k=1

k~tk?k2

8.2.2 The Pseudo{inverse solution

Let build the P � (N + 1) matrix � from ~'i used as columns: ❖ �

� =

0B@ e'0(x1) � � � e'N (x1)
...

. . .e'0(xP) � � � e'N (xP)
1CA

140 CHAPTER 8. SINGLE LAYER NEURAL NETWORKS

also the P �K matrix T using ~tk vectors as columns:❖ T

T =

0B@t11 � � � tK1

...
. . .

t1P � � � tKP

1CA
From the above matrices and (8.11): ~yk = �W (k; :)T. Then using the above notations,

the set of minima conditions (8.14) may be written in matrix form as:

(�T�)WT � �TT = e0
Assuming that the square (N + 1) � (N + 1) matrix �T� is inversable then the solution

for the weights is:

WT =
�
�T�

��1
�TT = �yT (8.15)

where �y is the pseudo-inverse matrix of � (which generally is not square) and is de�nedpseudo-inverse

matrix as:

�y =
�
�T�

��1
�T

If the �T� is not inversable then taking an " 2 R the pseudo-inverse matrix may be

de�ned as:

�y = lim
"!0

�
�T�+ "I

��1
�T

✍ Remarks:

➥ As the � matrix is built from the ~'i set of vectors, if two of them are parallel (or

nearly parallel) then the �T� is singular (or nearly singular) | the rank of the

matrix will be lower.

The case of nearly singularity also leads to large weights necessary to represent

the solution ~yk = ~tkk. See �gure 8.7 on the facing page.

➥ In case of two parallel vectors ~'i k ~'` the one of them is proportional with

another: ~'i / ~'` and then they may be combined together in the error function

and thus reducing the number of dimensions of S space.

➥ By writing explicitly the minima conditions (8.14) for biases wk0:

@E

@wk0
=

PX
p=1

NX
`=1

wk` e'`(xp) + wk0 � tkp

!
= 0

(e'0(xp) = 1, by construction of e'0) the bias may be written as:

wk0 = tk �
NX
`=1

wk`'`

where:❖ tk, '`

8.2. THE LEAST SQUARES TECHNIQUE 141

~yk = ~tkk

S(~'0; ~'1)

~'1

~'0 wk0~'0

wk1~'1

~yk = ~tkk

~'1

S(~'0; ~'1) wk0~'0

wk1 ~'1

~'0

a) ~'0 and ~'1 almost perpendicular

b) ~'0 and ~'1 almost parallel

Figure 8.7: The solution ~yk = ~tkk in a bidimensional space S(~'0; ~'1).
Figure a presents the case of nearly orthogonal set, �gure

b presents the case of a nearly parallel set of f~'ig func-

tions. ~tkk and ~'0 were kept the same in both cases

tk =
1

P

PX
p=1

tkp and '` =
1

P

PX
p=1

e'`(xp)
i.e. the bias compensate the di�erence between the mean of targeted output tk
and mean of the actual output | over the training set.

➥ If the number of vectors in the training set P is equal with the number of inputs

N + 1 then the � matrix is square and it have an inverse. By multiplying with�
�T
��1

to the left in (8.15): �WT = T) WT = ��1T . Geometrically

speaking ~tk 2 S and ~tk? = 0 | see �gure 8.6, i.e. the network is capable to

learn perfectly the target and the error function is zero (after training).

If P 6 N + 1 then the ~tk vectors are included into a subspace of S and to

minimize the error to zero it us enough to make the projection of ~yk (into that

subspace) equal with ~tk. (a situation similar | mutatis mutandis | to that

represented in �gure 8.6 on page 139 but with ~yk and ~tk swapping places).

This means that just a part of weights are to be adapted (found); the other ones

do not count (there are an in�nity of solutions).

142 CHAPTER 8. SINGLE LAYER NEURAL NETWORKS

To have P 6 N + 1 is not normally a good idea because the network acts more

as a memory rather that as a generalizer (the network have a strong tendency to

overadapt).

➥ The solution developed in this section does not work if the neuron does not have

a linear activation, e.g. sigmoid activation function.

8.2.3 The Gradient Descent Solution

The neuronal activation function is supposed to be di�erentiable and the error function may

be expressed as function of weights E = E(W). Then an initial value for fwkig parameters
is chosen (usually weights are initialized randomly) and the parameters are modi�ed by

small values in the direction of decrease of E, i.e. in the direction of �rE (with respect to

weights), in small steps:

�wki = w(s+1)ki � w(s)ki = ��
@E

@wki

����
W(s)

; � = const. 2 R+

t being the step of iteration (discrete time). � is a positive constant called learning rate❖ t, �
learning rate and governs the speed by which the fwkig parameters are changed.

Obviously �rE may be represented as a matrix of the same dimensions as W and then

the above equation may be written simply as:

�W =W(t+1) �W(t) = ��rE (8.16)

and is known as the delta rule.

Usually the error function is expressed as a sum over the training set of a P error terms:

E =
PP
p=1

Ep(W), then the weight adjustment may be done in steps, for each training vector❖ Ep

in turn:

�wki = w(t+1)ki � w(t)ki = ��
@Ep

@wki

����
W(t)

; p = 1; P

✍ Remarks:

➥ The above procedure is especially useful if the training set is not available from

start but rather the vectors are arriving as a time series.

➥ The learning parameter � may be chosen to decrease in time, e.g. � = �0
t
.

This procedure is very similar to the Robbins{Monro algorithm for �nding the

root of derivative of E, i.e. the minima of E.

Assuming general linear discriminant (8.8) then considering the sum-of-squares error func-

tion (8.10):

E(W) =
1

2

PX
p=1

KX
k=1

"
NX
i=0

ewki e'i(xp)� tkp

#2
; Ep(W) =

1

2

KX
k=1

"
NX
i=0

ewki e'i(xp)� tkp

#2

8.2. THE LEAST SQUARES TECHNIQUE 143

then:

@Ep

@wk`
=

"
NX
i=0

ewki e'i(xp)� tkp

e'`(xp) = [yk(xp)� tkp] e'`(xp)
or, in matrix notation:

rEp = [y(xp)� tp] e'T
(xp)

where y(xp) =W e'(xp). Then the delta rule2 (8.16) becomes: delta rule

�W = ��[W e'(xp)� tp] e'T
(xp)

So far only networks with identity activation function were discussed. In general neurons

have a di�erentiable activation function f (the perceptron being an exception) then total ❖ f
input to neuron k is akp =W (k; :) e'(xp) and:

ap =W e'(xp) ; y(xp) = f(ap)

The sum-of-squares error (8.9), for each training pattern p is:

Ep(W) =
1

2
[f(ap)� tp]

T[f(ap)� tp]

and then:

rEp = f[f(ap)� tp]� f 0(ap)ge'T
(xp)

where f 0 is the total derivative of f . ❖ f 0

Proof. From the expression of Ep:

Ep(W) =
1

2

KX
k=1

[f(akp)� tkp]
2 =

1

2

KX
k=1

"
f

NX
i=1

wki e'i(xp)
!
� tkp

#2

and then:

@Ep

@wk`

= [f(akp)� tkp]f
0(akp) e'`(xp)

which leads directly to the matrix formula above.

✍ Remarks:

➥ In the case of sigmoid function f(x) = 1
1+e�x

the derivative is:

f 0(x) =
df

dx
= f(x)[1� f(x)]

In this case writing f 0 in terms of f speeds up the calculation and save some

memory on digital simulations.

➥ It is easily seen that the derivatives are \local", i.e. depend only on parameters

linked to the particular neuron in focus and do not depend on the values linked

to other neurons.

2This equation is also known as the least-mean-square (LMS) rule, the adaline rule and the Widrow-Ho�
rule.

144 CHAPTER 8. SINGLE LAYER NEURAL NETWORKS

➥ The total derivative over whole training set may be found easily from:

@E

@wk`
=

PX
p=1

@Ep

@wk`

➧ 8.3 The Perceptron

The perceptron (or adaline3) represents a single layer neural network with threshold activa-

tion function (see (8.7)). Usually the activation function is chosen as being odd:

f(a) =

(
+1 for a > 0

�1 for a < 0

8.3.1 The Error Function

Considering just one neuron, its output is y(x) = f(ewTe'(x)). Because the output of the
single neuron is either +1 or �1 then it may classify just a set of two classes: if ewTe' > 0

then the output is +1 and x 2 C1, else ewTe' < 0, the output is �1 and x 2 C2.

Then, for a correct classi�cation, tewTe' > 0, 8x; where t is the target value given the input
vector x. For a misclassi�ed input vector either ewTe' > 0 while t = �1 or vice-versa, i.e.

�tewTe' < 0.

A good choice for the error function will be:

E(w) = �
X
xp2M

tewTe'(xp) (8.17)

where M is the set of misclassi�ed vectors xp.❖ M

✍ Remarks:

➥ From the discussion in section 8.1.1 it follows that ewTe'(xp) is proportional to
the distance from the misclassi�ed vector e'(xp) to the decision boundary.

The process of minimizing the function (8.17) is equivalent to shifting the decision

boundary such that misclassi�cation becomes minimum.

During the shifting process M changes as some previously misclassi�ed vectors

becomes correctly classi�ed and vice-versa.

8.3See [Bis95] pp. 98{105.
3From ADAptive LINear Element.

8.3. THE PERCEPTRON 145

e'0

e'1

e'

te'ew(1)

ew(0)

C2 ; t = �1

C1 ; t = 1

Figure 8.8: The learning process for perceptron. White circles are

from one class, black ones are from the other. Initially

the parameter is ew(0) and the pattern shown by e' is mis-

classi�ed. Then ew(1) = ew(0) � e'; � was chosen 1 and
t = �1. The decision boundary is always perpendicular

to w vector, see section 8.1.1. The other case of a mis-

classi�ed xp 2 C1 is similar.

8.3.2 The Learning Procedure

The gradient descent solution (section 8.2.3) is used to �nd the weight vector:

@Ep

@wi
=

(
�te'i(xp) if xp 2M
0 if xp is correctly classi�ed

and then rEp = �te'(xp) if xp 2 M or rEp = b0 otherwise.

The delta rule (8.16) becomes:

�ew = ew(t+1) � ew(t) =

(
�te'(xp) if xp 2 Mb0 if xp is correctly classi�ed

(8.18)

i.e. all training vectors are tested: if the xp is correctly classi�ed then w is left unchanged,

otherwise it is \adapted" and the process is repeated until all vectors from the training set

are classi�ed correctly. See �gure 8.8.

8.3.3 Convergence of Learning

The error function (8.17) decreases by using the learning rule (8.18).

Proof. The terms from E (8.17), after one learning step using (8.18), are:

�tewT

(t+1)
e' = �tewT

(t)
e'� �t

2ke'k2 < �ewT

(t)
e'

146 CHAPTER 8. SINGLE LAYER NEURAL NETWORKS

where ke'k2 = e'Te'; then E(t+1) < E(t), i.e. E decreases.

Let consider a linearly separable problem. Then it exists a solution bw such that:❖ bw
tp bwTe'(xp) > 0 ; p = 1; P

The process of updating w, using the delta rule (8.18) is convergent.

Proof. Let consider that the initial vector | in the above learning procedure | is chosen as ew(0) = b0 and

let the learning parameter be � = 1 (without any loss of generality); then:

ew(t+1) = ew(t) + tp e'(xp)
where xp is a misclassi�ed training vector. (see (8.18)). Then the weight vector may be written as:

ew(t+1) =
X
`

�`t`e'(x`)
where �` is the number of misclassi�cation of x` vector | note that while w changes, the decision boundary❖ �`

changes and a training pattern vector may move from being correctly classi�ed to being misclassi�ed and

back. The sum is done over the training cycle | the training set may be used several times in any order.

By multiplying with bwT to the left:

bwT ew =
X
`

�`t` bwT e'(x`) >
 X

`

�`t`

!
min
`
bwTe'(x`)

such that the product is limited from below by a function linear in � =
P
k

�ktk | and thus ew(t+1) is❖ �

limited from below as well (bw is constant).

On the other hand:

kew(t+1)k2 = kew(t)k2 + t
2

`ke'(x`)k2 + 2t` ewT

(t)
e'(x`) 6 kew(t)k2 + ke'(x`)k2

Therefore:

�kewk2 = kew(t+1)k2 � kew(t)k2 6 max
`
ke'(x`)k2

and then:

kew(t+1)k2 6 � max
`
ke'(x`)k2

i.e. kew(t+1)k is limited from above by a function linear in
p
� .

Considering both limitations (below by � and above by
p
�) it follows that no matter how large t is, i.e. no

matter how many update steps are taken, � have to be limited (because � from below grows faster than
p
�

from above, during training) and then it means that at some stage �` becomes stationary for all ` 2 f1; Pg
| thus (because bw was presumed to exists) all training vectors becomes correctly classi�ed.

✍ Remarks:

➥ The learning algorithm is good at generalization as long as the training set is

statistically signi�cant.

➥ The perceptron may be successfully used only for linearly separable classes.

8.4. FISHER LINEAR DISCRIMINANT 147

➧ 8.4 Fisher Linear Discriminant

8.4.1 Two Classes Case

A very simple way to reduce the dimensionality it to apply a linear projection, into a unidi-

mensional space, of the form:

y = w
T
x (8.19)

where w is the vector of parameters chosen such as to maximize separability.

Let consider two classes and a training set containing P1 vectors of class C1 and P2 vectors
of class C2. The mean vectors of class distribution are: ❖ P1, P2,m1,m2

m1 =
1

P1

X
xp2C1

xp and m2 =
1

P2

X
xp2C2

xp

Then a natural choice for w would be such that it will maximize the distance between the

unidimensional projection of means, i.e. wT(m1 �m2) | on the other hand this distance

may be arbitrary increased by increasing w; to avoid this a constraint on the size of w

should be imposed, e.g. a normalization: kwk2 = w
T
w = 1.

The Lagrange multiplier method is applied (see mathematical appendix) the Lagrange func-

tion (using the normalization on w) is:

L(w; �) = w
T(m1 �m2) + �(kwk2 � 1)

and the required solution is found from the conditions:

@L

@wi
= m1i �m2i + 2�wi = 0 and

@L

@�
=
X
i

w2
i � 1 = 0

which gives w /m1�m2. However this solution is not generally good because it considers

only the relative positions of the distributions, not their form, e.g. for Gaussian distribution

this means the matrix �. See �gure 8.9 on the next page.

One way to measure the within class scatter, of the uni-dimensional projection of the data,

is ❖ sk

s2k =
X
xp2Ck

�
y(xp)�w

T
mk

�2
=
X
xp2Ck

�
w
T
xp �w

T
mk

� �
x
T
pw �m

T
kw
�

= w
T

24 X
xp2Ck

(xp �mk) (xp �mk)
T

35w
and the total scatter, for two classes, would be s2total = s21 + s22. Then a criteria to search

for w would be to minimize the scattering.

The Fisher technique takes the approach of maximizing the inverse of total scattering. The Fisher criterion

8.4See [Bis95] pp. 105{112.

148 CHAPTER 8. SINGLE LAYER NEURAL NETWORKS

x2

x1

y

m2

m1
w

C2

C1

Figure 8.9: The unidimensional reduction in y space using the La-

grange multiplier: Gaussian distribution, two classes, two

dimensions. While the separation is better than a projec-

tion on x1 axis, it is worse than that one in the x2 axis

because the � parameter was not considered.

Fisher criterion is de�ned as:

J(w) =

�
w
T
m1 �w

T
m2

�2
s21 + s22

=
w
T(m1 �m2)(m1 �m2)

T
w

s21 + s22

and it may be expressed also as:

J(w) =
w
TSbw

wTSww

where Sb is named between-class covariance matrix :❖ Sb

Sb = (m1 �m2)(m1 �m2)
T (8.20)

and Sw is named within-class covariance matrix :❖ Sw

Sw =
X
xp2C1

(xp �m1) (xp �m1)
T
+
X
xp2C2

(xp �m2) (xp �m2)
T

The gradient of J with respect to w is zero at the desired maximum:

rJ =
(wSww

T)Sbw � (wSbw
T)Sww

(wSwwT)2
= 0

8.4. FISHER LINEAR DISCRIMINANT 149

) (wSww
T)Sbw = (wSbw

T)Sww (8.21)

From (8.20) it gives that:

Sbw = (m1 �m2)(m1 �m2)
T
w / (m1 �m2) (8.22)

Because only the direction of w matters then any scalar terms may be dropped; replacing

(8.22) into (8.21) gives:

w / S�1w (m1 �m2)

known as the Fisher discriminant. Fisher

discriminant

8.4.2 Connections With The Least Squares Technique

For the particular case of transformation (8.19), the sum-of-squares error function (8.9)

becomes:

E =
1

2

PX
p=1

�
w
T
xp + w0 � tp

�2

The target values are chosen as follows:

ti =

8<:
P
P1

if xp 2 C1

� P
P2

if xp 2 C2
(8.23)

where P1 is the number of training patterns in C1 and similar for P2, obviously P1+P2 = P . ❖ P1, P2

The minima of E with respect to w and w0 is found by zeroing its derivatives:

rE =

PX
p=1

(wT
xp + w0 � tp)xp = 0 (8.24a)

@E

@w0

=

PX
p=1

(wT
xp + w0 � tp) = 0 (8.24b)

The sum in (8.24b) may be split on two sums following the membership of xp:
P

xp2C1

and
P

xp2C2 ; from the particular choice (8.23) for tp and because P1 + P2 = P then:

w0 = �wT
m where m =

1

P

PX
p=1

xp =
P1
P
m1 +

P2
P
m2 (8.25)

i.e. m represents the mean of x over the whole training set. ❖ m

The sum from (8.24a) may be split in 4 terms | separate summation over each class,

150 CHAPTER 8. SINGLE LAYER NEURAL NETWORKS

replacing w0 from (8.25) and replacing tp values from (8.23):

rE =
X
xp2C1

�
w
T
xp �

P1

P
w
T
m1 �

P

P1

�
xp �

P2

P
w
T
m2

X
xp2C1

xp

+
X
xp2C2

�
w
T
xp �

P2
P
w
T
m2 +

P

P2

�
xp �

P1
P
w
T
m1

X
xp2C2

xp = 0

(8.26)

This relation reduces to: �
Sw +

P1P2
P

Sb

�
w = P (m1 �m2)

Proof. Using the de�nition of m1;2, (8.26) becomes:X
xp2C1

(wT
xp)xp �

X
xp2C1

P1

P
(wT

m1)xp �
X

xp2C1

P

P1

xp � P2

P
(wT

m2)P1m1

+
X

xp2C2

(wT
xp)xp �

X
xp2C2

P2

P
(wT

m2)xp +
X

xp2C2

P

P2
xp �

P1

P
(wT

m1)P2m2 = 0

As wT
xp = x

T
pw and the same for other wT products:X

xp2C1

xp(x
T

pw)�
X

xp2C1

P1

P
xp(m

T

1w)�
X

xp2C1

P

P1
xp �

P1P2

P
m1(m

T

2w)

+
X

xp2C2

xp(x
T

pw)�
X

xp2C2

P2

P
xp(m

T

2w) +
X

xp2C2

P

P2

xp � P1P2

P
m2(m

T

1w) = 0

and using again the de�nitions of m1;2:X
xp2C1

xp(x
T

pw)� P
2

1

P
m1(m

T

1w)� Pm1 �
P1P2

P
m1(m

T

2w)

+
X

xp2C2

xp(x
T

pw)� P
2

2

P
m2(m

T

2
w) + Pm2 �

P1P2

P
m2(m

T

1
w) = 0

As matrix multiplication is associative, w is a common factor. A P1P2
P

m1m
T

1
+ P1P2

P
m2m

T

2
is added

and then subtracted to help form Sb (it's moved to the right of equality):" X
xp2C1

xpx
T

p �
P 2

1

P
m1m

T

1 �
P1P2

P
m1m

T

1

+
X

xp2C2

xpx
T

p �
P 2

2

P
m2m

T

2
� P1P2

P
m2m

T

2

#
w = P (m1 �m2)�

P1P2

P
Sbw

Terms 2, 3, 5, 6 reduces (P = P1 + P2) to give:" X
xp2C1

xpx
T

p � P1m1m
T

1
+
X

xp2C2

xpx
T

p � P2m2m
T

2

#
w = P (m1 �m2)�

P1P2

P
Sbw

and expanding m1;2 shows that the square parenthesis is Sw.

Because Sbw / (m1 � m2) (see (8.22)) and only the direction of w counts then, by

dropping the irrelevant constant factors, the Fisher discriminant is obtained:

w / S�1w (m1 �m2)

8.4. FISHER LINEAR DISCRIMINANT 151

8.4.3 Multiple Classes Case

It is assumed that the dimensionality of pattern vector space is greater than the number of

classes, i.e. N > K.

A set of K transformations is considered

yk(x) = w
T
k x ; j = 1;K , y(x) =Wx (8.27)

where the matrix W is build using wT
k as rows. ❖ W

Let Pk the number of training vectors (from the whole set) being of class Ck, and mk be

the mean vector of that class: ❖ Pk, mk

mk =
1

Pk

X
xp2Ck

xp ; k = 1;K and m =
1

P

PX
p=1

xp =
1

P

KX
k=1

Pkmk

where P =
KP
k=1

Pk is the total number of training vectors, and m is the mean over the ❖ P , m

whole training set.

The generalization of within-class covariance matrix (8.20) is easily performed as: ❖ Sw

Sw =

KX
k=1

Swk where Swk =
X
xp2Ck

(xp �mk)(xp �mk)
T

The total covariance matrix St is ❖ St

St =

PX
p=1

(xp �m)(xp �m)T =

KX
k=1

X
xp2Ck

(xp �m)(xp �m)T

and may be written as: ❖ Sb

St = Sw + Sb where Sb =

KX
k=1

Pk(mk �m)(mk �m)T

where St, Sw and Sb are de�ned in X pattern space.

Proof.

St =
KX
k=1

24 X
xp2Ck

xpx
T

p �
0@ X
xp2Ck

xp

1AmT �m
X

xp2Ck

x
T

p + Pkmm
T

35

=
KX
k=1

24 X
xp2Ck

xpx
T

p � Pkmkm
T �mPkm

T

k + Pkmm
T

35
By adding, and then subtracting, a term of the form Pkmkm

T

k
, the Sb is formed and then:

St =
KX
k=1

24 X
xp2Ck

xpx
T

p � Pkmkm
T

k

35+ Sb = Sw + Sb

152 CHAPTER 8. SINGLE LAYER NEURAL NETWORKS

Similar matrices may be expresses in the Y output space.

Let �k and � be the mean over class Ck and, respectively, over all training set of output❖ �k, �

y(xp):

�k =
1

Pk

X
xp2Ck

y(xp) ; k = 1;K and � =
1

P

PX
p=1

y(xp) =
1

P

KX
k=1

Pk�k

The covariance matrices in Y space are:

S(Y)w =

KX
k=1

X
xp2Ck

[y(xp)� �k][y(xp)� �k]
T

S(Y)b =

KX
k=1

Pk[�k � �][�k � �]
T

One possibility4 for the Fisher criterion is:

J(W) = Tr(S�1
(Y)w

S(Y)b) = Tr(WSwW
TWSbW

T)

(considering (8.27)).

✍ Remarks:

➥ Sb is a sum of K matrices, each of rank 1 | because it represents a product of

2 vectors. Also there is a relation between all mk given by the de�nition of m.

Then the rank of Sb is K � 1 at most, and, consequently it have only K � 1

eigenvectors/values.

By the means of Fisher criterion it is possible to �nd only K�1 transformations.

4There are several choices.

CHAPTER 9

Multi Layer Neural Networks

➧ 9.1 Feed-Forward Networks

Feedforward networks do not contain feedback connections. Also between the input units xi
and the output units yk there are (usually) some hidden units zj . Let N be the dimension

(number of neurons) of input layer, H the dimension of hidden layer and K the one of ❖ N , H , K
output layer See �gure 9.1 on the following page.

Assuming that the weights for the hidden layer are fw(1)jigj=1;H
i=0;N

(characterizing the con-

nection to zj from xi) and the activation function is f1 then the output of the hidden ❖ w(1)ji, f1
neurons is:

zj = f1

NX
i=0

w(1)jixi

!

where x0 = 1 at all times | wj0 being the bias (characteristic to hidden neuron j). Note
that there are no connections from xi to z0, they would be irrelevant as z0 represents the

bias and its output is 1 at all times (regardless of its input).

On similar grounds, let fw(2)kjgk=1;K
j=0;H

be the weights of the output layer, and f2 its acti-

vation function. Then the output of the output neuron is: ❖ w(2)ki, f2

yk = f2

0@ HX
j=0

w(2)kjzj

1A = f2

0@ HX
j=0

w(2)kif1

NX
i=0

w(1)jixi

!1A
9.1See [Bis95] pp. 116{121.

153

154 CHAPTER 9. MULTI LAYER NEURAL NETWORKS

zH

x1 xNx0

yK

z0 z1

y1

Output

Input

Figure 9.1: The feedforward network architecture. Between the input

units xi and output units yk there are some hidden units

zj . x0 and z0 represents the bias.

The above formula may be easily generalized to a network with multiple hidden layers.

✍ Remarks:

➥ While the network depicted in �gure 9.1 appears to have 3 layers, there are in

fact only 2 processing layers: hidden and output. So this network will be said to

have 2 layers.

The input layer x plays the role of distributing the inputs to all neurons in sub-

sequent layer, i.e. it plays the role of a sensory layer.

➥ In general a network is of feedforward type if there is a possibility to label all

neurons (input, hidden and output) such that any neuron will receive inputs only

from those with lower number label.

By the above de�nition, more general neural networks may be build (than the

one from �gure 9.1).

➧ 9.2 Threshold Neurons

A threshold neuron have the activation function of the form:

f(a) =

(
1 if a > 0

0 if a < 0
(9.1)

and the a = 0 value may be assigned to either case.

9.2See [Bis95] pp. 121{126.

9.2. THRESHOLD NEURONS 155

9.2.1 Binary Vectors

Let consider the case of binary pattern vectors, i.e. xi 2 f0; 1g, 8i. On the other end,

let the outputs be also binary. One output neuron will be considered, the discussion being

easily generalisable to multiple output neurons.

Then the problem is to model a Boolean function fB : f0; 1gN ! f0; 1g. The total number ❖ fB
of possible inputs is 2N . The function fB is totally de�ned once the output value is given

for all input combinations.

Then the network may be build as follows:

� The number of hidden neurons is equal to the number of input patterns which should

result in an output equal to 1.

� The activation function for hidden neurons is de�ned as:

f1(a) =

(
1 if a > 0

0 if a 6 0

Each hidden neuron is set to be activated just by one pattern: For that pattern the

weights are set up: wji =

(
1 if xi = 1

�1 if xi = 0
and wj0 = 1 � nx; where nx =

NP
i=1

xi,

i.e. is equal with the number of \ones" into the x pattern vector.

Then the total input to a hidden neuron is 1 � nx + 1 � (1 � nx) = 1 and then the

output of the hidden neuron is 1 when presented with the \learned" pattern vector.

The total input is at most (nx � 1) + (1 � nx) = 0 when presented with another

pattern vector (one xi component changed from 1 to 0 or vice-versa); such that the

output will be 0.

� The activation function for the output neuron is:

f2(a) =

(
1 if a > 0

0 if a < 0

The weights to the output neuron are set to 1. The bias w(2)0 is set to �1 such that

when a pattern for which the output should be 1 is presented to the net, the total

input in y is 0; otherwise is �1 and thus the correct output is ensured at all times.

A vectorial output function may be split into components and each component may be

assigned to a output neuron.

✍ Remarks:

➥ While not very useful by itself (it does not have a generalization capability) the

above architecture illustrate the possible importance of singular neuron \�ring"

| used extensively in CPN and ART neural networks.

9.2.2 Continuous Vectors

The two propositions below assume a 2 class problem (either x 2 C1 or x 2 C2) and thus one
output neuron is enough for classi�cation. The solution is easily extensible to multi-class

156 CHAPTER 9. MULTI LAYER NEURAL NETWORKS

z2

z1

zH

y = z1 ^ : : : ^ zH

Figure 9.2: In a two layer network the hidden layer may represent the

hyperplane decision boundaries and then the output layer

may do a logical AND to establish if the input vector is

within the decision region. Thus any convex decision area

may be represented by a two layer network.

problems by assigning each output neuron to a class.

Proposition 9.2.1. A two-layer neural network may have arbitrary convex decision bound-

ary.

Proof. A single layer neural network (with one output) have a decision boundary which is a hyperplane.

Let the hidden layer represent the hyperplanes (see chapter \Single Layer Neural Networks").

Then the output layer may perform an logical AND between the outputs of the hidden layer to decide if
the pattern vector is inside the decision region or not | each output neuron representing a class. See

�gure 9.2.

Proposition 9.2.2. A 3-layer neural network may have arbitrary decision boundary (it may

be non-convex and/or disjoint).

Proof. The pattern space is divided into su�ciently small hypercubes such that the decision region may be

approximated using them (i.e. each hypercube will be included either in the C1 decision region or in that of

C2's). The decision area may be approximated with arbitrary precision by making the hypercubes smaller.

The neural network is built as follows: The �rst hidden layer contains a group of 2N neurons for each

hypercube of the same one class (2 hyperplanes for each dimension to de�ne the hypercube). The second

hidden layer contains N neurons who receive the input from the corresponding group of 2N neurons from

the �rst hidden layer. The output layer receive its inputs from all N neurons from the second hidden layer.

The architecture of the network is depicted in �gure 9.3 on the next page.

By the same method as described in the previous proposition a neuron from the second layer may decide if

the input pattern vector is inside the hypercube it represents.

An logical OR on the output layer, between the outputs of the second hidden layer, decides if the pattern

vector belongs to any of hypercubes represented by the �rst layer and thus to the class selected; if not then

the input vector belongs to the other class.

✍ Remarks:

➥ The network architecture described in proof of proposition 9.2.2 have the disad-

vantage that require large hidden layers.

9.3. SIGMOIDAL NEURONS 157

x1 xN

y

�rst
hidden layer

second
hidden layer

Figure 9.3: The 3 layer neural network architecture for arbitrary de-

cision areas.

➧ 9.3 Sigmoidal Neurons

The possible sigmoidal activation functions are:

y = f(a) =
1

1 + e�ca
and y = f(a) = tanh(a) =

eca � e�ca

eca + e�ca

where c = const..

Because
tanh(a=2)+1

2
= 1

1+e�ca
then using the tanh function instead of the logistic one

is equivalent to apply a linear transformation ea = a=2 before and (again a linear trans-

formation) y = 1
2
ey + 1 after the processing on neural layer (this is equivalent in a linear

transformation of weights and biases).

The tanh function have the advantage of being symmetrical with respect to the origin. See

�gure 9.4 on the following page.

✍ Remarks:

➥ The output of a logistic neuron is limited to the interval [0; 1]. However the

logistic function is easily inversable and then the inverse f�1(y) = 1
c
ln y

1�y .

➥ In the vicinity of the origin the logistic function is almost linear and thus it can

approximate a linear neuron.

9.3See [Bis95] pp. 126{132.

158 CHAPTER 9. MULTI LAYER NEURAL NETWORKS

tanh(x)

�2:0 2:0

x

c = 10
c = 1

c = 3

�1:0

1:0

Figure 9.4: The graph of tanh function for various c constants.

9.3.1 Three Layer Networks

Proposition 9.3.1. A three layer network may approximate with any accuracy a smooth

function (mapping) X ! Y .

Proof. The logistic activation function is:

y =
1

1 + exp(�wTx� w0)

and is represents the output of a �rst-layer neuron. See �gure 9.5{a .

By making linear combinations, i.e. when entering the second neuronal layer, it is possible to get a function

with an absolute maximum. See �gure 9.5{b and 9.5{c.

By applying the sigmoidal function on the second layer, i.e. when exiting the second layer, it is possible to

get just a localized output, i.e. just the maximum of the linear combination. See �gure 9.5{d.

The third layer may combine the localized outputs of the second layer to perform the approximation of any

smooth function | it should have a linear activation function.

9.3.2 Two Layer Networks

Proposition 9.3.2. A two layer neuronal network can approximate, arbitrary well, any func-

tion (mapping) X ! Y , provided that X and Y spaces are �nite-dimensional and there are

enough hidden neurons.

Proof. Any function may be decompose into a Fourier series:

y(x1; : : : ; xN) =
X
i1

ci1(x2; : : : ; xN) cos(i1x1) = : : :

=
X
i1

� � �
X
iN

Ci1���iN

NY
`=1

cos(i`x`)

(by developing in series all c parameters).

Any product of 2 cosines may be transformed into a sum, using the formula cos� cos � = 1

2
cos(� + �) +

1

2
cos(�� �). Then by applying this procedure N � 1 times, the product from the equation above may be

changed to a sum of cosines (the values of the angles and the constants don't have to be speci�ed for the

proof).

9.3. SIGMOIDAL NEURONS 159

10

0a1
�10

10 0

a2

�10

f1

a)

1:0

0:5

0:0

10

1:0

0:5

0:0

10 0

a1

0
a2

c)

f3

�10

�10

10 0

a1

a2

�10

10

0

d)

f4

�10

1:0

0:5

0:0

�1010 0

a2

1:0

0:5

0:0
10

0

�10

a1
b)

f2

Figure 9.5: Two dimensional space. Figure a) shows the sigmoidal

function f1 =
1

1+e�a1�a2
. Figure b) shows the linear com-

bination f2 =
1

1+e�a1�a2�5
� 1

1+e�a1�a2+5
| they are dis-

placed relatively one each other. Figure c) shows a linear

combination of 4 sigmoidal functions f3 =
0:5

1+e�a1�a2�5
�

0:5
1+e�a1�a2+5

+ 0:5
1+e�a1+a2�5

� 0:5
1+e�a1+a2+5

| the second

pair is rotated by �=2. Figure d) shows the output after

applying the sigmoidal function again f4 =
1

1+e14f3+1:6
|

only the central maximum remains.

160 CHAPTER 9. MULTI LAYER NEURAL NETWORKS

x0

f(xi+1)

f(xi)

x

f

xi xi+1 xS

Figure 9.6: The approximation of a function by S steps.

Using the Heaviside step function:

H(x) =

(
1 if x > 0

0 if x < 0

any function may be approximated as:

f(x) ' f(x0) +
SX
i=1

[f(xi)� f(xi�1)]H(x� xi)

where S is the number of steps by which the function was approximated. See �gure 9.6.❖ S

Then the network is build/performs as follows:

� The �rst layer have threshold activation functions and calculate the values of cosine functions.

� The second layer performs the linear combination from the Fourier series development.

➧ 9.4 Weight-Space Symmetry

Considering the tanh activation function then by changing the sign on all weights and the

bias the output of neuron have reverted sign (tanh is symmetrical with respect to origin,

see also �gure 9.4 on page 158).

If the network have two layers and the weights and biases on the second layer have also the

signs reverted then the �nal output of network remains unchanged.

Then the two sets of weights and biases leads to same result, i.e. there is a symmetry of

the weights towards origin.

Assuming a 2-layer network with H hidden neurons then the total number of weights and

biases sets which gives the same �nal result is 2H

Also, if all weights and the bias are interchanged between two neurons on one layer then

the output of the next layer remains unchanged (assuming that the layers are fully inter-

connected).

9.4See [Bis95] pg. 133.

9.5. HIGHER-ORDER NEURONAL NETWORKS 161

There are H ! such possible combinations on the hidden layer.

Finally there are H !2H sets of weights witch gives the same output on a 2-layer network.

On more complex networks there may be even more symmetries.

The symmetry in weights leads directly to a symmetry in error function and then the error

will have several equivalent minima. Eventually this means that the minima point of error

may be much closer than it looks at �rst sight, regardless of the starting point, usually

randomly selected.

➧ 9.5 Higher-Order Neuronal Networks

The neurons studied so far performed a linear combination of their inputs before applying

the activation function:

ftotal inputgj = aj =

NX
i=0

wjixi then foutputgj = yj = f(aj)

(or in matrix notation: a =Wx and y = f(a)).

It is possible to design a neuron which performs a higher-degree combination of its inputs,

e.g. a second-order:

ftotal inputgj = wj0 +

NX
i=1

wjixi +

NX
i=1

NX
`=1

wji`xix`

✍ Remarks:

➥ The main di�culty in dealing with such neurons consists in the tremendous in-

crease in the number of W parameters.

A �rst-ordered neuron will have N + 1 parameters while a second order neuron

will have N2 +N + 1 parameters and for N � 1) N2 � N .

On the other hand higher-order neurons may be build to be invariant to some

transformations of the pattern space, e.g. translations, rotation and scaling. This

property may make them usable into the �rst layer of network.

➧ 9.6 Backpropagation Algorithm

9.6.1 Error Backpropagation

It is assumed that the error function may be written as a sum over all training vector patterns

E =

PX
p=1

Ep

9.5See [Bis95] pp. 133{135.
9.6See [Bis95] pp. 140{148.

162 CHAPTER 9. MULTI LAYER NEURAL NETWORKS

and also that the error function Ep = Ep(y) is di�erentiable with respect to the output

variables. Then just one vector pattern is considered at a time.

The output of network is calculated by forward propagation from:

aj =
X
i

wjizi and zj = f(aj) (9.2)

a =W (j; :) z and z = f(a)

where aj is the weighted sum of all inputs entering neuron zj , zi being here any neuron,❖ aj
hidden or output.

Then Ep also depends on wji trough aj and then the derivative of Ep with respect to wji
is

@Ep

@wji
=

@Ep

@aj

@aj
@wji

=
@Ep

@aj
zi = �jzi) (9.3)

rEp = raEp z
T = �zT

where
@Ep
@aj

� �j is named error | it's a factor determinant in weight adjusting. (as shown❖ �j , �

below); raEp � �, note that here rEp represents just the part linked toW from the whole

error gradient

z for all layers is found trough a forward propagation trough the network. � is found by

backpropagation (from output to input) as follows:

� For the output layer: Ep = Ep(f(a)) and then:

�out;k �
@Ep

@ak
=
@Ep

@yk

df(ak)

dak
=

@Ep

@yk
f 0(ak) (9.4)

�out = ryEp � f 0(a)

where f 0 is the total derivative of activation function f .❖ f 0

� For other layers: neuron zj a�ects the error Ep trough all other neurons to which it

sends its output:

�j =
@Ep

@aj
=
X
`

@Ep

@a`

@a`
@aj

=
X
`

�next;`
@a`
@aj

(9.5)

where the sum is done over all neurons to which zj send connections (�next;` �
@Ep
@a`

)

and from the expression of a` and de�nition of �` �nally the back-propagation formula:❖ �next;`, �next

�j = f 0(aj)
X
`

w`j�next;` (9.6)

by the means of which the derivatives may be calculated backwards | from the output

layer to the input layer. In matrix notation:

� = f 0(a) � (WT
�next)

By knowing the derivatives of E with respect to the weights, the W parameters may be

adjusted in the direction of minimizing the error, using the delta rule.

9.6. BACKPROPAGATION ALGORITHM 163

9.6.2 Application: Sigmoidal Neurons and Sum-of-squares Error

Let consider a network having logistic activation function for its neurons and the sum-of-

squares error function.

Then the derivative of the activation function is:

f(x) =
1

1 + e�x
)

df

dx
= f(x)(1� f(x)) (9.7)

and the sum-of-squares error function for pattern vector xp is:

Ep =
1

2

KX
k=1

[yk(xp)� tpk]
2 =

1

2
[y(xp)� tp]

T[y(xp)� tp] (9.8)

(it is assumed that yk and tpk are the components of the respective vectors y and tp, when

the network is presented with the pattern vector xp).

From (9.8), (9.4) and (9.7), for output layer:

�out = y(xp)� [b1� y(xp)]� [y(xp)� tp]

and similar, for the hidden layers:

� = z� [b1� z]� (WT
�next)

where the � errors are calculated backwards starting with the hidden layer closest to the

output and ending with the �rst hidden layer.

The error gradient (the part linked to W) rEp is:

rEp = �z
T

To minimize the error, the weights have to be changed in direction contrary to that pointed

by the gradient vector, i.e. the amount will be:

�W / �rEp = ��rEp

where � governs the overall speed of weight adaptation, i.e. the speed of learning, and thus learning constant

is named learning constant. �i is a determining factor in weight change and thus is named

error . The above equation represents the delta rule.

✍ Remarks:

➥ The choice of order regarding training pattern vectors is optional:

� Consider one at a time (including random selection for the next one).

� Consider all together and then change the weights with the sum of all

individual weight adjustments

�W = ��
PX
p=1

rEp

This represents the batch backpropagation.

164 CHAPTER 9. MULTI LAYER NEURAL NETWORKS

� Any pattern vector may be selected multiple times for training/weight ad-

justing.

� Any of the above in any order.

➥ � have to be su�ciently large to avoid the trap of local minima of E but on the

other hand it have to be su�ciently small such that the \absolute" minima will

not be jumped over.

➥ In numerical simulation the most computational intensive terms are the matrix

operations found in (9.6). Then the computational time is proportional with

the number of weights W : O(W) | where O is a linear function in W |❖ W , O
the number of neurons being usually much lower (unless there is a very sparse

network). Because the algorithm require in fact one forward and one backward

propagation trough the net the dependency is O(2W).

On the other hand to explicitly calculate the derivatives of Ep would require

one pass trough the net for each one and then the computational time will be

proportional with O(W 2). The importance of backpropagation algorithm resides

in the fact that reduces computational time from O(W 2) to O(W). However

the classical way of calculating rEp by perturbing each wji by a small amount

" & 0 is still good for checking the correctness of a digital implementation on a

particular system:

@Ep

@wji
'

Ep(wji + ")� Ep(wji � ")

2"

Another approach would be to calculate the derivatives:

@Ep

@aj
'

Ep(aj + ")�Ep(aj � ")

2"

This approach still needs two steps for each neuron and then the computational

time is proportional with O(2MW), where assuming M is the total number of

neurons.

Note that because the derivative is calculated with the aid of two values centered

around wji, respectively aj , the terms O(") are canceled (the bigger non-zero

terms neglected in the above approximations are O("2)).

➧ 9.7 Jacobian Matrix

The following matrix:

J �
�
@yk
@xi

�
k=1;K

i=1;N

=

0B@
@y1
@x1

� � � @y1
@xN

...
. . .

...
@yK
@x1

� � � @yK
@xN

1CA
is named the Jacobian matrix and it provides a measure of the local sensitivity of the networkJacobian

9.7See [Bis95] pp. 148{150.

9.7. JACOBIAN MATRIX 165

output to a change in the inputs, i.e. for small perturbation in input vector �x � x the

perturbation in the output vector is:

�y ' J�x

Considering the �rst layer to which inputs send connections (i.e. the �rst hidden layer):

Jki =
@yk
@xi

=
X
`

@yk
@a`

@a`
@xi

=
X
`

@yk
@a`

w`i (9.9)

(the sum is made over all neurons to which inputs send connections). To use a matrix

notation, the following matrix is de�ned: ❖ ray

ray �
�
@yk
@a`

�
where a refers to a particular layer.

The derivatives @yk
@a`

are found by a procedure similar to the backpropagation algorithm.

A perturbation/change in a` is propagated trough all neurons to which neuron ` send

connections (its output), then:

@yk
@a`

=
X
q

@yk
@aq

@aq
@a`

and, because aq =
P
s

wqszs =
P
s

wqsf(as) then:

@yk
@a`

= f 0(a`)
X
q

@yk
@aq

wq` (9.10)

i.e. the derivatives @yk
@a`

may be evaluated in terms of the same derivatives of the next layer.

� For the output layer:

@yk
@a`

= �k`
df(ak)

dak

where a` here are those received by the output neurons (�k` is the Kronecker symbol),

i.e. all partial derivatives are 0 except @yk
@ak

and the matrix ray have just one non-zero

element per each row/column.

� For other layers: the derivatives are calculated backward using (9.10), then:

ray = [b1 f 0(aT)]� [ranext
yW]

When the �rst layer is reached then the Jacobian is found from (9.9).

✍ Remarks:

➥ The same remarks as for backpropagation algorithm regarding the computing

time (see section 9.9) applies here.

166 CHAPTER 9. MULTI LAYER NEURAL NETWORKS

➧ 9.8 Hessian Tensor

The elements of the Hessian tensor are the second derivatives of the error function with

respect to weights:

H =

�
@2E

@wji@wk`

�
jikl

✍ Remarks:

➥ The Hessian is used in several non-linear learning algorithms by analyzing the

surface E = E(W); the inverse of the Hessian is used to determine the least

signi�cant weights in order to \prune" the network and it is also used to �nd the

output uncertainties.

➥ Considering that there are W weights then the Hessian have W 2 elements and

then the computational time is at least of O(W 2) order.

The error function is considered additive with respect to the set of training pattern vectors.

9.8.1 Diagonal Approximation

Here the Hessian is calculated by considering it diagonal, then only the diagonal elements
@2E
@w2

ji

have to be found (all others are zero).

The error function is considered a sum of elements over the training set as in the backprop-

agation algorithm: E =
P
p

Ep.

From the expression of aj , in (9.2), the operator @
@wji

may be written as:

@

@wji
=

@

@aj

@aj
@wji

=
@

@aj
zi

and, because zi does not depend on wji then:

@2

@w2
ji

=
@2

@a2j
z2i

and the diagonal elements of the Hessian for pattern vector xp becomes
@2Ep
@w2

ji

=
@2Ep
@a2j

z2i .

From (9.6) (and on similar grounds):

@2Ep

@a2j
=

d2f(aj)

da2j

X
`

w`j
@Ep

@a`
+

�
df(aj)

daj

�2X
`

X
`0

w`jw`0j
@2Ep

@a`@a`0

9.8See [Bis95] pp. 150{160.

9.8. HESSIAN TENSOR 167

(where @
@aj

�
@Ep
@a`

�
=
P̀
0

@2Ep
@a`@a`0

@a`0
@aj

) the sum over ` and `0 being done over all neurons to

which neuron i is sending connections. In matrix notation it may be written directly as:

(ra �ra)Ep = f 00(a)� (WT
�next) + [f 0(a)� f 0(a)]� (WTranext

�WTranext
)Ep

By neglecting the non-diagonal terms:

@2Ep

@a2j
�

d2f(aj)

da2j

X
`

w`j
@Ep

@a`
+

�
df(aj)

daj

�2X
`

w2
`j

@2Ep

@2a`

or in matrix notation:

(ra �ra)Ep = f 00(a)� (WT
�next)

+ [f 0(a) � f 0(a)]�W�2T � (ranext
�ranext

)Ep

and thus, the computational time is reduced from O(W 2) to O(W) (by neglecting the o�

diagonal terms
@2Ep
@a`@a`0

, ` 6= `0). Note however that in practice the Hessian is quite far from

being diagonal.

9.8.2 Outer Product Approximation

Considering the sum-of-squares error function for pattern vector xp:

Ep =
1

2

KX
s=1

[ys(xp)� tps]
2 =

1

2
[y(xp)� tp]

T[y(xp)� tp]

then the Hessian is calculated immediately as:

@2Ep

@wji@wk`
=

KX
s=1

@ys
@wji

@ys
@wk`

+

KX
s=1

(ys � ts)
@2ys

@wji@wk`

Considering a well trained network and the amount of noise small then the terms ys � ts
have to be small and may be neglected; then:

@2Ep

@wji@wk`
�

KX
s=1

@ys
@wji

@ys
@wk`

and @ys
@wji

may be found by backpropagation procedure.

9.8.3 Inverse Hessian

Let consider the Nabla vectorial operator with respect to the weights r =
n

@
@wji

o
ji
then

the Hessian may be written as a square W �W matrix

HP =

PX
p=1

r � rTEp

168 CHAPTER 9. MULTI LAYER NEURAL NETWORKS

(P being the number of vectors in the training set).

By adding a new training vector:

HP+1 = HP +r � rTEP+1

A similar recurrent formula may be developed for the inverse Hessian:

H�1
P+1 = H�1

P �
H�1
P rrTEP+1H

�1
P

1 +rTH�1
P rEP+1

Proof. Considering 3 matrices A, B and C, A inversable, then it is true that:

(A+BC)�1 = A
�1 � A

�1
B(I + CA

�1
B)�1CA�1

(the identity may be veri�ed by multiplication by (A+ BC) to the left respectively to the right).

By putting HP = A, r = B and rT
EP = C then rT

H
�1
P
rEP+1 have dimension 1 (as the product

between a row and column matrix) and the required formula is obtained.

Using the above formula and starting with H0 / I the Hessian may be computed by just

one pass trough all training set.

9.8.4 Finite Di�erences

Another possibility to �nd the Hessian is by applying small perturbations to weights and

calculate the error; then:

@2E

@wji@wk`
=

1

4"2
[E(wji + "; wk` + ")�E(wji � "; wk` + ") (9.11)

�E(wji + "; wk` � ") +E(wji � "; wk` � ")] +O("2)

'
1

4"2
[E(wji + "; wk` + ")�E(wji � "; wk` + ")

�E(wji + "; wk` � ") +E(wji � "; wk` � ")]

where 0 . " � 1. By choosing an interval centered around (wij ; wk`) the terms O(")
cancels one each other.

Another approach is to use the gradient rE:

@2E

@wji@wk`
=

1

2"

"
@E

@wji

����
wji+"

(wk` + ")�
@E

@wji

����
wji�"

(wk` + ")

#
+O("2) (9.12)

'
1

2"

"
@E

@wji

����
wk`+"

�
@E

@wji

����
wk`�"

#
(9.13)

✍ Remarks:

➥ The \brute force" attack used in (9.11) require O(4W) computing time for each

Hessian element (one pass for each of four E terms), i.e. O(4W 3) computing

time for the whole tensor. However it represent a good way of checking other

algorithm implementations.

9.8. HESSIAN TENSOR 169

➥ The second approach, used in (9.11) require O(2W) computing time to calculate

the gradient and thus O(2W 2) computing time for the whole tensor.

9.8.5 Exact Hessian

From (9.3):
@Ep
@wk`

= �kz` and then by di�erentiating again:

@2Ep

@wji@wk`
=

@

@aj

�
@Ep

@wk`

�
@aj
@wji

=
@

@aj

�
@Ep

@wk`

�
zi = zi

@(�kz`)

@aj
(9.14)

(using also (9.2)).

Because z` = f(a`) then:

@2Ep

@wji@wk`
= zi�kf

0(a`)h`j + ziz`bkj

where: ❖ h`j , bkj

h`j �
@a`
@aj

and bkj �
@�k
@aj

The h`j coe�cients

a` depends over all as from neurons s which connects to neuron `, then:

h`j =
X
s

@a`
@as

@as
@aj

(9.15)

and (as a` =
P
s

w`sf(as)) then:

h`j =
X
s

w`sf
0(as)hsj

i.e. the h`j coe�cients may be calculated in terms of the previous ones till the �rst layer

which receive directly the input and for which the coe�cients do not have to be calculated.

✍ Remarks:

➥ For the same neuron obviously h`` = 1.

➥ For two di�erent neurons, by continuing the development in (9.15): if a forward

propagation path can't be established from neuron ` to neuron j, then a` and aj
are independent and, consequently h`j = 0

The bkj coe�cients

The bkj are calculated using a backpropagation method.

The neuron k a�ects the error trough all neurons s to which it sends connections:

�k = f 0(ak)
X
s

wsk�s

170 CHAPTER 9. MULTI LAYER NEURAL NETWORKS

(see also the backpropagation formula (9.6)). Then:

bkj =
@

@aj

f 0(ak)

X
s

wsk�s

!
(9.16)

= f 00(ak)hkj
X
s

wsk�s + f 0(ak)
X
s

wskbsj

where f 00(a) = d2f
da2

is the second derivative of the activation function.❖ f 00

✍ Remarks:

➥ The derivative @
@aj

proceed from the derivative @
@wji

, see (9.14). Its application is

correct only as long wji does not appear explicitly in the expression to be derived

in (9.16).

The weight wji represents the connection from neuron i to neuron j while the

sum in (9.16) is done over all neurons to which neuron j send connections to.

Thus | according to the feedforward network de�nition | wji can't be among
the set of weights wsk and the formula is correct.

For the s neuron on output layer:

�s =
@Ep

@as
= f 0(as)

@Ep

@ys

(as ys = f(as)) and:

bss =
@�s

@as
=

@

@as

�
f 0(as)

@Ep

@ys

�
= f 00(as)

@Ep

@ys
+ f 0(as)

@

@ys

@Ep

@as

= f 00(as)
@Ep

@ys
+ f 00(as)

das
dys

@Ep

@ys
+ f 0(as)

@2Ep

@y2s

= f 00(as)
�
1 + f�10(ys)

� @Ep

@ys
+ f 0(as)

@2Ep

@y2s

(because @
@as

$ @
@ys

switch places, using the expression of �s above and as = f�1(ys)).

For all other layers the bkj coe�cients may be found from (9.16) by backpropagation and

by considering the condition wjj = 0, i.e. into a feedforward network there is no connection

from a neuron to itself.

9.8.6 Multiplication with Hessian

Considering the Hessian as a matrix r �rTEp (see section 9.8.3) the problem is to �nd an

easy way of multiplying it with a vector v having W components:

v
TH � v

T � (rrT)Ep

9.8. HESSIAN TENSOR 171

Using the �nite di�erence method on a interval centered around the current set of weightsW
(W is seen here as a vector):

v
Tr(rTEp) =

1

2"

�
rTEp(W + "v)�rTEp(W � "v)

�
+O("2)

where 0 . "� 1.

Application.

Let consider a two layer feedforward neural network with the sum-of-squares error function.

Then: ❖ a, z, y

a =W(1)xp ; z = f(a) and y =W(2)z

Let de�ne the operator R(�) = v
Tr, then R(W) = v (R is a scalar operator, when applied ❖ R(�)

to the components of W the results are the components of v as rW = b1). Note that W
represents the total set of weights, i.e. W(1) [W(2); also the v vector may be represented,

here, in the form of two matrices v(1) and v(2), the same way W is represented by W(1)

and W(2). ❖ v(1), v(2)

By applying R to a, z and y:

R(a) = v(1)x

R(z) = f 0(a)R(a)

R(y) =W(2)R(z) + v(2)z

From the sum-of-squares error function: ❖ aout

�(2) = f 0(aout)� [y � tp] for output layer, aout =W(2)z

�(1) = f 0(a) �W(2)�(2) for hidden layer

(see (9.4), (9.6) and (9.8)).

By applying again the R operator:

R(�(2)) = f 00(aout)�R(aout)� (y � tp) + f 0(a(2))�R(y)

R(�(1)) = f 00(a) �R(a) �W(2)�(2) + f 0(a) � v(2)�(2) + f 0(a) �W(2)R(�(2))

Finally, from (9.3):

rW(2)
Ep = �(2)z

T for output layer

rW(1)
Ep = �(1)x

T for hidden layer

and then the components of vTH vector are found trough:

R
�
rW(2)

Ep

�
= R(�(2)) zT + �(2)R(zT) for output layer

R
�
rW(2)

Ep

�
= R(�(1))xT for hidden layer

172 CHAPTER 9. MULTI LAYER NEURAL NETWORKS

✍ Remarks:

➥ The above result may also be used to �nd the Hessian, by making v of the form

v
T =

�
0 : : : 0 1 0 : : : 0

�
; and then the expression v

TR(Ep) gives a

row of the Hessian \matrix".

CHAPTER 10

Radial Basis Function Networks

➧ 10.1 Exact Interpolation

For a unidimensional output network let consider a set of training vectors fxpgp=1;P , the
corresponding set of targets ftpgp=1;P and a function h : X ! Y which tries to map

exactly the training set to the targets such that:

h(xp) = tp ; p = 1; P (10.1)

It is assumed that the h(x) function may be found by the means of a linear combination of

a set of P basis functions of the form '(kx� xpk):

h(x) =

PX
p=1

wp'(kx� xpk) (10.2)

By building the symmetrical matrix: ❖ �

� =

0B@'(kx1 � x1k) : : : '(kxP � x1k)
...

. . .
...

'(kx1 � xP k) : : : '(kxP � xP k)

1CA
then from (10.1) and (10.2) it follows that:

~wT� = ~tT (10.3)

where ~wT =
�
w1 : : : wP

�
and ~tT =

�
t1 : : : tP

�
. ❖ ~w, ~t

10.1See [Bis95] pp. 164{167.

173

174 CHAPTER 10. RADIAL BASIS FUNCTION NETWORKS

The ~w set of parameters is found immediately if the square matrix � is inversable (which

usually is); the solution being:

~w = ~tT��1

Examples of basis functions are:

� Gaussian function: '(x) = exp
�
� x2

2�2

�
� '(x) = (x2 + �2)�� , � > 0

� '(x) = x2 lnx

� Multi-quadratic function: '(x) =
p
x2 + �2

� Cubic and linear functions: '(x) = x3 , '(x) = x

For the multidimensional network output the established relations are immediately extendible

as follows:

hk(xp) = tkp ; p = 1; P ; k = 1;K

hk(x) =

PX
p=1

wkp'(kx� xpk) ; k = 1;K

Let h �
�
h1 : : : hK

�
then h(xp) = tp and also by building W using all ~wT as rows and❖ h

T using all ~tT again as rows then W� = T and thus W = T��1 (assuming � inversable,

of course).

➧ 10.2 Radial Basis Function Networks

The radial basis function network is built by considering the basis function as an neuronal

activation function and the wkp parameters as weights.

✍ Remarks:

➥ To perform a exact interpolation of the training set is not only unnecessary but

a bad thing as well | see the course of dimensionality problem. For this reason

some modi�cations are made.

When using the basis functions in neural networks, the following changes are performed:

� The number H of basis functions do not need to be equal to the number P of training

vectors | usually is much less. So fwkpg ! fwkjg.

� The basis functions do not have to be centered around the training vectors.

� The basis functions may have themselves some tunable (during training) parameters.

� There may be a bias parameter.

10.2See [Bis95] pp. 167{169.

10.3. RELATION TO OTHER THEORIES 175

'1 'H

x1 x2 xN

y1 y2 yK

'0

Figure 10.1: The radial basis function network architecture. On the

hidden layer each neuron have a radial basis activation

function. The activation function of the output layer is

the identity. For bias '0 = 1.

Then the output of the network looks like:

yk(x) =

HX
j=1

wkj'j(x) + wk0 , y(x) = fW e'(x) (10.4)

where e'T �
�
'0 : : : 'K

�
and fW holds both weights and bias. ❖ e', fW

✍ Remarks:

➥ If the basis functions are of Gaussian type the they are of the form:

'j(x) = exp

"
�
(x� �j)T�

�1
j (x� �j)
2

#

where �j is a covariant symmetrical matrix.

The model may be represented in the form of a two layer network where the hidden neurons

have the basis functions as activation function. Note that the weight matrix from input to

hidden layer is e1 and the output layer have the identity activation function. See �gure 10.1.

The basis function associated with bias is the constant function '0(x) = 1.

➧ 10.3 Relation to Other Theories

10.3.1 Relation to Regularization Theory

A way to control the smoothing of the model (in order to avoid large oscillations in the

output after a small variation of input) | and thus to control the complexity of the model

10.3See [Bis95] pp. 171{179.

176 CHAPTER 10. RADIAL BASIS FUNCTION NETWORKS

| would be trough an additional term in the error function which penalizes un-smooth

network mappings.

For a unidimensional output, the sum-of-squares error function will be written as:

E =
1

2

PX
p=1

[y(xp)� tp]
2 +

�

2

Z
X

jPyj2dx (10.5)

where � is a constant named regularization parameter and P is a di�erential operator such❖ �, P
that large curvatures of y(x) gives rise to large values of jPyj2.

By replacing y(xp) with y(xp) �D(x � xp) | where �D is the Dirac function | the error❖ �D
function (10.5) may be expressed as a functional of y(x) (see the mathematical appendix).

The condition of stationarity for E is to set to 0 its derivative with respect to y(x):

�E

�y
=

PX
p=1

[y(xp)� tp] �D(x� xp) + � bPPy(x) = 0 (10.6)

where bP is the adjoint di�erential operator of P (see also the mathematical appendix).Euler-Lagrange

equation (10.6) is named the Euler-Lagrange equation.

The solutions to (10.6) are found in terms of the Green's functions G of the operator PGreen's functions

which are de�ned as being the solutions to the equation:

bPPG(x;x0) = �D(x� x
0)

and then the solutions y(x) are searched in the form:

y(x) =

PX
p=1

wpG(x;xp) (10.7)

where fwpgp=1;P are parameters found by replacing solution (10.7) back into (10.6), giving:

PX
p=1

[y(xp)� tp] �D(x� xp) + �

PX
p=1

wp�D(x� xp)

and by integrating around a small enough vicinity of xp (small enough such that it will not

contain any other xp0), for all p = 1; P :

y(xp)� tp + �wp = 0 p = 1; P (10.8)

(because of the way �D is de�ned).

By replacing the solution (10.7) in the above equation and considering the G matrix and❖ G

~w and ~t vectors:

G =

0B@G(x1;x1) � � � G(xP ;x1)
...

. . .
...

G(x1;xP) � � � G(xP ;xP)

1CA

10.3. RELATION TO OTHER THEORIES 177

�nally (10.8) becomes:

~wT(G+ �I) = ~tT

By comparing (10.4) and (10.7) it becomes clear that the Green's functions plays the same

role as the basis functions (also the above equation may be compared to (10.3)).

✍ Remarks:

➥ If the P operator is invariant to translation and rotation then G functions are

dependent only on the norm of x: G(x;x0) = G(kx� x
0k).

10.3.2 Relation to Interpolation Theory

Let consider a mapping h : X ! Y . A noise is added to input x. Let p(x) be the probability ❖ p, ep
density of input and ep(�) the probability density of the noise.
Considering the sum-of-squares error function:

E =
1

2

ZZ
X

[y(x+ �)� h(x)]2p(x) ep(�) dxd�
where h(x) is the desired output (target) for x+ �.

By making the change of variable x+ � = z: ❖ z

E =
1

2

ZZ
X

[y(z)� h(x)]2p(x) ep(z � x) dxdz

and the y(x) is found by setting E functional derivative (see the mathematical appendix)

with respect to y(z) to 0:

�E

�y
=

Z
X

[y(z)� h(x)] p(x) ep(z � x) dx = 0) y(z) =

R
X

h(x) p(x) ep(z � x) dxR
X

p(x) ep(z � x) dx

Considering a su�ciently large set of training vectors then the integrals may be approximated

by sums:

y(z) =

PX
p=1

h(xp)
ep(x� xp)
PP
q=1

ep(x � xq)

and by comparing to (10.4) it becomes obvious that the above expression of y(x) represents
an expansion in basis functions form.

178 CHAPTER 10. RADIAL BASIS FUNCTION NETWORKS

10.3.3 Relation to Kernel Based Method

Considering a set of training data fxp; tpgp=1;P then the estimated probability density of

a pair fx; tg, assuming an exponential smoothing kernel function, is1:

ep(x; t) = 1

P

PX
p=1

1

(2�L2)(N+K)=2
exp

�
�
kx� xpk2 + kt� tpk2

2L2

�
(10.9)

where L is the length of the hypercube side (N being the dimensionality of the input X❖ L
space and K the dimensionality of the Y output space).

The optimal mapping y(x) is given by the average over the desired output conditioned by

the input:

y(x) =

Z
Y

t p(tjx) dt =

R
Y

t p(x; t) dtR
Y

p(x; t) dt

(by using also the Bayes theorem;
R
Y

p(x; t) dt = p(x)).

By replacing the p(x; t) with the value from (10.9) and integrating (see also the mathe-

matical appendix regarding Gaussian integrals):

y(x) =

PP
p=1

tp exp
h
�kx�xpk2

2L2

i
PP
p=1

exp
h
�kx�xpk2

2L2

i
known also as Nadaraya-Watson estimator | a formula similar to (10.4).Nadaraya-Watson

estimator

➧ 10.4 Classification

For classi�cation into a set of Ck classes the Bayes theorem gives:

P (Ckjx) =
p(xjCk)P (Ck)

p(x)
=

p(xjCk)P (Ck)
KP
q=1

p(xjCq)P (Cq)
(10.10)

(because p(x) plays the role of a normalization factor).

Because the posterior probabilities P (Ckjx) is what the model should calculate, (10.10) may
be compared with (10.4), the basis functions being:

'k(x) =
p(xjCk)

KP
q=1

p(xjCq)P (Cq)

1See the non-parametric/kernel based method in the statistical appendix.
10.4See [Bis95] pp.179{182.

10.4. CLASSIFICATION 179

C1

b)

C2

x2

x1

C1

a)

C2

x2

x1

Figure 10.2: Bidimensional pattern vector space. The di�erence be-

tween perceptron based classi�ers and radial basis func-

tion classi�cation: a) The perceptron represents the de-

cision boundaries; b) the radial basis function networks

represents the classes trough the basis functions.

and the output layer having only one connection per neuron from the hidden layer, the

weight being P (Ck) (in this case the hidden layer/number of basis function is also K).

The interpretation of this method is that each basis function represents a class | while

the perceptron network represents the hyperplanes acting as decision boundaries. See �g-

ure 10.2.

It is possible to improve the model by considering a mixture of basis functions m = 1;M
(instead of one single basis function per class):

p(xjCk) =
MX
m=1

p(xjm)P (mjCk)

(i.e. the mixture model). The total probability density for x also changes to:

p(x) =

KX
k=1

p(xjCk)P (Ck) =
MX
m=1

p(xjm)P (m)

where P (m) represents the prior probability of mixture component and it can be expressed ❖ P (m)

as:

P (m) =

KX
k=1

P (mjCk)P (Ck)

By replacing the above expressions into the Bayes theorem:

P (Ckjx) =
p(xjCk)P (Ck)

p(x)
=

MP
m=1

P (mjCk) p(xjm)P (Ck)P (m)

P (m)

MP
m=1

p(xjm)P (m)

=

MX
m=1

wkm'm(x)

180 CHAPTER 10. RADIAL BASIS FUNCTION NETWORKS

(
P (m)

P (m)
= 1 being added on purpose) where:❖ wkm, 'm

'm(x) =
p(xjm)P (m)
MP
n=1

p(xjn)P (n)
= P (mjx) and

wkm =
P (mjCk)P (Ck)

P (m)
= P (Ckjm)

(by using the Bayes theorem), i.e. the basis functions represents the posterior probability of

x being generated by the component m of the mixture model and the weights represent the

posterior probability of class Ck membership given a pattern vector generated by component
m of the mixture.

➧ 10.5 Network Learning

The learning procedure consists of two steps:

� The basis functions are established and their parameters are found, usually by an

unsupervised learning procedure, i.e. only the inputs fxpg from the training set are

considered (the targets ftpg are ignored). The basis functions are usually de�ned to

depend only over a distance between the pattern vector x and the training vectors

fxpg, i.e. kx� xpk, such that they have a radial symmetry.

� Then, having the basis functions properly established, the weights on output layer are

to be found.

10.5.1 Radial Basis Functions

The relation between radial basis function network and other statistical methods described

in section 10.3, suggest that the basis functions should represent the probability density of

input vectors. Then an unsupervised method may be envisaged to �nd the parameters of

the basis functions, several are described below.

Subsets of data points

This procedure builds the basis functions as Gaussians:

'j(x) = exp

"
�
kx� �jk2

2�2j

#
(10.11)

The f�jg vectors are chosen as a subset of the training set fxpg.

The f�jg parameters are chosen all equal to a multiple of average distances between the

centers of radial functions (as de�ned by vectors �i). They should be chosen such as to

allow for a small overlap between radial functions.

10.5See [Bis95] pp. 170{171 and pp. 183{191.

10.5. NETWORK LEARNING 181

✍ Remarks:

➥ This ad hoc algorithm usually gives poor results but it may be useful as a starting

point for further optimization.

Clustering

The basis functions are built as Gaussian, as above.

The training set is divided into a number of subsets Sj , equal to the number of basis

functions, such that an error function associated with the clustering is minimized:

E =

HX
j=1

X
xp2Sj

kxp � �jk
2

At the beginning the learning set is divided into subsets at random. Then the mean �j is

calculated inside each subset and each training pattern vector xp is reassigned to the subset

having the closest mean. The procedure is repeated until there are no more reassignments.

✍ Remarks:

➥ Alternatively the �j vectors may be found by an on-line stochastic procedure.

First they are chosen at random from the training set. Then they are updated

according to:

��j = �(xp � �j)

for all xp, where � represents a \learning constant". Note that this is similar

to �nding the root of r�j
E, i.e. the minima of E, trough the Robbins-Monro

algorithm.

Gaussian mixture model

The radial basis functions are considered of the Gaussian form (10.11).

The probability density of the pattern vector is considered a mixture model of the form:

p(x) =

HX
j=1

P (j)'j(x)

It is possible to use the EM (expectation-maximisation) algorithm to �nd �j , �j and P (j)

at step s+1 from the values at step s, starting with some initial values �0j , �0j and P0(j):

�(s+1)j =

PP
p=1

P(s)(jjxp)xp

PP
p=1

P(s)(jjxp)

�(s+1)j =

vuuuuuut
PP
p=1

P(s)(jjxp) kxp � �(s+1)jk2

N
PP
p=1

P(s)(jjxp)

182 CHAPTER 10. RADIAL BASIS FUNCTION NETWORKS

P(s+1)(j) =
1

P

PX
p=1

P(s)(jjxp)

where j = 1; H and:

P (jjx) =
P (j)'(x)

p(x)

Supervised learning

It is possible to envisage also a supervised learning for the hidden layer. E.g. considering

the basis function of Gaussian form (10.11), yk =
HP
j=1

wkj'j and the sum-of-squares error

E = 1
2

PP
p=1

[yk(xp)� tkp]
2 which have to be minimized then the conditions are:

@E

@�j
=

PX
p=1

KX
k=1

wkj [yk(xp)� tkp] exp

�
kxp � �jk2

2�2j

!
kxp � �jk2

�3j
= 0

@E

@�sj
=

PX
p=1

KX
k=1

wkj [yk(xp)� tkp] exp

�
kxp � �jk2

2�2j

!
xsp � �sj

�2j
= 0

However, to solve the above equations is very computational intensive and the solutions

have to be checked against the possibility of a local minima of E.

10.5.2 Output Layer Weights

Considering the matrix fW = fwkjgi=1;K
j=0;H

(biases included) and the vectorial function e'T
=�

'0 : : : 'H
�
then (10.4) gives:

y = fW e'(x) (10.12)

and it may be considered as a single layer network. Then considering the sum-of-squares

error function E = 1
2

PP
p=1

[y(xp)� tp]T[y(xp)� tp] the least squares technique is applied to

�nd the weights.

Considering that y is obtained by the form of a generalized linear discriminant, see (10.12),❖ �, T
then the following matrices are build:

� =

0B@'0(x1) � � � '0(xP)
...

. . .
...

'H (x1) � � � 'H(xP)

1CA and T =

0B@ t11 � � � t1P
...

. . .
...

tK1 � � � tKP

1CA
Then (according to the least squares technique) fW� = T which have the solution:❖ �y

fW = T�y where �y = �T
�
��T

��1

10.5. NETWORK LEARNING 183

(�y being the pseudo-inverse of �).

Proof. fW� = T) fW �
��T

�
= T�T) fW = T�y.

CHAPTER 11

Error Functions

➧ 11.1 Generalities

Usually neural networks are used to generalize (not to memorize) from a set of training

data.

The most general way to describe the modeller (the neural network) is in terms of join ❖ p(x; t)
probability p(x; t), where t is the desired output (target) given x as input. The joined prob-

ability may be decomposed in the conditional probability of t, given x, and the probability

of x:

p(x; t) = p(tjx) p(x)

where the unconditional probability of x may be written also as:

p(x) =

Z
Y

p(x; t) dt

Most error functions may be expressed in terms of the maximum likelihood function L, ❖ L
given the fxp; tpgp=1;P set of training vectors:

L =

PY
p=1

p(xp; tp) =

PY
p=1

p(tpjxp) p(xp)

which represents the probability of observing the training set fxp; tpg.

11.1See [Bis95] pp. 194{195.

185

186 CHAPTER 11. ERROR FUNCTIONS

The ANN parameters are tuned such that L is maximized. It may be convenient instead to

minimize a derived function:

eE = � lnL = �
PX
p=1

ln p(tpjxp)�
PX
p=1

ln p(xp)) E = �
PX
p=1

ln p(tpjxp) (11.1)

where, in E, the terms p(xp) were dropped because they don't depend on network param-error function

eters. The E function is called error function.

➧ 11.2 Sum-of-Squares Error

It is assumed that the K components of the output vector are statistically independent, i.e.

p(tjx) =
KY
k=1

p(tkjx) (11.2)

(tk being the k-th component of vector t).

It is assumed that the distribution of target data is Gaussian, i.e. it is composed from a

deterministic function h(x) and some Gaussian noise ":

tk = hk(x) + "k where p("k) =
1

p
2��2

exp

�
�

"2k
2�2

�
(11.3)

Then "k = tk �hk(x), hk(x) = yk(x;W) because it's the model represented by the neural

network (W being the network parameters), and p("k) = p(tkjx) (as hk(x) are purely

deterministic):

p(tkjx) =
1

p
2��2

exp

�
�
[yk(x;W)� tk]

2

2�2

�
(11.4)

By using the above expression in (11.2) and then in (11.1), the error function becomes:

E =
1

2�2

PX
p=1

KX
k=1

[yk(xp;W)� tkp]
2 + PK ln� +

PK

2
ln 2�

where tkp is the component k of vector tp. By dropping the last two terms which are weight❖ tkp

(W) independent, as well as the 1=�2 from the �rst term, the error function may be written

as:

E =
1

2

PX
p=1

KX
k=1

kyk(xp;W)� tkpk2 (11.5)

✍ Remarks:

➥ It is sometimes convenient to use one error function for network training, e.g. sum-RMS

11.2See [Bis95] pp. 195{208.

11.2. SUM-OF-SQUARES ERROR 187

of-squares, and another to test over the performance achieved after training, e.g.

the root-mean-square (RMS) error:

ERMS =

PP
p=1

kyp � tpk

PP
p=1

ktp � htik
where hti =

1

P

PX
p=1

tp

which have the advantage that is not growing with the number of tests P .

11.2.1 Linear Output Units

Generally, the output neuron k is applying the activation function f to the weighted sum

of zj | inputs from (last) hidden layer | in order to compute its own output:

yk(x;W) = f(ak) where ak =

HX
j=0

wkjzj(x;fW)

where fW is the set of all weights except those involving the output layer, H is the number ❖ fW , H , ak, zj
of neurons on hidden layer and wk0 is the bias corresponding to z0 = 1 (wkj being the

weight for connection from neuron j to neuron k).

Then, the derivative of error (11.5), with respect to the total input ak into the neuron k,
is:

@E

@ak
=

PX
p=1

[yk(xp;W)� tkp]
df(ak)

dak

Assuming a linear activation function f(x) = x then:

@E

@ak
=

PX
p=1

[yk(xp;W)� tkp] =
@E

@yk

and the optimization of output layer weights becomes simple. Let: ❖ hti, hzi

hti =
1

P

PX
p=1

tp and hzi =
1

P

PX
p=1

z(xp)

and the following Wout, eZ and eT matrices are de�ned: ❖ Wout, eZ, eT
Wout =

0B@w11 � � � w1H

...
. . .

...

wK1 � � � wKH

1CA ; eZ =

0B@ez11 � � � ez1P
...

. . .
...ezH1 � � � ezHP
1CA ; eT =

0B@et11 � � � et1P
...

. . .
...etK1 � � � etKP

1CA

whereWout holds the weights associated with links between (last) hidden and output layers, ❖ ezjp, etkpezjp = zj(xp)� hzji and etkp = tkp � htki. Then the solution for weights matrix is:

Wout = eT eZy where eZy = eZT(eZ eZT)�1 (11.6)

188 CHAPTER 11. ERROR FUNCTIONS

eZy being the pseudo-inverse of eZ. The biases wT
0 =

�
w10 : : : wK0

�
are found trough:❖ eZy, w0

w0 = hti �Wouthzi (11.7)

Proof. By writing explicitly the bias:

yk =
HX
j=1

wkjzj + wk0 (11.8)

and putting the condition of minimum of E with respect to biases:

@E

@wk0

=
@E

@yk

@yk

@wk0

=
PX
p=1

24 HX
j=1

wkjzj(xp) + wk0 � tkp

35 = 0

(zj(xp) being the output of the hidden neuron j when the input of the network is xp) and then:❖ htki, hzji

wk0 = htki �
HX
j=1

wkjhzji where htki =
1

P

PX
p=1

tkp ; hzji =
1

P

PX
p=1

zj(xp)

i.e. the bias compensate for the di�erence between the average of target and the weighted average of (last)bias

hidden layer output.

By replacing the biases found, back into (11.5) (through (11.8)):

E =
1

2

PX
p=1

KX
k=1

24 HX
j=1

wkjezjp � etkp
352 (11.9)

The minimum of E with respect to wkj is found from:

@E

@wkj

=
PX
p=1

"X̀
s=1

wksezsp � etkp
ezjp = 0 ; k = 1;K ; j = 1;H (11.10)

and the set of equations (11.10) may be condensed into one matrix equation:

Wout
eZ eZT � eT eZT = e0 (11.11)

which yields the desired result.

✍ Remarks:

➥ It was assumed that eZ eZT is invertible.

➥ The solution (11.6) was found by maintaining the fW weights �xed. However if

they change, the optimal solution (11.6) changes as well.

➥ The sum-of-squares error function is sensitive to training vectors with high erroroutliers

| called outliers. It is also sensitive to misslabeled data because it leads to high

error.

11.2.2 Linear Sum Rules

Let assume that for all targets (desired outputs) from the training set it is true that:❖ u, u0

u
T
tp + u0 = 0 where u ; u0 = const. ; 8p

By summing over all training vectors it follows that u0 = �uThti and then:

u
T
tp = �uThti (11.12)

11.2. SUM-OF-SQUARES ERROR 189

Then it is also true that:

u
T
y = u

Thti

i.e. if the training set have the property (11.12) then any network output will have the same

property.

Proof. The network output is y =Woutz+w0 and also from (11.7): w0 = hti �Wouthzi. Then:
u
T
y = u

T(Woutz+w0) = u
T eT eZy(z� hzi) + u

Thti

But the elements of the row matrix (vector) uT eT are:

fuT eTTgp = u
T eT (:; p) = u

T(tp � hti) = 0

by virtue of (11.12).

11.2.3 Signi�cance of Network Output

Let consider that the number of training data sets grows to in�nity and the following error

function (using Euclidean norm):

E = lim
P!1

1

2P

PX
p=1

ky(xp;W)� tpk2 (11.13)

=
1

2

KX
k=1

ZZ
X;Yk

[yk(xp;W)� tkp]
2p(tk;x) dtk dx

=
1

2

KX
k=1

ZZ
X;Yk

[yk(xp;W)� tk]
2p(tkjx) p(x) dtk dx

where Yk is the unidimensional component of the output space Y related to tk. ❖ Yk

The following conditional averages are de�ned: ❖ htkjxi, ht2kjxi

htkjxi �
Z
Yk

tkp(tkjx) dtk and ht2k jxi �
Z
Yk

t2kp(tkjx) dtk (11.14)

Then, by using the above de�nitions, it's possible to write:

[yk � tk]
2 = [yk � htkjxi + htkjxi � tk]

2

= [yk � htkjxi]2 + 2(yk � htkjxi)(htk jxi � tk) + [htkjxi � tk]
2

and by replacing into the expression of E, the middle term cancels after integration over tk
(htkjxi � tk ! htkjxi � htkjxi = 0)

E =
1

2

KX
k=1

Z
X

[yk(x;W)� htkjxi]2p(x) dx +
1

2

KX
k=1

Z
X

[ht2kjxi � htkjxi
2]p(x) dx (11.15)

(upon integration over tk: the �rst term is independent of p(tkjx) and
R
Yk

p(tkjx) dtk = 1

as p(tkjx) is assumed normated, while for the second term [htkjxi � tk]
2 ! htkjxi2 �

2htkjxi2 + ht2kjxi).

190 CHAPTER 11. ERROR FUNCTIONS

y(x)

p(tjx)

x

t

x

Figure 11.1: The network output signi�cance. Unidimensional input

and output space. Note that htjxi doesn't necessary co-

incide with the maximum of p(tjx).

In the expression (11.15) of the error function, the second term does not depend upon

network parameters W and may be dropped; the �rst term is always positive and then

E > 0. The error becomes minimum (zero) when the integrand in the �rst term is zero, i.e.

yk(x;W
�) = htkjxi (11.16)

where W � denotes the �nal weights, after the learning process have been �nished (i.e.❖ W �

optimal W value).

The ANN output with sum-of-squares error function represents the average of target con-

ditioned on input. See also �gure 11.1.

To obtain the above result the following assumptions were made:

� The training set is su�ciently large: P !1.

� The number of weights (w parameters) is su�ciently large.

� The absolute minimum of error function was found.

✍ Remarks:

➥ The above result does not make any assumption over the network architecture

or even the existence of a neuronal model at all. It holds for any model who try

to minimize the sum-of-squares error function.

➥ As p(tkjx) is normated then each term in the sum appearing in last expression

of E in (11.13) may be multiplied conveniently by
R
Yk0

p(tk0 jx) dk0 = 1 such that

E may be written as:

E =
1

2

ZZ
X;Y

ky(xp;W)� tk2p(tjx) p(x) dt dx

(ftkg were assumed statistically independent, p(tjx) =
KQ
k=1

p(tkjx)) and then the

11.2. SUM-OF-SQUARES ERROR 191

proof of (11.16):

y(x;W) = htjxi

may be expressed similarly as above but directly in vectorial terms.

The same result may be obtained faster by considering the functional derivative of E with

respect to yk(x) which is set to zero to �nd its minima:

�E

�yk(x)
=

ZZ
X;Yk

[yk(x;W)� tk] p(tkjx) p(x) dtk dx = 0

The right term may be split in two integrals, yk(x;W) is independent of tk, p(tkjx) is

normated and then:

yk(x;W) =

Z
Yk

tkp(tkjx) dtk = htkjxi

(the integrand of
R
X

have to be zero).

In general the result (11.16) represents the optimal solution: assuming that the data is

generated from a set of deterministic functions hk(x) with superimposed zero-mean noise

then:

tk = hk(x) + "k)

yk(x) = htkjxi = hhk(x) + "kjxi = hk(x)

The variance of the target data, as function of x, is:

�2k(x) =

Z
Yk

[tk � htkjxi]2p(tkjx) dtk = ht2kjxi � htkjxi
2 (11.17)

([tk � htkjxi]2 ! ht2kjxi � 2htkjxi2 + htkjxi2) i.e. is exactly the residual term of the error

function (11.15) and it may be used to assign error bars to the network prediction.

✍ Remarks:

➥ Using the sum-of-squares error function, the network outputs are x-dependent

means of the distribution and the average variance is the residual value of the

error function at its minimum. Thus the sum-of-squares error function cannot

distinguish between the true distribution and a Gaussian distribution with the

same x-dependent mean and average variance.

11.2.4 Outer product approximation of Hessian

From the de�nition (11.13) of error function, the Hessian terms are:

@2E

@ws@wq
=

KX
k=1

Z
X

@yk

@ws

@yk

@wq
p(x) dx +

KX
k=1

Z
X

@2yk

@ws@wq
(yk � htkjxi)p(x) dx

192 CHAPTER 11. ERROR FUNCTIONS

where ws, wq are some two weights, also the integration over tk was performed (yk is

independent of p(tkjx) which is normated, i.e.
R
Yk

p(tkjx) dtk = 1).

The second term, after integration over x, cancels because of the result (11.16), such that

the Hessian becomes | after reverting back from the integral to the discrete sum:

@2E

@ws@wq
=

1

P

PX
p=1

KX
k=1

@yk(xp;W
�)

@ws

@yk(xp;W
�)

@wq

➧ 11.3 Minkowski Error

A more general Gaussian distribution for the noise ", see (11.3), is:

p("k) =
R�1=R

2�E(1=R)
exp

�
��j"kjR

�
= p(tkjx) ; R = const. (11.18)

where �E is the Euler function1.

By a similar procedure as used in section 11.2 (and using the likelihood function) the error

function becomes:

E =

PX
p=1

KX
k=1

jyk(xp;W)� tkpjR

which is named Minkowski error .Minkowski error

The derivative of the error function, with respect to the weights, is

@E

@ws
=

PX
p=1

KX
k=1

jyk(xp;W)� tkpjR�1 sign(yk(xp;W)� tkp)
@yk(xp;W)

@ws

which may be evaluated by the means of backpropagation algorithm (ws being here some

weight).

✍ Remarks:

➥ The constant in front of exp function in (11.18) ensures the normalization of

probability density:
R
Yk

p("k) d"k = 1.

➥ Obviously, for R = 2 it reduces to the Gaussian distribution. For R = 1 the

distribution is called Laplacian and the corresponding error function city-block

metric .

More generally the distance jy � tjR is named LR norm.LR norm

11.3See [Bis95] pp. 208{210.
1See the mathematical appendix.

11.4. INPUT-DEPENDENT VARIANCE 193

➥ The use of R < 2 reduces the sensitivity to outliers. E.g. by considering a network

with one output and R = 1 then:

E =

PX
p=1

jy(xp;W)� tpj

and, at minimum, the derivative is zero:

PX
p=1

sign(y(xp;W)� tp) = 0

condition which is satis�ed if there are an equal number of points tp > y as there

are tp < y, irrespective of the value of di�erence.

➧ 11.4 Input-dependent Variance

Considering the variance as depending on the input vector �k = �k(x) and a Gaussian

distribution of the noise then, from (11.4):

p(tkjx) =
1

p
2� �k(x)

exp

�
�
[yk(x;W)� tk]

2

2�2k(x)

�

By the same means as used in section 11.2 for the sum-of-squares function (by using the

likelihood function), the error may be written as:

E =

PX
p=1

KX
k=1

�
[yk(xp;W)� tkp]

2

2�2k(xp)
+ ln�k(xp)

�

Dividing by 1=P and considering the limit P !1 (in�nite training set) then:

E =

KX
k=1

ZZ
X;Yk

�
[yk(x;W)� tk]

2

2�2k(x)
+ ln�k(x)

�
p(tkjx) p(x) dtk dx

and, the condition of minima with respect to yk is:

�E

�yk
= p(x)

Z
Yk

yk(x;W)� tk
�2k(x)

p(tkjx) dtk = 0

which means that the output of network, after the training was done, is:

yk(x;W
�) = htkjxi

Similarly, the condition of minima for E with respect to �k is:

�E

��k(x)
= p(x)

Z
Yk

�
1

�k(x)
�

[yk(x)� tk]
2

�3k(x)

�
p(tkjx) dtk = 0

11.4See [Bis95] pp. 211{212.

194 CHAPTER 11. ERROR FUNCTIONS

and, after the training (E minimum), the variance is (see also (11.17)):

�2k(x) = h[tk � htk jxi]2jxi

The above result may be used to �nd the variance as follows:

� First a network is trained to minimize the sum-of-squares error function, using the

fxp; tpgp=1;P training set.

� The outputs of the above network are yk = htkjxi. These values are subtracted from

the target values tk and the result is squared. Together with the input vectors xp they

form a new training set fxp; (tp � htpjxi)2gp=1;P .

� The new set is used to train a new network with a sum-of-squares error function. The

outputs of this network are �2k = h[tk � htk jxi]2jxi.

➧ 11.5 Modeling Conditional Distributions

A very general framework of modeling conditional distributions is to build a model in two

stages:

� The �rst stage uses the input vectors xp to model | trough an ANN | some pa-

rameters �(x).

� The � parameters are used into a parametric model (non ANN) to �nd the conditional

probability density p(tjx).

✍ Remarks:

➥ The above approach may deal well with complex distributions. By comparison,

a neural network with sum-of-squares error function may model just Gaussian

distributions with a global variance parameter and a x-dependent mean.

As parametric model, a good choice is the mixture model. In this approach, the distribution❖ M

of p(x) is considered of the form: p(x) =
MP
m=1

p(xjm)P (m) where M is the number of

mixture components m.

On similar grounds, the probability distribution p(tjx) may be expressed as:

p(tjx) =
MX
m=1

�m(x)'m(tjx) (11.19)

where �m(x) are prior probabilities, conditioned on x, of the target vector t being generated❖ �m
by them-th component of the mixture. Being probabilities they have to satisfy the constraint

of normality:

MX
m=1

�m(x) = 1 and �m(x) 2 [0; 1]

11.5See [Bis95] pp. 212{222.

11.5. MODELING CONDITIONAL DISTRIBUTIONS 195

The kernel functions 'm(tjx) represents the conditional density of the target vector t for ❖ 'm
the m-th mixture component. One possibility is to choose them to be of Gaussian type:

'm(tjx) =
1

(2�)K=2�Km(x)
exp

�
�
kt� �m(x)k2

2�2m(x)

�
(11.20)

and then the outputs of the neural network may be de�ned as follows: ❖ y�m, y�m,
y�km� A set of outputs fy�mg for the �m parameters which will be calculated trough a

softmax function: softmax function

�m =
exp(y�m)
MP
n=1

exp(y�n)

(11.21)

� A set of outputs fy�mg for the �m parameters which will be calculated trough the

exponential function:

�m = exp(y�m) (11.22)

� A set of outputs fy�kmg for the �m parameters which will be represented directly by

the network outputs:

�km = y�km

The error function is build from the likelihood:

E = � lnL = � ln

PY
p=1

p(tpjxp)

!
= �

PX
p=1

ln

MX
m=1

�m(xp)'m(tpjxp)

!

The problem is to �nd the network weights in order to minimize the error function. This ❖ Ep

is done by �nding an expression for the derivatives of E with respect to network outputs

y(�) and then the weights are updated by using the backpropagation algorithm. The error

function will be considered as a sum of P components Ep:

Ep = � ln

MX
m=1

�m(xp)'m(tpjxp)

!
(11.23)

The posterior probability that the pair (x; t) was generated by the component m of the ❖ �m
mixture is:

�m(x; t) =
�m(x)'m(tjx)
MP
n=1

�n(x)'n(tjx)

and, obviously, is normated (
MP
m=1

�m = 1).

196 CHAPTER 11. ERROR FUNCTIONS

The
@E
@y�m

derivatives.

From (11.23):
@Ep
@�n

= � �n
�n

and from (11.21):

@�n

@y�m
= �nm�n � �n�m

(�nm being the Kronecker symbol). Ep depends upon y�m trough all �n parameters, then:

@Ep

@y�m
=

MX
n=1

@Ep

@�n

@�n
@y�m

= �m � �m

(by using the property of normation for �k as well).

The
@E
@y�m

derivatives.

From (11.23) and (11.20):

@Ep

@�m
= ��m

�
kt� �mk2

�3m
�

K

�m

�
Also from (11.22) d�m

dy�m
= �m and then:

@Ep

@y�m
=

@Ep

@�m

d�m
dy�m

= ��m
�
kt� �mk2

�2m
�K

�

The
@E

@y�km
derivatives.

Since �km = y�km, then from (11.23) and (11.20) (Euclidean norm):

@Ep

@y�km
=

@Ep

@�km
= �m

�km � tk
�2m

The conditional average of the target data is:

htjxi =
Z
Y

tp(tjx) dt =
MX
m=1

�m(x)

Z
Y

t'm(tjx) dt =
MX
m=1

�m(x)�m(x) (11.24)

(from (11.19) and (11.20); it was also assumed that Y = RK , see Gaussian integrals in the

mathematical appendix).

The variance s(x) is:❖ s

s2(x) � hkt� htjxik2jxi =
MX
m=1

�m(x)

"
�2m(x) +

 MX
n=1

�n(x)�n(x)� �m(x)
2
#

Proof. From the de�nition of average and using (11.19) and (11.20) (also: Euclidean norm and Yk = R):

s
2(x) =

Z
RK

kt� htjxik2p(tjx) dt =
KX
k=1

Z
R

(tk � htk jxi)2p(tkjx) dtk

11.6. CLASSIFICATION USING SUM-OF-SQUARES 197

=
KX
k=1

MX
m=1

�m(x)

Z
R

(tk � htk jxi)2'm(tk jx) dtk

=
KX
k=1

MX
m=1

�m(x)

(2�)K=2�Km(x)

Z
R

(tk � htkjxi)2 exp
�
� [tk � �km(x)]2

2�2m(x)

�
dtk

To calculate the Gaussian integral above �rst make a change of variable etk = tk�htkjxi and then a second ❖ etk, btk
one btk = etk + htkjxi � �km(x) forcing also a squared btk. This leads to:Z

R

(tk � htk jxi)2 exp
�
� [tk � �km(x)]2

2�2m(x)

�
dtk =

Z
R

etk exp�� (tk + htkjxi � �km(x))2

2�2m(x)

�
detk

=

Z
R

btk exp

�

bt2
k

2�2m(x)

!
dbtk � (htkjxi � �km)2

Z
R

exp

�

bt2
k

2�2m(x)

!
dbtk

� 2(htk jxi � �km)

Z
R

btk exp

�

bt2
k

2�2m(x)

!
dbtk

First term, after an integration by parts, leads to a Gaussian (see mathematical appendix) and equalsp
2� �3m(x); the second one is directly a Gaussian giving

p
2� �2m(x) while in the third term the integrand

is an odd function, integrated over a domain symmetrical around origin, so it is zero. The sought result is

obtained after the (11.24) replacement.

➧ 11.6 Classification using Sum-of-Squares

If the sum-of-squares is used as error function then the outputs of neurons represent the

conditional average of the target data y = htjxi as proven in (11.16). In problems of

classi�cation the t vectors represent the class labels. Then the most simple way of labeling

is to assign an network output to each class and and to consider that an input vector

x is belonging to that class Ck represented by the (output) neuron k with the biggest

output. This means that the target for a vector x 2 Ck is ftk = �kqgq=1;K (�kq being the

Kronecker symbol). This method is named one-of-k encoding. The p(tkjx) probability may one-of-k
be expressed as:

p(tkjx) =
KX
q=1

�D(tk � �kq)P (Cq jx)

(�D being the Dirac function and P (Cq jx) is the probability of the x 2 Cq event, for a

given x).

From (11.16) and the above expression of p(tkjx):

yk(x) =

KX
q=1

Z
Yk

�kq�D(tk � �kq)P (Cqjx) dtk = P (Ckjx)

i.e. when using the one-of-k encoding the network outputs represent the posterior probability.

11.6See [Bis95] pp. 225{230.

198 CHAPTER 11. ERROR FUNCTIONS

The outputs of network being probabilities must sum to unity and be in the range [0; 1]:

� By the way the targets are chosen (1-of-k) and the linear sum rules (see section 11.2.2)

the outputs of the network will sum to unity.

� The range of the outputs may be ensured by the way the activation function is chosen

(e.g. logistic signal activation function).

11.6.1 Hidden Neurons

The error function (11.9) may be written in a matrix form:

E =
1

2
Trf(Wout

eZ � eT)T(Wout
eZ � eT)g (11.25)

and, by replacing the solution (11.6):❖ SB , ST

E =
1

2
Tr(eTT eT � SBS

�1
T) where SB = eZ eTT eT eZT ; ST = eZ eZT (11.26)

Proof. As eZy = eZT(eZ eZT) and for two matrices (AB)T = (BTAT) then:

E =
1

2
Tr

��eT eZy eZ � eT�T �eT eZy eZ � eT�� =
1

2
Tr
n� eZT eZyT eTT � eTT

��eT eZy eZ � eT�o
=

1

2
Tr
nh eZT(eZ eZT)�1T eZ eTT � eTT

i h eT eZT(eZ eZT)�1 eZ � eTio
=

1

2
Tr
n eZT(eZ eZT)�1T eZ eTT eT eZT(eZ eZT)�1 eZ � eZT(eZ eZT)�1T eZ eTT eT � eTT eT eZT(eZ eZT)�1 eZ + eTT eTo

For two matrices A and B, such that B have same dimensions as AT, it is true that Tr(AB) = Tr(BA).

This property is used in �rst and third terms, by moving eZ from left to right, thus they become identical

and cancel out. As Tr(AT) = Tr(A), the second term is transposed (again (AB)T = B
T
A
T) and then, eZ

is moved from left to right:

E =
1

2
Tr
n
� eZ eTT eT eZT(eZ eZT)�1 + eTT eTo

Minimizing the error becomes equivalent to maximize the expression:

J =
1

2
Tr
�
SBS

�1
T

�
(11.27)

The ST matrix may be written as (see the de�nition of eZ):
ST = eZ eZT =

PX
p=1

[z(xp)� hzi][z(xp)� hzi]T (11.28)

i.e. it represents the total covariance matrix of (last) hidden layer with respect to the training

set.

Let Pk be the number of xp 2 Ck and hziCk = 1
Pk

P
xp2Ck

z(xp) (i.e. the mean of hidden❖ Pk, hziCk

neurons output over the training vectors belonging to a single class). Then:

SB =

KX
k=1

P 2
k (hziCk � hzi)(hziCk � hzi)

T (11.29)

11.6. CLASSIFICATION USING SUM-OF-SQUARES 199

Proof. SB = eZ eTT eT eZT =
�eT eZT

�
T
�eT eZT

�
(as (AB)T = B

T
A
T). Considering the one-of-k encoding

then htki = 1

P

PP
p=1

tkp = Pk
P
, also hzji = 1

P

PP
p=1

zj(xp) and then:

etkp = tkp �
Pk

P
and eZT(p; j) = zj(xp)�

1

P

PX
p=1

zj(xp)

Each element of eT eZT is calculated directly, note that
PP
p=1

tkpzj(xp) = PkhzjiCk due to one-of-k encoding:

�eT eZT

�
(k; j) =

PX
p=1

�
tkp �

Pk

P

� �
zj(xp)�

1

P

PX
p0=1

zj(xp0)

�
= Pk(hzjiCk � hzji)

The �nal result is obtained by doing the
�eT eZT

�
T
�eT eZT

�
multiplication.

The processing on hidden neuron layer(s) may be seen as non-linear transformation such

that (11.27) is maximized. The (11.27) expression have a strong resemblance with the

Fisher criterion. The output of (last) hidden layer have the role to generate maximum dis-

crimination between classes, optimum for a linear transformation (performed by the output

layer).

✍ Remarks:

➥ Note that SB contains the multiplicative factor P 2
k under the sum, fact which

strongly raises the importance of classes well represented in the training set, see

section 11.6.2.

11.6.2 Weighted Sum-of-Squares

For the sum-of-squares networks, the minimization of the error function results into a max- ❖ P (Ck), eP (Ck)
imisation of the J term (see (11.27)) which for the one-of-k encoding is dependent upon the

observed prior probabilities eP (Ck) = Pk=P of the training set. If these prior probabilities

di�er in the training set from the true P (Ck) then the (trained) classi�er (model) built will

be suboptimal.

To correct the above problem the error function may be modi�ed by inserting a weighting ❖ �p
factor �p for each pattern; the error becoming:

E =
1

2

PX
p=1

�pky(xp)� tpk2 where �p =
P (Ck)eP (Ck) for xp 2 Ck (11.30)

✍ Remarks:

➥ The prior probabilities P (Ck) are usually not known, then they may be assumed to
be the probabilities related to some test patterns (patterns which are run trough

the net but not used to train it) or the adjusting coe�cients �p may be even

estimated by other means.

Considering the identity activation function f(a) = a then:

@E

@ak
=

@E

@yk

df

dak
=

@E

@yk
=

PX
p=1

�p[yk(xp)� tkp]

200 CHAPTER 11. ERROR FUNCTIONS

where (bias was considered):

yk =

KX
q=1

wkjzj + wk0 (11.31)

Then the condition of minima of E with respect to wk0 is:

@E

@wk0
=

@E

@yk

@yk
@wk0

=

PX
p=1

�p

0@ HX
j=1

wkjzj(xp) + wk0 � tkp

1A = 0

the solution being:❖ htki, hzji

wk0 = htki �
HX
j=1

wkjhzji ; htki =

PP
p=1

�ptkp

PP
p=1

�p

; hzji =

PP
p=1

�pzj(xp)

PP
p=1

�p

(11.32)

From (11.30), using (11.31) and (11.32), by same reasoning as for (11.9) and with the

same meaning for ezjp and etkp:
E =

1

2

PX
p=1

�p

KX
k=1

0@ HX
j=1

wkjezjp � etkp
1A2

=
1

2

PX
p=1

KX
k=1

0@ HX
j=1

wkjezjpp�p � etkpp�p
1A2

The matrix of �p coe�cients is build as:❖ K

K =

0BBBB@
p
�1 0 � � � 0

0
. . .

...
...

. . . 0

0 � � � 0
p
�P

1CCCCA) KTK = KKT =

0BBBB@
�1 0 � � � 0

0
. . .

...
...

. . . 0

0 � � � 0 �P

1CCCCA

and then, by the same reasoning as for (11.25):

E =
1

2
Tr

��
Wout

eZ 0 � eT 0�T �Wout
eZ 0 � eT 0�� (11.33)

where eZ 0 = eZK and eT 0 = eTK.❖ eZ 0, eT 0
On the other hand, the condition of minimum for E, relative to the weights, is:

@E

@wkj
=

PX
p=1

�p

HX
q=1

wkqezqp � etkp
! ezjp

=

PX
p=1

�p

HX
q=1

wkqezqpp�p � etkpp�p
! ezjpp�p = 0

11.6. CLASSIFICATION USING SUM-OF-SQUARES 201

or, in matrix notation, similar to (11.11):

Wout
eZ 0 eZ 0T � eT 0 eZ 0T = 0 (11.34)

which leads to the solution (see also (11.6) and related calculations: results are similar, by

making the substitution eZ $ eZ 0 and eT $ eT 0):
Wout = eT 0 eZ 0y where eZ 0y = eZ 0T(eZ 0 eZ 0T)�1

and the error function may be written as (see (11.26)):

E =
1

2
Tr
neT 0T eT 0 � S0BS

0
T
�1
o

where S0B = eZ 0 eT 0T eT 0 eZ 0T and S0T = eZ 0 eZ 0T. ❖ S0B , S
0
T

Similar to (11.28) and (11.29), considering the de�nition of �p and the one-of-k encoding,

the S0B and S0T matrices may be written as:

S0T =

KX
k=1

P (Ck)
Pk

X
xp2Ck

[z(xp)� hzi][z(xp)� hzi]T

S0B =

KX
k=1

P 2P 2(Ck) (hziCk � hzi)(hziCk � hzi)
T

Proof. The proof for S0B is very similar to the proof of (11.29). Note that in one-of-k encoding:

PX
p=1

�ptkpzj(xp) =
P (Ck)eP (Ck) PkhzjiCk

(of course, assuming that the training set is correctly classi�ed) and so forth for the rest of terms. AlsoeP (Ck) = Pk=P .

11.6.3 Loss Matrix

Penalties for misclassi�cation may be introduced in the one-of-k encoding by changing the

targets to:

tkp = 1� Lk` for xp 2 C` where Lk` =

(
0 if ` = k

2 [0; 1] otherwise

L being the loss matrix. Note that for Lk` = 1��k` the situation is reduced to the one-of-k
case.

Considering the loss matrix, SB becomes:

SB =

KX
k=1

"
KX
`=1

P`(1� Lk`)(hziC` � hzi)

"
KX
`0=1

P`0(1� Lk`0)(hziC`0 � hzi)

#T
Proof. Same as for proof of (11.29):

PX
p=1

tkpzj(xp) =
KX
`=1

X
xp2C`

(1 � Lk`)zj(xp) =
KX
`=1

P`(1 � Lk`)hzjiC`

and so forth.

202 CHAPTER 11. ERROR FUNCTIONS

➧ 11.7 Cross Entropy

11.7.1 Two Classes Case

Considering a two classes problem, a one network output is discussed, such that the target is

either t = 1, for pattern vectors belonging to C1, or otherwise t = 0 (x 2 C2), i.e. the network
output represents the posterior probabilities P (C1jx) = y(x) and P (C2jx) = 1�y(x). Then
p(tjx) may be written as:

p(tjx) = yt(xp)[1� y(xp)]
1�t (11.35)

and for the whole training set | giving the likelihood:

L =

PY
p=1

p(tpjxp) =
PY
p=1

ytp(xp) [1� y(xp)]
1�tp

The error function may be taken as the negative logarithm of the likelihood function (as

previously discussed):

E = � lnL = �
PX
p=1

tp ln y(xp) + (1� tp) ln[1� y(xp)] (11.36)

also known as cross-entropy .cross-entropy

The error minima, with respect to y(xp), is found by zeroing its derivatives:

@E

@y(xp)
=

tp � y(xp)

y(xp) [1� y(xp)]

the minimum occurring for y(xp) = tp, 8p 2 f1; : : : ; Pg; the value being:❖ Emin

Emin = �
PX
p=1

tp ln tp + (1� tp) ln(1� tp) (11.37)

✍ Remarks:

➥ Considering the logistic activation function y = f(a):

f(a) =
1

1 + e�a
;

df

da
= f(a) [1� f(a)]

then the derivative of error with respect to a(xp) (total input to output neuron❖ a(xp)

when presented with xp) is:

@E

@a(xp)
=

@E

@y(xp)

df(a(xp))

da(xp)
= y(xp)� tp

11.7See [Bis95] pp. 230{240.

11.7. CROSS ENTROPY 203

For one-of-k encoding, either tp or 1� tp is 0 and then Emin. = 0. For the general case, the

minimum value (11.37) may be subtracted, from the general expression (11.36) such that

E becomes:

E = �
PX
p=1

tp ln
y(xp)

tp
+ (1� tp) ln

1� y(xp)

1� tp
(11.38)

11.7.2 Sigmoidal Activation Functions

Let assume that the posterior probabilities of outputs z of hidden neurons, with respect to

classes Ck (k 2 f1; 2g) is of the exponential general form:

p(zjCk) = exp
h
A(�k) +B(z; ') + �Tk z

i
(11.39)

where �k and ' are some parameters de�ning the form of distribution and A and B are ❖ �k, ', A, B
some (�xed) functions.

From the Bayes theorem:

P (C1jz) =
p(zjC1)P (C1)

p(z)
=

p(zjC1)P (C1)
p(zjC1)P (C1) + p(zjC2)P (C2)

=
1

1 + exp(�a)
where a = ln

p(zjC1)P (C1)
p(zjC2)P (C2)

By replacing (11.39) in the expression of a (above) ❖ a, w, w0

P (C1jz) =
1

1 + exp[�(wTz+ w0)]
where w = �1 � �2

w0 = A(�1)�A(�2) + ln
P (C1)
P (C2)

i.e. the network output is represented by a logistic sigmoid activation function applied to the

weighted sum of hidden neurons outputs (obviously only those connected to the network

output).

11.7.3 Cross-Entropy Properties

Let "p = y(xp) � tp be the error for input pattern xp. Then the cross-entropy (11.38) ❖ "p
becomes:

E = �
PX
p=1

tp ln

�
1 +

"p

tp

�
+ (1� tp) ln

�
1�

"p

1� tp

�
(11.40)

and it can be seen that it depends on relative error ("p=tp, "p=(1� tp)).

✍ Remarks:

➥ The cross-entropy error function will try to minimize the relative error and thus

giving evenly results for any kind of targets (large or small) while compared with

sum-of-squares error function which tries to minimize the absolute errors (thus

giving better results with large target values).

204 CHAPTER 11. ERROR FUNCTIONS

Let consider binary outputs, i.e. tp = 1 for xp 2 C1 and tp = 0 for xp 2 C2. Then the

(11.40) error becomes:

E = �
X
xp2C1

ln(1 + "p)�
X
xp2C2

ln(1� "p)

(by splitting the sum in (11.40) in two, separately for each class).

✍ Remarks:

➥ Considering the absolute error "p small, then ln(1 � "p) ' �"p; also for xp 2
C1) tp = 1 and yp 2 [0; 1], then, obviously "p < 0; similarly, for xp 2 C2,

"p > 0, then E '
PP
p=1

j"pj.

For an in�nitely large training set the sum in (11.36) transforms into an integral:

E = �
Z
X

1Z
0

ft ln y(x) + (1� t) ln[1� y(x)]g p(tjx) p(x) dt dx

y(x) is independent of t and then, by integration over t:❖ htjxi

E = �
Z
X

[htjxi ln y(x) + (1� htjxi) ln(1� y(x))] p(x) dx

where htjxi =
1Z

0

tp(tjx) dt (11.41)

The value of y(x) for which E is minimum is found by zeroing its functional derivative:

�E

�y
=

Z
X

�
htjxi
y(x)

�
1� htjxi
1� y(x)

�
p(x) dx = 0

and then y(x) = htjxi (E = 0 if and only if the integrand is 0), i.e. the output of network

represents the conditional average of the target data for the given input.

For the particular encoding scheme chosen for t, the posterior probabilities p(tjx) may be

written as:

p(tjx) = �D(1� t)P (C1jx) + �D(t)P (C2jx) (11.42)

(�D being the Dirac function). Substituting (11.42) in (11.41) and integrating gives y(x) =
P (C1jx) i.e. the output of network is exactly what it was supposed to represent.

11.7.4 Multiple Independent Features

So far only one property of the input vectors x was present and studied in the network

output | its membership to a particular class | property mutually exclusive.

11.7. CROSS ENTROPY 205

To watch out for multiple, non exclusive, features a network with multiple outputs is required

and then yk(x) will represent the probability that the k-th feature is present in x input vector.

Assuming independent features then: p(tjx) =
KQ
k=1

p(tkjx).

The presence or absence of the k-th feature may be used to classify x as belonging to one

of 2 classes, e.g. C01 if it does have it and C02 if it doesn't. Then, by the way the meaning of

yk was chosen, the posterior probabilities p(tkjx) may be expressed as in (11.35) and:

p(tkjx) = ytkk (1� yk)
1�tk) p(tjx) =

KY
k=1

ytkk (1� yk)
1�tk

L =

PY
p=1

p(tpjxp) =
PY
p=1

KY
k=1

y
tkp
k (xp) [1� yk(xp)]

1�tkp

In the usual way, the error function is build as the negative logarithm of the likelihood

function:

E = � lnL = �
PX
p=1

KX
k=1

ftkp ln yk(xp) + (1� tkp) ln[1� yp(xp)]g

Because the network outputs are independent then for each yk the analysis for one out-

put network applies. Considering this, the error function may be changed the same way

as (11.38):

E = �
PX
p=1

KX
k=1

�
tkp ln

yk(xp)

tkp
+ (1� tkp) ln

1� yk(xp)

1� tkp

�

11.7.5 Multiple Classes Case

Let consider the problem of classi�cation with a set of mutually exclusive classes fCkgk=1;K ,
and the one-of-k encoding scheme, i.e. tkp = �k` for the input vector xp 2 C`.

The output of (output) neuron k represents the posterior probability of Ck: P (Ckjx) =

yk(x); thus the posterior probability density of tp is: p(tpjxp) =
KQ
k=1

y
tkp
k (xp) (similarly to

the two classes case, see (11.35)). Then:

L =

PY
p=1

p(tpjxp) =
PY
p=1

KY
k=1

y
tkp
k (xp)) E = � lnL = �

PX
p=1

KX
k=1

tkp ln yk(xp)

The error function have a minimum when all the output values yk(xp) coincide with the

targets tkp:

Emin = �
PX
p=1

KX
k=1

tkp ln tkp

206 CHAPTER 11. ERROR FUNCTIONS

and, as in (11.38), the minimum may be subtracted from the general expression, and the

energy becomes:

E = �
PX
p=1

KX
k=1

tkp ln
yk(xp)

tkp
= �

PX
p=1

Ep (11.43)

where Ep =
KP
k=1

tkp ln
yk(xp)

tkp
.❖ Ep

To represent the posterior probabilities P (Ckjx), the network outputs should be yk 2 [0; 1]

and sum to unity
KP
k=1

yk = 1. To ensure this, the softmax function may be used:

yk =
exp(ak)
KP̀
=1

exp(a`)

=
1

1 + exp(�Ak)
where Ak = ak � ln

X
`=1
`6=k

exp(a`) (11.44)

and it may be seen that the activation of output neurons is the logistic function.

Let assume that the posterior probabilities of the outputs of hidden neurons is of the general

exponential form as (11.39)

p(zjCk) = exp
h
A(�k) +B(z; ') + �Tk z

i
(11.45)

where A, B, �k and ' have the same signi�cance as in section 11.7.2.

From Bayes theorem, the posterior probability p(Ckjz) is

p(Ckjz) =
p(zjCk)P (Ck)

p(z)
=

p(zjCk)P (Ck)
KP̀
=1

p(zjC`)P (C`)
(11.46)

By substituting (11.45) in (11.46), the posterior probability becomes: p(Ckjz) = exp(ak)
KP
`=1

exp(a`)

where:❖ ak, wk, wk0

ak = w
T
k z+ wk0 and

(
wk = �k

wk0 = A(�k) + lnP (Ck)

The derivative of error function with respect to the weighted sum of inputs ak of the output
neurons is:

@Ep

@ak
=

KX
`=1

@Ep

@y`

@y`
@ak

(because Ep depends on ak trough all y`, see (11.44)).

From (11.43) respectively (11.44)

@Ep

@y`
= �

t`p
y`(xp)

respectively
@y`
@ak

= y`�`k � y`yk

11.8. ENTROPY 207

p(x)

x
�k

Pk

Figure 11.2: A histogram. It may be seen as a set of \bins", each

containing some \objects".

and �nally
@Ep
@ak

= yk(xp)� tk, same result as for sum-of-squares error with linear activation

and two class with logistic activation cases.

➧ 11.8 Entropy

Let consider a random variable x and its probability density p(x). Also let consider a set of

P values fxpgp=1;P . By dividing the X axis (x 2 X) into \bins" of width �k (for each ❖ �k

\bin" k) and putting each p(xp) into the corresponding \bin", a histogram is obtained. See

�gure 11.2.

Let consider the number of ways the objects from bins are arranged. Let Pk be the number

of \objects" from bin no. k. There are P ways to pick up the �rst object, P � 1 ways to ❖ Pk
pick up the second one and so on, there are P ! ways to pick up the set of P objects. Also

there are Pk! ways to arrange the objects in each bin. Because the number of arrangements

inside bins doesn't count then the total number of arrangements with will end up in the

same histogram is:

W =
P !Q

k

Pk !

The particular way of arranging the objects in bins is called a microstate, while the arrange- microstate

macrostate

multiplicity

ment with leads to the same p(x) is called macrostate. The parameter representing the

number of microstates for one given macrostate is named multiplicity .

✍ Remarks:

➥ The notion of entropy came from physics where it's a measure of the system

\disorder" (higher \disorder" meaning higher entropy). In the information theory

it is a measure of information content.

11.8See [Bis95] pp. 240{245.

208 CHAPTER 11. ERROR FUNCTIONS

➥ There is an analogy which may be done between the above example and a physics

related example. Consider a gas formed of molecules with di�erent speeds (just

one component of the speed will be considered).

From macroscopic (macrostate) point of view it doesn't matter which molecule

have a (particular) given speed while from microscopic point of view if two

molecules swap speeds there is.

➥ If the number of microstates decrease for the same macrostate then the order in

the system increases (till there is only one microstate corresponding to the given

macrostate in which case the system is totally ordered | there is only one way

to arrange it). As entropy measures the degree of \disorder" it shall be inversely

proportional to the multiplicity.

The results from statistical physics corroborated with thermodynamics lead to

the de�nition of entropy as being equal (up to a multiplicative constant) with the

negative logarithm of multiplicity; the constant being the Boltzmann constant k.

Based on the above remarks, the entropy in the above situation is de�ned as:

S = �
1

P
lnW = �

1

P

"
lnP !�

X
k

Pk!

#

and, by using the Stirling formula lnP ! ' P lnP�P for P � 1 and the relation
P
k

Pk = P ,

for P; Pk !1, it becomes:

S = �
X
k

Pk
P

ln
Pk
P

=
X
k

pk ln pk (11.47)

where pk = Pk=P represents the | observed in histogram | probability density.❖ pk

The lower entropy (S = 0) will be when all \objects" are in one single \bin", i.e. all

probabilities pk = 0 with the exception of one p` = 1. The highest entropy will be when all

pk are equal.

Proof. The proof of the above statement is obtained by using the Lagrange multiplier technique to �nd the

maximum (see mathematical appendix) but the minimum of S will be missed due to discontinuities at 0.

The constraint is the condition of normation
P
k

pk = 1; then the Lagrange function will be:

L =
X
k

pk ln pk + �

"X
k

pk � 1

#

and the maximum is found by zeroing the derivatives:

@L

@pk

= ln pk + 1 + � = 0 and
@L

@�
=
X
k

pk � 1 = 0

then from the �rst equation: pk = e
�(1+�), 8k, and, considering K as the total number of \bins", by

introducing this value into the second one � = �1+ ln I. Then for pk = 1=I the entropy is maximum.❖ I

Considering the limit K ! 1 (number of bins) then the probability density is constant

inside a \bin" and pk = p(xp 2 bink)�k, where xp is from inside \bin" k. Then the

entropy is:

S =
X
k

p(xp 2 bink)�k ln[p(xp)�k] '
Z
X

p(x) ln p(x) dx + lim
K!1

ln�k

11.8. ENTROPY 209

(because �k = const. and
R
X

p(x) dx = 1). For K ! 1 the with of \bins" will reduce

to �k ! 0 and thus the term lim
K!1

ln�k ! 1 and, to keep a meaning, it is dropped

from the expression of entropy (anyway the most important is the change of entropy �S
and the divergent term disappears when calculating it; this is also the reason for the name

\di�erential entropy"). di�erential

entropyDe�nition 11.8.1. The general expression of di�erential entropy is:

S = �
Z
X

p(x) ln p(x) dx

The distribution with maximum of entropy, subject to the following constrains:

�
1R
�1

p(x) dx = 1, i.e. normalization of distribution.

�
1R
�1

xp(x) dx = �, i.e. existence of a mean.

�
1R
�1

(x� �)2p(x) dx = �2, i.e. existence of a variance.

is the Gaussian:

p(x) =
1p
2� �

exp

�
�
(x� �)2

2�2

�
Proof. The distribution is found trough the Lagrange multipliers method (see mathematical appendix). The

Lagrange function is:

L =

1Z
�1

p(x)
�
ln p(x) + �1 + �2x+ �3(x� �)2

�
dx� �1 � �2x� �3(x� �)2

Then maximum of S is found by zeroing the derivatives of L:

@L

@p
=

1Z
�1

�
ln p(x) + 1 + �1 + �2x+ �3(x� �)2

�
dx = 0 (11.48)

and the other derivative equations @L
@�1

, @L
@�2

, @L
@�3

just lead to the imposed conditions. The derivative

(11.48) may be zero only if the integrand is zero | because the integrand is an odd function2 and the

integration is made over an interval symmetric relatively to the origin. Then the searched probability density

is of the form:

p(x) = exp
��1� �1 � �2x� �3(x� �)2

�
(11.49)

and the �1, �2, �3 constants are found from the conditions imposed.

From the �rst condition:

1 =

1Z
�1

exp
��1� �1 � �2x� �3(x� �)2

�
dx (11.50)

= exp

�
�1� �1 +

�2

2�3
� �2�

� 1Z
�1

exp

"
��3

�
x� �+

�2

2�3

�
2
#
dx

2A function f is odd if f(�x) = f(x).

210 CHAPTER 11. ERROR FUNCTIONS

= exp

�
�1� �1 +

�2

2�3
� �2�

�r
�

�3

(see also the Gaussian integrals, mathematical appendix).

From the second condition, similar as above, and using the change of variable ex = x � � (one of the

integrals will cancel due to the fact that the integrand will be an odd function and the integration interval

is symmetric relatively to origin):

� =

1Z
�1

x exp
��1� �1 � �2x� �3(x� �)2

�
dx

= exp

�
�1� �1 +

�2

2�3
� �2�

� 1Z
�1

x exp

"
��3

�
x� � +

�2

2�3

�
2
#
dx

= exp

�
�1� �1 +

�2

2�3
� �2�

��
�� �2

2�3

� 1Z
�1

x exp

"
��3

�
x� �+

�2

2�3

�
2
#
dx

and by using (11.50) (see also Gaussian integrals) if follows that � = � � �2
2�3

, thus �2 = 0. Replacing

back into (11.50) gives exp (1 + �1) =
q

�
�3

.

From the third condition, as �2 = 0 (integration by parts):

�
2 =

1Z
�1

(x� �)2 exp
��1� �1 � �3(x� �)2

�
dx

= � e
�1��1

2�3

1Z
�1

(x� �) d
�
exp

���3(x� �)2
�	

= � e
�1��1

2�3

r
�

�3

and then �nally �3 = 1

2�2
and e�1��1 = 1p

2� �
. The wanted distribution is found by replacing the �1;2;3

values back into (11.49).

Another way of interpreting the entropy is to consider it as the amount of information. It

is reasonable to consider that the amount of information and the probability are somehow

interdependent, i.e. S = S(p).

The entropy is a continuous, monotonically increasing function. On the other hand an

certain event have probability p = 1 and bears no information S(1) = 0.

Let now consider two events A and B, statistically independent and having probabilities pA
and pB . The probability of both events occurring is pApB and the entropy associated is

S(pApB). If event A have occurred then the information given by event B is S(pApB) �
S(pA) and on the other hand S(pB). Then:

S(pApB) = S(pA) + S(pB)

From the above result it follows that S(p2) = 2S(p) and, by induction, S(pn) = nS(p).

Then, by the same means S(p) = Sf(p1=n)ng = nS(p1=n) which may be immediately

extended to S(pn=m) = n
m
S(p). Finally, from the continuity of S:

S(px) = xS(p)

and thus it also may be written as:

S(p) = Sf(1=2)� log2 pg = �S(1=2) log2 p

11.8. ENTROPY 211

where S(1=2) is a multiplicative constant and by choosing it to be equal to 1 the en-

tropy/information is being said to be expressed in bits. By choosing natural logarithm

S(p) = �S(1=e) ln p and S(1=e) = 1 the information will be expressed in nats. bits, nats

✍ Remarks:

➥ The above result may be explained by the fact that, for independent events, the

information is additive (there may be information about event A and event B)
while the probability is multiplicative.

Let consider a discrete random variable x which may take one of the values fxpg and have noiseless coding

theoremto be transmitted, or rather information about it. For each xp the information is � ln p(xp).

Then the expected/average information/entropy to be transmitted (as to establish what of

the possible xp values x have now) is:

S = �
X
p

p(xp) ln p(xp)

the result being known also as noiseless coding theorem.

For a continuous vectorial variable x, and also ❖ ep(x)
considering that usually the true distribution p(x) is not known but rather the estimated oneep(x) (the associated information being � ln ep(x)). Then the average/expected information

relative to x is:

S = �
Z
X

p(x) ln ep(x) dx (11.51)

✍ Remarks:

➥ The entropy may be written as:

S = �
Z
X

p(x) ln
ep(x)
p(x)

dx�
Z
X

p(x) ln p(x) dx

where the �rst term represents the asymmetric divergence between p(x) andep(x)3. It is shown in the \Pattern Recognition" chapter that S(x) is minimum
for ep(x) = p(x).

For a neural network which have the outputs yk the entropy (11.51), for one xp is:

Sp = �
KX
k=1

tk ln yk(xp)

because tk represents the true probability (desired output) while yk(x) represents the es-

timated (calculated) probability (actual output). For the whole training set the cross-

entropy is:

S = �
PX
p=1

KX
k=1

tkp ln yk(xp)

the result being valid for all networks for which tkp and yk represents probabilities.

3Known also as Kullback-Leibler distance.

212 CHAPTER 11. ERROR FUNCTIONS

➧ 11.9 Outputs as Probabilities

Due to the fact that many error functions lead to the interpretation of network output as

probabilities, the problem is to �nd the general conditions which lead to this result.

It will be assumed that the error function is additive with respect to the number of training

vectors E =
PP
p=1

Ep and each Ep is a sum over the components of the target and actual

output vectors:

Ep =

KX
k=1

f(tkp; yk(xp))

where f is a function to be found, assumed to be of the form:❖ f

f(tkp; yk(xp)) = f(jyk(xp)� tkpj)

i.e. it depends only on the distance between actual and desired output.

Considering an in�nite training set, the expected (average) per-pattern error is:❖ hEpi

hEpi =
KX
k=1

ZZ
XY

f(jyk(x) � tkj) p(tjx) p(x) dt dx

For the one-of-k encoding scheme, and considering statistically independent yk (network

outputs), the conditional probability of the target may be written as:

p(tjx) =
KY
`=1

"
KX
q=1

�D(t` � �`q)P (Cq jx)

#
=

KY
`=1

p(t`jx) (11.52)

and then the expectation of the error function becomes:

hEpi =
KX
k=1

Z
X

264 KY
`=1
`6=s

Z
Y`

p(t`jx) dt`

375
24 Z
Yk

f(jyk(x)� tkj) p(tkjx) dtk

35 p(x) dx
where the integrals over Y`;`6=k are equal to 1 due to the normalization of the probability

(or, otherwise, by substituting the value of p(t`jx) and doing the integral) and the p(tkjx)
probability density may be written as (see (11.52) | the cases k = q and k 6= q were

considered):

p(tkjx) = �D(tk � 1)P (Ckjx) +
KX
q=1
q 6=k

�D(tk)P (Cq jx) =

= �D(tk � 1)P (Ckjx) + �D(tk) [1� P (Ckjx)]

(because
KP
q=1

P (Cq jx) = 1, normalization).

11.9See [Bis95] pp. 245{247.

11.9. OUTPUTS AS PROBABILITIES 213

Finally the average error becomes:

hEpi =
KX
k=1

Z
X

(Z
Yk

f(jyk(x) � tkj) �D(tk � 1)P (Ckjx) dtk

+

Z
Yk

f(jyk(x)� tkj) �D(tk) [1� P (Ckjx)] dtk

)
p(x) dx

=

KX
k=1

Z
X

(Z
Yk

f(1� yk) �D(0)P (Ckjx) dtk

+

Z
Yk

f(yk) �D(0) [1� P (Ckjx)] dtk

)
p(x) dx

=

KX
k=1

Z
X

ff(1� yk)P (Ckjx) + f(yk) [1� P (Ckjx)]g p(x) dx

because the �rst integral over Yk is for the case tk = 1 while the second is for the case

tk = 0; obviously yk 2 [0; 1].

The conditions of minima for hEpi are found by setting its functional derivative, with respect
to yk(x), to zero:

�hEpi
�yk(x)

= f 0(1� yk)P (Ckjx) + f 0(yk) [1� P (Ckjx)] = 0

where f 0 is the derivative of f . This leads to: ❖ f 0

f 0(1� yk)

f 0(yk)
=

1� P (Ckjx)
P (Ckjx)

and, considering that the network outputs are probabilities (this was the hypothesis):

f 0(1� yk)

f 0(yk)
=

1� yk
yk

(11.53)

A general class of functions which satis�es (11.53) is:

f(y) =

Z
yr(1� y)r dy ; r = const.

and from this class (f 0(1� y) = df(1� y)=d(1� y)):

� r = 1) f(y) = y2=2, i.e. the sum-of-squares error function.

� r = 0) f(y) = � ln(1� y) = � ln(1� jyj), i.e. the cross-entropy error function.

✍ Remarks:

➥ The Minkowski error function f(y) = yR does not satis�es the (11.53) unless

R = 2 which leads to the, already known, sum-of-squares error.

214 CHAPTER 11. ERROR FUNCTIONS

In this case the outputs of network are:

yk =
P (Ckjx)1=(R�1)

P (Ckjx)1=(R�1) + [1� P (Ckjx)]1=(R�1)

On the other hand the decision boundaries still give the minimum of misclassi�-

cation because yk are monotonic functions of P (Ckjx).

CHAPTER 12

Parameter Optimization

➧ 12.1 Error Surfaces

Generally the error may be represented as a surface E = E(W)1 into the NW + 1 space

where NW is the total number of weights (see also �gure 12.2 on page 219). ❖ NW

The goal is to �nd the minima of error function, where rE = 0; however note that

this condition is not enough to �nd the absolute minima because it is also true for local

minimums, maximums and saddle-points.

In general it is not possible to �nd the solution W in a closed form. Then a numerical

approach is taken, to �nd it by searching the weights space in incremental steps (t = 1; : : :)
of the form W(t+1) =W(t) +�W(t). However, usually, the algorithms does not guarantee

for the �nding of absolute minima and even an saddle-point may stuck them.

On the other hand the weight space have a high degree of symmetry2 and thus many local

and global minimums which give the same value for the error function; then a relatively fast

convergence may be achieved starting from a random point (i.e. the local/global minima

will be relatively close wherever the starting point is).

It was shown3 that the optimum value for the network is obtained when hykjxi = htk jxi,
i.e. the actual average output yk equals the desired output tk, both conditioned on input

x. However this equality was obtained by considering the training set as in�nite while in

practice the training set is always �nite and covers just a tiny amount from all possible

cases. Then even a local minima may give a good generalization.

12.1See [Bis95] pp. 253{256.
1Such a surface was drawn in the \Backpropagation" chapter for 2 weights.
2See the \Multi Layer Neural Networks" chapter.
3See the \Error Functions" chapter.

215

216 CHAPTER 12. PARAMETER OPTIMIZATION

➧ 12.2 Local Quadratic Approximation

Let consider the Taylor series development of error E around a point W0, note that here

W is being seen as a vector :

E(W) = E(W0) +rEjW0
+

1

2
(W �W0)

TH jW0
(W �W0) (12.1)

where fHgij = @E
@wi@wj

is the Hessian matrix, note that here the Hessian will be considered❖ H

as a matrix. Then the gradient of E with respect to W may be approximated as:

rE = rEjW0
+H jW0

(W �W0)

Considering a minima point W � then rEjW� = 0 and:❖ W �

E(W) = E(W �) +
1

2
(W �W �)TH jW�(W �W �) (12.2)

Because the Hessian is a symmetric matrix then it is possible to �nd an orthonormal set of❖ ui, �i
eigenvectors4 fuig with the corresponding eigenvalues f�ig such that:

Hui = �iui ; u
T
i uj = �ij (12.3)

(�i and ui being calculated at the minimum of E, given by the point W �).

By writing (W �W �) in terms of fuig

W �W � =
X
i

�iui (12.4)

(where �i are the coe�cients of the fuig development) and replacing in (12.2)❖ �i

E(W) = E(W �) +
1

2

X
i

�i�
2
i

i.e. the error hyper-surfaces projected into the weights space are hyper-ellipsoids oriented

with the axes parallel with the orthonormated fuig system and having the lengths inversely

proportional with the square roots of Hessian eigenvalues. See �gure 12.1 on the facing

page.

✍ Remarks:

➥ From (12.2):

�E = E(W)�E(W �) =
1

2
(W �W �)TH jW�(W �W �)

then W � is a minimum point if only if H is positive de�nite5 (, �E > 0 ,
E(W) > E(W �)).

12.2See [Bis95] pp. 257{259.
4See mathematical appendix.
5See previous footnote.

12.3. INITIALIZATION AND TERMINATION OF LEARNING 217

w2
u2

u1

�
�1=2
2

w1

W ��
�1=2
1

E = const.

Figure 12.1: A constant error surface projection into a bidimensional

weights space is an ellipse having the axes parallel with

the Hessian eigenvectors and lengths inversely propor-

tional with the square root of Hessian eigen values.

➥ The quadratic approximation of error function (12.1) involves the knowledge of

W (W + 3)=2 terms (W for rE and W (W + 1)=2 for the symmetrical Hessian

matrix). So, to �nd a minimum will require at least O(W 2) equations, each

needing at least O(W) steps, i.e. a total of O(W 3) steps.

By using the gradient information and the backpropagation algorithm the required

steps are reduced to O(W 2).

➥ It was shown6 that for linear output neurons it is possible to �nd the related

weights by one step.

➧ 12.3 Initialization and Termination of Learning

Usually the weights are initialized with random values to avoid problems due to weight space

symmetry. However there are two restrictions:

� If the initial weights are too big then the the activation functions f will have values

into the saturation region (e.g. see sigmoidal activation function) and their derivatives

f 0 will be small, leading to an small error gradient as well, i.e. a approximatively at

error surface and, consequently, a slow learning.

� If the initial weights are too small then the activation functions f will be linear and

their derivatives will be quasi-constant, the second derivatives will be small and then

the Hessian will be small meaning that around minimums the error surface will be

approximatively at and, consequently, a slow learning (see section 12.2).

which suggest that the weighted sum of inputs, for sigmoidal activation function, should be

of order unity.

6See chapter \Single Layer Neural Networks".
12.3See [Bis95] pp. 260{263.

218 CHAPTER 12. PARAMETER OPTIMIZATION

The weights are usually drawn from a symmetrical Gaussian distribution with 0 mean (there

is no reason to choose any other mean, due to symmetry). To see the choice for the variance

� of the above distribution, let consider a set of inputs fxigi=1;N with zero mean: hxii = 0

and unit variance: hx2i i = 1 (calculated over the training set).

The output of neuron is:

z = f(a) where a =

NX
i=0

wixi

(for i = 0 the weight w0 represents the bias and x0 = 1).

The weights are chosen randomly, independent of fxig, and then the mean of a is:

hai =
NX
i=0

hwixii =
NX
i=0

hwiihxii = 0

(as hxii = 0) and, considering fwig statistically independent hwiwji = �ij�
2, the vari-

ance is:

ha2i =

*
NX
i=0

wixi

!
NX
j=0

wjxj

!+
=

NX
i=0

hw2
i ihx

2
i i = (N + 1)�2 ' N�2

(for non-bias the sum is from i = 1 to N and then ha2i = N�2). Because ha2i ' 1 (as

discussed above) then the variance should be chosen � ' N�1=2.

Another way to improve network performance is to train multiple instances of the samecommittee of

networks network, but with a di�erent set of initial weights, and choosing among those who give best

results. This method is called committee of networks.

The criteria for stopping the learning process may be one of the following:

� Stop after a �xed number of steps.

� Stop when the error function had become smaller than a speci�ed amount.

� Stop when the change in the error function (�E) had become smaller than a speci�ed
amount.

� Stop when the error on an (independent) validation set begin to increase.

➧ 12.4 Gradient Descent

A simple, geometrical, explanation of the gradient descent method is the means of repre-

sentation of the error surface into the weights space. See �gure 12.2 on the next page.

The gradient of error function, relative to the weights, rE will point to the set of weights

which will give maximum error. Then the weights have to be moved against the direction of

rE; note that this does not mean a movement towards the minima point. See �gure 12.2

on the facing page.

12.4See [Bis95] pp. 263{272.

12.4. GRADIENT DESCENT 219

rE

rE

(t)

(t+ 1)

(t+ 2)

min

max

w1

E

w2

Figure 12.2: The error surface for a bidimensional weights space.

The steps t, t+1 and t+2 are also shown. The weights

are moved against the error maximum (and not towards

minimum).

At step t = 0 (in discrete time approximation) the weights are initialized with the value

W0 (usually randomly selected). Then at some step t + 1 they are adjusted following the

formula:

�W(t+1) =W(t+1) �W(t) = ��rEjW(t)
(12.5)

where � is a parameter governing the speed of learning, named learning rate/constant, learning rate

batch learningcontrolling the distance between W(t+1) and W(t) (see also �gure 12.2). This type of

learning is named a batch process (it uses all training vectors at once every time the gradient

is calculated). (12.5) is also known as delta rule.

Alternatively the same method (as above) may be used but with one pattern at a time:

�W(t+1) =W(t+1) �W(t) = ��rEpjW(t)

where p denotes a pattern from the training set, e.g. the training patterns may be numbered sequential learning

in some way and then considered in the order p = t (�rst pattern taken at �rst step, : : : ,
and so on). This type of learning is named sequential process (it uses just one training

vector at a time).

✍ Remarks:

➥ The gradient descent technique is very similar to the Robbins-Monro algorithm7

and it becomes identical if the learning rate is chosen of the form � / 1=t and thus

7See chapter \Pattern recognition".

220 CHAPTER 12. PARAMETER OPTIMIZATION

the convergence is assured; however this alternative leads to very long training

time.

➥ The choice of � may be critical to the learning process. A large value may lead

to an over shooting of the minima especially if it's narrow and step (in terms of

error surface) and/or oscillations between 2 areas (points) in weights space. A

small value will lead to long learning time.

➥ Compared to the batch learning, the sequential process is less sensitive to training

data redundancy (a duplicate of a training vector will be used twice, in two

separate steps, and thus, usually, improving learning, rather than being used

twice at each learning step).

➥ It is also possible to use a mixture learning, i.e. to divide the training set into

subsets and use each subset for batch process. This technique is especially useful

if the training algorithm is intrinsically of the batch type.

12.4.1 Learning Parameter and Convergence

Considering the quadratic approximation of the error function in the neighborhood of min-

ima, from (12.2), (12.3) and (12.4):

rE =
X
i

�i�iui (12.6)

From (12.4):

�W(t+1) =
X
i

��iui where ��i = �i(t+1) � �i(t) (12.7)

and by replacing (12.6) and (12.7) in (12.5) and because the eigenvectors ui are orthonor-

mated, then:

��i = ���i�i(t)) �i(t+1) = (1� ��i)�i(t) (12.8)

Again from (12.4), by multiplying with uTi to the left, and from the orthonormation of fuig:

u
T
i (W �W �) = �i

i.e. �i represents the distance (into the weights space) to the minimum, along the direction
given by ui.

After T steps the iterative usage of (12.8) gives:

�i(T) = (1� ��i)
T�i(0) (12.9)

A convergence process means that lim
t!1

W(t) =W �, i.e. lim
t!1

�i(t) = 0 (by considering the

signi�cance of �i as discussed above). Then, to have a convergent learning, formula (12.9)

shows that it is necessary to impose the condition:

j1� ��ij < 1 ; 8i) � <
2

�max

where �max is the biggest eigenvalue of the Hessian.❖ �max

12.4. GRADIENT DESCENT 221

� �
�1=2
min

w2

u2

w1

� �
�1=2
max

u1

E = const.

�rE

Figure 12.3: Slow learning for a small �min=�max ratio. The longest

axis of the E = const. ellipsoid surface is proportional

with �
�1=2
min

while the shortest one is proportional with

�
�1=2
max . The gradient is perpendicular to the E = const.

surface. The weight vector is moving slowly, with oscil-

lations towards the minima of E, center of the ellipsoids.

Considering the maximum possible value � = 2=�max, and replacing into (12.8), the speed

of learning will be decided by the time needed for the convergence of �i corresponding to

the smallest eigenvalue, i.e. the size of factor
�
1� 2�min

�max

�
. If the ratio �min=�max is very

small then the convergence will be slow. See �gure 12.3.

So far, in equation (12.5), the time, given by t, was considered discrete. By considering

continuous time the equation governing weights change during learning becomes:

dW

dt
= ��rE

which represents the equation of movement for a point in weights space, which position is

given by W and subject to a potential �eld E(W) and viscosity 1=�.

12.4.2 Momentum

By adding a term to the equation (12.5) and changing it to:

�W(t+1) = ��rEjW(t)
+ ��W(t) (12.10)

it is possible to increase the speed of convergence. The � parameter is named momentum.

❖ �

(12.10) may be rewritten into a continuous form as follows:

W(t+1) �W(t) = ��rEjW(t)
+ �

�
W(t) �W(t�1)

�

222 CHAPTER 12. PARAMETER OPTIMIZATION

a) b) c)

W

E

�W 000�W 00�W 0�W 000�W 00

W

E

�W 0

W

E

W 0W 000W 00

�W 0

�W 00

�W 000

Figure 12.4: Learning with and without momentum (W 0, W 00 and
W 000 are 3 points, consecutive in time). Figure a) shows

learning without momentum: �W decreases in propor-

tion with rE, i.e. decreases around minima. Figure b)

shows learning with momentum (without oscillations):

the learning rate increases, compensating for the de-

crease of rE. Figure c) shows oscillations; most of the
additional quantities, introduced by momentum, cancels

from one oscillation to the next.

W(t+1) �W(t) = ��rEjW(t)
+ �

�
W(t) �W(t�1)

�
� �

�
W(t+1) �W(t)

�
+ �

�
W(t+1) �W(t)

�
�W(t+1) = ��rEjW(t)

� �
�
�W(t+1) ��W(t)

�
+ ��W(t+1)

(1� �)�W(t+1) = ��rEjW(t)
� ��2W(t+1) (12.11)

where �W(t+1) =W(t+1) �W(t) and �2W(t+1) = �W(t+1) ��W(t).❖ �W , �2W

By switching to the limit, the terms in (12.11) have to be of the same in�nitesimal order,

let � be equal to the unit of time (introduced for dimensionality correctness), then❖ �

(1� �)dW
dt

�
= ��rE

dt2

�2
� � d2W

which gives �nally the di�erential equation:❖ m, �

m
d2W

dt2
+ �

dW

dt
= �rE ; where m =

��2

�
; � =

(1� �)�

�
(12.12)

pointing that the momentum shall be chosen � 2 (0; 1).

✍ Remarks:

➥ (12.12) represents the equation of movement of a particle into the weights space

W , having \mass" m, subject to friction (viscosity) proportional with the speed,

de�ned by � and into a conservative force �eld E.

12.4. GRADIENT DESCENT 223

u2

u1

E = const.

Figure 12.5: The learning, alongside Hessian eigenvector correspond-

ing to smallest eigenvalue, is accelerated comparing with

plain gradient descent. See also �gure 12.3 on page 221

for comparison.

W represents the position, dW
dt

represents the speed, d2W
dt2

is the acceleration,

�nally E and �rE are the potential, respectively the force of the conservative

�elds.

To understand the e�ect given by the momentum | see also �gure 12.4 on the preceding

page | two cases may be analyzed:

� The gradient is constant rE = const. Then, by applying iteratively (12.10):

�W = ��rE (1 + �+ �2 + : : :) ' �
�

1� �
rE

(because � 2 (0; 1) and then lim
n!1

�n = 0), i.e. the learning rate e�ectively increases

from � to �
(1��) .

� In a region with high curvature where the gradient change direction almost completely

(opposite direction), generating weights oscillations, the e�ects of momentum will

tend to cancel from one oscillation to the next.

The above discussion is also true on the components of vector W . The advancement in

the direction of error minima alongside the direction of eigenvector corresponding to the

smallest eigenvalue of Hessian is accelerated. See �gure 12.5.

12.4.3 Other Gradient Descent Improvement Techniques

Bold descent

This algorithm improvement is based on the following idea:

� If, after a step, the error increases, i.e. �E > 0 this means that the minimum point

was overshot. Then the change is rejected (reversed), because otherwise the weight

value will be further from the minima point, and the learning rate is decreased.

� If, after a step, the error decreases, i.e. �E < 0 then the weight adjustment is

accepted, but the learning rate is considered to be too small and consequently is

increased.

224 CHAPTER 12. PARAMETER OPTIMIZATION

The algorithm changes the learning rate, at each step, as follows:

�(t+1) =

(
��(t) if �E < 0 ; � > 1

��(t) if �E > 0 ; � < 1

and the weight change is rejected if �E > 0. In practice � ' 1:1 and � ' 0:5.

Quick backpropagation

The quick backpropagation algorithm makes the following assumptions:

� The weights are independent. This is true only if the Hessian would be diagonal, i.e.

its eigenvectors are parallel with the weights axes which in practice is seldom true (see

also �gure 12.3 on page 221 | the system fuig is usually not parallel with the W
system).

� The error function may be approximated with a quadratic polynomial, i.e. a parabola

E(wi) = a+ bwi + cw2
i , a; b; c = const.❖ a, b, c

and then the weights are changed to the minima of error function by using 2 estimates of

the error gradient.

Assuming the above hypotheses then:

E(wi) = a+ bwi + cw2
i)

@E

@wi
= b+ 2cwi

)

8><>:
@E
@wi

���
t

= b+ 2cwi(t)

@E
@wi

���
t�1

= b+ 2cwi(t�1)
) 2c =

@E
@wi

���
t
� @E

@wi

���
t�1

wi(t) � wi(t�1)

At t+ 1 the minimum is attended (as assumed):

minimum)
@E

@wi

����
t

= 0) wi(t+1) = �
b

2c

From the error gradient at t:

b =
@E

@wi

����
t

�
@E
@wi

���
t
� @E

@wi

���
t�1

wi(t) � wi(t�1)
wi(t)

and then the weights update formula is:

�wi(t+1) = �
@E
@wi

���
t

@E
@wi

���
t
� @E

@wi

���
t�1

�wi(t)

(�wi(t+1) = wi(t+1) � wi(t), �wi(t) = wi(t) � wi(t�1)).

✍ Remarks:

➥ The algorithm assumes that the parabola have a minimum. If it have a maximum

then the weights will be updated in the wrong direction.

12.5. LINE SEARCH 225

➥ Into a region of nearly at error surface it is necessary to limit the size of the

weights update, otherwise the algorithm may jump over minima, especially if it

is narrow.

➧ 12.5 Line Search

The main idea of the algorithm is to search for the minimum of error function along the

direction given by its negative gradient, instead of just move by a �xed amount given by

the learning rate.

The weight vector at step t+ 1, given the value at step t, is:

W(t+1) =W(t) � �(t)rEjW(t)

where �(t) is a parameter, such that E(�) = E
�
W(t) � �rEjW(t)

�
is minimum. ❖ �(t)

By the above approach the problem is reduced to a unidimensional case. The minimum of

E(�) may be found by searching for 3 pointsW 0,W 00 andW 000 such that E(W 0) > E(W 00)

and E(W 000) > E(W 00). Then the minimum is to be found somewhere between W 0 and

W 000 and may be found by approximation E with a quadratic polynomial, i.e. a parabola.

✍ Remarks:

➥ Another, less e�cient but simpler, way would be to advance, along the direction

given by �rE, in small, �xed steps, and stop when error begin to increase.

➧ 12.6 Conjugate Gradients

12.6.1 Conjugate Search Directions

The method described in section 12.5 does not give the best direction for search of the

minima in the weight space. Considering that the line search minimum have been reached

at step t+ 1 then:

@E

@�

����
W(t+1)

=
@E

@�

����
W(t)��(t)rEjW(t)

= 0)
�
rEjW(t+1)

�T �rEjW(t)

�
= 0

i.e. the gradients from two consecutive steps are orthogonal. See �gure 12.6 on the following

page. This behavior may lead to more (searching) steps than necessary.

It is possible to continue the search from step t + 1, beyond, such that the component of

the gradient parallel with the previous direction | and made 0 by the previous minimization

step | is preserved to the lowest order. This means that a series of directions fd(t)g have
to be found such that:�

rEjW(t+1)

�T
d(t) = 0 and

�
rEjW(t+1)+�d(t+1)

�T
d(t) = 0

12.5See [Bis95] pp. 263{272.
12.6See [Bis95] pp. 274{285.

226 CHAPTER 12. PARAMETER OPTIMIZATION

w2

w1

rEjW(t+1)

surfaces E = const.
rEjW(t�1)

rEjW(t)

Figure 12.6: Line search learning. The error gradients from two con-

secutive steps are perpendicular.

and, by developing in series to the lowest order:h�
rEjW(t+1)

�T
+ �dT(t+1)H

i
d(t) = 0)

d
T
(t+1)Hd(t) = 0 (12.13)

where H is the Hessian calculated at point Wt+1. Directions which respects condition

(12.13) are named conjugate (or interfering).conjugate

directions

12.6.2 Quadratic Error Function

A quadratic error function is of the form:

E(W) = E0 + b
TW +

1

2
WTHW ; b ; H = const.

and H (the Hessian) is symmetrical and positive de�nite.

The error gradient is:

rE = b+HW (12.14)

and the minimum of E is achieved at the point W � where:❖ W �

rEjW� = 0) b+HW � = 0 (12.15)

Let consider a set of fdigi=1;NW
conjugate | with respect to H | directions (NW being❖ NW

the total number of weights):

d
T
i Hdj = 0 for i 6= j (12.16)

and, of course, di 6= 0, 8i.

Proposition 12.6.1. The fdigi=1;NW
set of conjugate directions is linearly independent.

12.6. CONJUGATE GRADIENTS 227

Proof. Let consider that there is a direction d` which is a linear combination of the other ones:

d` =
X
i;i 6=`

�idi ; �i = const.

and then, from the way the set fdig was chosen:

d
T

` Hdq;q 6=` =

0@X
i;i6=`

�idi

1AT

Hdq;q 6=` = �qd
T

q;q 6=`Hdq;q 6=` = 0

and as dT
q;q 6=`Hdq;q 6=` 6= 0 then 8�q;q 6=` = 0, i.e. d` = 0 which runs counter the way fdig set was

chosen.

✍ Remarks:

➥ The above proposition ensures the existence of a set of NW linear independent

and H conjugate vectors.

As fdig contains NW vectors and is linear independent then it may be used as a reference

system, i.e. any W vector from the weights space may be written as a linear combination

of fdig.

Let assume that the starting point for the search is W1 and the minimum point is W �.

Then it may be possible to write:

W � �W1 =

NWX
i=1

�idi (12.17)

where �i are some parameters. Finding W � may be envisaged by a successive steps (of

length �i along directions di) in the form:

Wi+1 =Wi + �idi (12.18)

where i = 1; NW and WNW+1 =W �.

By multiplying (12.17) with dT` H to the left and using (12.15) plus the property (12.16):

d
T
` H(W � �W1) = �dT` b� d

T
` HW1 =

NWX
i=1

�id
T
` Hdi = �`d

T
` Hd`

and then the �` steps are:

�` = �
d
T
` (b+HW1)

d
T
` Hd`

(12.19)

The �` coe�cients may be put into another form. From (12.18): Wi+1 =W1 +
iP

j=1

�jdj ;

multiplying with dTi+1H to the left and using again (12.16):

d
T
i+1HWi+1 = d

T
i+1HW1)

d
T
i+1rEjWi+1

= d
T
i+1(b+HWi+1) = d

T
i+1(b+HW1)

228 CHAPTER 12. PARAMETER OPTIMIZATION

and by using this result in (12.19):

�` = �
d
T
` rEjW`

d
T
` Hd`

(12.20)

Proposition 12.6.2. If the weight vector is updated according to the procedure (12.18)

the the gradient of the error function at step i+ 1 is orthogonal on all previous conjugate

directions:

d
T
j rEjWi

= 0 ; 8j; i such that j < i 6 NW (12.21)

Proof. From (12.14) and (12.18)

rEjWi+1
�rEjWi

= H (Wi+1 �Wi) = �iHdi (12.22)

and, by multiplying to the left with dT
i
and replacing �i from (12.20), it follows that (fdig are conjugate

directions):

d
T

i rEjWi+1
= 0 (12.23)

On the other hand, by multiplying (12.22) with dj to the left:

d
T

j

�
rEjWi+1

�rEjWi

�
= �id

T

j Hdi = 0 ; 8j < i 6 NW (12.24)

The equation (12.24) is written for all instances i; i � 1; : : : ; j + 1 and then a summation is done over all

equation obtained, which gives:

d
T

j

�
rEjWi+1

�rEjWj+1

�
= 0 ; 8j < i 6 NW

and, by using (12.23), �nally:

d
T

j rEjWi+1
= 0 ; 8j < i 6 NW

which combined with (12.23) (i.e. for j = i) proves the desired result.

The set of conjugate directions fdig may be built as follows:

1. The �rst direction is chosen as:

d1 = �rEjW1

2. The following directions are build incrementally as:

di+1 = �rEjWi+1
+ �idi (12.25)

where �i are coe�cients to be found such that the newly build di+1 is conjugate with❖ �i
the previous di, i.e. d

T
i+1Hdi = 0. By multiplying (12.25) with Hdi to the right:

�
�rEjWi+1

+ �idi
�T

Hdi = 0) �i =
(rEjWi+1

)THdi

d
T
i Hdi

(12.26)

Proposition 12.6.3. By using the above method for building the set of directions, the error

gradient at step j is orthogonal on all previous ones:�
rEjWj

�TrEjWi
= 0 ; 8j; i such that j < i 6 NW (12.27)

Proof. Obviously by the way of building, each direction vector represents a linear combination of all previ-

ously gradients, of the form:

dj = �rEjWj
+

j�1X
`=1

`rEjW`
(12.28)

12.6. CONJUGATE GRADIENTS 229

where ` are the coe�cients of the linear combination (their exact value is not relevant to the proof). ❖ `

By multiplying (12.28) with rwEjwi to the right and using the result established in (12.21):

�
rEjWj

�
T

rEjWi
=

j�1X
`=1

`

�rEjW`

�
TrEjWi

; 8j; i such that j < i 6 NW

For j = 1 the error gradient equals the direction d1 and, by using (12.21), the result (12.27) holds. For

j = 2:

�rEjW2

�
TrEjWi

=

j�1X
`=1

`

�rEjW`

�
TrEjWi

= 1

�rEjW1

�
TrEjWi

= 0

and so on , as long as j < i and thus the (12.27) is true.

Proposition 12.6.4. The (set of) directions build by the above method are mutually con-

jugate.

Proof. It will be shown by induction.

By construction d2Hd1 = 0, i.e. these directions are conjugate.

It is assumed (induction) that:

d
T

i Hdj = 0 ; 8i; j such that j < i 6 NW

is true and it have to be shown that it holds for i+ 1 as well (assuming i+ 1 6 NW , of course).

For di+1, by using the above assumption and (12.25):

d
T

i+1
Hdj = �

�
rEjWi+1

�
T

Hdj + �id
T

i Hdj = �
�
rEjWi+1

�
T

Hdj (12.29)

8j; i such that j < i 6 NW (the second term disappears due to the induction assumption supposed true).

From (12.22), rEjWj+1
�rEjWj

= �jHdj . By multiplying this equation with
�
rEjWi+1

�
T

to the left,

and considering (12.27), i.e.
�
rEjWi+1

�
T

rEjWj
= 0 for 8j < i+ 1 < NW , then:

�
rEjWi+1

�
T
�
rEjWj+1

�rEjWj

�
=
�
rEjWi+1

�
T

rEjWj+1
�
�
rEjWi+1

�
T

rEjWj
= �jrEjWi+1

Hdj = 0

and by inserting this result into (12.29) then:

d
T

i+1
Hdj = 0 ; 8j; i such that j < i 6 NW

and this result is extensible from j < i 6 NW to j < i + 1 6 NW because of the way di+1 is build, i.e.

di+1Hdi = 0 by design.

✍ Remarks:

➥ The method described in this section gives a very fast converging method for �nd-

ing the error minima, i.e. the number of steps required equals the dimensionality

of the weight space. See �gure 12.7 on the next page.

12.6.3 The Algorithm

The previous section give the general method for fast �nding the minima of E. However

there are 2 remarks to be made:

� The error function was assumed to be quadratic.

230 CHAPTER 12. PARAMETER OPTIMIZATION

u2

u1

E = const.

Figure 12.7: Conjugate gradient learning. Into a bidimensional

weight space it takes just 2 steps to reach the minimum.

� For a non-quadratic error function the Hessian is variable and then it have to be

calculated at each Wi point which results into a very computational intensive process.

For the general algorithm it is possible to express the �i and �i coe�cients without explicit

calculation of Hessian. Also while in practice the error function is not quadratic the conjugate

gradient algorithm still gives a good way of �nding the error minimum point.

There are several ways to express the �i coe�cients:

� The Hestenes-Stiefel formula. By replacing (12.22) into (12.26):Hestenes-Stiefel

�i =

�
rEjWi+1

�T �rEjWi+1
�rEjWi

�
d
T
i

�
rEjWi+1

�rEjWi

� (12.30)

� The Polak-Ribiere formula. From (12.25) and (12.21) and by making a multiplicationPolak-Ribiere

to the right:

di = �rEjWi
+ �idi�1 ; d

T
i�1rEjWi

= 0)

d
T
i rEjWi

= � (rEjWi
)
TrEjWi

+ �id
T
i�1rEjWi

= � (rEjWi
)
TrEjWi

and by using this result, together with (12.21) again, into (12.30), �nally:

�i =

�
rEjWi+1

�T �rEjWi+1
�rEjWi

�
(rEjWi

)
TrEjWi

(12.31)

� The Fletcher-Reeves formula. From (12.31) and using (12.27):Fletcher-Reeves

�i =

�
rEjWi+1

�TrEjWi+1

(rEjWi
)
TrEjWi

(12.32)

✍ Remarks:

➥ In theory, i.e. for a quadratic error function, (12.30), (12.31) and (12.32) are

equivalent. In practice, because the error function is seldom quadratic, they may

gives di�erent results. Usually the Polak-Ribiere formula gives best result.

12.6. CONJUGATE GRADIENTS 231

Let consider a quadratic error as function of �i:

E(Wi + �idi) = E0 + b
T (Wi + �idi) +

1

2
(Wi + �idi)

T
H (Wi + �idi)

The minimum if error along the direction given by di is found by imposing the cancellation

of its derivative with respect to �i:

@E

@�i
= 0) b

T
di + (W + �idi)

T
Hdi = 0

and considering the property xTy = y
T
x and the fact that rE = b+HW , then:

�i = �
d
T
i rEjWi

d
T
i Hdi

(12.33)

The fact that formula (12.33) coincide with expression (12.20) indicate that the procedure

of �nding these coe�cients may be replaced with any procedure for �nding the error minima

along di direction.

The general algorithm is:

1. Select an starting (into the weight space) point given by W1.

2. Calculate rEjW1
and make: d1 = �rEjW1

3. For i = 1; : : : ; (max. value):

(a) Find the minimum of E(Wi + �idi) with respect to �i and move to the next

point Wi+1 =Wi + �i(min.)di.

(b) Evaluate the stop condition. It may be error drop under some speci�ed value, a

�xed number of steps, e.t.c.

(c) Calculate rEjWi+1
and then �i, using one of the (12.30), (12.31) or (12.32).

Finally calculate the new di+1 direction from (12.25).

(Cycle is to be repeated till the error minima have been found, or some maximal

number of steps have been executed).

12.6.4 Scaled Conjugated Gradients

The line search algorithm may have the following drawbacks:

� it may involve several calculations of the error function.

� it may be sensible on the accuracy of �i determination.

For a general network however it is possible to calculate the product between the Hessian

and a vector, e.g. Hdi in the conjugate gradient algorithm, in just O(W) steps8. However

there is a possibility that the Hessian is not positive de�nite, meaning that the denominator

d
T
` Hd` of (12.20) may be negative and thus driving an increase of error.

The Hessian may be made positive de�nite by performing a translation of the form H ! ❖ �

8See chapter \Multi layer neural networks".

232 CHAPTER 12. PARAMETER OPTIMIZATION

H + �I where I is the unit matrix and � is a su�ciently large coe�cient. The formula

(12.20) then becomes:

�i = �
d
T
i rEjWi

d
T
i H jWi

di + �ikdik2
(12.34)

H jWi
being the Hessian calculated at point Wi and �i being the required value of � to❖ H jWi

, �i
make the Hessian positive de�nite.

The problem is to choose the �i parameter. One way is to start from some value | which

may be 0 as well | and to increase it till the denominator of (12.34) becomes positive. Let

consider the denominator:❖ �i

�i = d
T
i Hdi + �ikdik2

If �i > 0 then it can be used; otherwise (�i < 0) the �i parameter is increased to the new❖ �0i, �
0
i

value �0i such that the new value of the denominator �0i > 0:

�0i = �i + (�0i � �i)kdik2 > 0) �0i > �i �
�i

kdik2

An interesting value to choose for �0i is �
0
i = 2

�
�i � �i

kdik2

�
which gives:

�0i = ��i + �ikdik2 = �dTi Hdi

✍ Remarks:

➥ If the error is quadratic then �i = 0. In the regions of the weights space where

error is badly approximated by a quadratic �i have to be increased, in the regions

where error is closer to the quadratic approximation �i may be decreased.

➥ One way to measure the degree of quadratic approximation is:❖ �i

�i =
E(Wi)�E(Wi + �idi)

E(Wi)�EQ(Wi + �idi)
(12.35)

where EQ is the local quadratic approximation:❖ EQ

EQ(Wi + �idi) = E(Wi) + �id
T
i rEjWi

+
1

2
�2id

T
i H jWi

di

and, by replacing into (12.35) and using (12.20):

�i =
2 [E(Wi)�E(Wi + �idi)]

�idTi rEjWi

➥ In practice the usual values used are:8><>:
�i+1 = �i=2 if �i > 0:75

�i+1 = �i if 0:25 < �i < 0:75

�i+1 = 4�i if �i < 0:75

(12.36)

with the supplemental rule to not update the weights if �i < 0 but just increase

the value of �i and reevaluate �i.

12.7. NEWTON'S METHOD 233

�H�1rE

E = const.

�rE
W �

W

Figure 12.8: Newton direction �H�1rE points directly to the error

minima point W �.

➧ 12.7 Newton’s Method

For a local quadratic approximation around minima (12.2) of the error function, the gradient

at a some W point is rE = H jW�(W �W �) and then the minimum point is at:

W � =W �H�1jW�rE (12.37)

The vector �H�1rE, named Newton direction, points from the W point directly to the Newton direction

minimum W �. See �gure 12.8.

There are several points to be considered regarding the Newton's method:

� Since it is just an approximation, this method may require several steps to be performed

to reach the real minimum.

� The exact evaluation of the Hessian is computationally intensive, of order O(PW 2),

P being the number of training vectors. The computation of the inverse Hessian H�1

is even more computationally intensive, i.e. O(W 3).

� The Newton direction may also point to a saddle point or maximum so checks should

be made. This occurs if the Hessian is not positive de�nite.

� The point given by (12.37) may be outside the range of quadratic approximation,

leading to instabilities in the learning process.

If the Hessian is positive de�nite then the Newton direction points towards a decrease of

error | considering the derivative of error along Newton direction:

@E(W � �H�1rE)
@�

= �
�
H�1rE

�TrE
= � (rE)TH�1rE < 0

(the matrix property (AB)T = BTAT was used here, as well as the fact that Hessian is

symmetric).

If the Hessian is not positive de�nite the a approach similar to that used in section 12.6.4

may be used, i.e. H ! H + �I . This represents a compromise between gradient descent

12.7See [Bis95] pp. 285{287.

234 CHAPTER 12. PARAMETER OPTIMIZATION

and Newton's direction:

� For � & 0) H + �I ' H , i.e. the new direction is close to Newton's direction.

� For � � 0) H + �I ' �I , and then �(�I)�1 = � 1
�
I , i.e. the new direction is

close to rE.

➧ 12.8 Levenberg-Marquardt Algorithm

This algorithm is speci�cally designed for \sum-of-squares" error function. Let "p be the

error given by the p-th training pattern vector and "T =
�
"1 : : : "P

�
. The error function❖ "p, "

is then:

E =
1

2

PX
p=1

("p)
2 =

1

2
k"k2 (12.38)

Let consider the following matrix:❖ �

� =

0BB@
@"1
@W1

: : : @"1
@WNW

...
. . .

...
@"P
@W1

: : : @"P
@WNW

1CCA
then, considering a small variation in W weights from step t to t + 1, the error vector "

may be developed in a Taylor series to the �rst order:

"(t+1) = "(t) +�(W(t+1) �W(t))

and the error function at step t+ 1 is:

E(t+1) =
1

2
k"(t) +�(W(t+1) �W(t))k2 (12.39)

Minimizing (12.39) with respect to W(t+1) means:

rEjW(t+1)
=
�
"(t) +�(W(t+1) �W(t))

�T
� = 0) "(t) +�(W(t+1) �W(t)) = 0

� is not square so �rst a multiplication with �T to the left is performed and then a

multiplication by (�T�)�1 again to the left which �nally gives:

W(t+1) =W(t) � (�T�)�1�T
"(t) (12.40)

which represents the core of Levenberg-Marquardt weights update formula.

From (12.38) the Hessian matrix is:

fHgij =
@2E

@wi@wj
=

PX
p=1

�
@"p
@wi

@"p
@wj

+ "p
@2"p

@wi@wj

�
12.8See [Bis95] pp. 290{292.

12.8. LEVENBERG-MARQUARDT ALGORITHM 235

and by neglecting the second order derivatives the Hessian may be considered as:

H ' �T�

i.e. the equation (12.40) essentially involves the inverse Hessian. However this is done trough

the computation of the error gradient with respect to weights which may be e�ciently done

by the backpropagation algorithm.

One problem should be taken care of: the formula (12.40) may give large values for �W ,

i.e. so large that the (12.39) approximation no longer apply. To avoid this situation the

following changed error function may be used instead:

E(t+1) =
1

2
k"(t) +�(W(t+1) �W(t))k2 + �kW(t+1) �W(t)k2

where � is a parameter governing the �W size. By the same means as for (12.40) the new ❖ �
update formula becomes:

W(t+1) =W(t) � (�T�+ �I)�1�T
"(t) (12.41)

For � & 0, (12.41) approaches the Newton formula, for � � 0 (12.41) approaches the

gradient descent formula.

✍ Remarks:

➥ For su�ciently large values of � the error function is \guaranteed" to decrease

since the direction of change is opposite to the gradient and the step is propor-

tional with 1=�.

➥ The Levenberg-Marquardt algorithm is of model trust region type. The model

| the linearized approximation error function | is \trusted" just around the

current point W , the size of region being de�ned by �.

➥ Practical values for � are: � ' 0:1 at start then if error decrease multiply � by

10; if the error increases go back (restore the old value of W , i.e. undo changes),

divide � by 10 and try again.

CHAPTER 13

Feature Extraction

➧ 13.1 Pre/Post-processing

Usually the raw data is not feed directly into the ANN but rather processed before. The

preprocessing have the following advantages:

� it allows for dimensionality reduction and thus avoid the course of dimensionality,

� it may include some prior knowledge, i.e. information additional to the training set.

Also the ANN outputs are also postprocessed to give the required output format. The pre

and post processing may take any form, i.e. a statistical processing, some �xed transforma-

tion and/or even a processing involving another ANN.

The most important forms of preprocessing are:

� dimensionality reduction | it allows for building smaller ANN's and thus with less

parameters and better suited to learn/generalize1,

� feature extraction | it involves making some combination of original training vector feature extraction

components called features; the process of calculating the features is named feature

extraction,

usually both processes going together, i.e. by dropping some vector components automati-

cally those more \feature rich" will be kept and reciprocal the number of features extracted

is usually much smaller than the dimension of the original pattern vector.

The preprocessing techniques described above will always drive to some loss of information.

However the gain in accuracy neural computation outweighs this loss (of course, assuming

that some care have been taken in the preprocessing phase). The main di�culty here is to

�nd the right balance between the informational loss and the neural processing gain.

13.1See [Bis95] pp. 295{298.
1See the \Pattern Recognition" chapter, regarding the course of dimensionality

237

238 CHAPTER 13. FEATURE EXTRACTION

➧ 13.2 Input Normalization

One useful transformation is to scale the inputs such that they will be into the same order

of magnitude.

For each component xi, of the input vector x, the mean hxii and variance �i are calculated:❖ hxii, �i

hxii =
1

P

PX
p=1

xip ; �2i =
1

P � 1

PX
p=1

(xip � hxii)2

and then the following transformation is applied:

exip = xip � hxii
�i

(13.1)

where the new pattern introduced exip have zero mean and variance one:❖ exip
hexii = 1

P

PX
p=1

exip = 0 ; e�2i = 1

P � 1

PX
p=1

(exip � hexii)2 = 1

P � 1

PX
p=1

ex2ip = 1

A similar transformation may be applied to the target pattern vectors.

✍ Remarks:

➥ While the input normalization performed in (13.1) could be done into the �rst

layer of the neural network, this preprocessing makes easier the initial choice of

weights and thus learning: if the inputs and outputs are of order unity the the

weights should also be of the same order of magnitude.

Another, more sophisticated, transformation is whitening . The input training vector patternwhitening

set have the mean hxi and covariance matrix �:❖ hxi, �

hxi =
1

P

PX
p=1

xp ; � =
1

P � 1

PX
p=1

(xp � hxi)(xp � hxi)T

and considering the eigenvectors fuig and eigenvalues �i of the covariance matrix: �ui =❖ U , �
�iui then the following transformation is performed:

exp = ��1=2UT(xp � hxi)

where U =

0B@u11 � � � u1N
...

. . .
...

uN1 � � � uNN

1CA ; � =

0BBBB@
�1 0 � � � 0

0
. . .

...
...

. . . 0

0 � � � 0 �N

1CCCCA
uij being the component i of uj ; f��1=2gij = 1p

�i
�ij . Because � is symmetric, it is

possible to build an orthonormal fuig set2:

uiuj = �ij) UTU = 1

13.2See [Bis95] pp. 298{300.
2See mathematical appendix.

13.3. MISSING DATA 239

u1

u2

x2

x1

fexpg distribution
fxpg distribution

Figure 13.1: The whitening process. The new distribution fexpg have
a spherical symmetry and is centered in the origin | in

the eigenvectors system of coordinates.

The mean of transformed pattern vectors is zero and the covariance matrix is unity:

hexi = PX
p=1

exp = 0 (13.2)

e� =
1

P � 1

PX
p=1

(exp � hexi)(exp � hexi)T =
1

P � 1

PX
p=1

expexTp = ��
1
2UT�U��

1
2
T

= ��
1
2UT�U��

1
2
T =

�
��

1
2UT�

1
2
T
��

�
1
2U��

1
2
T
�
= UTU = I

(� may be written as � = �
1
2�

1
2 ; �

1
2U��

1
2
T = U is true | may be checked by direct

multiplication| and, because of diagonal nature of �matrices they equal their transposed).

The (13.2) result shows that in the system of coordinates given by fuig the transformed

distribution of exp is centered in origin and have a spherical symmetry. See �gure 13.1.

✍ Remarks:

➥ The discussion in this section was around input vectors with a continuous spec-

trum. For discrete input values the above methods may be inappropriate. In

these cases one possibility would be to use a one-of-k encoding scheme similar

to that used in classi�cation.

➧ 13.3 Missing Data

The \missing data" problem appears when some components of some/all training vector

are unknown.

13.3See [Bis95] pp. 301{302.

240 CHAPTER 13. FEATURE EXTRACTION

Several approaches may be taken to deal with the problem:

� Discarding data. If the process responsible of missing data is independent of data set

and there is a (relatively) large quantity of data then the incomplete pattern vectors

may be discarded from the training set. This is the most simple approach.

� Filling in. The missing data may be �lled in with values calculated using various

approaches:

→ Use the means over corresponding data for which values are known. However

this approach is too simplistic and usually gives poor results.

→ Calculate the missing values by a regression method over known data. The

drawback is that the regression function generated is noise-free and then it un-

derestimates the covariance in data.

→ Use the EM (expectation-maximisation) algorithm3. where missing data may be

treated as mixture components.

→ The general approach: integrate over the corresponding variables by weighting

with the corresponding distribution. This involves the fact that the distribution

itself is modeled.

Let consider that, from the pattern vector x, one part x(k) is known and the rest

x(m) is missing.❖ x(k), x(m)

Using the Bayes theorem, the posterior probability of x(k) 2 Ck, respectively
x 2 Ck are:

P
�
Ckjx(k)

�
=

p(x(k)jCk)P (Ck)
p
�
x(k)

�
P
�
Ckjx(k);x(m)

�
=

p(x(k);x(m)jCk)P (Ck)
p
�
x(k);x(m)

�
Using the above equations, the posterior probability of class Ck, while knowing

only x(k), may be expressed as:

P
�
Ckjx(k)

�
=

p(x(k)jCk)P (Ck)
p
�
x(k)

� =
P (Ck)
p
�
x(k)

� Z
X(m)

p
�
x(k);x(m)jCk

�
dx(m)

=
1

p
�
x(k)

� Z
X(m)

P
�
Ckjx(k);x(m)

�
p
�
x(k);x(m)

�
dx(m)

➧ 13.4 Time Series Prediction

The time series prediction problem involves the prediction of a pattern vector x(�) based
of the knowledge of previous behavior of the variable.

3Described in \Pattern Recognition" chapter.
13.4See [Bis95] pp. 302{304.

13.5. FEATURE SELECTION 241

The following approaches are common:

� The static method.It is assumed that the statistical properties of the data generator

do not evolve in time.

The pattern vector is sampled in time, at regular interval, resulting a series of values,

i.e. time is converted to a discrete form: : : : , x��2, x��1, x� , : : :

The training set is build by using one value as output and some n previous values as

input, e.g. x� is used as output and x��n, : : : , x��1 as inputs; then x�+1 is used as

output and x��n+1, : : : , x� as inputs, e.t.c.

The �rst predicted value may be used as output to make the second prediction, and

so on.

� Detrending. The time series may have a simple trend, e.g. increasing or decreasing in

time. This may lead to a pour prediction over time. However, by �tting a simple curve

to the data and then removing the value predicted by this simple model the data are

detrended. Only the more complex model (assumed constant in time) remains.

� The dynamical approach. This involves a method which allows for retraining in time

and adaptation to the data generator as it changes in time.

➧ 13.5 Feature Selection

Usually, only a subset of the full feature set is used in the training process of ANN. As there

may be many combinations of features, a selection criteria have to be applied in order to

�nd the most �tted subset of features (the individual input vector components may be seen

as features as well).

One procedure of selection is to train the network on di�erent sets of features and then to

test for generalization achieved on a set of pattern vectors not used at learning stage.

As the training and testing may be time consuming on a complex model, an alternative is

to use a simpli�ed one for this purpose.

It is to be expected | due to the curse of dimensionality | that there is some optimal

minimum set of features which gives the best generalization. For less features there is too

little information and for more features the dimensionality course intervene.

On the other hand usually a criteria J used in class separability increases with the number ❖ J , X
of features X :

J(X+) > J(X) if X � X+ (13.3)

e.g. the Mahalanobis distance4 �2. This means that this kind of criteria can't be used

directly to compare the results given by two, di�erent in size, feature sets.

Assuming that there are N features, there are 2N possible subsets (2 because a feature

may be present or absent from the subset, the whole set may be also considered as a

subset). Considering that the subset is required to have exactly eN features the number of

possible combination is still N !

(N� eN)! eN !
. In principle, an exhaustive search trough all possible

13.5See [Bis95] pp. 304{310.
4De�ned in chapter \Pattern Recognition"

242 CHAPTER 13. FEATURE EXTRACTION

21 3

2 3 4 43

555454 5543

4

Figure 13.2: The branch and bound decision tree. Build for a par-

ticular case of 5 features. If at one level a feature, e.g.

1, can not be eliminated then the whole subtree, marked

with black dots, is removed from the search.

combinations should be made in order to �nd the best subset of feature. In practice even

a small number of features will generate a huge number of subset combinations, too big to

be fully checked.

There are several methods to avoid evaluating the whole feature combination sets.

The branch and bound method

This method gives the optimal solution based on a criteria for which (13.3) is true.

Let assume that there are N features and eN features to be selected, i.e. there are N � eN
features to be dropped.

A top-down decision tree is build. It starts with one node and have N � eN levels (not

counting the root itself). At each level one feature is dropped such that at the bottom

there are only eN left. See �gure 13.2.

Note that as the number of features to remain is eN then the �rst level have only N � eN .

It doesn't matter what features are present on this level as the order of elimination is not

important. For the same reason one feature eliminated at one level does not appear into

the sub-trees of other eliminated features.

The elimination works as follows:

� A random combination of features is selected, i.e. one point from the bottom of the

decision tree. The corresponding criteria used in class separability J(X0) is calculated.

See (13.3).

� Then one feature is eliminated at a time, going from top to the bottom of the tree.

The criteria J(X) is calculated at each level.

If at some level J(X) > J(X0) then continue the search. Otherwise (J(X) < J(X0))

there are are the following possibilities:

� The node is at bottom of the tree. The new feature combination is better then

the old one and becomes the new level of comparison, i.e. J(X)! J(X0).

13.6. DIMENSIONALITY REDUCTION 243

� If the node is not at the bottom of the tree then the whole subtree is eliminated

from search as being suboptimal. The condition (13.3) is no more met, i.e. a

feature (or combination of features) which shouldn't have been eliminated just

was and all combinations which contain the elimination of that feature shouldn't

be considered further.

The sequential search

This method may give suboptimal solutions but is faster than the previous one. It is based

on considering one feature at a time.

There are two ways of selection:

� At each step one feature | the one which gives biggest J(X) criterion | is added sequential forward

selectionto the (initial empty) set. The method is named sequential forward selection.

� At each step the least important feature | the one witch gives the smaller decrease sequential back-

ward eliminationof J(X) criterion | is eliminated from the (initial full) set. The method is named

sequential backward elimination.

➧ 13.6 Dimensionality Reduction

This procedure tries to reduce the dimensionality of input data by combining them using an

unsupervised learning process.

13.6.1 Principal Component Analysis

The problem is to map a set of input vectors fxpg, which are N dimensional, into a set of

corresponding vectors fzpg which have a lower dimensionality K < N .

The x input vector may be represented by the means of an orthonormal set of vectors fuig:

x =

NX
i=1

ziui) zi = u
T
i x where u

T
i uj = �ij

A transformation x ! ex is performed as follows: from the set fzig only K are retained

(e.g. the �rst ones) and the others are replaced with constants bi ❖ ex, bi
ex =

KX
i=1

ziui +

NX
i=K+1

biui ; bi = const.

which practically represents a dimensionality reduction from N to K.

The problem is now to to select the best K set of components from x. This can be done

by trying to minimize the error when switching from x to ex, i.e. the di�erence between the

two vectors:

x� ex =

NX
i=K+1

(zi � bi)ui

13.6See [Bis95] pp. 310{316.

244 CHAPTER 13. FEATURE EXTRACTION

and for a set of P input vectors❖ EK

EK =
1

2

PX
p=1

kxp � expk2 = 1

2

PX
p=1

NX
i=K+1

(zip � bi)
2 (13.4)

From the condition of minimum of EK with respect to bi

@EK

@bi
= 0) bi =

1

P

PX
p=1

zip = u
T
i hxi

where: hxi = 1
P

PP
p=1

xp is the mean input vector.❖ hxi

Then the error (13.4) may be written as (use (AB)T = BTAT matrix property):

EK =
1

2

PX
p=1

NX
i=K+1

�
u
T
i (xp � hxi)

�2
=

1

2

NX
i=K+1

u
T
i �ui (13.5)

where � is the covariance matrix of input vectors fxpg:❖ �

� =

PX
p=1

(xp � hxi)(xp � hxi)T (13.6)

The minima of EK with respect to fuig occurs when the this set is made from the eigen-

vectors of covariance matrix5 �:

�ui = �iui (13.7)

�i being the eigenvalues. By replacing (13.7) into (13.5) and using the orthogonality of❖ �i
fuig the error becomes:

EK =
1

2

NX
i=K+1

�i (13.8)

and is minimized by choosing the smallest N �K eigenvalues.

Let consider the translation of coordinates from whatever fxpg was represented to the one

de�ned by the eigenvectors fuig and in the same time a translation of the origin of the new

system to hxi, i.e. in the new system hxi = b0; this means that each xp may be represented
as linear combination of fuig:

xp =

NX
i=1

�ipui

and by replacing in (13.5), considering also the orthogonality of fuig, EK = 1
2

PP
p=1

NP
i=K+1

�2ip,

i.e. EK is a quadratic form. From (13.8) it follows that the surfaces EK = const. are hyper-

ellipses with the axes proportional with 1=
p
�i and the dimensionality reduction is done by

5See the mathematical appendix.

13.6. DIMENSIONALITY REDUCTION 245

x2
u2

u1

�
�1=2
2

x1

�
�1=2
1

hxi E = const.

Figure 13.3: The constant-error surfaces are hyper-ellipses. The di-

mensionality reduction is done by projecting the data

points (black dots) on the axes corresponding to the

smallest eigenvalue �i, i.e. in this bidimensional case

on u1

dropping those dimensions corresponding to the smallest axes, i.e. by making a projection

on the axes corresponding to largest �i representing the largest spread of data points. See

�gure 13.3.

✍ Remarks:

➥ The method described is also known as the Karhunen-Lo�eve transformation. The

ui are named principal components.

13.6.2 Non-linear Dimensionality Reduction Trough ANN

The principal component analysis performed in the previous section may reduce the dimen-

sionality only trough a linear process.

Sometimes the data have an intrinsic dimensionality which cannot be retrieved by linear

methods. See �gure 13.4 on the following page.

Auto-associative ANN may be used to perform dimensionality reduction. The input pat-

terns are used also as targets (hence the \auto-associative" name) but the network have

a \bottleneck" build into hidden layers. See �gure 13.5 on the next page. The hidden

layers have less neurons than input and output layers thus forcing the network to \squeeze"

the data trough, thus achieving a dimensionality reduction | the output of hidden layer

representing the dimensionally reduced input data.

✍ Remarks:

➥ The error function used is usually the sum-of-squares.

➥ If the network contains only one hidden layer then the transformation performed

is linear, i.e. equivalent to principal component analysis. Unless it is \hardware"

implemented there is no reason to use single hidden layer ANNs to perform

dimensionality reduction.

246 CHAPTER 13. FEATURE EXTRACTION

�

x2

x1

Figure 13.4: Sometimes the data have an intrinsic dimensionality

which cannot be revealed by a linear transformation. In

this case the data points are distributed on a circular

shape and could be described by one dimension, e.g. the

angle � measured from one from a reference point.

non-linear transformation

dimensionality reduction

non-linear transformation

Z layer

output layer

input layer

x1 xN

x1 xN

Figure 13.5: The use of auto-associative ANNs for dimensionality re-

duction. The network have a bottleneck, i.e. the hidden

layers have less neurons than input and output layers.

The dimensionality reduction is achieved in layer Z.

13.7. INVARIANCE 247

➥ The same design may be used for data compression.

➧ 13.7 Invariance

In some applications of ANNs the output should be invariant to some transformation of

the input, e.g. the classi�cation of the shape of an object should be invariant to the posi-

tion/rotation of it.

The most straightforward approach | and also the most ine�cient | is to include into

the training set as many examples of the transformed input as possible. This require a large

amount of training data and gives pour result for transformations uncovered well by the

learning set. Various more e�ective alternatives have been developed.

13.7.1 The Tangent Prop Method

This method is applicable for continuous transformations, e.g. translations and rotations

but not mirroring.

Let assume that the transformation of a vector x leads to vector s and is governed by one

scalar parameter �, e.g. rotation is de�ned by the angle parameter. Then s = s(x; �) and ❖ s, �, M
let M be the reunion of all s vectors for a given x and all possible values of �. Also the

\natural" condition s(x; 0) = x is imposed.

Let � be the vector de�ned as ❖ �

� =
@s(x; �)

@�

����
�=0

The change in network output, due to the transformation de�ned by � is:

@yj
@�

=

NX
i=1

@yj
@xi

@xi
@�

=

NX
i=1

@yj
@xi

�i =

NX
i=1

Jji�i (13.9)

where J is the Jacobian6 ❖ J

J �
�
@yj
@xi

�
i=1;N

j=1;K

=

0B@
@y1
@x1

� � � @y1
@xN

...
. . .

...
@yK
@x1

� � � @yK
@xN

1CA
If the network mapping function is invariant to the transformation in the vicinity of each

pattern vector xp then the term (13.9) is heading towards zero and it may be used to build

a regularization function7 of the form:

 =
1

2

PX
p=1

KX
j=1

(Jjip�ip)
2

where Jjip and �ip are referring to the input vector xp from the training set fxpgp=1;P . ❖ Jjip, �ip

13.7See [Bis95] pp. 319{329.
6The Jacobian is de�ned in the \Multi layer neural networks" chapter.
7See chapter \Pattern recognition".

248 CHAPTER 13. FEATURE EXTRACTION

The new error function becomes: eE = E + �
 where � is a regularization parameter

determining the inuence of
.

✍ Remarks:

➥ In practice the derivative de�ning � is found by the mean of �nite di�erence

between x and s obtained from a (relative) small �.

13.7.2 Preprocessing

The invariant features may be extracted at preprocessing stage. These features are named

moments.

Let consider one particular component x of the input vector, described in some system of❖ x, ui
coordinates and let fuig be the coordinates of x, e.g. x may be a point on a bidimensional

image and fu1; u2g may be the Cartesian coordinates, the point being either \lit" (x = 1)

or not (x = 0) depending upon coordinates (u1; u2).

The moment M is de�ned as:❖ M

M =

Z
U1

� � �
Z
UN

x(u1; : : : ; uN)K(u1; : : : ; uN) du1 : : : duN

where K(u1; : : : ; uN) is named kernel function and determines the moments to be consid-kernel function

ered. For discrete spaces the integrals changes to sums:

M =
X
i1

� � �
X
iN

x(u1(i1); : : : ; uN(iN))K(u1(i1); : : : ; uN(iN))�u1(i1) : : :�uN(iN)

(the values being taken at the points i1; : : : ; iN).

One of the possible kernel functions is the power function which give rise to regular momentsregular moments

Mi1;::: ;iN :

Mi1;::: ;iN =

Z
U1

� � �
Z
UN

x(u1; : : : ; uN)u
i1
1 : : : uiNN du1 : : : duN

and by de�ning ui =
M0;::: ;1;::: ;0

M0;::: ;0
(1 in i-th position) then:❖ ui

cMi1;::: ;iN =

Z
U1

� � �
Z
UN

x(u1; : : : ; uN) (u1 � u1)
i1 : : : (uN � uN)

iN du1 : : : duN (13.10)

which is named central moment.central moments

The central moment, de�ned in (13.10), is invariant to translations, i.e. to transformations

of type x(u1; : : : ; uN)! x(u1 +�u1; : : : ; uN +�uN), provided that the edge e�ects are

neglected, or the Ui domains are in�nite.

Proof. Indeed, the moment calculated for the new pattern is:fcM i1;::: ;iN =

Z
U1

� � �
Z
UN

x(u1 +�u1; : : : ; uN +�uN) (u1 � u1)
i1: : : (uN � uN)iN du1 : : : duN (13.11)

13.7. INVARIANCE 249

and by making the change of variable ui ! ui +�ui = eui then dui = deui, also eui = ui +�ui, and by

replacing in (13.11):fcMi1;::: ;iN =

Z
U1

� � �
Z
UN

x(eu1; : : : ; euN) (eu1 � eu1)i1 : : : (euN � euN)iN deu1 : : : deuN = cMi1;::: ;iN

A moment �i1;::: ;iN invariable to uniform scaling, i.e. x(u1; : : : ; uN) ! x(�u1; : : : ; �uN) ❖ �i1;::: ;iN , �
where � is the scaling parameter, may be built as:

�i1;::: ;iN =
cMi1;::: ;iNcM1+(i1+���+iN)=N

0;::: ;0

(13.12)

Because the �i1;::: ;iN moment is build using only the central moments cMi1;::: ;iN then it is

automatically invariant to translations.

Proof. Let consider a scaling de�ned by �. Similarly as for translation:fcM i1;::: ;iN =

Z
U1

� � �
Z
UN

x(�u1; : : : ; �uN) (u1 � u1)
i1 : : : (uN � uN)iN du1 : : : duN (13.13)

=
1

�N+i1+���+iN

Z
U1

� � �
Z
UN

x(�u1; : : : ; �uN) (�u1 � �u1)
i1 : : : (�uN � �uN)iN �

� d(�u1) : : : d(�uN)

=
1

�N+i1+���+iN

Z
U1

� � �
Z
UN

x(eu1; : : : ; eun) (eu1 � eu1)i1 : : : (eun � euN)iN deu1 : : : deuN
=

cMi1;::: ;iN

�N+i1+���+iN

By the same means, for cM0;::: ;0 which is: cM0;::: ;0 =
R
U1

� � � R
UN

x(u1; : : : ; uN) du1 : : : duN it gives that:

fcM0;::: ;0 =
cM0;::: ;0

�N
(13.14)

Finally, by using (13.13) and (13.13) into (13.12) it gives that e�i1;::: ;iN = �i1;::: ;iN , i.e. the � moment is

invariant to scaling as well.

It is possible also to build a moment which is independent to rotation. First the M moment

is rewritten in generalized spherical coordinates8:

Mi1;::: ;iN =

1Z
0

2�Z
0

� � �
2�Z
0

x(r; �1; : : : ; �N) (r cos �1)
i1 : : : (r cos �N)

iN r dr d�1 : : : d�N

As
NP
i=1

cos2 �i = 1 then the moment:

MR =M2;0;::: ;0 +M0;2;0;::: ;0 + : : :+M0;::: ;0;2

is rotation independent and thus the moment:

�R = �2;0;::: ;0 + �0;2;0;::: ;0 + : : :+ �0;::: ;0;2

8See mathematical appendix.

250 CHAPTER 13. FEATURE EXTRACTION

A

2

layer 3

layer 1

layer 2

B

1

Figure 13.6: The shared weights method for bidimensional pattern

vectors. Region A from �rst layer activates neuron 1

from second layer, respectively region B activates neu-

ron 2. The weights from A to 1, respectively from B

to 2 are the same, i.e. the same input pattern in A re-

spectively B will give same activation in 1 respectively

2. Layers 1, 2, 3, : : : are in decreasing size order.

is independent to translation, scaling and rotation.

✍ Remarks:

➥ There are two potential problems when using moments: one is that it may be

computationally intensive and the second is that some information may be lost

during preprocessing.

13.7.3 Shared Weights

This technique is using specially build ANNs to allow for a relative translation invariance.

✍ Remarks:

➥ This technique is useful in image processing and bears some resemblance with

mammalian vision.

Considering a bidimensional input pattern the network is build such that a layer will receive

excitatory input only from a small area of the previous layer. By having (sharing) the same

weights, such areas send the same excitatory input to the next layer, when presented with

the same input pattern. See �gure 13.6.

13.7.4 Higher-order ANNs

A higher-order network have a neural activation of the form9:

zj = f

wj0 +

NX
i=1

wjixi +

NX
i1=1

NX
i2=1

wji1i2xi1xi2 + : : :

!
9See chapter \Multi Layer Neural Networks"

13.7. INVARIANCE 251

t

i2
i02

i01

i1
t

Figure 13.7: Translation in bidimensional space. t represents the

translation vector. The pattern values xi1 is replaced

by xi01 , respectively xi2 by xi02 .

where neuron zj receives input from xi, wj0 is the bias and f is the activation function.

By using second-order neural networks, i.e. of the form:

zi = f

NX

i1=1

NX
i2=1

wji1i2xi1xi2

!
(13.15)

it is possible to built a network whose output is translation invariant for a bidimensional

input pattern.

Considering a translation of a pattern in a bidimensional space then in the place i1 occupied
previously by xi1 now will be an input xi01 which have come from i01, the same happens for

the second point i2. See �gure 13.7.

To keep the network output (13.15) the same it is necessary to impose the condition:

wji1i2 = wji01i02 (13.16)

for each pair of points f(i1; i2); (i01; i02)g which may be correlated by a translation.

✍ Remarks:

➥ The condition (13.16) greatly reduces the number of independent weights (such

that a second order neural network becomes more manageable).

➥ One layer of second order neural network is su�cient to extract the translation

invariant pattern information.

➥ Highest order networks may be used for more complex invariant information ex-

traction, e.g. a third order network may be used to extract information invariant

to translation, uniform scaling and rotation by correlating 3 points.

CHAPTER 14

Learning Optimization

➧ 14.1 The Bias-Variance Tradeoff

Let p(tjx) be the target t probability density, conditioned on input x. The conditional ❖ htjxi, ht2jxi
average of the target is htjxi =

R
Y

tp(tjx) dt and the conditional average of the square of

targets ht2jxi =
R
Y

t2p(tjx) dt.

For an in�nite training set the sun-of-square error function may be written1, considering

only one output, as:

E =
1

2

Z
X

[y(x)� htjxi]2p(x) dx+
1

2

Z
X

[ht2jxi � htjxi2] p(x) dx (14.1)

The second term in (14.1) is independent of y(x) and thus independent of weights | it

represents an intrinsic noise which sets the minimum of E. The �rst term may be minimized

to 0 in which case y(x) = htjxi.

Finite training data sets S, considered containing P training vector patterns (each), cannot

cover the whole possibilities for input/output and then where will always be some di�erence

between y(x) (after training) and htjxi (considering an in�nite set).

The integrand of the �rst term in (14.1), i.e. [y(x)�htjxi]2, gives a measure of how close is ❖ ES
the actual mapping y(x) to the desired target t. To avoid the dependency over a particular

14.1See [Bis95] pp. 332{338.
1See chapter \Error Functions", \Signi�cance of network output".

253

254 CHAPTER 14. LEARNING OPTIMIZATION

training set, the expectation (average) ES is taken as a measure of the mapping:

measure of mapping � ESf[y(x)� htjxi]2g

the average being done over the whole ensemble of training sets.

De�nition 14.1.1. The bias represents the di�erence between the average of network map-bias

ping y(x) and the data generator, i.e. htjxi:

bias � ESfy(x)g � htjxi

The average bias over the input x is de�ned as:

(average bias)2 �
1

2

Z
X

[ESfy(x)g � htjxi]2p(x) dx

For a perfect model, the bias would be 0 (as ESfy(x)g = htjxi). Non-zero bias arises from

two causes:

� di�erence between the function created by the model (e.g. ANN) and the true function

who generated the data | this is the \true" bias,

� variance due to data sets | particular sensitivity to some training sets.

De�nition 14.1.2. The variance represents the average sensitivity of the network mappingvariance

y(x) to a particular training set:

variance � ESf[y(x)� ESfy(x)g]2g

The average variance over the input x is de�ned as:

average variance �
1

2

Z
X

ESf[y(x)� ESfy(x)g]2g p(x) dx

Let consider the measure of mapping [y(x)� htjxi]2:

[y(x) � htjxi]2 = [y(x)� ESfy(x)g+ ESfy(x)g � htjxi]2

= [y(x) � ESfy(x)g]2 + [ESfy(x)g � htjxi]2

+ 2[y(x)� ESfy(x)g][ESfy(x)g � htjxi]

When doing an average over the above equation, the third term cancels (because y(x) !
ESfy(x)g) and then:

ESf[y(x)� htjxi]2g = ESf[y(x)� ESfy(x)g]2g+ [ESfy(x)g � htjxi]2

= variance+ (bias)2

To see the meaning of bias and variance let consider the targets as being generated from a❖ h(x), "
function h(x) to which some random noise ", with 0 mean, have been added:

tp = h(xp) + "p (14.2)

14.2. REGULARIZATION 255

and the optimal mapping is then htjxi = h(x).

There are two extreme possibilities for the y(x) mapping choice:

� The mapping is build to be some g(x) function, completely independent of data set.

Then the variance is zero since ESfy(x)g = g(x) = y(x).

However the bias may be very high (unless some other prior knowledge have been used

to build g(x)).

� The mapping is build to �t the data perfectly. Then the bias is zero since:

ESfy(x)g = Efh(x) + "g = h(x) = htjxi

However the variance is:

ESf[y(x)� ESfy(x)g]2g = ESf[y(x)� h(x)]2g = ESf"2g

and the variance of " may be high.

The above discussion reveals that there is a tradeo� between the bias and the variance and,

in practice, a balance between the two, should be found.

One way to reduce the bias and variance at the same time is to increase the complexity

model by using larger training sets, i.e. the size of training set determines the size of the

model such that the optimal balance between bias and variance is found (note however that

this approach leads to the course of dimensionality and thus the model cannot be increased

inde�nitely).

Another way to reduce bias and variance at the same time is to use the prior knowledge (if

any) about the data generator (14.2) when building the model.

➧ 14.2 Regularization

The error function E may be changed by adding a regularization term2
:eE = E + �
 (14.3)

where
 is a function which have a large value for smooth mapping functions y(x) and a ❖
, �
small value otherwise, i.e. is large for simple models and small for complex models, thus

encouraging less complex models. The � parameter controls the inuence of
.

Thus the regularization
 and the error E counterbalance one each other (as error generally

increases in simple models) in the process of minimizing the changed error function eE during

learning process.

14.2.1 Weight Decay

In the case of a over-�tted model the mapping will have areas with large curvature which

require large values for weights3.

14.2See [Bis95] pp.338{346.
2See chapter \Radial Basis Function Networks"
3See chapter \Parameter optimization"

256 CHAPTER 14. LEARNING OPTIMIZATION

By encouraging weights to be small the error hyper-surface is kept relatively smooth. This

may be achieved by using a regularization of the form:

 =
1

2

X
i

w2
i (14.4)

Many ANN training algorithm make use of the error gradient. From (14.3) and (14.4):

r eE = rE + �W (14.5)

(W being seen as vector).

Considering just the part generated by the regularization term, the weight update formula

in the gradient descent learning method4 in the continuous time � limit is:

dW

d�
= ��r eE = ���W (rE neglected)

(where � is the learning parameter) which have a solution of the form:

W (�) =W (0) e����

i.e. the regularization term (14.4) favors weights decay toward 0, following an exponential

rule.

Considering a quadratic error function5 of the form:❖ b, H

E(W) = E0 + b
TW +

1

2
WTHW ; b; H = const. (14.6)

where H is a symmetrical matrix (it is in fact the Hessian), the minima of E (from rE = b0)❖ W �

is at W � given by:

rE = b+HW � = b0 (14.7)

Similarly, the minima of eE (from r eE = b0) occurs at fW � given by:❖ fW �

r eE = b+HfW � + �fW � = b0 (14.8)

(from (14.5) and (14.7)).

Let fuig be an orthogonal system of eigenvectors of H such that:❖ ui, �i

Hui = �iui ; u
T
i uj = �ij (14.9)

where �i are the eigenvalues of H (such construction is possible due to the fact that H is

symmetrical, see mathematical appendix).

Let consider that the system of coordinates in the weights space is rotated such that it

becomes parallel with fuig. Then W � and fW � may be written as:

W � =
X
i

w�i ui ; fW � =
X
i

ew�i ui
4See chapter \Single Layer Neural Networks".
5See chapter \Parameter Optimization"

14.2. REGULARIZATION 257

1=
p
�2

u1

1=
p
�1

E = const.

u2

w1

w2

fW �
W �

Figure 14.1: The hyper-surfaces E = const. are hyper-ellipses having
axes proportional to 1=

p
�i. The distance between W �

and fW � is smaller along axes corresponding to larger

eigenvalues �i of H.

and from (14.7) and (14.8) rE = b0 = r eE and considering the orthogonality of fuig it

follows that:

ew�i = �i

�i + �
w�i

which means that

(
�i � �) ew�i ' w�i
�i � �) j ew�i j � jw�i j

. As the surfaces E = const. are hyper-

ellipses which have axes proportional with6 1=
p
�i this means that fW � is closer to W �

along ui directions with correspond to larger �i. See �gure 14.1.

14.2.2 Linear Transformation And Weight Decay

Let consider a multi-layer perceptron network having one hidden layer and one linear out-

put layer. Then for the hidden layer zj = f

�
wj0 +

P
i

wjixi

�
and for the output layer

yk = wk0 +
P
j

wkjzj .

Considering a linear transformation of the form: xi ! exi = axi + b where a; b = const.

then is is possible to get the same outputs by changing the weights of hidden layer as:8>><>>:
wji ! ewji = 1

a
wji

wj0 ! ewj0 = wj0 �
b

a

P
i

wji

(may be checked directly, zj doesn't change).

6See chapter \Parameter Optimization".

258 CHAPTER 14. LEARNING OPTIMIZATION

time

Error

training

validation

early stop

under-�tting over-�tting

Figure 14.2: The error given by the validation set increases from

some point outwards. At that point the network is opti-

mally �tted; beyond is over-�tted, before is under-�tted.

Similarly, for a transformation of the output layer: yk ! eyk = cyk + d where c; d = const.

the weight changes of the output layer are:(
wkj ! ewkj = cwkj

wk0 ! ewk0 = cwk0 + d

By training two identical networks, one with original data and one with transformed inputs

and/or outputs the the trained networks should be equivalent, with weights changed by the

linear transformations as shown above. The regularization term (14.4) does not satisfy this

requirement. However a weight decay regularization term of the form:

 =
�1
2

X
hidden
layer

w2 +
�2
2

X
output
layer

w2

satis�es the invariance of linear transformation, provided that suitable rescaling is performed

on �1 and �2.

14.2.3 Early Stopping

From the whole set of available data for training, usually, some part is put aside and notvalidation

used in training, for the purpose of validation, i.e. checking the generalization capability of

network with some data unused during the learning process.

While the error function always decreases for the training set during learning, the error for

the validation set decreases at the beginning then, later, begin to increase as the network

becomes over-�tted. See �gure 14.2.

The network is optimally �tted at the point where the validation set gives the lowest error;

at this point training should be stopped as the generalization capabilities are best, even if

further training will lower error with respect to the training set.

A justi�cation of the early stop method may be given by the means of the weight decay

procedure. As the weights adapt during learning, the weight vector W follows a path which

14.2. REGULARIZATION 259

u1

E = const.

u2

w1

w2

fW �
W �

Figure 14.3: The \early stop" method gives similar result as the

\weight decay" procedure as it involves stopping on the

learning path | marked with an arrow | before reach-

ing W �. The particular form of the learning path may

be explained by the faster advancement along directions

with greater rE, i.e. smaller �i. See also �gure 14.1 on

page 257.

leads to fW � before reaching W �. See �gure 14.3 and section 14.2.1.

14.2.4 Curvature Smoothing

As over-complex neural models leads to network mappings with large curvatures (on error

surface), a direct approach will be to build a regularization term which increases with

curvature. As the second derivatives are a measure of the curvature then the regularization

should be of the form:

 =
1

2

PX
p=1

NX
i=1

KX
k=1

@2yk(xp)

@x2ip

!2

N respectively K being the size of input respectively output vectors. ❖ N , K

14.2.5 Choosing weight decay hyperparameter

Considering the weight decay regularization (14.4) then the prior probability density of

weights is chosen usually as a Gaussian of the form p(w) / exp(��
) which have the

variance � = 1=
p
�.

Considering the logistic activation function7 f(x) = 1
1+e�x

this one is saturated around

x = �3, i.e. f(�3) ' 0:04 and f(3) ' 0:95 (very close to lower 0 and upper 1 asymptotes).

As the reason (among others) for weight decay regularization is to prevent saturation of

neuronal outputs then the variance of total input is to be around 2. For a small number of

14.2.5See [Rip96] pg. 163.
7See also chapter \Pattern Recognition".

260 CHAPTER 14. LEARNING OPTIMIZATION

inputs in the range [0; 1] a reasonable variance should be between 1 and 10, e.g. the middle

value 5 may be considered, this corresponds to � � 0:04

In practice is a good thing to have some neurons saturated (this corresponding to a sort of

pruning8) then the base range for � is between 0:001 and 0:1. Experience indicate that a

multiplication of � up to 5 times is not critical to the learning process.

➧ 14.3 Adding Noise

Another way to achieve better generalization is to add random noise to the training set

before inputting it to the network.

Let consider a random vector " which is being added to the input x and have probability❖ ", ep(")
density ep(").
In the absence of noise, the error function is9:

E =
1

2

KX
k=1

Z
Y

Z
X

[yk(x)� tk]
2p(tkjx) p(x) dx dtk

Considering an in�nite number of training vectors, each containing an added noise term,

then

eE =
1

2

KX
k=1

Z
Y

Z
X

Z
"

[yk(x+ ")� tk]
2p(tkjx) p(x) ep(") dx dtk d" (14.10)

A reasonable assumption is to consider the noise su�ciently small as to allow for the ex-

pansion of yi(x+ ") in a Taylor series, neglecting the third order and above terms:

yk(x+ ") = yk(x) +

NX
i=1

"i
@yk
@xi

����
"=0

+
1

2

NX
i=1

NX
j=1

"i"j
@2yk
@xi@xj

����
"=0

+O("3) (14.11)

It is also reasonable to assume that the noise have zero mean and uncorrelated components:Z
"

"iep(") d" = 0 and

ZZ
"

"i"jep(") d" = ��ij (14.12)

where � is the variance of noise.❖ �

By using (14.11) in (14.10) and integrating over " with the aid of (14.12), the error function

may be written as:

eE = E + �

8See also section 14.5.
14.3See [Bis95] pp. 346{349.

9See chapter \Error Functions".

14.4. SOFT WEIGHT SHARING 261

where
 becomes a regularization parameter of the form:

 =
1

2

KX
k=1

NX
i=1

Z
Y

Z
X

(�
@yk
@xi

�2

+
1

2
[yk(x) � tk]

@2yk
@x2i

)
p(tkjx) p(x) dx dtk (14.13)

where the noise do not appear anymore (normalization of p(") was also used).

The network mapping which minimize the sum-of-squares error function E is10 yk = htk jxi.
Thus the network mapping which minimize the regularized error function eE, see (14.3),

should be of the form yk = htkjxi+O(�). Then the second term in (14.13):

1

4

KX
k=1

NX
i=1

Z
X

[yk(x)� htk jxi]
@yk
@xi

p(x) dx

(the integration over Y have been performed) cancels to the lowest order of �, at the minima

of error eE. This property makes the computation of second order derivatives of yk (a task

computationally intensive) avoidable, thus leaving the regularization function of the form:

 =
1

2

NX
i=1

KX
k=1

Z
X

�
@yk
@xi

�2

p(x) dx (14.14)

or, for a discrete series of training vectors:

 =
1

2P

PX
p=1

NX
i=1

KX
k=1

@yk
@xi

����
xp

!2

➧ 14.4 Soft Weight Sharing

This method encourages groups of weights to have similar values11 by using some regular-

ization links.

The soft weight sharing relates to weight decay method. Considering a Gaussian distribution

for weights, of the form:

p(w) =
1

p
2�

exp

�
�
w2

2

�
then the likelihood12 of the whole set of weights is:

L =

NWY
i=1

p(wi) =
1

(2�)NW =2
exp

�
1

2

NWX
i=1

w2
i

!
(14.15)

NW being the total number of weights. The same way, the negative logarithm of a like- ❖ NW

10See chapter \Error functions".
14.4See [Bis95] pp. 349{353.
11A hard sharing method is discussed in the chapter \Feature Extraction".
12See chapter \Pattern Recognition".

262 CHAPTER 14. LEARNING OPTIMIZATION

lihood gives the error function13, the negative logarithm of likelihood (14.15) gives the

regularization function (14.4) (up to an additive constant which plays no role in a learning

process).

It is possible to encourage weights to group together by using a mixture14 of Gaussian

distributions:

p(w) =

MX
m=1

�mpm(w)

where M is the number of mixture components, �m are the mixing coe�cients and pm(w)❖ M , �m, pm(w)
are the mixture components of the (assumed) Gaussian form:

pm(w) =
1p
2��2m

exp

�
�
(w � �m)

2

2�2m

�
(14.16)

� being the mean and � being the standard deviation.❖ �, �

✍ Remarks:

➥ In the mixture model �m = P (m) is the prior probability of the mixture compo-

nent m.

Then the regularization function is:

 = � lnL = � ln

NWY
i=1

p(wi) = �
NWX
i=1

ln

MX
m=1

�mpm(wi) (14.17)

The regularized error function:

eE = E + �
 (14.18)

have to be optimized with respect to weights wi and parameters �m, �m and �m.

✍ Remarks:

➥ An optimization with respect to � is not possible as it will lead to � = 0 andeE ! E, i.e. the network will end up by being over-�tted. See section 14.2.3.

The posterior probability of mixture component m is:❖ �m

�m(w) �
�mpm(w)
MP
n=1

�npn(w)

(14.19)

From (14.18), (14.17), (14.19) and (14.16), the error derivatives with respect to wi are:

@ eE
@wi

=
@E

@wi
+ �

MX
m=1

�m(wi)
wi � �m

�2m

13See chapter \Error Functions".
14See also the chapter \Pattern recognition" regarding the mixture models.

14.4. SOFT WEIGHT SHARING 263

which shows that the weights wi are pulled towards the distribution centers �m with with

\forces" proportional to the posterior probabilities �m.

Similarly the error derivatives with respect to �m are:

@ eE
@�m

= �

NWX
i=1

�m(wi)
�m � wi
�2m

which shows that �m are pulled towards the sum of all weights, weighted by �m.

Finally, the error derivatives with respect to �m are:

@ eE
@�m

= �

NWX
i=1

�m(wi)

�
1

�m
�

(wi � �m)
2

�3m

�

✍ Remarks:

➥ In practice the �m parameters are taken of the form �m = exp(�m) and opti-

mization is performed with respect to �m. This ensures that �m remains strictly

positive.

As �m plays the role of a prior probability it have to follow the probability constrains

�m 2 [0; 1] and
MP
m=1

�m = 1. This is best done by using the softmax function method:

�m =
exp(m)
MP
n=1

exp(n)

)
@�m

@n
= �mn�n � �m�n

Then the derivative of eE with respect to m is (by similar ways as for previous derivatives

and using the normalization
MP
n=1

�n = 1):

@ eE
@m

=

MX
n=1

@ eE
@�n

@�n
@m

=

MX
n=1

"
�

NWX
i=1

�n(wi)

�n

!
(�nm�m � �n�m)

#
=

NWX
i=1

[�m � �m(wi)]

✍ Remarks:

➥ In practice care should be taken when initializing weights and related parameters.

One way of doing it is to initialize weights with values over a �nite interval, then

divide the interval into M subintervals and assigning one to each pm(wi), i.e.
equal �m, �m centered into the respective subinterval and �m equal to the width

of the subinterval. This method of initialization ensures a partial soft sharing and

allows better learning from the training set.

264 CHAPTER 14. LEARNING OPTIMIZATION

➧ 14.5 Growing And Pruning Methods

The network architecture may play a signi�cant role in the �nal generalization performance.

To allow for the �nding of best architecture, e.g. the number of hidden layers and number

of neurons per hidden layer, two general ways (which avoids an extensive search) may be

used:

� The growing method : The starting network is small and then neurons are added onegrowing method

at a time till some criteria for optimization have been satis�ed.

� The pruning method : The starting network is big and then neurons are removed onepruning method

at a time till some criteria for optimization have been satis�ed.

14.5.1 Cascade Correlation

Cascade correlation is of growing method type.

The network starts with a single fully connected layer, where all inputs are linked to outputs.

At each stage | after the network have been trained for an empirical amount of time |

a new hidden neuron is added, such that it receive input from all inputs and all previously

added (hidden) neurons and send its output to all output neurons. See �gure 14.4 on the

next page.

The weights from inputs and all previously added neurons to the actually being added hidden

neuron are calculated in one step and after insertion they remain �xed, e.g.| in �gure 14.4

| the weights on link ➀ are calculated prior to z1 insertion, then the weights on links ➃
and ➂ are calculated prior to insertion of z2 and so on.

The weights from inputs to outputs and from all hidden neurons to outputs remain variable,

to be further adapted, e.g.| in �gure 14.4 | only weights on main (input ! output) link

and those on links ➁ and ➄ will continue to adapt during further learning.

✍ Remarks:

➥ By the above architecture the network is similar to one having just one \active"

layer (the output) which receive input from input neurons and all hidden (added)

neurons.

The \�xed" weights of the new (in the process of being inserted) neuron z is computed as

follows:

� The error "k of output neuron yk and the mean error h"ki over all training set are❖ "k, h"ki
calculated �rst:

"k = yk � tk ; h"ki =
1

P

PX
p=1

"kp

("kp being the error "k for input vector xp from the training set).❖ "kp

� The weights wi of all inputs to the new neuron z are initialized | weights for links❖ wi
from all inputs and all previous inserted hidden neurons.

The output of the new neuron z and the mean output over all training set hzi will be:❖ zp, hzi
14.5See [Bis95] pp. 353{364.

14.5. GROWING AND PRUNING METHODS 265

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�� ➀

➁

➄

➂

➃

z1

z2

input layer

output layer

Figure 14.4: The cascade correlation method. The network architec-

ture starts with input and output layers fully intercon-

nected (the thick arrow shows that all output neurons re-

ceive all components of the input vector). The the �rst

hidden neuron z1 is added and the connections ➀ (z1
receives all inputs) and ➁ (z1 sends its output to all

output neurons) are established. later, when z2 is added
connections ➂ (z2 receive input from z1), ➃ and ➄ are

also added. And so on.

zp = f

0@ X
all inputs

wixip

1A ; hzi =
1

P

PX
p=1

zp

where the sum in zp is done also over the previous inserted hidden neurons (f being

the activation function and zp being the new neuron output for input vector xp). ❖ f , zp

� The weights are optimized by maximizing the correlation, i.e. covariance, S between ❖ S
the output of the new neuron to be inserted and the residual actual (before the insertion

takes place) error of the network output | similar to the Fisher discriminant15:

S =

KX
k=1

�����
PX
p=1

(zp � hzi)("k � h"ki)

�����
� The maximisation of S is performed by using the derivative with respect to wi:

@S

@wi
= �

KX
k=1

PX
p=1

f 0 � xip � ("k � h"ki)

where the sign is given by the expression inside the module from S.

15See chapter \Single Layer Neural Networks".

266 CHAPTER 14. LEARNING OPTIMIZATION

The maximisation may be done using the above derivative in a way similar to the

methods used in backpropagation.

14.5.2 Pruning Techniques

Saliency of weights

The pruning technique involves starting with a (relatively) large network, training it, then

removing some neuronal connections, then training again and repeat the training/pruning

process.

To decide about what network links are less important and thus susceptible to removal it issaliency

necessary to assess the relative importance of weights, this process being named saliency .

Optimal Brain Damage

Let consider a small variation in error function �E due to a small variation of weights❖ �E, �wi, NW

�wi. By developing in series and taking only the �rst 2 terms (NW is the total number of

weights):

�E =

NWX
i=1

@E

@wi
�wi +

1

2

NWX
i=1

NWX
j=1

Hij�wi�wj +O(�w3)

where H is the Hessian whose elements are Hij =
@2E

@wi@wj
.❖ Hij

At minimum of E its �rst derivatives become zero. Assuming that the Hessian may be

approximated by making all non-diagonal elements equals to zero | this representing the

main assumption of this technique | then:

�E =
1

2

WX
i=1

Hii(�wi)
2

To remove a neuronal connection is equivalent to make its corresponding weight equal zero:

�wi = 0� wi = �wi (14.20)

and then a measure of saliency for weight wi would be:

saliency =
Hiiw

2
i

2
(14.21)

The optimal brain damage technique involves removal of connections de�ned by the weights

of lowest saliency.

✍ Remarks:

➥ In practice the number of weights being deleted, the amount of training between

weight removal and the overall stop conditions are empirically established.

14.5. GROWING AND PRUNING METHODS 267

Optimal Brain Surgeon

The optimal brain surgeon technique works in the same manner as the optimal brain damage

but does not assume that the Hessian is diagonal as this may lead to pour results in some

cases.

The variation around minima of E is then (�W is the vector of �wi): ❖ �W

�E =
1

2
�WTH�W (14.22)

Assuming that weight wi is pruned then, equivalent to (14.20):

�wi = 0� wi = �wi , e
T
i �W + wi = 0 (14.23)

where ei is a unit vector parallel to wi axis, i.e. e
T
i �W is the projection of �w on wi axis; ❖ ei

ei is of the form e
T
i =

�
0 � � � 0 1 0 � � � 0

�
, with 1 in the i-th position and NW

dimensional.

To �nd the new (pruned) weights, �E have to be minimized subject to condition (14.23).

The Lagrange multipliers are used16; the Lagrange function is:

L = E + �(eTi �W + wi) =
1

2
�WTH�W + �(eTi �W + wi)

and then by zeroing the derivative with respect to �W :

rL = H�W + �ei = b0) �W = ��H�1
ei

and, by replacing in (14.23) and considering the form of eTi and thus eTi H
�1
ei = fH�1gii

then:

��eTi Hei + wi = 0) � =
wi

fH�1gii

such that �nally:

�W = �
wi

fH�1gii
H�1

ei (14.24)

Replacing (14.24) into (14.22) the minimal error variation due to the removal of neural link

corresponding to wi is (H is symmetric and then H�1 is as well, also use matrix property

(AB)T = BTAT):

�E =
1

2

w2
i

fH�1g2ii
e
T
i (H

�1)THH�1
ei =

1

2

w2
i

fH�1g2ii
e
T
i (H

�1)Tei (14.25)

=
1

2

w2
i

fH�1gii

Optimal brain surgery works in similar way to optimal brain damage: after some training

the inverse Hessian is calculated and some weights involving the smaller error variation, as

given by (14.22), are zeroed, i.e. the corresponding inter-neuronal links removed. Then the

procedure is repeated.

16See mathematical appendix.

268 CHAPTER 14. LEARNING OPTIMIZATION

14.5.3 Neuron Pruning

Instead of pruning inter-neuronal links, it is possible to prune whole neurons.

To be able to choose which neurons may be removed it is necessary to have a measure of❖ sj
neuron saliency. Such a measure may be the di�erence in network output error made by

neuron removal:

sj = Ewith neuron j �Ewithout neuron j

As the above measure is computationally intensive, an alternative approach is to modify❖ �j
the neuronal input by adding an overall multiplying factor �j . The neuronal output is then
written as:

zj = f

�j
X
i

wjizi

!

where the activation function f is de�ned such that f(0) = 0, e.g. f � tanh. Then for

�j = 1 the neuron j is present, for �j = 0 the neuron is removed.

The saliency of neuron j becomes:

sj = Ej�j=1 �Ej�j=0

which shows that the derivative of E with respect to �j is also a good measure of neuronal

saliency:

esj = �
@E

@�j

����
�j=1

which may be evaluated in a backpropagation way. Note the \�" sign; usually the error

increases after the removal of a neuron, while �j decreases and sj is taken as a positive

quantity (and the bigger it is, the more important the corresponding neuron is).

➧ 14.6 Committees of Networks

As, in practice it is common to train di�erent networks (with di�erent architectures) in

order to choose the best it would be much better to combine several networks to form a

committee (it's even not required to be a network, it may be any kind of model).

Let assume that each network have only one output and there are M such networks. The❖ M
mapping achieved by each network ym(x) may be seen as being the desired mapping h(x)
plus some added error "m(x):

ym(x) = h(x) + "m(x)

The averaged sum-of-squares error for network m is:

hEmi = Ef[ym(x)� h(x)]2g = Ef"2mg =
Z
X

"2m(x) p(x) dx

14.6See [Bis95] pp. 364{369.

14.6. COMMITTEES OF NETWORKS 269

The average error over the whole set of networks when acting individually (not as commit- ❖ Eav.

tee) is:

Eav. =
1

M

MX
m=1

hEmi =
1

M

MX
m=1

Ef"2mg

Simple committee

The simplest way of building a committee of networks is to consider the output of the whole

system ycom. as being the average of individual network outputs: ❖ ycom.

ycom. =
1

M

MX
m=1

ym(x) (14.26)

The averaged sum-of-squares error for the committee is: ❖ hEcom.i

hEcom.i = E

8<:
"
1

M

MX
m=1

ym(x)

#29=; = E

8<:
"
1

M

MX
m=1

"i(x)

#29=;
By using the Cauchy inequality in the form:

�
MP
m=1

"m(x)

�2

6 L
MP
m=1

"2m(x) it follows that

hEcom.i 6 Eav., i.e. the error of committee is less than the average error over independent

networks.

✍ Remarks:

➥ Considering that the error "m(x) have zero mean and are uncorrelated:

Ef"mg = 0 and Ef"m"ng = 0 for m 6= n

then the error hEcom.i becomes:

hEcom.i =
1

M2

MX
m=1

Ef"2mg =
1

M
Eav.

which shows a big improvement. However in practice the error "m(x) is strongly
correlated, the same input vector x giving a similar error on di�erent networks.

Weighted committee

Another way of building a committee is to make an weighted mean over individual network ❖ �m
outputs:

ycom. =

MX
m=1

�mym(x) (14.27)

As ycom. have the same meaning as ym(x) then clearly the �m coe�cients should have a

meaning of probability, i.e. �m is the probability of ym being the desired output from all

270 CHAPTER 14. LEARNING OPTIMIZATION

fymg set. The the following conditions should be imposed:

�m 2 [0; 1] ; 8m and

MX
m=1

�m = 1 (14.28)

and they will be determined as to minimize the network committee error.

✍ Remarks:

➥ By comparing (14.27) with (14.26) it's clear that in the simple model all networks

have equal weight 1=M .

The error correlation matrix C is de�ned as the square and symmetrical matrix whose❖ C
elements are: Cmn = Ef"m(x) "n(x)g (as it's de�ned as expectation, it does not depend

on x).

The averaged sum-of-squares error of the committee becomes:

hEcom.i = Ef[ycom.(x)� h(x)]2g = E

8<:

MX
m=1

�m"m

!2
9=; (14.29)

= E

(
MX
m=1

�m"m

!
MX
n=1

�n"n

!)
=

MX
m=1

MX
n=1

�m�nCmn

To �nd the minima of hEcom.i subject to constraint (14.28) the Lagrange multipliers

method17 is used. The Lagrange function is:

L = E + �

MX
m=1

�m � 1

!
=

MX
m=1

MX
n=1

�m�nCmn + �

MX
m=1

�m � 1

!

and by zeroing its derivatives with respect to �m:

@L

@�m
= 0) 2

MX
n=1

�nCmn + � = 0 ; for m = 1;M

(as C is symmetrical then Cij = Cji). Considering the vectors �T =
�
�1 � � � �M

�
and❖ �, �

� = �b1 then the above set of equations may be written in matrix form as:

2C�+ � = b0
which may be solved easily as:

� = �
1

2
C�1� , �m = �

�

2

MX
n=1

fC�1gmn (14.30)

By replacing the value of �m from (14.30) into (14.28), � is found to be:

� = �
2

MP
m=1

MP
n=1

fC�1gmn

17See mathematical appendix.

14.7. MIXTURE OF EXPERTS 271

and then the replacement of � back into (14.30) gives the �nal values for �m:

� =
C�1b1

MP
m=1

MP
n=1

fC(�1)gmn

) �m =

LP
n=1

fC�1gmn

MP
n=1

MP
o=1

fC�1gno
(14.31)

The error (14.29) may be written in matrix form as hEcom.i = �TC� and then, by replacing

the value of �, and using the relations:

(C�1b1)T = b1T(C�1)T = b1TC�1 and b1TC�1b1 =

MX
m=1

MX
n=1

fC�1gmn

(C is symmetrical) then the minimum error is hEcom.i = 1
MP
m=1

MP
n=1

fC�1gmn

As the weighted committee is similar to the simple committee, the same criteria apply to

prove that hEcom.i 6 Eav.

✍ Remarks:

➥ The coe�cients found in (14.31) are not guaranteed to be positive so this have to

be enforced by other means. However if all �m are positive then from 8�m > 0

and
MP
m=1

�m = 1) 8�m 2 [0; 1] (worst case when all coe�cients are zero except

one which is 1).

➧ 14.7 Mixture Of Experts

The mixture of experts model divides the input space in sub-areas, using a separate, specially

trained, network for each sub-space | the expert | and a supplementary network to act as

a gateway, deciding what expert will be allowed to generate the �nal output. See �gure 14.5

on the following page.

The error function is build from the negative logarithm of the likelihood function, considering

a mixture model18 of M Gaussian distributions. The number of training vectors is P .

E = �
PX
p=1

ln

"
MX
m=1

�m(xp) pm(tpjxp)

#
(14.32)

where the pm(tjx) components are Gaussians of the form: ❖ pm(tjx)

pm(tjx) =
1

(2�)N=2
exp

�
�
kt� �m(x)k2

2

�
(N being the dimensionality of x). The �m(x) means are functions of input and the ❖ �m(x)

14.7See [Bis95] pp. 369{371.
18See chapter \Pattern Recognition" and also chapter \Error Functions" regarding the modeling of con-

ditional distributions.

272 CHAPTER 14. LEARNING OPTIMIZATION

network

expert 1

network

expert M

gateway

network

input

output

Figure 14.5: The mixture of experts model. Each \expert" network is

specialized in one input sub-space. The gateway network

decide what expert will be allowed to give the �nal output

(by blocking all others). There are M \experts" and the

gateway have one output for each \expert".

covariance is set to unity.

Each \expert" will represent an Gaussian and will output the �m(x). The �m coe�cients

are generated trough a softmax function from the outputs m of the gateway:

�m =
exp(m)
MP
n=1

exp(n)

The mixture of experts is trained simultaneously, including the gateway, by adjusting the

weights such that the error (14.32) is minimized.

✍ Remarks:

➥ The model presented here may be extended to a level where each expert becomes

an embedded mixture of experts.

➧ 14.8 Other Training Techniques

14.8.1 Cross-validation

Often, in practice, several models are build and then the e�ciency of each is estimated, e.g.

generalization capability using a validation set, in order to select the best one.

14.8See [Bis95] pp. 371{377 and [Rip96] pg. 41.

14.8. OTHER TRAINING TECHNIQUES 273

N(0)1 N(0)M

N(1)

x

y1 yM

y

Figure 14.6: The stacked generalization method. The set of networks

N(0)1; : : : ;N(0)M are trained using P � 1 vectors from
the training set then the network N(1) is used to assess
the generalization capability of the level 0 networks.

However sometimes the available data is too scarce to a�ord to put aside a set for validation.

In this case the cross-validation technique may be used.

The training set is divided into S subsets. The model to be considered is trained using

S � 1 subsets and the one left as a validation set. There are S such combinations. Then

the e�ciency of the model is calculated by making an average over all S training/validation

results.

14.8.2 Stacked Generalization

This method is also applicable when the quantity of available data is small and it is desirable

to keep all the \good parts" of various models.

Considering that the number of available training patterns is P then a set of M level 0

networks N(0)1; : : : ;N(0)M are trained using only P � 1 training patterns. See �gure 14.6.

The left-out pattern vector is run trough the set of networks N(0)1; : : : ;N(0)M this will give

rise to a new pattern (for the next network layer) of the form fy1; : : : ;yMg.

The whole procedure is repeated in turn for each of the P patterns, this giving rise to a

new set of P vectors. This new set is used to train a second level network N(1) using as

target the desired output y. Obviously the N(1) assess the generalization capability of the

N(0)1; : : : ;N(0)M networks.

Finally the N(0)1; : : : ;N(0)M are trained using all P training x patterns.

14.8.3 Complexity Criteria

Complexity criteria are measures of the generalization and complexity of models.

The prediction error is de�ned as being the sum between the training error and a measure

274 CHAPTER 14. LEARNING OPTIMIZATION

of the complexity of model:

prediction error = training error+ complexity measure

where the complexity measure may be the number of weights.

For small networks the training error will be large and complexity measure low. For large

networks the training error will be low and the complexity measure high. Thus by �nding the

minimum of prediction error helps �nding the optimal tradeo� between model complexity

and generalization capability.

The prediction error, for a sum-of-squares error function is de�ned as:

prediction error =
2E

P
+

2NW

P
�2

where E is the error given by the training set, after learning was completed, P is the number

of training patterns, NW is the total number of weights and � is the variance of noise in

data | to be estimated.

Another way of de�ning prediction error | which is applicable for non-linear models and

regularized error functions | is:

prediction error =
2E

P
+

2

P
�2

where is named the e�ective number of parameters and is de�ned as:

 =

NWX
i=1

�i
�i + �

�i being the eigenvalues of Hessian and � being the multiplication parameter of the regu-

larization term.

14.8.4 Model For Mixed Discrete And Continuous Data

It may happen that the input pattern vector x have a discrete component along a continuous

one, i.e. is of the form x
T =

�
a x1 : : : xN

�
where a takes discrete values and fxig

continuous ones. In this case one way of modeling the distribution p(x) is to try to �nd a

conditional Gaussian distribution of the form:

p(x) =
p�(a)

(2�)N=2j�j1=2
exp

�
�
1

2
(bx� ��a)T��1(bx� ��a)�

where p�(a) is the probability of a taking the value �, bxT =
�
x1 : : : xN

�
is the contin-

uous part of the input vector and ��a and � are the means and respectively the covariance

matrix (which may be � and a dependent).

CHAPTER 15

Bayesian Techniques

➧ 15.1 Bayesian Learning

15.1.1 Weight Distribution

Let consider a given network, i.e. the number of layers, number of neurons, activation

function of neurons are all known and �xed.

Let p(W) be the prior probability density of weights, NW the total number of weights, ❖ p(W), NW , T

W
T =

�
w1 : : : wNW

�
the weight vector, P the number of training patterns and

T = ft1; : : : ; tP g the training set of targets.

The posterior probability density of weights p(W jT) is (using Bayes theorem):

p(W jT) =
p(T jW) p(W)

p(T)
(15.1)

where p(T) represents a normalization factor which ensures that p(W jT) integrated over

all weight space equals unity, thus p(T) =
R
W

p(T jW) p(W) dW .

✍ Remarks:

➥ As the training set consists of inputs as well, the the probability densities in (15.1)

should be conditioned also on input p(W jT;X) =
p(T jW;X) p(W jX)

p(T jX)
, however the

networks do not model the probability density p(x) of inputs and then X appears

always as a conditioning factor and it will be omitted for brevity.

15.1See [Bis95] pp. 385{398.

275

276 CHAPTER 15. BAYESIAN TECHNIQUES

The Bayesian learning involves the following steps:

� Some prior probability density p(W) is established for weights. This will have a rather

large breath as little is known at this stage.

� The posterior probability of the targets p(T jW) is established.

� Using the Bayes theorem (15.1) the posterior conditioned probability density p(W jT)
is found.

15.1.2 Gaussian Prior Weight Distribution

As explained in the previous section the prior probability density p(W) should be de�ned

in a form which will de�ne some characteristics of the model but on the other side leave

enough freedom for weights.

Let consider an exponential form:

p(W) =
1

ZW (�)
exp(��EW) (15.2)

where EW is a function of weights and ZW is the normalization factor:❖ EW , ZW

ZW (�) =

Z
W

exp(��EW) dW (15.3)

such that
R
W

p(W) dW = 1.

One possible choice for EW is:

EW =
1

2
kWk2 =

1

2

NWX
i=1

w2
i (15.4)

which encourages small weights since for large kWk, EW is large and consequently p(W)

is small and thus W have unlikely value.

From (15.3) and (15.4) (see also the mathematical appendix, Gaussian integrals):

ZW =

1Z
�1

� � �
1Z

�1

exp

��

NWX
i=1

w2
i

!
dw1 : : : dwNW

=

�
2�

�

�NW
2

(15.5)

p(W) =
� �

2�

�NW
2

exp
�
�
�

2
kWk2

�
(15.6)

15.1.3 Application | Simple Classi�er

Let consider a neuron with two inputs x1 and x2 and one output y. The neuron classi�es

the input vector xT =
�
x1 x2

�
in two classes C1 and C2. The weights are w1 and w2, i.e.

the vector WT =
�
w1 w2

�
, for inputs x1 respectively x2. See �gure 15.1 on the facing

page{a. The output y represents the probability1 of x 2 C1 and 1 � y the probability of

x 2 C2.
1See chapter \Single Layer Neural Networks".

15.1. BAYESIAN LEARNING 277

x1

w1 w2

x2

y

a) the classi�er

�2�4 42

x3 2 C1

�2

�4
C2

x2

x1

C1

x4 2 C2

2

4 x1 2 C2

x2 2 C1

b) the training data

Figure 15.1: a) The simple classi�er: one neuron with two inputs

and one output. b) The training data for the classi�er,

4 pattern vectors. The dashed line represents the class

decision boundary, x3 and x4 are exceptions.

Let consider that there are 4 training patterns:

x1 =

�
5

5

�
2 C2 ; x2 =

�
�5
�5

�
2 C1 ; x3 =

�
0

1

�
2 C1 ; x2 =

�
�1
0

�
2 C2

The reason for this choice is the following: x1 and x2 are good examples of their respective

class while x3 and x4 are exceptions | it is not reasonable to expect correct classi�cation

from one single neuron for them as the decision boundary will not be convex2 (the problem

is not linearly separable). See �gure 15.1{b. However x3 and x4 do carry some information:

together with x1 and x2 it suggest the decision boundary is rather as depicted in �gure 15.1;

if they would have been absent it the decision of where to draw the \line" would have been

more di�cult (lower probability to be the one chosen).

The neuronal activation function is chosen as the sigmoidal function:

y =
1

1 + exp(�WTx)
=

1

1 + exp(�w1x1 � w2x2)

As probability of x 2 C1 is y and probability of x 2 C2 is 1 � y then the probability of

targets, conditioned on weights is:

p(T jW) =
Y

xp2C1

y(xp)
Y

xp2C2

[1� y(xp)] = [1� y(x1)] y(x2) y(x3) [1� y(x4)]

The prior probability density for weights is chosen as a Gaussian of type (15.6) with � = 1:

p(W) = p(w1; w2) =
1

2�
exp

�
�
w2
1 + w2

2

2

�
2See chapter \Single Layer Neural Networks"

278 CHAPTER 15. BAYESIAN TECHNIQUES

�3
0

w1 3 �3
0

3

0:2

0:1

0:0

w2

p(W)

p(W jT)

0:0

0:4

0:2

w1
3 �3

0
3

�3
0

w2

0:01

0:05

0:10

0:20

0:30
0:6

1:8

3:0

�0:6

�1:8

�3:0
�3:0 �1:8 �0:6 0:6 1:8 3:0

p(W jT)

w2

w1

�3:0

�1:8

�0:6

0:6

1:8

3:0

�3:0 �1:8 �0:6 0:6 1:8 3:0

0:01

0:05

0:10

0:15

p(W)

w2

w1

a) weight distribution before learning

c) weight distribution after learning

b) level curves of weight distribution
before learning

d) level curves of weight distribution
after learning

Figure 15.2: The probability density for weights: �gures a) and b)

show the prior probability p(W); �gures c) and d) show

the posterior probability p(W jT).

15.1. BAYESIAN LEARNING 279

and the graphic of this function is drawn in �gure 15.2 on the facing page a) and b).

The normalization factor p(T) =
1R
�1

1R
�1

p(T jW) p(W) dw1dw2 may be calculated numer-

ically.

Finally, the posterior probabilities of weights is p(W jT) = p(T jW) p(W)

p(T)
and its graphic is

depicted in �gures 15.2{c and 15.2{d.

The best weights correspond to the maximum of p(W jT) which occurs at w1 � �0:3 and

w2 � �0:3.

✍ Remarks:

➥ Before any data is available the best weights correspond to the maximum of prior

probability which occurs at w1 = 0 and w2 = 0. This will give y(x) = 0:5,
8x, i.e. there is an equal probability of x belonging to either class | the result

reecting the absence of all data on which the decision is made.

➥ After the data becomes available the weights are shifted to w1 = �0:3 and w2 =

�0:3 which gives y(x1) ' 0:0475, y(x2) ' 0:9525, y(x3) ' 0:4255, y(x4) '
0:5744. The x3 and x4 are misclassi�ed (as it should have been y(x3 2 C1) > 0:5
and y(x4 2 C2) < 0:5) but this was to be expected, and the patterns still

carry some useful information (they are used to reinforce the established decision

boundary).

➥ In general the prior probability p(W) is wide and have a low maximum and

posterior probability is narrow and have a high peak(s) | this may be seen also

in �gure 15.2 on the preceding page.

15.1.4 Gaussian Noise Model

In general, the likelihood function, i.e. p(T jW) may be written in exponential form as:

p(T jW) =
1

ZT (�)
exp(��ET) (15.7)

where ET is the error function, � is a parameter and ZT (�) is a normalization factor which
ensure that the p(T jW) is normalized: ❖ ET , �, ZT

ZT (�) =

Z
Y

exp(��ET) dt1 : : : dtP (15.8)

Assuming a sum-of-squares error function3, and that the targets are generated from a

smooth function to which a zero-mean noise have been added, then:

p(tjx;W) � exp

�
�
�

2
[y(x;W)� t]2

�
and thus (15.9)

p(T jW) =

PY
p=1

p(tpjxp;W) =
1

ZT (�)
exp

�
�

2

PX
p=1

[y(xp;W)� tp]
2

!
3See chapter \Error Functions".

280 CHAPTER 15. BAYESIAN TECHNIQUES

i.e. ET =
1

2

PX
p=1

[y(xp;W)� tp]
2 (15.10)

and it becomes evident that � controls the variance: � = 1=
p
�, and by replacing ET into

(15.8) and integrating4

ZT (�) =

�
2�

�

�P
2

(15.11)

15.1.5 Gaussian Posterior Weight Distribution

From (15.1), (15.2) and (15.7), and de�ning ZS � p(T) as the normalization factor, then❖ ZS

p(W jT) =
1

ZS
exp(��EW � �ET) =

1

ZS
exp[�S(W)] (15.12)

where S(W) = �EW + �ET and ZS(�; �) =
R
W

R
Y

exp[�S(W)] dW dt1 : : : dtP .❖ S

Considering the expression (15.10) of ET and (15.4) of EW then

S(W) =
�

2

PX
p=1

[y(xp;W)� tp]
2 +

�

2

NWX
i=1

w2
i

which represents a sum-of-squares error function with a weight decay regularization func-

tion5. Since an overall multiplicative term does not count, the multiplicative constant of

the regularization term is �=�. For the most probable weight vector W � for which p(W jT)❖ W �

is maximum, S is minimum and thus the regularized error is minimum.

15.1.6 Consistent Prior Weight Distribution

The plain weight decay, as the one from (15.4), is not consistent with linear transformation6.

However for two layers the simple weight decay may be changed to the form

EW =
�1
2

X
hidden
layer

w2 +
�2
2

X
output
layer

w2

15.1.7 Approximation Of Weight Distribution

In order to simplify the computational process of �nding the (maximum of) posterior prob-

ability, the function S(W) may be developed in series and only the most signi�cant terms

retained:

S(W) = S(W �) +
1

2
(W�W

�)TH(W �W
�) +O[(W �W �)3]

4See mathematical appendix, regarding the Gaussian integrals.
5See chapter \Learning Optimization".
6See chapter \Learning Optimization", also for the form of changed weight decay expression.

15.2. NETWORK OUTPUTS DISTRIBUTION 281

' S(W �) +
1

2
(W �W

�)TH(W�W
�)

where HS is the Hessian of the regularized error function (the term proportional in ❖ HS

(W�W
�) is zero due to the fact that the series development is done around minimum).

Considering the gradient as a vectorial operator rT =
�

@
@w1

: : : @
@wNW

�
then, consid-

ering a weigh decay EW , the Hessian is7:

HS = (rrT)S(W �) = � (rrT)ET (W
�) + �I = �H + �I

The posterior distribution becomes:

p(W jT) =
1

Z�S
exp

�
�S(W �)�

1

2
(W�W

�)THS(W�W
�)

�
(15.13)

where Z�S is the normalization coe�cient for the distribution (15.13) and then8: ❖ Z�S

Z�S = exp[�S(W �)]

Z
W

exp

�
�
1

2
(W �W

�)THS(W �W
�)

�
dW (15.14)

= exp[�S(W �)] (2�)NW =2 jHS j�1=2

➧ 15.2 Network Outputs Distribution

The probability density of targets is dependent on input vector and on weights trough the

training set:

p(tjx; T) =
Z
W

p(tjx;W) p(W jT) dW

Considering a sum-of-squares error function, i.e. p(tjx;W) given by (15.9) and the quadratic

approximation of p(W jT) given by (15.13), then

p(tjx; T) /
Z
W

exp

�
�
�

2
[t� y(x;W)]2

�
exp

�
1

2
(W �W

�)THS(W �W
�)

�
dW

(15.15)

Let de�ne g � ryjW� and �W =W�W�. As the error function was approximated after ❖ g, �W , y�

a series development around W �, the same can be done with y(x;W):

y(x;W) ' y� + g
T�W where y� � y(x;W �)

7The method of calculation of the Hessian H of the error function is discussed in chapter \Multi Layer
Neural Networks".

8See also mathematical appendix.
15.2See [Bis95] pp. 398{402.

282 CHAPTER 15. BAYESIAN TECHNIQUES

The targets probability density becomes:

p(tjx; T) = C

Z
W

exp

�
�
�

2
[t� y� � g

T�W]2 �
1

2
�WTHS�W

�
dW

where C is a multiplicative constant such that
R
Y

p(tjx; T) dt = 1.

As (gT�W)2 = �WT
gg

T�W (by using the matrix property: (AB)T = BTAT) then:

p(tjx; T) = C exp

�
�
�

2
(t� y�)2

�
�

�
Z
W

exp

�
�
1

2
�WT(HS + �ggT)�W+ �(t � y�)gT�W

�
dW

which represent a Gaussian integral with a linear term9, and then:

p(tjx; T) = C exp

�
�
�

2
(t� y�)2

�
(2�)NW =2jHS + �ggTj�1=2 �

� exp

�
�2

2
(t� y�)2gT

�
HS + �ggT

��1
g

�

= C 0 exp

�
�
(t� y�)2

2

h
� � �2gT

�
HS + �ggT

��1
g

i�
where C 0 = const.❖ C 0

The normalization condition
R
Y

p(tjx; T) dt = 1 (where Y � (�1;1)) gives:

C 0

"
2�

� � �2gT (HS + �ggT)
�1

#1=2
= 1

leading to the distribution wanted in the form:❖ �t

p(tjx; T) =
1p
2��2t

exp

�
�
(t� y�)2

2�2t

�
where

�2t =
1

� � �2gT (HS + �ggT)
�1
g

(15.16)

representing a Gaussian distribution10 with �t the variance and hti = y� the mean of t.

To simplify the expression of �2t �rst the following transformation is doneHS !H 0
S = HS=�

) H�1
S ! H 0

S
�1 = �HS , and then the numerator and denominator are both multiplied by

the number gT(I +H 0
S
�1
gg

T)g which gives:

��2t =
g
T(I +H 0

S
�1
gg

T)g

gT(I +H 0
S
�1ggT)g� gT(H 0

S + ggT)�1ggT(I +H 0
S
�1ggT)g

9See the mathematical appendix.
10See also the chapter \Pattern Recognition".

15.2. NETWORK OUTPUTS DISTRIBUTION 283

The �rst term of the denominator reduces to gTg + g
TH 0

S
�1
gg

T
g while for the second,

the matrix property (AB)�1 = B�1A�1 is applied, in the form:

(H 0
S + gg

T)�1 =
�
H 0
S(I +H 0

S
�1
gg

T)
��1

= (I +H 0
S
�1
gg

T)�1H 0
S
�1

and then the second term of the denominator becomes:

g
T(I +H 0

S
�1
gg

T)�1H 0
S
�1
gg

T(I +H 0
S
�1
gg

T)g

To simplify the expression a gTIg is added and subtracted and, in the added term, I is

changed to I = (I +H 0
S
�1
gg

T)�1I(I +H 0
S
�1
gg

T). By regrouping, the whole expression

is reduced to gTH 0
S
�1
gg

T
g.

Finally the variance (15.16) becomes:

�2t =
1

�
+ g

THSg

As it measures the \width" of distribution (see the remarks below) the variance �t may be

considered as an error bar for y�. The 1=� part is due to noise in data while the gTHSg

part is due to the \width" of the posterior probability of weights. The error bar is between

y(x)�C� and y(x)+C�, the value of constant C to be established application dependent

(see also the remarks below).

✍ Remarks:

➥ Considering a unidimensional distribution

p(x) =
1p
2� �

exp

�
�
(x� hxi)2

2�2

�
the \width" of it | see �gure 15.3 on the following page | is proportional with

the variance �. The width of distribution, at the level half of maximum:

p(x) =
1

2
pmax =

1

2

1
p
2� �

, x = hxi �
p
2 ln 2 � �

is only � dependent, being \width" = 2
p
2 ln 2 � � � 2:35 � �.

➥ The width of probability distribution equals 2� for x = hxi � � at which point

the probability drops at p(hxi � �) = pmax=
p
e � 0:606 pmax.

15.2.1 Generalized Linear Networks

The generalized linear network have one layer and the output is of the form11 ❖ ', 'j

y(x;W) =W
T
'(x) where '

T(x) =
�
'1(x) � � � 'H (x)

�
'j(x) being the activation function of neuron j.

11See chapter \Radial Basis Function Networks".

284 CHAPTER 15. BAYESIAN TECHNIQUES

x

2
p
2 ln 2 � �

p
pmax

pmax=2

Figure 15.3: The Gaussian width. At p(x) = pmax=2 the width is

2
p
2 ln 2 � �.

The error function of this network is:

S(W) =
�

2

PX
p=1

[tp �W
T
'(xp)]

2 +
�

2
kWk2

and, as is a quadratic function in W, then the weight probability density is strictly Gaussian

with one single maximum.

Considering W
� as the weight vector corresponding to the maxima of posterior weight❖ W

�, y�

probability and y�(x) � y(x;W �) then:

y(x;W) = y(x) + �WT
'(x)

where �W =W�W
�.

The Hessian is: HS = (r � rT)S(W �) = �
PP
p=1

'(xp)'(xp)
T + �I .

The posterior probability of targets is calculated in a similar way as for (15.15):

p(tjx; T) /
Z
W

exp

�
�
�

2
[t�W

T
'(x)]2 �

1

2
�WTHS�W

�
dW

with a variance �2t =
1
�
+'THS'.

➧ 15.3 Classification

Let consider a classi�cation problem with two classes C1 and C2 with a network involving

only one output y representing the probability of the input vector x being of class C1, then
(1� y) represents the probability of being of class C2. Obviously the targets t 2 f0; 1g and
the network output y 2 [0; 1].

15.3See [Bis95] pp. 403{406.

15.3. CLASSIFICATION 285

The likelihood function for observing the whole training set is12:

p(T jW) =

PY
p=1

[y(xp)]
tp [1� y(xp)]

1�tp = L = exp[�G(T jW)] (15.17)

where G(T jW) is the cross-entropy: ❖ G

G(T jW) = �
PX
p=1

ftp ln y(xp) + (1� tp) ln[1� y(xp)]g

✍ Remarks:

➥ The normalization condition for the distribution (15.17) is
P

tp2f0;1g
p(T jW) = 1.

After the replacement of p(T jW) from (15.17), the result is a product of terms

of the form y(xp) + [1� y(xp)] = 1, i.e. the distribution p(T jW) is normalized.

The neuron activation function is taken as the sigmoidal y(x) = f(a) = 1
1+exp(�a) where

a =
P
j

wjzj ; wj being the weights of connections from hidden neurons zj coming into the

output neuron y and a is the total input.

Considering a prior distribution (15.2) then the posterior distribution, from (15.1), similar

to (15.12), will be:

p(W jT) =
1

ZS
exp(�G� �EW) =

1

ZS
exp[�S(w)]

where ZS is the normalization coe�cient.

Considering a quadratic approximation as in (15.13), the distribution may be approxi-

mated as:

p(W jT) =
1

Z�S
exp

�
�S(W �)�

1

2
�WTHS�W

�
(15.18)

Z�S being the normalization coe�cient, and
R
W

p(W jT) dW = 1 gives: ❖ Z�S

Z�S =

Z
W

exp

�
�S(W �)�

1

2
�WTHS�W

�
dW = e�S(W

�)

NWY
i=1

r
2�

�i
(15.19)

(see also the mathematical appendix).

As the network output is interpreted as probability, i.e. y(x;W) = P (C1jx;W) then, for a

new vector x the Bayesian learning involves an integration over all possible weights, in the

form:

P (C1jx; T) =
Z
W

P (C1jx;W) p(W) dW =

Z
W

y(x;W) p(W) dW

12See chapter \Error functions" | section \Cross entropy".

286 CHAPTER 15. BAYESIAN TECHNIQUES

Assuming a linear approximation of weights for the total input a then

a(x;W) = a�(x) + g
T�W (15.20)

where a�(x) � a(x;W �) and g(x) � ra(x;W)jW� .❖ a�, g

The posterior probability of a may be written as:

p(ajx; T) =
Z
W

p(ajx;W) p(W jT) dW =

Z
W

�D(a� a� � g
T�W) p(W jT) dW (15.21)

Since, from (15.20), a and �W are linearly related, and p(W jT) is a Gaussian, then the

distribution of a is also a Gaussian of the form:

p(ajx; T) =
1

p
2�s2

exp

�
�
(a� hai)2

2s2

�
(15.22)

with the mean hai and variance s being:❖ hai, s

hai = a� and s2 = g
THSg

Proof. 1. Using (15.21) and (15.18):

hai = e�S(W
�
)

Z�
S

Z
A

Z
W

a �D(a � a
� � gT�W) exp

�
�1

2
�WT

HS�W

�
dW da

=
e
�S(W�

)

Z�
S

Z
W

(a� + gT�W) exp

�
�1

2
�WT

HS�W

�
dW

Replacing (15.19), considering that a� = const. and
R
W

g
T�W exp

�� 1

2
�WT

HS�W
�
dW = 0 because

the integrand is odd function13 in �W (and dW = d(�W)) and the integral is done over a origin centered

interval, then hai = a�.

2. The variance is:

s
2 =

Z
A

Z
W

(a� a
�)2 �D(a � a

� � gT�W)
e�S(W

�
)

Z�
S

exp

�
�1

2
�WT

HS�W

�
dW

=
e�S(W

�
)

Z�
S

Z
W

(gT�W)2 exp

�
�1

2
�WT

HS�W

�
dW

Let ui be the eigenvectors and �i the eigenvalues of HS , i.e. HSui = �iui. As HS is symmetrical, then

it is possible14 to build an orthogonal system of eigenvectors. Let consider:

�W =
X
i

�wi ui and g =
X
i

giui

and by replacing into the above expression of variance:

s
2 =

e�S(W
�
)

Z�
S

Z
W

 X
i

gi�wi

!
2

exp

�
�1

2
�i�w

2

i

�
dW

13An function f is odd when f(�x) = �f(�x).
14See mathematical appendix.

15.4. THE EVIDENCE APPROXIMATION FOR � AND � 287

Developing the square of the sum, the variance becomes a sum of two types of integrals. The �rst one,8i 6= j,

is of the form
1Z

�1

1Z
�1

gi�wi gj�wj exp

�
�1

2
(�i�w

2

i + �j�w
2

j)

�
d(�wi) d(�wj) =

=

24 1Z
�1

gi�wi exp

�
�1

2
�i�w

2

i

�
d(�wi)

3524 1Z
�1

gj�wj exp

�
�1

2
�j�w

2

j

�
d(�wj)

35 = 0

because the integrand are odd function and the integral is done over origin centered interval. The second

one is for i = j:

1Z
�1

(gi�wi)
2 exp

�
��i�w

2

i

2

�
d(�wi) =

g
2

i

�i

s
2�

�i

As the HS matrix may be diagonalized using the eigenvalues then s2 =
NWP
i=1

1

�i
g
2

i = g
T
HSg.

The posterior probability P (C1jx; T) may be written in terms of total neuronal input a as:

P (C1jx; T) =
Z
A

P (C1ja) p(ajx; T) da =
Z
A

f(a) p(ajx; T) da

which does not have generally an analytic solution but may be approximated by:

P (C1jx; T) ' f(a��(s)) where �(s) =

�
1 +

�s2

8

�� 1
2

✍ Remarks:

➥ For the simple, two class problem described above, the decision boundary is

established for P (C1jx; T) = 0:5 which corresponds to a = 0. The same result is

obtained using just the most probable weights W � and just the network output:

y(x;W �) = 0:5) a = 0. Thus the two methods give the same results unless

there are some more complex rules involved, e.g. a loss matrix.

➧ 15.4 The Evidence Approximation For � And �

As the parameters � and � which do appear in the expression of posterior weight distribution

| see equation (15.12) | are them-self not known, then the Bayesian framework require

an integration over all possible values:

p(W jT) =
ZZ

p(W j�; �; T) p(�; �jT) d� d� (15.23)

One possible way of dealing with � and � parameters is known as the evidence approximation evidence

approximationand is discussed below.

The posterior distribution of � and �, i.e. p(�; �jT), it is assumed to have a \sharp peak" ❖ p(�; �jT), ��,
��

15.4See [Bis95] pp. 406{415.

288 CHAPTER 15. BAYESIAN TECHNIQUES

around the most probable values �� and ��. Then p(��; ��jT) . 1 and , using also

the normalization condition
RR

p(��; ��jT) d� d� = 1, the distribution (15.23) may be

approximated as:

p(W jT) ' p(W j��; ��; T)
ZZ

p(�; �jT) d� d� = p(W j��; ��; T)

i.e. the integral over all possible values of � and � is replaced with the use of the most

probable values: �� and ��.

To �nd the most probable �� and �� values, it is necessary to estimate the posterior proba-

bility for � and �. This is achieved by using the Bayes theorem p(�; �jT) = p(T j�;�)p(�;�)
p(T)

where p(�; �) is the prior probability density, also known as the hyperprior . If little is knownhyperprior

about the model to be build then the hyperprior should give a relatively equal value for all

possible � and � parameters, the same way p(W) prior operates. The term p(T j�; �) is
named evidence. The term p(T) is the normalization factor.evidence

The evidence may be written in the form of explicit dependencies over � and � in the

posterior distribution of targets and weights:

p(T j�; �) =
Z
p(T jW;�; �) p(W j�; �) dW =

Z
p(T jW;�) p(W j�) dW

as the prior weight distribution is independent of � (which is data related) p(W j�; �) =
p(W j�) and the likelihood function is independent of �: p(T jW;�; �) = p(T jW;�) | see

equations (15.2) and (15.7).

From the same set of equations | (15.2) and (15.7):

p(T j�; �) =
1

ZW (�)ZT (�)

Z
exp(�S(W)) dW =

ZS(�; �)

ZW (�)ZT (�)

and considering the values of ZS, ZW and ZT from (15.14), (15.5) and (15.11) respectively

and as S(W �) = �E�W + �E�T then:

ln p(T j�; �) = ��E�W � �E�T �
1

2
ln jHS j+

NW

2
ln�+

P

2
ln� �

NW + P

2
ln(2�)

(15.24)

Considering EW an quadratic form on weights then:

HS = (r � rT)(�EW + �ET) = �I + �(r � rT)ET = �I +H

H being the Hessian of error function. As the Hessian is a symmetric matrix then it may

be diagonalized using its eigenvalues15 �i and, obviously, HS have the eigenvalues �i + �
and jHS j =

Q
i

(�i + �). Finally:

d

d�
ln jHS j =

d

d�
ln

NWY
i=1

(�i + �)

!
=

NWX
i=1

1

�i + �
= TrH�1

S (15.25)

where 1=(�i + �) are the eigenvalues of H�1
S and the �i eigenvalues were supposed to be

�-independent, i.e. ET is also a quadratic of weights.

15See mathematical appendix.

15.4. THE EVIDENCE APPROXIMATION FOR � AND � 289

The condition of minimum of ln p(T j�; �) with respect to � is @ ln p
@�

= 0 which, from

(15.24), gives: ❖ , i

2�E�W = NW �
NWX
i=1

�

�i + �
= where =

NWX
i=1

�i
�i + �

=

NWX
i=1

i (15.26)

and may be interpreted as follows:

� The prior distribution of weights is usually chosen to be centered in origin and with

a spherical symmetry, so, in the absence of data, the most probable weight vector is

W
� = b0 and consequently E�W = 0.

� When there are data available, the E�W shifts to a position given by (15.26). Consider-

ing a system of coordinates rotated such that the axes are parallel to the eigenvectors

of H then the quantities by which W� is shifted (from the origin) along each axis are

given by i =
�i

�i+�
.

For �i � �) i & 0, i.e. wi & 0, wi is not shifted much from the origin and the

main contribution to this particular weight(s) is given by the prior weight distribution.

For �i � �) i . 1, i.e. wi . 1, the main contribution to this weight is given by well-determined

parametersdata (trough �i). These kind of wi weights are named well-determined parameters.

Thus measures the e�ective number of weights changed by the data present in the e�ective number

training set (all others being given rather small values from the prior distribution).

The Hessian is H = �(r � rT)ET this means that �i / � (as the Hessian may be

diagonalized using the eigenvalues)) d�i / d� and then:

d�i
d�

=
�i
�

(15.27)

Using this result, and similar to the previous derivative:

d

d�
ln jHS j =

d

d�
ln

NWY
i=1

(�i + �)

!
=

1

�

NWX
i=1

�i
�i + �

(15.28)

The condition of minimum of ln p(T j�; �) with respect to � is @ ln p
@�

= 0 which, from

(15.24), gives:

2�E�T = P �
NWX
i=1

�i
�i + �

= P � (15.29)

and the same comments as above apply.

As S = �EW + �ET then, from (15.26) and (15.29), S(W �) = P=2.

To �nd out the � and � parameters an iterative algorithm may be used. Starting with

some initial values �0 and �0, the values at step t+ 1 may be computed from (15.26) and

(15.29): 8<:�(t+1) =
(t)

2EW (t)

�(t+1) =
P�(t)
2ET (t)

290 CHAPTER 15. BAYESIAN TECHNIQUES

For large training sets, i.e. P � NW , all weights may be approximated as well-determined

parameters and then i � 1 and � NW which leads to the much faster updating formulas:8<:�(t+1) =
NW

2EW (t)

�(t+1) =
P

2ET(t)

Considering a Gaussian approximation for p(T j�; �) then:

p(T j ln�; ln�) = p(T j ln��; ln��) exp
�
�
1

2
�T
ln�
ln�

��1�ln�
ln�

�

where �ln�
ln�

=

�
ln�� ln��

ln� � ln��

�
, � =

0@�2ln� �2ln�
ln �

�2ln�
ln �

�2ln �

1A and:

��1 =

0B@�
(�1)2
ln� �

(�1)2
ln�
ln �

�
(�1)2
ln�
ln�

�
(�1)2
ln �

1CA =
1

�2ln��
2
ln� � �4ln�

ln �

0@ �2ln� ��2ln�
ln �

��2ln�
ln�

�2ln�

1A
Note that the logarithm of � and � have been considered (instead of �, �) as they are

scaling hyper-parameters.

From the above equations and because @
@ ln�

= � @
@�

, and same for �, then:

�
(�1)2
ln� =

�2ln�
�2ln��

2
ln� � �4ln�

ln �

= �
@2 ln p

@(ln�)2
= ��

@

@�

�
�
@ ln p

@�

�

�
(�1)2
ln� =

�2ln�
�2ln��

2
ln� � �4ln�

ln �

= �
@2 ln p

@(ln�)2
= ��

@

@�

�
�
@ ln p

@�

�

�
(�1)2
ln�
ln �

=

��2ln�
ln�

�2ln��
2
ln� � �4ln�

ln �

=
@2 ln p

@ ln� @ ln�
= �

@

@�

�
�
@ ln p

@�

�

By using (15.24) when calculating the last set of derivatives from the above equations (and

using (15.25), (15.28) and (15.27) as well):

�
(�1)2
ln� = �E�W +

1

2

NWX
i=1

��i
(�i + �)2

; �
(�1)2

ln� = �E�D +
1

2

NWX
i=1

��i
(�i + �)2

�
(�1)2
ln�
ln�

=
1

2

NWX
i=1

��i
(�i + �)2

and then, using (15.26) and (15.29):

�
(�1)2
ln� =

2
+ �

(�1)2
ln�
ln �

and �
(�1)2
ln � =

N �

2
+ �

(�1)2
ln�
ln�

15.5. INTEGRATION OVER � AND � 291

The �
(�1)2
ln�
ln �

is a sum of terms ��i
(�i+�)2

; for �i � � it reduces to �=�i � 1 while for �i � �

it reduces to �i=�� 1; the only signi�cant terms come from � ' � which are usually in a

small number. Then the the following approximations may be performed:

�
(�1)2
ln�
ln�

� �
(�1)2
ln� ; �

(�1)2
ln�
ln �

� �
(�1)2
ln�

�
(�1)2
ln� '

1

�2ln�
'

2
; �

(�1)2
ln� '

1

�2ln�
'

P �

2

(15.30)

and the � and � parameters may be considered statistically independent and their distribu-

tion is of the form:

p(T j ln�) = p(T j ln��) exp
�
�
(ln�� ln��)2

2�2ln�

�

p(T j ln�) = p(T j ln��) exp

�
(ln� � ln��)2

2�2ln�

! (15.31)

➧ 15.5 Integration Over � And �

The Bayesian approach require an integration over all possible values for unknown parame-

ters, i.e. the posterior probability density for weights is:

p(W jT) =
ZZ

p(W;�; �jT) d� d� =

ZZ
p(W jT; �; �) p(�; �) d� d�

Using the Bayes theorem (15.1) and as p(T jW;�; �) = p(T jW;�) (is independent of �, see
also section 15.1.4) and p(W j�; �) = p(W j�) (is independent of �, see also section 15.1.2)
and considering also that � and � are statistically independent, i.e. p(�; �) = p(�) p(�)
(see also section 15.4) then:

p(W jT) =
1

p(T)

ZZ
p(T jW;�) p(W j�) p(�) p(�) d� d�

Now, a form of p(�) and p(�) have to be chosen. The best option would be to choose

them such that p(ln�) and p(ln�) have a relatively large breath. One possibility, leading

to easy integration, would be:

p(�) =
1

�
and p(�) =

1

�

and the integrals over � and � may now be separated.

Using (15.2) and (15.5) the prior of weights becomes16:

p(W) =

1Z
0

p(W j�) p(�) d� =

1Z
0

1

ZW (�)
exp(��EW)

1

�
d�

15.5See [Bis95] pp. 415{417.
16See also mathematical appendix regarding Euler functions.

292 CHAPTER 15. BAYESIAN TECHNIQUES

=
1

(2�)NW =2

1Z
)

exp(��EW)�
NW
2
�1 d� =

�E(NW =2)

(2�EW)NW =2

where �E is the Euler function.

The p(T jW) distribution is calculated in the same way, using (15.7) and (15.11):

p(T jW) =
�E(P=2)

(2�ET)P=2

From the above equations, the negative logarithm of the posterior distribution of weights is:

� ln p(W jT) =
P

2
lnET +

NW

2
lnEW + const.

and then its gradient may be written as:

�r ln p(W jT) = �crET + �crEW (15.32)

where❖ �c, �c

�c =
NW

2EW

and �c =
P

2ED

(15.33)

are the current values of the parameters.

The minima of � ln p(W jT) may be found by iteratively using (15.32) and (15.33)

✍ Remarks:

➥ While the direct integration over � and � seems to be better that the evidence

approximation (see section 15.4), in practice the approximations required after

integration may give worst results.

➧ 15.6 Model Comparison

Let consider that there are several models fMmg for the same problem and set of data T .

The posterior probability of a particular model Mm is given by the Bayes theorem❖ P (Mm),

p(T jMm)

P (MmjT) =
p(T jMm)P (Mm)

p(T)

where P (Mm) is the prior probability for modelMm and p(T jMm) is the evidence forMm.Mm evidence

An interpretation of the model evidence may be given as follows below. Let consider �rst

the weight dependency: in the Bayesian framework:

p(T jMm) =

Z
W

p(T jW;Mm) p(W jMm) dW (15.34)

and let consider one single weight: the prior distribution p(W jMm) have a low maximum❖ �wprior, �wpost

15.6See [Bis95] pp. 418{422.

15.6. MODEL COMPARISON 293

�wpost

w

p

�wprior

p(wjT;Mm)

p(wjMm)

Figure 15.4: The prior and posterior distribution of weights. The

prior distribution p(W jMm) have a (relatively) low

maximum and a wide width �wprior | all weights have

approximatively the same probability, denoting the ab-

sence of data on what to make a decision. The posterior

probability density p(W jT;Mm) have a high maximum

and a narrow width �wpost.

and a large width �wprior (in fact it should be almost constant over a large range of weight

values) while the posterior distribution p(W jT;Mm) have (usually) a high maximum and

a small width �wpost. See �gure 15.4.

Considering a sharp peak of the posterior weight distribution around some maximum w�

the the integral (15.34) may be approximated as

p(T jMm) ' p(T jw�;Mm) p(w
�jMm)�wpost

and also the prior distribution (as is normated) should have a inverse dependency of its

widening p(W jMm) / 1=�wprior (the wider is the distribution, the smaller is the maximum

and subsequently all values) and then:

p(T jMm) / p(T jw�;Mm)
�wpost

�wprior

which represents the product between the likelihood p(T jw�;Mm), estimated at the most Occam factor

probable weight value, and a term named the Occam factor . A model with a good �t will

have a high likelihood, however these models are usually complex and consequently have a

very high and narrow posterior distribution peak, i.e. a small Occam factor, and reciprocal.

Also for di�erent models which make the same predictions, i.e. have the same p(T jW) the

Occam factor advantages the simpler model, i.e. the one with a larger factor.

Let consider the � and � hyper-parameter dependency. The Bayesian framework require an

integration over all possible values:

p(T jMm) =

ZZ
p(T j�; �;Mm) p(�; �jMm) d� d� (15.35)

where p(T j�; �;Mm) represents the evidence for � and � | see section 15.4.

294 CHAPTER 15. BAYESIAN TECHNIQUES

The � and � parameters are considered statistically independent (see again section 15.4).

By using the Gaussian approximation given by (15.31) and considering an uniform prior

distribution p(�) = p(�) = 1= ln
, where
 is a region containing �� respectively ��, then❖

the integral (15.35) may be split in the form:

p(T jMm) =
p(T j��; ��;Mm)

(ln
)2

1Z
�1

exp

�
�
(ln�� ln��)2

2�2ln�

�
d(ln�) �

�
1Z

�1

exp

�
(ln� � ln��)2

2�2ln�

!
d(ln�) =

= p(T j��; ��;Mm)
2��ln��ln �
(ln
)2

The above result was obtained by integrating over a single Gaussian. However in networks

with hidden neurons there is a symmetry and many equivalent maximums17, thus the model

evidence p(T jMm) have to be multiplied by this redundancy factor R, e.g. for a 2-layer

network with H hidden neurons there are R = 2HH ! equivalent maximums, and the model❖ R
evidence have to be multiplied by this factor.

On similar grounds as for (15.24), and using (15.30), the logarithm of evidence becomes:

ln p(T jMm) =� ��E�W � ��E�D �
1

2
ln jHS j+

NW

2
ln�� +

P

2
ln�� + lnR

�
1

2
ln

2
�

1

2
ln
P �

2
+ const.

where the additive constant is model independent.

By the above means it is possible to calculate the probabilities of various models. However

there are several comments to be made:

� The model evidence is not particularly easy to calculate due to the Hessian jHS j.

� Choosing the model with highest evidence is not necessary the best option as there

may be several models with signi�cant/comparable evidence.

➧ 15.7 Committee Of Networks

Usually the error have several local, non-equivalent, minima, i.e. not due to the symmetry18.

The posterior probability density may be written as a sum of all posterior distributions❖ mm

corresponding to the local minima mm:

p(W jT) =
X
m

p(W;mmjT) =
X
m

p(W jmm; T)P (mmjT)

17 See chapter \Multi Layer Neural Networks", section \Weight-Space Symmetry\.
15.7See [Bis95] pp. 422{424.
18See footnote 17.

15.8. MONTE CARLO INTEGRATION 295

By using the above distribution decomposition, other parameters may be calculated by

integration over the weight space W , e.g. the averaged output is:

hyi =
Z
W

y(x;W) p(W jT) dW =
X
m

P (mmjT)
Z
Wm

y(x;W) p(W jmm; T) dW

=
X
m

P (mmjT) hymi

where Wi is the portion of the weight space corresponding to the minima mm and hymi is ❖ Wm, hymi
the output average corresponding to mm. The above formula shows an weighted average

of the outputs corresponding to di�erent local minima.

➧ 15.8 Monte Carlo Integration

The Bayesian techniques often require integration over a large number of weights, i.e. the

computation of integrals of the form: ❖ I

I =

Z
W

F (W) p(W jT) dW (15.36)

where F (W) is some integrand. As the number of weights is usually very big, the classical

numerical methods of integration leads to a large computational task.

One way to approximate the above type of integrals is to use Monte Carlo method , i.e. to Monte Carlo

methodselect a sample set of weight vectors fWigi=1;L from the distribution p(W jT) (i.e. the

weights are randomly chosen such that their distribution equals p(W jT)) and then approx-

imate the integral by a �nite sum:

I '
VW
L

LX
i=1

F (Wi)

where VW is the volume of weight space and VW =L replaces (approximate) dW. ❖ VW , L

While usually the posterior distribution p(W jT) may be calculated relatively with ease, the

selection of sample set fWig may be di�cult. An alternative is to draw the sample weight

set from another distribution q(W), in which case the integral (15.36) becomes: ❖ q(W)

I =

Z
W

F (W)
p(W jT)
q(W)

q(W) dW '
VW
L

LX
i=1

F (Wi)
p(WijT)
q(Wi)

As the normalization of p(W jT) requires itself an integration of the type (15.36) with importance

samplingF (W) = 1 (e.g. see the calculation of ZW , ZT in previous sections) then the integral may

be approximated by using the non-normalized distribution ep(W jT): ❖ ep(W jT)

15.8See [Bis95] pp. 425{429.

296 CHAPTER 15. BAYESIAN TECHNIQUES

I '

LP
i=1

F (Wi)
ep(WijT)
q(Wi)

LP
i=1

ep(WijT)
q(Wi)

(15.37)

this procedure being called importance sampling .

The importance sampling method still have one problem requiring attention. In practice the

posterior distribution is usually almost zero in all weight space except some narrow areas

(see section 15.1.3 and �gure 15.2 on page 278). In order to ensure the computation of

integral (15.37) with enough precision it is necessary to choose an L big enough such that

the areas with signi�cant posterior distribution p(W jT) will have adequate coverage.

To avoid the previous problem, the Metropolis algorithm was developed. The weight vectorsMetropolis

algorithm in the sample set fWig form a discrete time series in the form:

W(t+1) =W(t) + "

where " is a randomly chosen vector from a distribution (e.g. Gaussian) with spherical

symmetry; this kind of series being named random walking . Then the new W(t+1) arerandom walking

accepted or rejected following the rules:(
accept if p(W(t+1)jT) > p(W(t)jT)
accept with probability

p(W(t+1)jT)
p(W(t)jT)

if p(W(t+1)jT) > p(W(t)jT)

and considering an error function of the form E = � ln p(W jT), then the above rules may

be rewritten in the form:(
accept if E(t+1) < E(t)

accept with probability exp[�(E(t+1) �E(t))] if E(t+1) > E(t)

(15.38)

The Metropolis algorithm still leaves a problem with respect to local minima. Assuming

that the weights are strongly correlated this means that around (local) minima the hyper-

surfaces corresponding to constant distribution p(W jT) = const. are highly elongated hyper-

ellipses19. As the distribution of ", i.e. p("), have spherical symmetry this will lead, according❖ p(")
to the rules (15.38), to many rejected W and the algorithm have a tendency to slow down

around the local minima. See �gure 15.5 on the next page.

To correct the problem introduced by the Metropolis algorithm the rules (15.38) may be

changed to:(
accept if E(t+1) < E(t)

accept with probability exp
h
�E(t+1)�E(t)

T(t+1)

i
if E(t+1) > E(t)

leading to the algorithm named simulated annealing . The T(t+1) | named \temperature"simulated

annealing

❖ T
| is chosen to have large starting value T(0) � 1 and decreasing in time, this way the

algorithm jumping fast over local minima found near the starting point. For T = 1, the

simulated annealing is equivalent to the Metropolis algorithm.

19See chapter \Parameter Optimization", section "Local quadratic approximation"

15.9. MINIMUM DESCRIPTION LENGTH 297

local minima"

w2

W(t+1)

w1

E = const.

p(") = const.
W(t)

Figure 15.5: The Metropolis algorithm. Only the W(t+1) which falls

in the \area" which may be represented (sort of) by the

intersection of the dotted circle (p(") = const.) and the

ellipse E = const. are certainly accepted. Only some of

the other W(t+1) | from the rest of the circled area |

are accepted. As the (hyper) volumes of the two areas

(of certainly acceptance, respectively partial acceptance)

are proportional with the weight space dimensionality the

algorithm slows more around local minima in the highly

dimensional spaces, i.e. the problem worsens with the

increase of weights number.

➧ 15.9 Minimum Description Length

Let consider that a \sender" wants to transmit some data D to a \receiver" such that the ❖ D
message have the shortest length possible. Beyond of the simple method of sending the

data itself; if the quantity of data is su�ciently large then there is a possibility to shorten the

message by sending a model M of the data plus some information regarding the di�erence

between the actual data set and the generated (by the model) data set. In this situation

the message length will be the sum between the length of the model description L(M) and

the length of the di�erence L(DjM), which is model dependent: ❖ L(M),

L(DjM)
message length = L(M) + L(DjM)

The L(M) quantity may also be seen as a measure of model complexity (as the more

complex a model is the bigger its \description" is) and the L(DjM) may also be seen

as the error of model (di�erence between model output and actual data target). The the

message length may be written as:

message length = model complexity+ error (15.39)

The more complex the model is, i.e. L(M) is bigger, the more accurate its predictions are,

and thus the error L(DjM) is small. Reciprocally a simple model, i.e. L(M) small, will

15.9See [Bis95] pp. 429{431.

298 CHAPTER 15. BAYESIAN TECHNIQUES

generate many errors, leading to a large L(DjM). This reasoning involves that there should

be an optimum balance (tradeo�) between the two, resulting in a minimal message length.

For some variable x the information needed to be transmitted is � ln p(x) where p(x) is the

probability density20. Then:

message length = � ln p(M)� ln p(DjM)

and by using the Bayes theorem: p(MjD) =
p(DjM) p(M)

p(D)
(where p(MjD) is the probability

density for the model M, given the data D) it becomes:

message length = � ln p(MjD)� ln p(D)

Let consider that the model M represents a neural network. Then the message length

becomes the length of the weight vector and data, given the speci�ed model, L(W;DjM).

The model complexity is measured by the probability of the weight vector given the

model � ln p(W jM) and the error is calculated given the weight vector and the model

� ln p(DjW;M). The equation (15.39) becomes:

L(W;DjM) = � ln p(W jM)� ln p(DjW;M) (15.40)

To transmit the distributions, both the sender and receiver must agree upon the general

form of the distributions. Let consider the weight distribution as a Gaussian with zero mean

and 1=� variance:

p(W jM) =
� �

2�

�NW
2

exp
�
�
�

2
kWk2

�
and the error distribution as a Gaussian centered around data to be transmitted. Assuming

one output for network y and P number of targets ftpg to be transmitted then:

p(DjW;M) =

�
�

2�

�P
2

exp

"
�
�

2

PX
p=1

[y(xp)� tp]
2

#

The message length becomes the sum-of-squares error function with the weight decay reg-

ularization factor:

L(DjM) =
�

2

PX
p=1

[y(xp)� tp]
2 +

�

2
kWk2

➧ 15.10 Performance Of Models

15.10.1 Risk Averaging

Given a input vector x, a classi�er M will categorize it of class Ck for which the posterior

probability is maximum (according to the Bayes rule21) P (Ckjx) = max
`

P (C`jx). Then the

20See chapter \Error Function", section \Entropy".
15.10.1See [Rip96] pg. 68.

21See chapter \Pattern Recognition".

15.10. PERFORMANCE OF MODELS 299

probability of the model to make a correct classi�cation equals to the probability of the class

chosen (according to the Bayes rule and for given x) to be the correct one, i.e. its posterior

probability:

Pcorrect(x) = P (Ckjx) = Efmax
`

P (C`jx)g

(as the posterior probability is also W -dependent, and W have a distribution associated,

the expected value of maximum was used).

The probability of misclassi�cation is the complement of probability of correct classi�cation:

Pmc(x) = 1� Pcorrect(x) = 1� Efmax
`

P (C`jx)g

The above formula for misclassi�cation does not depend on correct classi�cation of x and risk averaging

then it may be used successfully in the situations where gathering raw data is easy but the

number of classi�ed patterns is low. This procedure is known as risk averaging .

As the probabilities are normated, i.e.
KP
k=1

P (Ckjx) = 1 then the worst value formax
`

P (C`jx)

is the one for which P (Ckjx) = 1=K, 8k = 1;K, and:�
Ef1�max

`
P (C`jx)g

�2

6

�
1�

1

K

�
Ef1�max

`
P (C`jx)g

The variance22 of max
`

P (C`jx) is:

Vfmax
i

P (Cijx)g = Ef[(1�max
`

P (C`jx))� Ef1�max
`

P (C`jx)g]2g

= Ef(1�max
`

P (C`jx))2g �
�
Ef1�max

`
P (C`jx)g

�2

6

�
1�

1

K

�
Pmc(x)� P 2

mc(x)

✍ Remarks:

➥ In the process of estimating the probability of misclassi�cation is better to use

the posterior class probability P (Ckjx) given by the Bayesian inference, rather

than the one given the most probable W set of parameters, because it takes

into account the variability of W and gives superior results especially for small

probabilities.

22Variance of a random variable x being de�ned as Vf(x� Efxg)2g.

CHAPTER 16

Tree Based Classifiers

➧ 16.1 Tree Classifiers

The decision trees are usually built from top to bottom. At each (nonterminal) node a leaf

decision is made till a terminal node, named also leaf, is reached. Each leaf should contain

a class label, each nonterminal node should contain a decisional question. See �gure 16.1

on the following page.

The main problem is to build the tree classi�er using a training set (obviously having a

limited size). This problem may be complicated by the overlapping between class areas, in

which case there is noise present.

The tree is build by transforming a leaf into a decision making node and growing the tree

further down | this process being named splitting . In the presence of noise the resulting splitting

tree may be over�tted (on the training set) so some pruning may be required.

✍ Remarks:

➥ As the pattern space is separated into a decision areas (by the decision boundaries)

the tree based classi�ers may be seen as a hierarchical way of describing the

partition of input space.

➥ Usually there are many possibilities to build a tree structured classi�er for the same

classi�cation problem so an exhaustive search for the best one is not possible.

16.1See [Rip96] pp. 213{216.

301

302 CHAPTER 16. TREE BASED CLASSIFIERS

Question

Class label Class label

paths

decision making node

leafs

from previous level

Figure 16.1: The tree based classi�er.

➧ 16.2 Splitting

In general the tree is build considering one feature (i.e. component of the input vector) at a

time. For binary features the choice is obvious but for continuous ones the problem is more

di�cult, especially if a small subset of features may greatly simplify the emerging tree.

16.2.1 Impurity based method

One method of deciding over the splitting method (feature selection and decision boundaries

among features) is to increase \purity", i.e. the pattern vectors who passes trough new

build path should be, with greater probability, from some class(es) (rather than other).

Alternatively the target is to decrease \impurity" which is easier to de�ne in quantitative

terms.

Impurity i(n) at the output of node n should be de�ned such that is zero if all P (Ckjx) are❖ i(n)
zero except one (which will have the value 1, due to normalization) and be maximum if all

P (Ckjx) are equal. Two de�nitions of impurity are widely used | the probabilities refer to

the current node n:

� Entropy: i(n) = �
KP
k=1

P (Ckjx) lnP (Ckjx).

Because lim
P!0

P lnP = 0 (by L'Hospital rule), ln 1 = 0 and P 6 1) lnP 6 0, then

the de�ning conditions for impurity are met.

� Gini index: i(n) =
KP

k;`=1
`6=k

P (Ckjx)P (C`jx) = 1�
KP
k=1

P 2(Ckjx)Gini index

(last equality derived from normalization condition, squared, i.e.

�
KP
k=1

P (Ckjx)
�2

= 1).

16.2See [Rip96] pp. 216{221.

16.2. SPLITTING 303

The average decrease in impurity after splitting by feature x is:

��i(n) =
Z
X

p(x) i(n) dx

such that usually the algorithm building the tree classi�er will try to choose that feature

who maximize the above expression.

The average impurity of the whole tree may be de�ned as

itree =

KX
k=1

qki(k) (16.1)

where qk is the probability of a pattern vector reaching leaf k (assuming that the �nal tree ❖ qk
have a leaf for each class).

16.2.2 Deviance based method

Another approach to the building of the decisional tree is to consider is as a probabilistic

model. Each leaf k may be associated with a distribution which show the probability that

a pattern reaching the node is of some particular class, i.e. P (C`; k).

Considering P (n) the probability of a pattern to reach node n then the conditional proba-

bility density p(C`jn) is:

P (C`; n) = P (C`jn)P (n)) P (C`jn) =
P (C`; n)
P (n)

(16.2)

Also, taking the number of patterns (from the training set), arriving at leaf k and of class

C`, as being Pk`, then the likelihood of the training set is: ❖ Pk`

L =

KY
k=1

KY
`=1

[P (C`jk)]Pk`

The deviance1 is:

Dtree = 2 (lnL)for perfect
model

� 2 lnL =

KX
k=1

Dk where Dk = �2
KX
`=1

Pk` lnP (C`jk) (16.3)

because for the perfect model p(C`jk) = 1 for Pk` > 0 and equals zero otherwise (and

lim
x!0

x ln x = 0) and thus the deviance term associated with the perfect model cancels.

If the total number of patterns arriving at leaf k is Pk then an estimate of p(C`jk) would
be bp(C`jk) = Pk`=Pk (also from (16.2): p(C`; k) / Nk`, p(k) / Nk), note also that the

training set is assumed to be a unbiased sample from the true distribution). From (16.3),

1See chapter \Pattern Recognition" for the de�nition.

304 CHAPTER 16. TREE BASED CLASSIFIERS

and using
KP
k=1

Pk` = Pk :

Dtree = 2

0@ KX
k=1

Pk lnPk �
KX

`;k=1

Pk` lnPk`

1A
Considering the tree impurity (16.1) then qk would be qk = Pk=P and for the entropy

impurity:

i(k) = �
KX
`=1

Pk`

Pk
ln
Pk`

Pk
) itree = �

KX
k;`=1

Pk

P

Pk`

Pk
ln
Pk`

Pk
=

Dtree

2P

and so the entropy and deviance based splitting methods are equivalent.

✍ Remarks:

➥ In practice it may well happen that the training set is biased, e.g. it contains a

larger number of examples from rare classes than it would have been occurred

in a random sample. In this case the probabilities P (C`jk) should be estimated

separately. One way to do this is to attach \weights" to the training patterns

and consider Pk , Pk` and P as the sum of \weights" rather that actual count of

patterns.

➥ If there are \costs" associated with misclassi�cation then these may be inserted

directly into the Gini index in the form:

i(n) =

KX
k;`=1
k 6=`

Ck`P (Ckjx)P (C`jx)

where Ck` is the cost for misclassi�cation between classes Ck and C`. Note

that this leads to completely symmetrical \costs" as the total coe�cient of

P (Ckjx)P (C`jx) (in the above sum) is Ck` + C`k. Thus this approach is in-

e�ective for two class problems.

➧ 16.3 Pruning

Let R(T) be a measure of the tree T such that the better T is the smaller R(T) becomes❖ T , R(T),
S(T) and such that it have contributions from (and only from) all (its) leaves. Possible choices

are the total number of misclassi�cation over a training/test set or the entropy or deviance.

Let S(T) be the size of the tree T proportional to the number of leaves.

A good criterion for characterizing the tree is:❖ �, R�(T)

R�(T) = R(T) + �S(T) (16.4)

which is minimal for a good one. � is a positive parameter that penalizes the tree size; for

� = 0 the tree is chosen based only on error rate.

For a given R�(T) there are several possible trees, let T (�) be the optimal one.❖ T (�)

16.3See [Rip96] pp. 221{225.

16.3. PRUNING 305

Let consider a tree T and for a non-leaf node n the subtree Tn having as root the node n. ❖ Tn

Let g(n; T) a measure of reduction in R by adding Tn to node n, relative to the increase

in size:

g(n; T) =
R(n)�R(Tn)

S(Tn)� S(n)
(16.5)

S(n) is the size corresponding to one node n, it is assumed that S(Tn) represents a subtree
with at least two nodes (it doesn't make sense to add just one leaf to another one) and

thus S(Tn) > S(n). R(n) is the measure R of node n, considering it a leaf.

From (16.4): R�(n) = R(n) + �S(n) and R�(Tn) = R(Tn) + �S(Tn) and using (16.5)

then g(n; T) may be written as:

g(n; T) = �+
R�(n)�R�(Tn)

S(Tn)� S(n)
(16.6)

As the denominator is always positive then:

g(n; T) > � , R�(n) > R�(Tn) (16.7)

Proposition 16.3.1. Let consider a tree T and number its nodes from bottom up such that

each child node have a number label smaller than its parent node. Let visit each node in its

number order (i.e. from bottom up) and prune at the current node n if R�(n) 6 R�(T
0
n)

where T 0 is the current tree. After visiting all nodes the result is T (�). ❖ T 0

Proof. It is demonstrated by induction.

For the unpruned tree T all leaves are optimally pruned.

Let consider a current node n. This one is either pruned with the value R�(n) or is not, in which case

R�(T
0
n) =

X
branches B

R�(T
0
B) < R�(n)

the sum being done over all branches B of node n.

But if it is not pruned then it's not possible to have a tree T 00n with a smaller R� because in this case it will

be (at least) one branch B such that R�(T 00B) < R�(T 0B) and thus T 0n wouldn't be optimally pruned; i.e.

if the tree is not pruned at node n then the whole subtree (from node n downwards) is optimally pruned.

After analyzing the last node, which (according to the numbering scheme) is the root of whole tree, the

tree is optimally pruned.

Proposition 16.3.2. Let �1 be the smallest value of g(n; T) for any non-leaf node of T . ❖ �1
The optimally pruned tree is either T for � < �1 or T (�1) obtained by pruning all nodes

with g(n; T) = �1.

Proof. �1 is chosen such that �1 = min
n

g(n; T) 6 g(n; T), 8n non-leaf node.

Let consider the �rst case when � < �1. But then � < g(n; T) for all non-leaf n and thus from (16.7) it

follows that R�(n) > R�(Tn) for all non-leaf nodes and according to the previous proposition no pruning

is performed and the tree is T (�).

Considering the second case, after pruning all nodes with g(n; T) = �1 � min
n

g(n; T), for all non-terminal

nodes left in the tree: g(n; T) > �1. This means that, according to (16.7), R�1(n) > R�1 (Tn) and, by

using previous proposition, no node pruning takes place and the tree is T (�1).

Proposition 16.3.3. For � > �, T (�) is a subtree of T (�)

306 CHAPTER 16. TREE BASED CLASSIFIERS

Proof. It will be shown by induction that Tn(�) is a subtree of Tn(�) for any node n and thus for the root

node as well.

The proposition is true for all terminal nodes (leafs).

It have to be shown that if R�(n) 6 R�(Tn) is true then R�(n) 6 R�(Tn) is also true and thus when

pruning by the method described in the �rst proposition (above) then T (�) will contain T (�).

From (16.4): (
R�(n) = R(n) + �S(n)

R�(n) = R(n) + �S(n)
) R�(n) = R�(n) + (� � �) S(n)

and also (the same way)(
R�(Tn) = R(Tn) + �S(Tn)

R�(Tn) = R(Tn) + �S(Tn)
) R�(Tn) = R�(Tn) + (� � �)S(Tn)

and by subtracting the above two equations:

R�(n) �R�(Tn) = [R�(n) �R�(Tn)] + (� � �)[S(n)� S(Tn)] (16.8)

Considering R�(n) 6 R�(Tn) and as � > � and S(n) < S(Tn) then R�(n) �R�(Tn) 6 0.

The last two propositions show the following:

� There are a series of parameters �1 < �2 : : : found by ordering all g(n; T). For each
(�i�1; �i] there is only one optimal tree T (�i).

� For j > i the T (�j) is embedded in T (�i) (as �j > �i and by applying the last

proposition).

➧ 16.4 Missing Data

One of the advantages of the tree classi�ers is the ease by which the missing data may be

treated.

The alternatives when data is partially missing from a pattern vector are:

� \Drop". Work with the available data \pushing" the pattern down the tree as far as

possible and then use the distribution at the reached node to make a prediction (if

not a leaf, of course).

� Surrogate splits. Create a set of surrogate split rules at non-terminal nodes, to be

used if real data is missing.

� Missing feature. Consider the \missing" as a possible/supplemental value for the

feature and create a separate branch/split/sub-tree for it.

� Split examples. When an pattern vector (from the training set) reaches a node where a

split should occur over its missing features then it is split in fractions over the branches

nodes. Theoretically this should be done using a posterior probability conditioned on

available data but this is seldom available. However it is possible to use the probability

of going along (the node's) branches using the (previous) complete (without missing

data) pattern vectors.

16.4See [Rip96] pp. 231{233.

CHAPTER 17

Belief Networks

➧ 17.1 Graphs

De�nition 17.1.1. A graph is a collection of vertices and edges. graph

The vertices represent (in the context of belief networks) a set of random variables (each vertices

drawn from some distribution).

A edge represent a pair of distinct vertices. edge

(un)directed

graph
If the pair is ordered then the graph is directed, otherwise the graph is undirected. For

the ordered edges, the �rst vertex is named parent and the second child.

The graphs are represented visually by using nodes for vertices and connecting lines for

edges, ordered edges are shown using arrows. See �gure 17.1 on the next page.

De�nition 17.1.2. A path is a list of vertices each of them being connected trough an path

cycleedge. A cycle is a path which ends on the same vertex where it started and do not go

trough a vertex more than once.

A subgraph is a subset of vertices (from the same graph) together with all edges connecting subgraph

them.

A (sub)graph is connected if there is a path for every possible pair of vertices. connected graph

A (sub)graph is complete if every possible edge is present. complete graph

A maximal complete subgraph (of a graph) is named clique. clique

De�nition 17.1.3. A tree is a connected graph with no cycles. A directed tree is a con- tree

DAGnected directed acycled graph, abbreviated DAG.

A directed tree have the property that there is a vertex, named root, such that there is a

17.1See [Rip96] pp. 243{249.

307

308 CHAPTER 17. BELIEF NETWORKS

Figure 17.1: A graph. The one represented here is unconnected, have

a cycle and one ordered edge (shown by the arrow).

directed path from the root to any other vertex and any vertex except root have exactlyroot

one incoming edge (arrow), i.e. have just one parent.

De�nition 17.1.4. An ancestral subgraph of a directed graph contains all the parents ofancestral

subgraph its vertices, i.e. it contain also the root (which have no parent).

A polytree is a singly connected graph, i.e. there is only one path between any two vertices.polytree

17.1.1 Markov Properties

De�nition 17.1.5. Let consider 3 subsets of vertices: A;B;C � V , where V is the whole❖ G, V
set of vertices of graph G. Then C separate A and B in G if any path from any vertex in

A to any vertex in B have to pass trough a vertex from C.

Let xA be the set of (random) variables associated with A and similarly xB , xC . Then the❖ A

conditional independence of xA and xB , given xC , is written as:

xA A xB jxC or (in short) A A BjC

De�nition 17.1.6. Let AC be the complementary set of A vertices, i.e. AC = V nA. The❖ AC, @A
boundary boundary of A, notated @A is the set of all vertices from AC who are connected to a vertex

in A trough an edge.

De�nition 17.1.7. The following Markov properties are de�ned:Markov properties

1. Global: if, for any subsets A, B and C of vertices, it is true that xA A xB jxC .

2. Local: if, for some subset A the conditional distribution of xA, given xV nfA[@Ag

depends only on x@A, i.e. xA A xV nfA[@Agjx@A. Otherwise said, the xA variables

and those not directly connected to them, are conditionally independent.

3. Pairwise: if, for some subsets A and B, xA and xB are conditionally independent

given all other (stochastic) variables and there is no edge from A to B.

Proposition 17.1.1. 1. Let consider a set of (random) variables de�ned on the vertices of

a graph G. If the graph have the pairwise Markov property then there exists a set of positive

functions 'C(xC), de�ned over the cliques of G, symmetric in their arguments, such that❖ 'C(xC)

P (xV) /
Y

cliques C

'C(xC) (17.1)

17.1.1See [Rip96] pp. 249{252.

17.1. GRAPHS 309

i.e. the probability of the graph random variables to have the values xV (all values are

collected together into a vector) is proportional to the product (over its cliques) of functions

'C (the values of components of xC are the same with the corresponding components of

xV , vertex wise).

2. If P (xV) may be represented in the form (17.1) then the graph have the global Markov

property.

Proof. 1. It is assumed that for any vertex s of G the associated variable may take the value 0 (this can

be done by some \re-labeling" procedure if it's not true initially).

It will be shown by induction over the size of an subgraph A = fvertex sjxs 6= 0g � VG .

The desired probability is built in the form:

P (xV) = P (xV = b0) Y
C�A

'C(xC) (17.2)

where 'C is de�ned recursively as:

'C(xC) =
P (xC ;xCC = b0)

P (xV = b0) Q
D(C

'D(xD)
(17.3)

and for the empty set D = ;) 'D(b0) � 1 (the sum over D being done for all strict subsets of C). Also

'C � 1 for C non-complete.

Now, for the cases when A = ; and A contains just one vertex, equations (17.2) and (17.3) gives the

identities P (b0) = P (b0), respectively P (xA) = P (xA;xAC = b0). so (17.1) holds.

The (17.2) and (17.3) equations are condensed to:

P (xA) = P (b0) Y
C�A

P (xC ;xCC = b0)
P (xA = b0) Q

D(C
'D(xD)

If A is complete then any of its subgraphs is also part of one of its cliques, so the above equation may be

written in the form (17.1). So the proposition also holds for A complete.

Let assume that (17.1) holds for non-complete A having i vertices and let study a new A with i+1 vertices.

As A is not complete then it is possible to write A = B [s [t where B is a subgraph of A having i � 1

vertices and s and t are not neighbors (there is no edge (s; t)), i.e. xs A xtjxB ;xAC . Also:
P (xV) = P (xB ; xs; xt;xAC = b0)

= P (xB ; xs; xt = 0;xAC = b0) P (xtjxB; xs;XAC = b0)
P (xt = 0jxB ; xs; XAC = b0)

and considering the conditional independence of s and t then:

P (xV) = P (xB ; xs; xt = 0;xAC = b0) P (xtjxB; xs = 0;xAC = b0)
P (xt = 0jxB ; xs = 0;xAC = b0)

= P (xB ; xs; xt = 0;xAC = b0) P (xt;xB ; xs = 0;xAC = b0)
P (xt = 0;xB ; xs = 0;xAC = b0)

By using (17.2) (supposed true, induction):

P (xB ; xs = 0; xt = 0;xAC = b0) = P (xV = b0) Y
C�B

'C(xC) for xBC = b0
P (xB ; xs; xt = 0;xAC = b0)) = P (xV = b0) Y

C�fB[sg

'C(xC) for xfB[sgC = b0
P (xB ; xs = 0; xt;xAC = b0)) = P (xV = b0) Y

C�fB[tg

'C(xC) for XfB[tgC = b0

310 CHAPTER 17. BELIEF NETWORKS

and then:

P (xV) = P (xV = b0) Y
C�fB[sg

'C(xC)

Q
C0�fB[tg

'C0 (xC0)Q
C00�B

'C00(xC00)

As a complete subgraph C of A cannot contain both s and t vertices (because the is no path between them)

then the P (xV) can be �nally written as:

Pr(xV) = Pr(xV = b0) Y
C�fB[s[tg

'C(xC)

which shows that the A subgraph of size i+1 may be written in the same form as the A subgraph of size i.

2. It is assumed that (17.1) is true. For an subgraph A � G:

P (xV) = P (xAjxAC)P (xAC)) P (xAjxAC) =
P (xV)

P (xAC)

For P (xV) the formula (17.1) may be used directly, for P (xAC), as only xAC is �xed and xA may take

any value, a sum over all xA values is to be performed:

P (xAjxAC) =

Q
cliques C�G

'C(xC)P
xA

Q
cliques C�G

'C(xC)
=

Q
cliques C�G
C\A6=;

'C(xC)

P
xA

Q
cliques C�G
C\A6=;

'C(xC)

because, at the denominator, the terms corresponding to cliques C disjoint from A (i.e. C \A = ;) may be

extracted as a common multiplicative factor (of the sum) and then canceled with the corresponding terms

of the numerator.

C is a clique and some of its vertices are in A. Then C � fA [@Ag (assume by absurd that there is a

vertex s 2 A and s 2 C and another one t 62 fA [@Ag and t 2 C; as s; t 2 C and C is complete then

the edge (s; t) does exists, then t 2 fA [@Ag, contradiction). This means that the right-hand part of the

above equation is in fact just a function of xA[@A, i.e. P (xAjxAC) = P (xAjx@A).
Let be A;B;C such that C separate A and B. Let B0 be the set of vertices which may be reached from B

using a path not going trough C, thus B � B
0, and let D = fB0 [CgC. Then B

0, C and D are disjoint

by construction (i.e. B0 \C = ;, B0 \D = ; and C \D = ;).
As A is separated from B by C, while B0 is not, then no vertex from A may be in either C or B0 thus

A � D.

By construction B
0 [C [D = VG (and they are disjoint). Also as B0 is formed by all vertices which may

be connected trough a path not passing trough C then B
0 and D are separated by C, i.e. B0 A DjC and,

as A � D and B � B0 then A A BjC and thus the global Markov property.

17.1.2 Markov Trees

Considering a tree, there is a unique path between each node; an undirected tree may be

transformed into a directed one by choosing any vertex as root and then ordering the edges

as to have the same direction as the paths leading from root to other vertices.

The simplest tree is the chain, where each vertex have just one parent and one child, andchain

each vertex splits the graph in two conditionally independent subgraphs.

✍ Remarks:

➥ Markov chains may be used in time series and conditional independence in this

case may be expressed as \past and future are independent, given the present".

17.1.2See [Rip96] pp. 252{254.

17.1. GRAPHS 311

Let consider that, for directed chains, each vertex is labeled with a number such that for

each i its parent is i� 1, the root having label 1. Then the probability of the whole tree is:

P (xV) = P (x1)
Y
i

P (xijxi�1; i6=1)

(the root doesn't have a parent and thus its probability is unconditioned).

For directed trees the above formula is to be slightly modi�ed to:

P (xV) = P (x1)
Y
i

P (xijxj ; j parent of i)

Let consider a vertex t and its associated random variable xt. Let consider that the parent
(ancestor) of t is s and the associated xs may take the values xs 2 fxs1; : : : g. Then the

the distribution of xt is pt expressed by the means of distribution ps at vertex s:

pt(xt) =
X
i

ps(xsi)P (xtjxsi)

(the sum being done over the possible values for xs). Thus, given the distribution of root,

the other distributions may be calculated recursively, from root to leafs.

Let E�s be the events on the descendants of s, E+
s all other events and Es = E�s [E+

s . ❖ E�s , E
+
s , Es

The distribution ps(xs) = P (xsjEs) is to be found (i.e. given the values for some random

variables at the vertices of the graph the problem is to �nd the probability of a random

variable taking a particular value for a given vertex). Then (using Bayes theorem):

P (xsjEs) = P (xsjE�s ; E
+
s) / P (E�s jxs; E

+
s)P (xsjE

+
s)

and, as E�s A E+
s jxs then P (E�s jxs; E+

s) = P (E�s jxs) and:

P (xsjEs) / P (E�s jxs)P (xsjE
+
s)

The �rst term is:

P (E�s jxs) =

8><>:
1 if s have no childrenQ
cildren t

of s

P (E�t jxs) otherwise

where P (E�t jxs) =
P
xt

P (E�t jxt)P (xtjxs).

For the other term, xs is conditionally separated from E+
s by its parent r:

P (xsjE+
s) =

X
xr

P (xsjxr)P (xrjE+
s)

(the sum being done over all possible values for xr). The restriction over the possible values

of xr are given by E+
s trough E+

r and E�q where q is any child of r, except s.

P (xrjE+
s) = P (xrjE+

r)
Y
q

P (E�q jxr)

and �nally the ps(xs) may be calculated by using the above formulas recursively.

312 CHAPTER 17. BELIEF NETWORKS

17.1.3 Decomposable Trees

De�nition 17.1.8. A graph is named triangulated (or chordal) if every cycle of fourtriangulated graph

vertices/edges or more have a chord, i.e. an edge connecting two non-consecutive vertices.

De�nition 17.1.9. A join tree is the tree associated with a graph, having its cliques asjoin tree

vertices. The vertices of the tree are connected in such a way that if all cliques containing

one vertex of the graph are removed, the join tree remains connected.

Considering a join tree and two cliques containing the same vertex (of the graph) then all

cliques sitting on the path, in the join tree, between the two contains the vertex.

For a triangulated graph, the join tree may be built according to the following procedure:

1. Numbering the graph vertices: Starting at any point, number the vertices of the

graph by maximum cardinality search, i.e. number next the vertex with the maximum

number of already numbered neighbors.

2. Starting with the highest numbered vertex, check if all its lower numbered neighbors

are also neighbors between them. If they are then the original graph is triangulated;

if they aren't then by adding missing edges the graph may be triangulated.

3. Identify all cliques and order them by the highest numbered vertex in the clique.

4. Build the join tree by connecting each clique with a predecessor which have the most

common vertices.

The above building procedure ensures also that the (unique) path (in the join tree) from

clique C1 to some Ci passes trough cliques having increasing order numbers.

For i > 2 let Cj(i) be the parent of Ci in the join tree. Let Si = Ci \ (C1 [: : : [Ci�1).

Then Si � Cj(i).❖ Si

Proof. As Cj(i) is one of C1; : : : ; Ci�1 then Si contains all vertices of Ci \Cj(i). There is not possible to
have a vertex s such that s 2 Ci \Ck and k 6= j(i) and s 62 Cj(i) because of the way the join tree is built

(steps 3 and 4). Alternatively: as s 2 Ci \ Ck then s is contained by each clique in the path between Ci

and Ck (by direct consequence of the de�nition, see above) and the path must go trough Cj(i), the parent

of Ci, as is a path in a tree and by the way the clique have been numbered, Ck lies somewhere above Ci
(on the way to root) or on another tree.

Let Hi = C1 [: : : [Ci�1 and Ri = Ci n Si. Then @Ri \Hi is a complete subgraph.❖ Hi, Ri

Proof. Let consider a vertex s from @Ri, then either s 2 Ci or s 2 Si.

Now, let consider an s 2 @Ri \Hi. From the previous reasoning, either s 2 Ci \Hi = Si,

or s 2 Si \Hi � Si. In either case s 2 Si � Cj(i) which is complete.

Proposition 17.1.2. Si separate Ri from Hi n Si, i.e. Ri A (Hi n Si)jSi.

Proof. Let consider a path P from Ri to Hi which contains a vertex s 2 Rj for a j > i and s 62 S
k>j

Rk

(it may happen that there is no k > j).

Let r and t be two vertices before and after s, in the order of numbering given by the procedure of join tree

building, such that r; t 62 Rj but they are on P and r 2 Ri and t 2 Hi (P starts somewhere in Ri and

ends on Hi).

By the way of selecting r and t and also from the numbering procedure, r; t 2 @Rj . Being in the vicinity

of Rj then r, t are either in Sj � Hj or in @Cj � Hj . Thus r; t 2 @Rj \Hj . As @Rj \Hj is complete

then the edge (r; t) does exists.

17.1.3See [Rip96] pp. 258{261.

17.2. CASUAL NETWORKS 313

If the (r; t) edge exists then r and t should be members of the same clique Ck . As r 2 Ri then k > i and

as r; t 2 Hj then k < j.

If k > i, as Hk � Hj , then r; t 2 Ck \ Hk � C`, where ` > k. Repeat this procedure as necessary,

considering C` instead of Ck, till ` = i and thus t 2 Ci \Hi = Si, i.e. Si separates Ri and Hi n Si.

Proposition 17.1.3. A distribution which is decomposable with respect to a graph G can

be written as a product of the cliques Ci of G divided by the product of the distributions

of their intersections Si:

P (xV) =
Y
i

P (xCi)

P (xSi)

known as the set-chain/marginal representation. If any denominator term is zero then the

whole expression is considered zero.

Proof. For a given j:
S
i<j

Ri =
S
i<j

Ci = Hj

and then P (xV) =
Q
i

P (xRi jxR1 ; : : : ;xRi�1) =
Q
i

P (xRi jxHi) and, as xRi A xHi jxSi (see proposi-

tion 17.1.2), then P (xV) =
Q
i

P (xRi jxSi).

Ci = Ri [Si and then P (xCi) = P (xRi ;xSi) = P (xRi jxSi)P (xSi) and the �nal result is obtained by

replacing back into P (xV).

Proposition 17.1.4. Let consider the sets of cliques eCA and eCB , in the join tree, separated

by eCC . Considering that eCA contains the set of vertices A, eCB contains B and eCC contains

the set of vertices C, then xA A xB jxC , i.e. A and B are separated by C.

Proof. It is �rst proven, by contradiction, that C separates A n C and B n C on G.
Let consider that there is a path from v0 2 A to vn 2 B, passing trough vertices v1; : : : ; vn�1 62 C.

Let consider that v0 2 C0 2 eCA (where C0 is some clique containing v0). Let consider some vertex vj

such that vj�1; vj 2 Cj (some Cj , note that (vj�1; vj) is an edge so there some clique containing it). As

vj�1; vj 62 C then Cj�1; Cj 62 CC . Then, in the join tree, the path Cj�1 to Cj do not pass trough eCC ,
as all contain the vj vertex (by the way the join tree was built).

In this way, by repeating the procedure (with vj�2, vj�1, e.t.c), it is possible to build a path from eCA toeCB not passing trough eCC . Contradiction.
Finally, by using the global Markov property, the proposition is demonstrated.

✍ Remarks:

➥ Instead of working of the original graph G, it is possible to work on triangulated

GM (obtained from G by the procedure previously explained). ❖ GM

As GM have all edges of G plus (maybe) some more then the separation properties

on GM hold on the original G.

➧ 17.2 Casual Networks

Basically the casual networks are represented by DAG's. The vertices are numbered accord-

ing to the topological sort order, i.e. each vertex have associated a number i grater than

17.2See [Rip96] pp. 261{265.

314 CHAPTER 17. BELIEF NETWORKS

the order number of its parent j(i). Then, considering the graph, the probability of xV is:

P (xV) = P (x1)
Y
i>1

P (xijxj(i)) (17.4)

(of course the root having no parent its distribution is unconditioned). The directions being

from root to the leafs this also means that:

xk A xijxj(i) for k < i

the DAG having the above property being also named a recursive model .recursive model

De�nition 17.2.1. The moral graph of a DAG is build following the procedure:moral graph

1. All directed edges are replaced by undirected ones.

2. All the (common) parents of a vertex are joined by edges (by adding them if necessary).

Proposition 17.2.1. A recursive model on a DAG have the global Markov property and a

potential representation on its associated moral graph of the form (17.1).

Proof. The potential representation is built as follows:

1. The potential of each clique is set to 1.

2. For each vertex i, select a clique (any) which contain both i and its parent j(i) and multiply its

potential by P (xijxj(i)).

In this way the expression (17.4) is transformed into a potential representation of the form (17.1). By using

proposition 17.1.1 it follows that the graph have the global Markov property.

➧ 17.3 The Boltzmann Machine

The Boltzmann machine have binary random variable associated with the vertices of a graph

completely connected. The probability of a variable xi associated to vertex i is obtained
considering a regression over all other vertices. The join distribution is de�ned as:

P (xV) =
1

Z
exp

0@ X
i;j; i<j

wijxixj

1A where Z =
X
xV

exp

0@ X
i;j; i<j

wijxixj

1A
the parameters wij are the \connection weights", symmetric (wij = wji); Z is the normal-

ization constant (obtained from
P
xV

P (xV) = 1).

The Boltzmann machine learns the join distribution of some inputs xI and outputs xY ; some

vertices xH are \hidden". The join probability over (given) input and output xS = xI [xY
is obtained by summation over all possibilities for the hidden vertices:

P (xS) =
X
xH

P (xV)

17.3See [Rip96] pp. 279{281.

17.3. THE BOLTZMANN MACHINE 315

The problem is to �nd the weights wij given the training set. This is achieved by a gradient

ascent method applied on the log-likelihood function:

L =
X

training
set

lnP (xV) =
X

training
set

ln

24X
xH

exp

0@ X
i;j; i<j

wijxixj

1A35� lnZ

The derivative of lnZ is:

@ lnZ

@wij
=

1

Z

X
xV

xixj exp

0@ X
i;j; i<j

wijxixj

1A = P (xi = 1; xj = 1)

as all terms for which xi = 0 or xj = 0 cancels.

Considering L1, the contribution of just one training pattern to the log-likelihood function ❖ L1
then:

@L1
@wij

=

P
xH

xixj exp

 P
i;j; i<j

wijxixj

!
P
xH

exp

 P
i;j; i<j

wijxixj

! �
@ lnZ

@wij

= P (xi = 1; xj = 1jxS)� P (xi = 1; xj = 1)

and for the whole log-likelihood:

@L
@wij

=
X

training
set

[Pr(xi = 1; xj = 1jxS)� Pr(xi = 1; xj = 1)]

✍ Remarks:

➥ To evaluate the above expression there are necessary two simulations: one for

P (xi = 1; xj = 1) and one for P (xi = 1; xj = 1jxS) (with \clamped" inputs

and outputs). The resulting algorithm is very slow.

Advanced Topics

CHAPTER 18

Matrix Operations on ANN

➧ 18.1 New Matrix Operations

As already seen, ANN involves heavy manipulations of large sets of numbers. It is most

convenient to manipulate them as matrices or vectors (column matrices) and it is possible

to write fully matrix formulas for many ANN algorithms. However some operations are the

same across several algorithms and it would make sense to introduce new matrix operations

for them, in order to avoid unnecessary operations and waste of storage space, on digital

simulations.

De�nition 18.1.1. The addition/subtraction on rows/columns between a constant and a

vector or a vector and a matrix is de�ned as follows: ❖
R
�,

R
	,

C
�,

C
	

a. Addition/subtraction between a constant and a vector:

a
R
� x

T � ab1T + x
T a

C
� x � ab1+ x

a
R
	 x

T � ab1T � x
T a

C
	 x � ab1� x

b. Addition/subtraction between a vector and a matrix:

x
T

R
�A � b1xT +A x

C
�A � xb1T +A

x
T

R
	A � b1xT �A x

C
	A � xb1T �A

✍ Remarks:

➥ These operations avoid an unnecessary expansion of a constant/vector to a vec-

tor/matrix, before doing an addition/subtraction.

319

320 CHAPTER 18. MATRIX OPERATIONS ON ANN

➥ The operations de�ned above are commutative.

➥ When the operation involves a constant then it represents in fact an addi-

tion/subtraction from all elements of the vector/matrix. In this situation
R
�

is practically equivalent with
C
� and

R
	 is equivalent with

C
	 (and they could be

replaced with something simpler, e.g. � and). However, it seems that not

introducing separate operations keeps the formulas simpler and easier to follow.

De�nition 18.1.2. The Hadamard product between a matrix and vector (row/column ma-

trix) is de�ned as follows:❖
R
�,

C
�

x
T

R
�A � b1xT �A and x

C
�A � xb1T �A

✍ Remarks:

➥ These operations avoid expansion of vectors to matrices, before doing the Hada-

mard product.

➥ They seems to �ll a gap between the operation of multiplication between a con-

stant and a matrix and the Hadamard product.

De�nition 18.1.3. The (meta)operator H takes as arguments two matrices of the same❖ H
size and three operators. Depending over the sign of elements of the �rst matrix, it applies

one of the three operators to the corresponding elements of the second matrix. It returns

the second matrix updated.

Assuming that the two matrices are A and B, and the operators are �, � and then

HfA;B; �; �; g = B0, the elements of B0 being:

b0ij =

8><>:
�(bij) if aij > 0

�(bij) if aij = 0

(bij) if aij < 0

where aij , bij are the elements of A, respectively B.

✍ Remarks:

➥ While H could be replaced by some operations with the sign function, it wouldn't

be as e�cient when used in simulations, and it may be used in several ANN

algorithms.

➧ 18.2 Algorithms

18.2.1 Backpropagation

Plain backpropagation

Using de�nition 18.1.1, formulas (2.7b) and (2.7c) are written as:

rz`E = cWT
`+1 �

�
rz`+1E � z`+1 � (1

C
	 z`+1)

�
for ` = 1; L� 1

18.2. ALGORITHMS 321

(rE)` = c

�
rz`E � z` � (1

C
	 z`)

�
� zT`�1 for ` = 1; L

and equations (2.10b) and (2.10c) becomes:

rz`E = cWT
`+1 �

�
rz`+1E � z`+1 � (1

C
	 z`+1)

�
for ` = 1; L� 1

(̂rE)` = c

�
rz`E � z` � (1

C
	 z`)

�
� ezT`�1 for ` = 1; L

Backpropagation with momentum

Formulas (2.12a), (2.12b) and (2.12c) change to:

(rE)`;pseudo = c

�
rz`E �

�
z` � (1

C
	 z`)

C
� cf

��
� zT`�1

(̂rE)`;pseudo =
�
rz`E �

�
f 0(a`)

C
� cf

��
� ezT`�1

(̂rE)`;pseudo = c

�
rz`E �

�
z` � (1

C
	 z`)

C
� cf

��
� ezT`�1

Adaptive Backpropagation

From (2.13) and using de�nition 18.1.3, (2.14) is replaced by:

�(t) = Hf�W (t)��W (t� 1); �(t� 1); I�; I�;D�g

SuperSAB

Using the H operator, the SuperSAB rules may be written as:

�(t) = Hf�W (t)��W (t� 1); �(t� 1); I�; I�;D�g

�W (t+ 1) = ��(t)�rE �Hf�W (t)��W (t� 1);�W (t);= 0;= 0;���g

(note that the product �W (t) � �W (t � 1) is used twice and it is probably better to

calculate it just once, before applying these formulas).

18.2.2 SOM/Kohonen Networks

The algorithms heavily depend over the dW=dt equation chosen to model the learning

process.

The trivial equation (3.1) is changed to: dW
dt

= �xT
R
	 �W .

The Riccati equation (3.5) becomes: dW
dt

= �xT
R
	 (Wx)

C
� W (see proof of (3.5),

dW
dt

= �b1xT � �a
C
�W).

322 CHAPTER 18. MATRIX OPERATIONS ON ANN

The more general equations (3.2.1) and (3.2.2):

dW

dt
= �xT

R
	 (Wx)

C
�W and

dW

dt
= �Wxx

T � (Wx)
C
�W

The trivial model with a neuronal neighborhood and a stop condition (3.22) will be writ-

ten as:

W (t+ 1) =W (t) + �(t)h(jx(K)

C
	 x(K)kj)

C
�
�
�xT

R
	 �W

�

✍ Remarks:

➥ The above equations are just examples. There are many possible variations in

SOM/Kohonen networks and it's very easy to build own equations, according to

the model chosen.

18.2.3 BAM/Hop�eld Networks

BAM networks

The (4.3) formulas change to:

x(t+ 1) = HfWT
y(t);x(t);= +1;=;= �1g

y(t + 1) = HfWx(t+ 1);y(t);= +1;=;= �1g

and for working in reverse, (4.4) become:

y(t+ 1) = HfWx(t);y(t);= +1;=;= �1g

x(t+ 1) = HfWT
y(t + 1);x(t);= +1;=;= �1g

The �nal algorithm change accordingly.

Discrete Hop�eld memory

Formula (4.6) transforms to:

y(t + 1) = HfWy(t) + x� t;y(t);= +1;=;= 0g

Continuous Hop�eld memory

(4.10) may be written as:

y(t + 1) = y(t) +

�
Wy + x�

1

�
t� ln

�
y(t)� (1

C
	 y(t))

��
� y(t) (1

C
	 y(t))

Here � signify the element-wise division between y(t) and 1
C
	y(t). The ln function follows❖ �

the convention used in this book for scalar functions applied to vectors: it applies to each

vector element in turn.

18.3. CONCLUSIONS 323

➧ 18.3 Conclusions

The new matrix operations seems to be justi�ed by their usage across several very di�erent

network architectures. The table 18.1 shows their usage.

Operation ANN architectures
R
� |
R
	 SOM
C
� momentum
C
	 backpropagation, momentum, SOM, continuous Hop�eld
R
� |
C
� SOM

H adaptive backpropagation, SuperSAB, BAM, discrete Hop�eld

Table 18.1: The usage of new matrix operations across ANN archi-

tectures.

It may be seen that two operations, i.e.
R
� and

R
� were not used in the ANN algorithms

studied here. However they were de�ned because:

� there are many other yet unchecked algorithms and they may �nd an usage;

� together with the rest of operations, they form a complete (symmetrical) system

allowing for a large variety of matrix/vector manipulations.

The fact that so di�erent ANN architectures could be expressed in terms of fully matrix

equations strongly suggests that many other algorithms (if not all) may be converted to full

matrix formulas.

One other operator, the element-wise \Hadamard division" �, also seems to be useful; it

represents the \opposite" of Hadamard product, possibly �lling a gap in matrix operations.

The usage of matrix formulas on numerical simulations have the following advantages:

� splits the di�culty of implementations onto two levels: a lower one, involving matrix

operations, and a higher one involving the ANNs themselves;

� leads to code reusage, with respect to matrix operations;

� makes implementation of new ANNs easier, once the basic matrix operations have

been already implemented;

� ANN algorithms expressed trough the new matrix operations, do not lead to unneces-

sary operations or waste of memory ;

� makes heavy optimization of the basic matrix operations more desirable, as the result-

ing code is reusable; see [Mos97] and [McC97] for some ideas regarding optimizations;

� makes debugging of ANN implementations easier.

324 CHAPTER 18. MATRIX OPERATIONS ON ANN

In order to fully take advantage of the matrix formulas, it may be necessary to have some

supplemental support:

� scalar functions when applied to vectors, do in fact apply to each element in turn.

� some algorithms use the summation over all elements of a vector, i.e. a operation of

type xTb1.

APPENDIX A

Mathematical Sidelines

➧ A.1 Distances

A.1.1 Euclidean Distance

Let be two real vectors x; y 2 Rn of dimension n 2 N. ❖ x, y, n

The Euclidean distance d between the vectors x and y is de�ned as: ❖ d

d = kx� yk =

vuut nX
i=1

(xi � yi)
2

(A.1)

Also, considering the vectors as column matrices then d =
p
xTy.

A.1.2 Hamming Distance

The Hamming space of dimension n is de�ned as:

H
n =

�
x
T =

�
x1 : : : xn

�
2 Rn jxi 2 f�1; 1g

	
so in an Euclidean space the Hamming space can be represented as a set of 2n points at

equal distance from origin (corners of a hyper-cube).

The Hamming distance between 2 (Hamming) points x and y is de�ned as:

h = kx� ykH =

nX
i=1

�(xi; yi) where �(xi; yi) =

(
0 if xi = yi

1 if xi 6= yi

325

326 APPENDIX A. MATHEMATICAL SIDELINES

�1

�3
r

�2

x1

x3

x2

Figure A.1: The generalized spherical coordinates. The angles �i are
measured from the position vector of the point to the axes

of a Cartesian system of coordinates.

i.e. h represents the number of mismatched components of x and y.

✍ Remarks:

➥ For 2 Euclidean vectors x and y subject to the restriction that xi; yi 2 f�1; 1g

then (see (A.1)): (xi � yi)
2 =

(
0 if xi = yi

4 if xi 6= yi
) h = d2

4
.

➧ A.2 Generalized Spherical Coordinates

Considering an n-dimensional space it is possible to de�ne the position of an arbitrary point

by the means of n angles and a distance: f�1; : : : ; �n; rg. r represents the distance from

the (current) point to the origin of the coordinates system while the angles �i are measured
between the position vector and the axes of a Cartesian orthogonal system. See �gure A.1.

✍ Remarks:

➥ Note that the system fr; �1; �ng have n + 1 elements and thus the coordinates

are not independent.

By using repetitively the Pitagora theorem:

jrj2 = (r cos �1)
2 + � � �+ (r cos �n)

2)
nX
i=1

cos2 �i = 1

A.3. PROPERTIES OF SYMMETRIC MATRICES 327

➧ A.3 Properties of Symmetric Matrices

A matrix A is called symmetric if it's square (Aij = Aji) and symmetric, i.e. the matrix is

equal with its transposed A = AT.

Proposition A.3.1. The inverse of a symmetric matrix, if exists, is also symmetric.

Proof. It is assumed that the inverse A�1 does exist. Then, by de�nition, A�1A = I, where I is the unit

matrix.

For any two matrices A and B it is true that (AB)T = BTAT. Applying this result, it gives that

ATA�1T = I.

Finally, multiplying with A�1, to the left, and knowing that AT = A, it follows that A�1T = A
�1.

A.3.1 Eigenvectors and Eigenvalues

Let assume that there are a set of eigenvectors fuigi=1;n and a corresponding set of eigen- ❖ ui, �i

values f�igi=1;n, such that

Aui = �iui ; i = 1; n (A.2)

The eigenvalues are found from the general equation:

Ax = �x , (A� �I)x = b0
If the matrix A� �I would have an inverse, then by multiplying the above equation by its

inverse it would give that x = b0, i.e. all eigenvectors are zero. To avoid this situation is

necessary to impose the condition that A� �I matrix is not inversable, i.e. its determinant

is null:

jA� �I j = 0

and this leads to the characteristic polynom of A, of the n-th degree in �, whose roots are
the eigenvalues. The set of f�igi=1;n is also named the spectrum of A.

Proposition A.3.2. If two eigen vectors are parallel then they represent the same eigen

value | assuming that they are non-zero.

Proof. Let assume, by absurd, that the above proposition is not true, i.e. there are two eigenvectors

u1 k u2 , u1 = �u2, where � is a any non-zero constant, such that Au1 = �1u1 and Au2 = �2u2 and

�1 6= �2.

But then the following is also true: Au1 = �1u1 and A�u1 = �2�u1 and, by subtracting the equations it

follows that 1� � = �1 � ��2. Finally, for � = 1 it gets that the two eigenvalues are equal.

The eigenvectors are de�ned up to a multiplicative constant; if a vector ui is an eighenvector

then the �iui is also an eighenvector for the same eigenvalue (where �i is some constant).

Let consider two arbitrary chosen eigenvectors ui and uj . By multiplying (A.2) with u
T
j

and the equation Auj = �juj with u
T
i :

u
T
j Aui = �iu

T
j ui and u

T
i Auj = �ju

T
i uj

A.3See [Bis95] pp. 440{443.

328 APPENDIX A. MATHEMATICAL SIDELINES

Considering A is symmetric then uTj Aui = u
T
i Auj (using (AB)T = BTAT) and uTj ui =

u
T
i uj (whatever ui and uj). By subtracting the two above equations:

(�i � �j)u
T
i uj = 0

Two situations arises:

� �i 6= �j : Then u
T
i uj , i.e. ui?uj | the vectors are orthogonal.

� �i = �j : by substituting �i and respectively �j in (A.2) and adding the two equation

obtained, it gets that a linear combination of the two eigenvectors �ui + �uj is also

an eigenvector. Because the two vectors are not parallel ui , uj then they de�ne a

plane and, a pair of orthogonal vectors as a linear combination, of the two may be

chosen.

The same rationing may be done for more than 2 equal eigen values.

Considering the above discussion, then the eigenvector set fuig may be easily normalized,

such that uiuj = �ij , 8i; j. Also the associated matrix U , built using fuig as columns, is❖ U

orthogonal UTU = UUT = I , i.e. UT = U�1 (by multiplying the true relation UTU = I ,

to the left, by U�1).

Proposition A.3.3. The inverse of the matrix A have the same eigenvectors and the 1=�i

eigenvalues, i.e. A�1ui =
1
�i
ui.

Proof. By multiplying (A.2) with A�1 to the left and A�1A = I it gives ui = �iA
�1
ui.

✍ Remarks:

➥ The A matrix may be diagonalized. From Aui = �iui and, by multiplying by

u
T
j to the left: u

T
j Aui = �i�ij , so, in matrix notation, it may be written as

UTAU = �, where � =

�1 ��� 0

...
. . .

...
0 ��� �n

!
. Then:❖ �

jUTAU j = jUTj jAj jU j = jUTU j jAj = jI j jAj = jAj = j�j =
nY
i=1

�i

Proposition A.3.4. Rayleigh Quotient. For A a square matrix and any a vector, it is

true that:

a
TAa

kak2
6 �max

where �max = max
i

�i is the maximum eigenvalue; Euclidean metric being used here.

Proof. The above relation should be una�ected by a coordinate transformation. Then let use the coordinate

transformation de�ned by matrix U . The new representation of vector a is then a0 = Ua and respectively

a
0T = a

TUT (use (AB)T = BTAT). The (Euclidean) norm remains unchanged ka0k2 = a
0T
a
0 = a

T
a =

kak2 (UTU = I). Then:

a
TAa

kak2 6 �max , a
0TAa0

kak2 6 �max , a
TUTAUa

kak2 6 �max

A.4. THE GAUSSIAN INTEGRALS 329

and as UT
AU = � then the above inequation is equivalent with:

a
T�a =

X
i

�ia
2

i 6 �maxkak2 = �max

X
i

a
2

i

which, obviously, is true.

De�nition A.3.1. A matrix A is positive de�nite if xTAx > 0, 8x 6= 0.

From (A.2), considering a orthonormal set of eigen vectors and by multiplying to the left

by uTi then �i = u
T
i Aui and the eigen values are positive for positive de�nite matrix.

A.3.2 Rotation

Proposition A.3.5. If the matrix U is used for a coordinate transformation, the result is a

rotation. U is supposed normated.

Proof. Let ex = UT
x. Then kexk2 = exTex = x

TUUT
x = kxk2 (use (AB)T = BTAT), i.e. the length of

the vector is not changed.

Let be two vectors ex1 = UT
x1 and ex2 = UT

x2. Then exT1 ~x2 = x
T

1
UUT

x = x
T

1
x, i.e. the angle between

two vectors is preserved.

The only transformation preserving lengths and angles is the rotation.

A.3.3 Quadratic Forms

A quadratic form of type: F (x) = x
TAx where A is an arbitrary square matrix.

By using the eigenvectors of A the function F (x) becomes:

F (x) = x
TAx = x

TUUTAUUT
x = exTUTAUex = exT�ex =

nX
i=1

�iex2i
(because UUT = I , ex = UT

x and UTAU = �).

➧ A.4 The Gaussian Integrals

A.4.1 The Unidimensional Case

Let I =
1R
�1

e�x
2

dx and then I2 =
1R
�1

e�x
2

dx
1R
�1

e�y
2

dy =
RR
R2

e�(x
2+y2)dS, where

dS = dx dy is the elementary surface.

By switching to polar coordinates, see �gure A.2 on the following page, x2 + y2 = r2 and

dS = dr � r d'; then the integral becomes:

I2 =

ZZ
R2

e�r
2

dS =

1Z
0

2�Z
0

e�r
2

r dr d' = 2�

1Z
0

re�r
2

dr = 2�

�
�
1

2
e�r

2

�����1
0

= �

A.4See [Bis95] pp. 444-447.

330 APPENDIX A. MATHEMATICAL SIDELINES

d'

d~r

dS

~r

~r + d~r

'

y

x

Figure A.2: Polar coordinates: The surface element dS.

Finally
1R
�1

e�x
2

dx =
p
� and

1R
0

e�x
2

dx =
p
�
2

because e�x
2

is an even function (same

value for x and �x).

A.4.2 The Multidimensional Case

Let I =
R
Rn

exp
�
�x

TAx
2

�
dx where A is a n�n square and symmetric matrix and x 2 Rn

(dx = dx1 � dx2 : : : dxn).

Since A is symmetrical, it is possible to build a orthonormal set of eigenvectors fuigi=1;n
such that uTi uj = �ij (see section A.3), and then the x vector may be written as x =
nP
i=1

�iui.

The change of variable from fxigi=1;n to f�igi=1;n is done. Then xTAx =
nP
i=1

�i�
2
i , where

f�igi=1;n are the eigenvalues of A, and dx =

����n @xi
@�j

o
ij

���� d�1 : : : d�n.
@xi
@�j

= uij | where uij is the i-th element of the vector uj | and, because the fujgj=1;n❖ uij

is orthonormal, then for the associated matrix U is true that UTU = I (the matrix is

orthogonal, see section A.3) and the Jacobian determinant jJ j =
����n @xi

@�j

o
ij

���� becomes:
jJ j2 = jU j2 = jUTj jU j = jUTU j = jI j = 1) jJ j = 1

(the integrand exp
�
�x

TAx
2

�
is positive over all space Rn , then the integral is positive and

then the solution jJ j = �1 is not acceptable). Finally the integral becomes:

I =

nY
i=1

1Z
�1

exp

�
�
�i�

2
i

2

�
d�i =

nY
i=1

r
2�

�i

A.5. THE EULER FUNCTIONS 331

Because jAj =
nQ
i=1

�i then I =
(2�)n=2p

jAj

A.4.3 The multidimensional Gaussian integral with a linear term

Let I =
R
Rn

exp
�
�x

TAx
2

+ c
T
x

�
dx where A is a n � n square and symmetric matrix,

x 2 Rn and c 2 Rn is a constant vector (dx = dx1 � dx2 : : : dxn).

Let fuigi=1;n be the set of orthonormated eigenvectors of A.

The c vector may be written by means of the eigenvectors set as c =
nP
i=1

ciui where

ci = c
T
ui, (as uiuj = �ij), are called the projections of c on ui.

Finally, similar to the multidimensional Gaussian integral (above) the integral may be trans-

formed into a product of independent integrals

I =

nY
i=1

1Z
�1

exp

�
�
�i�

2
i

2
+ ci�i

�
d�1 : : : d�n

A square is forced in the exponent: ��i�
2
i

2
+ ci�i = ��i

2

�
�i � ci

�i

�2
+

c2i
2�i

, such that the

integral becomes:

I =

nY
i=1

exp

�
c2i
2�i

� 1Z
�1

exp

"
�
�i
2

�
�i �

ci
�i

�2
#
d�i

A new change of variable is done: e�i = �i� ci
�i
, then de�i = d�i, the integral limits remain

the same, and:

I = exp

nX
i=1

c2i
2�i

!
nY
i=1

1Z
�1

exp

�
�
�ie�2i
2

�
de�i

Similar as for multidimensional Gaussian integrals: I =
(2�)n=2p

jAj
exp

�
nP
i=1

c2i
2�i

�
. Because

A�1ui =
1
�i
ui (see section A.3) then: cTA�1c =

nP
i=1

c2i
�i

and, �nally:

I =
(2�)n=2p

jAj
exp

�
c
TA�1c

2

�

➧ A.5 The Euler Functions

A.5.1 The Euler function

The Euler function �E(x) is de�ned as being: ❖ �E

332 APPENDIX A. MATHEMATICAL SIDELINES

�E(x) =

1Z
0

e�ttx�1dt (A.3)

and is convergent for x > 0.

Proposition A.5.1. For the Euler function it is true that �E(x + 1) = x�E(x)

Proof. Integrating by parts:

�E(x) =

1Z
0

e
�t
t
x�1

dt = e
�t t

x

x

����1
0

+
1

x

1Z
0

e
�t
t
�x

dt =
1

x
�E(x+ 1)

Proposition A.5.2. If n 2 N then n! = �E(n+ 1) where 0! = 1 by de�nition.

Proof. It is demonstrated by mathematical induction.

For n = 0: �E(1) =
1R
0

e�tdt = �e�t
��1
0

= 1 = 0! and for n = 1, by using proposition A.5.1:

�E(2) = 1 � �E(1) = 1 = 1!.

It is assumed that n! = �E(n+ 1) is true and then:

(n+ 1)! = (n+ 1) � n! = (n+ 1)�E(n+ 1) = �E(n+ 2)

the equation (n+ 1)! = �E(n+ 2) is also true.

A.5.2 The sphere volume in the n{dimensional space

It is assumed that the volume of a sphere of radius r into a n-dimensional space Vn is

proportional with the power n of the radius:

Vn = Cnr
n ; Cn = const.

where Cn is to be found.

The integral:

In =

1Z
�1

� � �
1Z

�1

exp
�
a(x21 + � � �+ x2n)

�
dx1 : : : dxn ; a = const.

is calculated in two ways:

1. The integrals from In are decoupled such that In =

1R
�1

e�ax
2

dx

!n

=
�
�
a

�n=2
.

2. The change of variable from Cartesian coordinates to generalized spherical coordinates

is performed:

x21 + � � �+ x2n = r2 ; dx1 : : : dxn = dVn = nCnr
n�1dr

where the elementary volume in spherical coordinates may be assumed as an in�nites-

imal spherical layer, due to the symmetry of the integrand relatively to origin. Then

In becomes: In = nCn
1R
0

rn�1e�ar
2

dr.

A.6. THE LAGRANGE MULTIPLIERS 333

rkf

rf

g(x) = 0

x2

x1

rg

r?f

Figure A.3: The gradient vectors rf and rg into a bidimensional

space.

A new change of variable is performed: ar2 = x)

8<:dr =
1

2
p
a
x�1=2dx

rn�1 = 1

a
n�1
2

x
n�1
2

and the

integral becomes:

In =
nCn

2an=2

1Z
0

xn=2�1e�xdx =
nCn

2an=2
�E

�n
2

�
=

Cn

an=2
�E

�n
2
+ 1
�

By comparing the two results Cn = �n=2

�E(n2+1)
and �nally:

Vn =
�n=2

�E
�
n
2
+ 1
� rn

➧ A.6 The Lagrange Multipliers

The problem is to �nd the stationary points of a function f(x) subject to a relation between
the components of vector x, given as g(x) = 0.

Geometrically, g(x) = 0 represents a surface in the Xn space, where n is the dimension of

that space. At each point rg represents a vector perpendicular on that surface and rf
may be expressed as rf = rkf + r?f , where rkf is the component parallel with the

surface g(x) = 0 and r?f is the component perpendicular on it. See �gure A.3. ❖ rk, r?

✍ Remarks:

➥ Considering a point in the vicinity of x, on the g(x) surface, such that it is de�ned
by the vector x + ", where " lies within the surface de�ned by g(x) = 0, then

the Taylor development around x is:

g(x+ ") = g(x) + "Trg(x)

A.6See [Bis95] pp. 448{450.

334 APPENDIX A. MATHEMATICAL SIDELINES

and, on the other hand, g(x+ ") = g(x) = 0 because of the choice of ".

Then "Trg(x) = 0, i.e. rg(x) is perpendicular on the surface g(x) = 0.

As r?f k rg (see above), then it is possible to write r?f = ��rg where � is called the

Lagrange multiplier or undetermined multiplier, and rkf = rf + �rg.Lagrange

multiplier
The following Lagrange function is de�ned:

L(x; �) = f(x) + �g(x)

such that rL = rkf and the condition for the stationary points of f is rL = b0.
For the n-dimensional space, the rL = b0 condition gives n+ 1 equations:

@L

@xi
= 0 ; i = 1; n and

@L

@�
= g(x) = 0

and the constraint g(x) = 0 is also met.

More general, for a set of constrains gi(x) = 0, i = 1;m, the Lagrange function have the

form:

L(x; �1; : : : ; �m) = f(x) +

mX
i=1

�igi(x)

➧ A.7 Useful Mathematical equations

A.7.1 Combinatorics

Let consider N di�erent objects. The number of ways it is possible to choose n objects out

of the N set is: �
N

n

�
�

N !

(N � n)!n!

Considering the above expression then:�
N � 1

n

�
=

(N � n)!

(N � n� 1)!n!
=
N � n

N

�
N

n

�
=

�
N

n

�
�
�
N � 1

n� 1

�
representing the recurrent formula:

�
N+1
n

�
=
�
N
n

�
+
�
N
n�1

�
.

A.7.2 The Jensen's inequality

Let consider a convex function, i.e. a function for which all points from a chord, between

any two points of the graph, are \below" the graph of the function. See �gure A.4 on the

facing page.

A.7See [Str81] pp. 200{201.

A.7. USEFUL MATHEMATICAL EQUATIONS 335

b; f(b)

f(x)

a x b

a; f(a)

x

f(a)

d(x)

f(x)

f(b)

Figure A.4: A convex function f . A chord between arbitrary points a
and b is under the graph of the function.

Proposition A.7.1. Considering a convex function f . a set of N > 2 points fxigi=1;N

and a set of N numbers f�igi=1;N such that
NP
i=1

�i = 1 and �i > 0, 8i then it is true that:

f

NX
i=1

�ixi

!
>

NX
i=1

�if(xi)

which is called Jensen's inequality. Jensen's inequality

Proof. Let �rst consider two points a and b and two numbers 0 6 t 6 1 and 1� t; such that they respect

the condition of the theorem.

The points (a; f(a)) and (b; f(b)) de�nes a chord whose equation is (equation of a straight line passing

trough 2 points):

d(x) =
bf(a) � af(b)

b� a
+
f(b) � f(a)

b� a
x

then, for any x 2 [a; b] it will be true that d(x) 6 f(x). See also �gure A.4.

By expressing x in the form of x = a+ t(b� a), t 2 [0; 1], and replacing in the expression of d(x), it gives:

f(a) + t[f(b) � f(a)] 6 f [a+ t(b� a)] , f [(1� t)a + tb] > (1 � t)f(a) + tf(b)

i.e. the Jensen's inequality holds for two numbers (t and 1� t).

Let c be a point inside the [a; b] interval, f 0�(c) the derivative to the left of f(x) at c and f
0
+
(c) the

derivative to the right of f(x) at the same point c. For a continuous derivative in c they are equal:

f 0�(c) = f 0
+
(c) = f 0(c).

The expression
f(x)�f(c)

x�c represents the tangent of the angle between the chord | passing trough the

points (x; f(x)) and (c; f(c)) | and the Ox axis. Similarly f 0(c) represents the tangent of the angle made

by the tangent.

Let m be a number f 0�(c) 6 m 6 f 0
+
(c). Because f is convex then it is true that:

f(x) � f(c)

x� c
> m for x < c and

f(x) � f(c)

x� c
6 m for x > c

see also �gure A.5 on the following page.

Finally, from the above equations, it is true that f(x) 6 m(x� c) + f(c), 8x 2 [a; b].

336 APPENDIX A. MATHEMATICAL SIDELINES

f(x)

x

f 0�(c)

f 0+(c)

x < c c x > c

f(x)�f(c)
x�c

Figure A.5: A convex function f , its derivatives in point c | to the

left: f�(c); and to the right f+(c). The chords for x < c
and respectively for x > c are drawn with dashed lines.

Parameters f 0�(c), f
0
+(c) and

f(x)�f(c)
x�c are the tangents

of the angles between the tangents in c, respectively the

chords, and the Ox axis.

Considering now a set of numbers fxigi=1;N
2 [a; b] and a set of parameters f�igi=1;N

2 [0; 1] such that

NP
i=1

�i = 1 then: a 6 xi 6 b) �ia 6 �ixi 6 �ib and after a summation over i: a 6
NP
i=1

�ixi 6 b.

Let c =
NP
i=1

�ixi 2 [a; b], then:

f(xi) 6 m(xi � c) + f(c)) �if(xi) 6 m(�ixi � �ic) + �if(c)

and the Jensen's inequality is obtained by summation over i = 1;N .

A.7.3 The Stirling Formula

Proposition A.7.2. For n 2 N� , n� 1 it is true that:

lnn! ' n lnn� n = n ln
n

e

Proof. The Euler function �E(x + 1)
1R
0

e�ttxdt (see (A.3)) is estimated for x ! 1 by the method of

saddle point | the integrand is developed in series around maximum and then the superior order terms are

neglected.

The derivative of integrand e�ttx = exp(�t+ x ln t) is zero at maximum:

d

dt
[exp(�t + x ln t)] = 0 ,

�
�1 + x

t

�
exp (�t+ x ln t) = 0

i.e. maximum is at point t = x (because the exp is never 0).

The exponent is developed in series around t = x:

�t+ x ln t = �x+ x lnx+
(t� x)2

2!

d
2

dt2
(�t+ x ln t)

����
t=x

+ : : : ' �x+ x lnx� (t � x)2

2x

A.8. CALCULUS OF VARIATIONS 337

because d
dt
(�t+ x ln t)

���
t=x

= 0, and just the �rst term from the series development is kept. Then:

�E(x+ 1) ' exp(x lnx� x)

1Z
0

exp

�
� (t� x)2

2x

�
dt

and the t! t� x change of variable is performed and then:

�E(x+ 1) ' exp(x lnx� x)

1Z
�x

exp

�
� t

2

2x

�
dt

and by using the limit x!1:

�E(x+ 1) ' exp(x lnx� x)

1Z
�1

exp

�
� t2

2x

�
dt

and �nally another change of variable s = tp
2x

(see also section A.4):

�E(x+ 1) '
p
2x exp(x lnx� x)

1Z
�1

e
�s2

ds =
p
2x exp(x lnx� x)

p
�

For large x = n 2 N� : ln�E(n+ 1) = lnn! ' n lnn� n+ ln
p
2�n ' n lnn� n.

➧ A.8 Calculus of Variations

The change in a function f(x) when the variable x changes by a small amount �x is:

�f =
df

dx
�x+O(�x2)

where O(�x2) represents the superior terms (depending at most as �x2).

For a function of several variables f(x1; : : : ; xn) the above expression becomes:

�f =

nX
i=1

@f

@xi
�xi +O(�x2)

A functional E[f] is a form which takes a function as variable and returns a value.

Considering an arbitrary function �f(x), which have small values everywhere, then the

variation of E is (by similarity with �f ,
P
!
R
):

�E = E[f + �f]�E[f] =

Z
X

�E

�f(x)
�f(x) dx+O(�f2) (A.4)

X being the space of x.

Proposition A.8.1. The fundamental lemma of the calculus of variations. The con-

dition of stationarity for E, to the lowest order in �f , involves the requirement �E
�f

= 0,

assuming the continuity of E.

338 APPENDIX A. MATHEMATICAL SIDELINES

Proof. Stationarity, to the lowest order, involves �E = 0 and O(�f2) ' 0. (A.4) gives
R
X

�E
�f

�f dx = 0.

Let assume that there is an ex for which �E
�f

���
ex
6= 0. Then the continuity condition implies that there is a

whole vicinity [ex1; ex2] of ex, such that �E
�f

���
x2[ex1;ex2]

6= 0 and keeps its sign.

As �f is arbitrary then it is chosen as �f =

(
6= 0 and keeps its sign x 2 [ex1; ex2]
= 0 in rest

. Then, it follows thatR
X

�E
�f

�f dx 6= 0 and the lemma assumptions are contradicted.

✍ Remarks:

➥ A functional form, used in regularization theory, is:

E[f] =

Z
X

"
f2 +

�
df

dx

�2
#
dx (A.5)

Then, by replacing f with f + �f in the above equation:

E[f + �f] = E[f] + 2

Z
X

�
f�f +

df

dx

d(�f)

dx

�
dx+O(�f2)

The term
R
X

df
dx

d(�f)
dx

dx, integrated by parts, gives df
dx
�f
���
X boundaries

� d2f
dx2

�f .

Considering the boundary term equal to 0 (df
dx

���
X boundaries

= 0) then (A.5) be-

comes:

�E =

Z
X

�
2f � 2

d2f

dx2

�
�f dx +O(�f2)

By comparing the above equation with (A.4) it follows that �E
�f

= 2f � 2 d2f
dx2

.

De�ning the operator D � d
dx

then the functional and its derivative may be

written as:

E =

Z
X

�
f2 + (Df)2

�
dx and

�E

�f
= 2f + 2 bDDf

where bD = � d
df

is the adjoint operator of D.

➧ A.9 Principal Components

Let consider, into the spaceX of dimensionality n, a set of orthonormated vectors fuigi=1;n:

u
T
i uj = �ij (A.6)

A.9. PRINCIPAL COMPONENTS 339

and a set of vectors fxigi=1;N , having the mean hxi = 1
N

NP
i=1

xi. ❖ X , n, N , ui,

xi, hxi
The residual error E is de�ned as: ❖ E

E =
1

2

nX
i=K+1

NX
j=1

�
u
T
i (xj � hxi)

�2
; K = const. 2 [0; 1; : : : ; n� 1]

and may be written as (use (AB)T = BTAT matrix property):

E =
1

2

nX
i=K+1

u
T
i �ui where � =

NX
i=1

(xi � hxi)(xi � hxi)T

� being the covariance matrix of fxig set. ❖ �

The problem is to �nd the minima of E, with respect to fuig, subject to constraints (A.6).

This is done by using a set of Lagrange multipliers f�ijg. Then the Lagrange function to

minimize is:

L = E �
1

2

nX
i=K+1

nX
j=K+1

�ij(u
T
i uj � �ij)

(because of symmetry uTi uj = u
T
j ui then �ij = �ji and each term under the sums appears

twice and thus the factor 1=2 is inserted to count each di�erent term once).

Let consider the matrices: ❖ U , M

U =
�
uK+1 : : : un

�
and M =

 �K+1;K+1 ��� �K+1;n

...
. . .

...
�n;K+1 ��� �n;n

!

U being formed using ui as columns andM being a symmetrical matrix. Then the Lagrange

function becomes:

L =
1

2
Tr
�
UT�U

�
�

1

2
Tr
�
M
�
UTU � I

��
Minimizing L with respect to ui means the set of conditions

@L
@uij

= 0, i.e. in matrix format

(use (AB)T = BTAT matrix property):

(� + �T)U � U(M +MT) = e0) �U = UM

and, by using the property of orthogonality of fuig, i.e. UTU = I , it becomes:

UT�U =M (A.7)

One particular solution of the above equation is to choose fuig to be the eigenvectors

of � (as � is symmetrical it is possible to build an orthogonal system of eigenvectors)

and to choose M as the diagonal matrix of eigenvalues (i.e. �ij = �ij�i where �i are the

eigenvalues of �).

An alternative is to consider the eigenvectors of M : f ig and the matrix 	 built by using

them as columns. Let � be the diagonal matrix of eigenvalues of M , i.e. f�gij = �ij�i.

As M is symmetric, it is possible to choose an orthogonal set f ig, i.e. 	T	 = I . ❖ i, 	, �, �i

340 APPENDIX A. MATHEMATICAL SIDELINES

From eigenvector equation M	 = 	�, and by multiplying to the right by 	T:

� = 	TM	.

By replacing M from (A.7)

� = 	TUT�U	 = (U)T�(U) = eUT�eU
where eU = U	.❖ eU
This means that if there are a particular solution U to (A.7) then eU = U	 is also solution:

eUT�eU =M

and the residual error may be written as:

E =
1

2
Tr
�
UT�U

�
=

1

2
Tr(M) =

1

2
Tr
�eUT�eU�

✍ Remarks:

➥ There is an invariance to the orthogonal transformation de�ned by 	.

APPENDIX B

Statistical Sidelines

➧ B.1 Probabilities

B.1.1 Probabilities and Bayes Theorem

Let consider some pattern vectors fxpg and some classes fCkg these patterns have to be ❖ xp, Ck
classi�ed into.

De�nition B.1.1. The prior probability P (Ck) represents the probability of a pattern as ❖ P (Ck)
being of class k while belonging to a very large set of samples:

P (Ck) =
number of patterns of class Ck

total number of patterns
2 [0; 1] (B.1)

when \total number of patterns" !1.

De�nition B.1.2. The join probability P (Ck; X`) represents the probability of a pattern ❖ P (Ck; X`)

as being of class k and | at the same time | the pattern vector being in the pattern

subspace X` � X ; the pattern belonging to a very large set of samples.

P (Ck; X`) =
number of patterns of class Ck with x 2 X`

total number of patterns
2 [0; 1] (B.2)

when \total number of patterns" !1.

✍ Remarks:

➥ For discrete pattern spaces x 2 X` may be replaced with x 2 fX`1; : : : g, where
X`1, : : : are also pattern vectors.

B.1.1See [Bis95] pp. 17{28 and [Rip96] pp. 19{20, 75.

341

342 APPENDIX B. STATISTICAL SIDELINES

➥ For continuous pattern spaces either X` de�nes a volume in pattern space, in

which the point x should be, or a point in which case x 2 X` is replaced with

x = X` but, in this case, P (Ck; X`) represents an in�nitesimal quantity.

De�nition B.1.3. The class-conditional probability P (X`jCk) represents the probability❖ P (X`jCk)
for a pattern of class Ck to have its pattern vector in the pattern subspace area de�ned

by X`.

P (X`jCk) =
number of patterns of class Ck with x 2 X`

total number of patterns of class Ck
2 [0; 1] (B.3)

when \total number of patterns of class Ck" !1.

De�nition B.1.4. The distribution probability P (X`) represents the probability of a pat-❖ P (X`)

tern to have its associated vector x in the subspace X`.

P (X`) =
number of patterns with x 2 X`

total number of patterns
2 [0; 1] (B.4)

when \total number of patterns" !1.

De�nition B.1.5. The posterior probability P (CkjX`) represents the probability for a❖ P (CkjX`)

pattern which have its associated vector in subspace X` to be of class Ck:

P (CkjX`) =
number of patterns with x 2 X` and of class Ck

total number of patterns with x 2 X`
2 [0; 1] (B.5)

when \total number of patterns with x 2 X`" !1.

✍ Remarks:

➥ Regarding X` and probabilities same previous remarks apply.

➥ The the prior probability refers to knowledge available before the pattern vector

is known while the posterior probability refers to knowledge available after the

pattern vector is known.

➥ By assigning a pattern to a class for which the posterior probability is maximum,

the errors of misclassi�cation are minimized.

Theorem B.1.1. Bayes. The posterior probability is the normalized product between prior

and class-conditional probabilities:

P (CkjX`) =
P (X`jCk)P (Ck)

P (X`)
(B.6)

P (X`) being the normalization factor.

Proof. By multiplying (B.3) and (B.1) and comparing the result with (B.2) it follows that

P (Ck;X`) = P (X`jCk)P (Ck) (B.7)

similarly, from (B.5) and (B.4)

P (Ck;X`) = P (CkjX`)P (X`) (B.8)

The �nal result is obtained by comparing (B.7) and (B.8).

B.1. PROBABILITIES 343

✍ Remarks:

➥ When working with classi�cation, all patterns belong to a class: if a pattern can

not be classi�ed into a \normal" class the there may be a outliers class containing

all patterns not classi�able in any other class.

➥ P (X`) represents the normalization factor of P (X`jCk)P (Ck).
Proof. Because each pattern should be classi�ed into a class then

KX
k=1

P (CkjX`) = 1 (B.9)

By using the Bayes theorem (B.6) in (B.9) the distribution probability may be expressed as:

P (X`) =
KX
k=1

P (X`jCk)P (Ck)

and then P (CkjX`) is normalized, i.e.
KP
k=1

P (CkjX`) = 1.

B.1.2 Probability Density, Expectation and Variance

De�nition B.1.6. The probability density function p(x) is the function for which probability

density

P (X`) =

Z
X`

p(x) dx (B.10)

where X` is a pattern subspace.

Similarly, the following probability densities may be de�ned:

� Join probability density p(Ck;x):

P (Ck; X`) =

Z
X`

p(Ck;x) dx

� Class-conditional probability density p(xjCk):

P (X`jCk) =
Z
X`

p(xjCk) dx

� Posterior probability density p(Ckjx):

P (CkjX`) =

Z
X`

p(Ckjx) dx

De�nition B.1.7. The expectation (expected value) EfQg of a function Q(x) is: expectation

EfQg =
Z
X

Q(x)p(x) dx

The variance VfQg of a function Q(x) is:

VfQg =

sZ
X

[Q(x) � EfQg]2p(x) dx

344 APPENDIX B. STATISTICAL SIDELINES

Proposition B.1.1. Using probability densities, the Bayes theorem B.1.1 may be written

as:

P (Ckjx) =
p(xjCk)P (Ck)

p(x)
(B.11)

Proof. For X` being a point in the pattern space, (B.10) may be rewritten as:

dP (x) = p(x) dx

and similarly with the other types of probabilities; the �nal formula is obtained doing the replacement

into (B.6).

As in Bayes theorem, p(x) is a normalization factor for P (Ckjx).

Proof. The p(x) represents the probability density for the pattern vector of being x no matter what class,

it represents the sum of join probability densities for the pattern vector of being x and the pattern being of
class Ck, over all classes:

p(x) =
KX
k=1

p(Ck ;x) =
KX
k=1

p(xjCk)P (Ck)

and comparing to (B.11) it shows that P (Ckjx) is normalized.

✍ Remarks:

➥ The p(xjCk) probability density may be seen as the likelihood probability that

a pattern of class Ck will have its pattern vector x. The p(x) represents a

normalization factor such that the sum of all posterior probabilities sum to one.

Then the Bayes theorem may be expressed as:

posterior probability =
likelihood� prior probability

normalization factor

➧ B.2 Modeling the Density of Probability

Let be a training set of classi�ed patterns fxpg1;P . The problem is to �nd a good approx-

imation for probability density starting from the training set. Knowing it, from the Bayes

theorem and Bayes rule1 it is possible to built the device able to classify new input patterns.

There are several approaches to this problem:

� The parametric method : A speci�c functional form is assumed. There are a small

number of tunable parameters which are optimized such that the model �ts the training

set. Disadvantages: there are limits to the capability of generalization: the functional

forms chosen may not generalize well.

� The non-parametric method : The form of the probability density is determined from

the data (no functional form is assumed). Disadvantages: The number of parameters

grow with the size of the training set.

� The semi-parametric method : Tries to combine the above 2 methods by using a very

general class of functional forms and by allowing the number of parameters to vary

independently from the size of training set. Feed-forward ANN are of this type.

1See \Pattern Recognition" chapter.

B.2. MODELING THE DENSITY OF PROBABILITY 345

B.2.1 The Parametric Method

The parametric method uses functions with few tunable parameters to model the probability

density. These functions are named distributions. The most widely used is the Gaussian

due to its properties and good approximation of many real world processes.

Gaussian Unidimensional

For a unidimensional space the Gaussian distribution is de�ned as:

p(x) =
1p
2� �

exp

�
�
(x� �)2

2�2

�
; �; � = const. (B.12)

This function have the following properties:

1. p(x) is normalized, i.e.
1R
�1

p(x) dx = 1.

2. Expected value of x is �, i.e. Efxg =
1R
�1

xp(x) dx = �.

3. The variance (standard deviation) of x is �, i.e.

Vfxg =

vuuut 1Z
�1

[x� Efxg]2p(x) dx = �

Proof. 1. By making the change of variable:

y =
x� �p
2�

, dy =
dxp
2�

and because
1R

�1
ex

2
dx =

p
� (see the mathematical appendix) then

1R
�1

p(x) dx = 1 i.e. the probability

density is normalized (this is the role of the 1p
2� �

factor) as it should be, because the probability of �nding

x in the whole space is 1 (certainty).

2. The mean value of x is the expectation (see de�nition B.1.7)

Efxg =
1Z

�1

xp(x) dx

and by making the same change of variable as above (x =
p
2�y + �)

Efxg = 1p
2� �

1Z
�1

(
p
2�y + �)e�y

2p
2� dy

=

r
2

�
�

1Z
�1

ye
�y2

dy +
�p
�

1Z
�1

e
�y2

dy = �

because the �rst integral
1R
�1

ye�y
2
dy is 0 | the integrand is an odd function (the value for �x is minus

the value for x) and the integration interval is symmetric relatively to origin; and the second integral is
p
�

(see the mathematical appendixes).

B.2.1See [Bis95] pp. 34{49 and [Rip96] pp. 21, 30{31.

346 APPENDIX B. STATISTICAL SIDELINES

3. The variance is (see de�nition B.1.7):

Vfxg =
1Z

�1

(x� �)2p(x) dx

(as Efxg = �) and same change of variable leads to an integral solvable by parts:

Vfxg = 1p
2� �

1Z
�1

(x� �)2 exp

�
� (x� �)2

2�2

�
dx =

2�2p
�

1Z
�1

y
2
e
�y2

dy

= � �2p
�

1Z
�1

y d

�
e
�y2

�
= � �2p

�
y e

�y2
���1
�1

+
�2p
�

1Z
�1

e
�y2

dy = �
2

✍ Remarks:

➥ To apply to a stochastic process calculate the mean and variance of training set,

then replace in (B.12) to �nd an approximation of real probability density by an

Gaussian.

Gaussian Multidimensional

In general, into a N -dimensional space, the Gaussian distribution is de�ned as:

p(x) =
1

(2�)N=2
p
j�j

exp

�
�
(x� �)T��1(x� �)

2

�
(B.13)

where � is a N -dimensional vector and � is a N �N matrix, symmetric and inversable.

This function have the following properties:

1. p(x) is normalized, i.e.
R
RN

p(x) dx = 1, where dx = dx1 : : : dxN .❖ dx

2. Expected value of x is �, i.e. Efxg =
R
RN

xp(x) dx = �.

3. Expected value of (x� �)(x� �)T is �, i.e.

Ef(x� �)(x � �)Tg = �

Proof. 1. Because det(��1) det(�) = det(��1�) = det(I) = 1 then det(��1) = 1

det(�)
, and, by making

the change of variable ex = x��, the integral become:Z
RN

p(x) dx =

p
j��1j

(2�)N=2

Z
RN

exp

�exT��1ex
2

�
dex = 1

(see also the mathematical appendix regarding Gaussian integrals).

2. The mean value for x is the expectation

Efxg =
Z
RN

xp(x) dx =

p
j��1j

(2�)N=2

Z
RN

x exp

�
� (x� �)T��1(x��)

2

�
dx

and, by making the same change of variable as above ex = x� �, it becomes

Efxg =
p
j��1j

(2�)N=2

264 Z
RN

ex exp�� exT��1ex
2

�
dex+ �

Z
RN

exp

�
� exT��1ex

2

�
dex
375

B.2. MODELING THE DENSITY OF PROBABILITY 347

The function exp
�
� ex

T
�
�1
ex

2

�
is even (same value for ex and �ex), such that the integrand of the �rst

integral is an odd function and, the interval of integration being symmetric to the origin, the integral is

zero. The second integral have the value 1

(2�)n=2
p
j�j

and, as j��1j = 1

j�j , then �nally Efxg = �.

3. The expectation value for that matrix is:

Ef(x� �)(x� �)Tg =
Z
RN

(x� �)(x� �)Tp(x) dx

=

p
j��1j

(2�)N=2

Z
RN

(x� �)(x� �)T exp

�
� (x��)T��1(x� �)

2

�
dx

Same change of variable as above ex = x� � and:

Ef(x� �)(x� �)Tg =
p
j��1j

(2�)N=2

Z
RN

exexT exp

�
�exT��1ex

2

�
dex

Let fuigi=1;N
be the eigenvectors and f�igi=1;N

the eigenvalues of � such that �ui = �iui. The consider ❖ ui, �i

the set of eigenvectors chosen such that is orthonormated (see the mathematical appendix regarding the

properties of symmetrical matrices).

Let be U the matrix build using the eigenvectors of � as columns and � the matrix of eigenvalues �ij = �ij�i ❖ U , �

(�ij being the Kronecker symbol), i.e. � is a diagonal matrix with eigenvalues on main diagonal and 0 in

rest.

By multiplying Ef(x � �)(x � �)Tg with U
T to the left and with U to the right and because the set of

eigenvectors is orthonormated then U
T
U = I) U

�1 = U
T) UU

T = I and it gets that:

U
TEf(x� �)(x� �)TgU =

p
j��1j

(2�)N=2

Z
RN

U
TexexTU exp

�
�exTUUT��1UUTex

2

�
dex

A new change of variable is performed: y = UTex and then y
T = exTU and dy = dex | because

this transformation conserve the distances and angles. Also ��1 have the same eigenvectors as �, the

eigenvalues being
n

1

�i

o
i=1;N

and respectively the eigenmatrix ��1 is de�ned by ��1ij = �ij
1

�i
. Then:

U
TEf(x� �)(x� �)TgU =

p
j��1j

(2�)N=2

Z
RN

yy
T exp

�
�y

T��1y

2

�
dy

=

p
j��1j

(2�)N=2

Z
RN

yy
T exp

�

NX
i=1

y
2

i

2�i

!
dy =

p
j��1j

(2�)N=2

Z
RN

yy
T

NY
i=1

exp

�
� y

2

i

2�i

�
dy

i.e. the integrals now may be decoupled. First the yyT is of the form

yy
T =

0B@ y1

.

.

.
yN

1CA�y1 � � � yN

�
=

0B@ y
2

1
� � � y1yN

.

.

.
. . .

yNy1 � � � y
2

N

1CA
Each element of the matrix fUTEf(x� �)(x � �)(t)gUgi;j is computed separately. There are two cases:

non-diagonal and diagonal elements. Also
R
R,

R1
�1.

The non-diagonal elements are

fUTEf(x ��)(x ��)TgUg i;j
i6=j

=

p
j��1j

(2�)N=2

2664 NY
k=1

k 6=i;j

1Z
�1

exp

� y2

k

2�k

!
dyk

3775
24 1Z
�1

yi exp

�
� y

2

i

2�i

�
dyi

3524 1Z
�1

yj exp

�
y2j

2�j

!
dyj

35

348 APPENDIX B. STATISTICAL SIDELINES

and because the function yi exp

�
� y2i

2�i

�
is odd, the corresponding integrals are 0 such that

fUTEf(x� �)(x� �)TgUg i;j
i6=j

= 0

The diagonal elements are

fUTEf(x� �)(x� �)TgUgi;i =
p
j��1j

(2�)N=2

2664 NY
k=1

k 6=i

1Z
�1

exp

� y

2

k

2�k

!
dyk

3775
24 1Z
�1

y
2

i exp

�
� y2

i

2�i

�
dyi

35

and the individual integrals appearing above are:

1Z
�1

exp

� y2

k

2�k

!
dyk =

p
2��k and

1Z
�1

y
2

i exp

�
� y2

i

2�i

�
dyi = �i

p
2��i

(calculated same way as for the unidimensional case) and j�j =
NQ
i=1

�i; so �nally

U
TEf(x� �)(x� �)(t)gU = �) E[(x��)(x ��)T] = U�UT = �

✍ Remarks:

➥ By applying the transformation (equivalent to a rotation)

ex = UT(x� �)

the probability distribution p(x) becomes (similar to the above calculations)

p(x) =

p
j��1j

(2�)N=2
exp

�
�
exTUT�(�1)Uex

2

�
=

p
j��1j

(2�)N=2
exp

�
�
exT��1ex

2

�
=

=

p
j��1j

(2�)N=2
exp

�

NX
i=1

ex2i
2�i

!
=

NY
i=1

pi

where pi is

pi =
1

(2�)N=2
p
�i

exp

�

NX
i=1

ex2i
2�i

!

and then the probabilities are decoupled, i.e. the components of x are statistically

independent.

➥ The expression

� =

q
(x� �)T��1(x� �)

is called Mahalanobis distance between vectors x and �.Mahalanobis

distance
➥ For � = const. the probability density is constant so � represents surfaces of

equal probability for x.

B.2. MODELING THE DENSITY OF PROBABILITY 349

x2
u2

u1

p
�2

x1

�

p
�1

Figure B.1: Equal probability density for Gauss probability density in

two dimensions. The ellipse represents all points where

p(x1; x2) = e�1=2. The � vector points to the center of

the ellipse.

➥ By applying the transformation ex = UT(x � �) the Mahalanobis distance be-

comes:

�2 =

NX
i=1

�iex2i
i.e. the surfaces of equal probability are hyper-ellipsoids. The main axes of the

ellipsoid are proportional with
p
�i. The � vector points to the location of highest

probability density. See �gure B.1

The transformation ex = UT(x��) is from (x1; x2) to fu1;u2g, i.e. a translation
by � then a rotation such that fu1;u2g becomes the new set of versors.

The probability density for a two dimensional pattern space is shown in �gure B.2

on the following page.

➥ The number of parameters de�ning the Gaussian distribution is 1 + � � � + N =
N(N+1)

2
for � (symmetrical matrix) plus N parameters for � so the Gaussian

distribution is completely de�ned by
N(N+3)

2
number of parameters.

De�nition B.2.1. A N -dimensional vector x it is said to be normal, i.e. x � NNf�;�g if ❖ NNf�;�g
it have a Gaussian distribution of the form (B.13) with a mean � and covariance matrix �.

✍ Remarks:

➥ Let consider a set of several classes 1; : : : ;K such that each may be modelled linear discriminant

analysisusing a multidimensional Gaussian, each with its own �k and �k. Considering

that the prior probabilities P (Ck) are equal then the biggest posterior probability

for a given vector x is the one corresponding to the minimum of the Mahalanobis

distance �kx = min
`

�`x This type of classi�cation is named linear discriminant

analysis.

350 APPENDIX B. STATISTICAL SIDELINES

0

p

5

0:12

0:06

0:00
5

�5 �5x2
0
x1

5

1

0:001

0:02

0:04

0:06

0:08

0:10
3

�1

�3

�5
�5 �3 �1 1 3 5

x2

x1

p

a) p(x1; x2) b) level curves for p

Figure B.2: The Gaussian probability density function in two dimen-

sional pattern space for � = b0 and � = (1 0
0 2). The

function was sampled in �x1;2 = 0:5 steps.

➥ Considering the covariance matrix equal to the identity matrix, i.e. � = I , then
the Mahalanobis distance reduces to the simple Euclidean distance (see math-

ematical appendix) and then the pattern vectors x are simply classi�ed to the

class Ck with the closest mean �k.

B.2.2 The non-parametric method

Non-parametric method try to solve the problem of �nding a probability distribution of data

using a training set and without making any assumption about the form of the distribution

function.

Histograms

In the histogram method the pattern space is divided in subspaces (areas) Xk and the❖ Xk

probability density is estimated from the number of patterns in each area. See �gure B.3

on the next page.

The size of Xk determine the model complexity: if it is too large then it �ts poorly the data,

if it is too small then it over�ts the exceptions/noise which may be present in the training

set, i.e. the size of Xk controls the model complexity. See �gure B.3 on the facing page.

Let take one area Xk and let K be the number of patterns from the training set which are❖ K
in the area Xk.

Assuming a su�ciently large number of patterns in the training set (such that the training

set is statistically signi�cant) then the probability that a pattern will fall in the area Xk is

approximatively:

P (Xk) '
K

P

B.2.2See [Bis95] pp. 49{59 and [Rip96] pp. 190, 201{206.

B.2. MODELING THE DENSITY OF PROBABILITY 351

a) Simple model

b) Good model

b) Complex model

p

X

X1 X2

p

X

p

X

Figure B.3: Histograms: probability density p versus pattern space X.

The true probability density is shown with a dotted line.

The estimated probability density is shown with a thick

line. The rectangles represent the number of patterns

from the training set which falls in the designated regions

Xk. The small circles represents the patterns.

On the other hand, assuming that the probability density is approximatively constant toep(x) in all points from Xk then:

P (Xk) =

Z
Xk

p(x) dx ' ep(x) Z
Xk

dx = ep(x)VXk

where VXk
is the volume of the pattern area Xk. Finally: ❖ VXk

p(x) ' ep(x) = KP

PVXk

(B.14)

where ep(x) is the estimated probability density. ❖ ep(x)
To solve (B.14) further, two approaches may be taken.

� Xk, respectively VXk
is �xed and KP is counted | this represents the kernel based kernel method

method.

� K is �xed and the VXk
is calculated | this represents the K{nearest{neighbors K nearest

neighborsmethod.

352 APPENDIX B. STATISTICAL SIDELINES

p(x)

X

Figure B.4: The kernel{based method. The dashed line is the real

probability density p(x); the continuous line is the esti-

mated probability density ep(x) based on counting the pat-

terns in the hypercube sorounding the current point and

represented by a dashed rectangle.

The kernel{based method

Let Xk be a hypercube having the side of length ` and being centered in x. Then its volume

is VXk
= `N (N being the dimension of the pattern space).

The following kernel function2 H(x) is de�ned❖ H(x)

H(x) =

(
1 if xi <

1
2
for i = 1; N

0 otherwise

such that H(x) is 1 if the point x is inside the unit hypercube centered in the origin and

0 otherwise. Then H
�
x�xp
`

�
will indicate if the xp point from the training set is in the

hypercube Xk or not. The total number of patterns falling in Xk is:

K =

PX
p=1

H

�
x� xp

`

�

and then, the estimate for the probability density is:

ep(x) = 1

P

PX
p=1

1

`N
H

�
x� xp

`

�

this may be visualized as a sliding hypercube in the pattern space, centered in the current

point x. While moving it, some of the xp points will enter it while others will leave it such

that | unless the total number remains constant | ep(x) will have a step jumps. See

�gure B.4.

The function ep(x) may be \smoothened" by replacing the kernel function with a continuous
2Known also as the Parzen window.

B.2. MODELING THE DENSITY OF PROBABILITY 353

function:

H(x) =
1

(2�)N=2
exp

�
�
kxk2

2

�
and then the estimation of the probability density becomes:

ep(x) = 1

P

PX
p=1

1

(2�`2)N=2
exp

�
�
kx� xpk2

2`2

�

In general any function bounded by the conditions:

H(x) > 0 and

Z
X

H(x) dx = 1

is suitable to be used as a kernel function.

Let examine the expectation of the estimated probability density, considering that P !1:

Efep(x)g = 1

P

PX
p=1

E
�

1

`N
H

�
x� xp

`

��
!
Z
X

1

`N
H

�
x� x

0

`

�
p(x0) dx0

(where x0 represents the integral variable).

This formula shows that the expectation of the estimated probability density is a convolution

of the (true) probability density with the kernel function.

For `! 0 and P !1 the estimated probability density approaches the true one while the

kernel function approaches the �-Dirac function.

The K{nearest{neighbors method

Let K be �xed and Xk a hyper-sphere centered in x and with variable radius, such that it

will contain always the same number K of vectors from the training set. See �gure B.5 on

the following page.

The estimation of probability density is found from:

ep(x) = K

PVXk

The volume V(N) of a sphere, of radius r in the N -dimensional space is: ❖ V(N)

V(N) =
�N=2

�E
�
N
2
+ 1
� rN where �E(x) =

1Z
0

e�ttx�1dt

�E being the Euler function, see the mathematical appendix.

Let consider a set of classes and a training set. Let Pk be the number of patterns of class

Ck in the training set such that
P
k

Pk = P . Let Kk be the number of patterns of class Ck

in the hyper-sphere of volume V . Then

p(xjCk) =
Kk

PkV
; p(x) =

K

PV
and p(Ck) =

Pk

P

354 APPENDIX B. STATISTICAL SIDELINES

p(x)

X

Figure B.5: The K{nearest{neighbors based method. The dashed line

is the real probability density p(x); the continuous line is
the estimated probability density ep(x) based on estimating

the volume of the hyper-sphere with variable radius and

represented by a dashed circle (the hyper-sphere is de�ned

by �xing the K number).

From the Bayes theorem

p(Ckjx) =
p(xjCk) p(Ck)

p(x)
=

Kk

K

which is known as the K{nearest{neighbors classi�cation rule. This means that once the

volume of the hyper-sphere was established (by �xing K) a new pattern x is classi�ed as

being of that class which have most representatives (Kk) included into the hyper-sphere,

i.e. to that class Ck for which:

p(Ckjx) = max
`

p(C`jx)

(according to the Bayes rule, see \Pattern Recognition" chapter).

✍ Remarks:

➥ The parameters governing the smoothness of the histogram method are V for

kernel based procedure and K for K nearest neighbors procedure If this tunable

parameter is to large then an excessive smoothness occurs and the resulting model

is too simple. If the parameter is chosen too small then the variance of the model

is too large, the model will approximate well the probability for the training set

but will have poor generalization, the model will be too complex.

B.2.3 The Semi{Parametric Method

The mixture model

The mixture model consider that the probability density is a superposition of probability

densities, each of them having a di�erent weight by which contributes to the total.

B.2.3See [Bis95] pp. 59{73.

B.2. MODELING THE DENSITY OF PROBABILITY 355

The procedure below is repeated for each class Ck in turn.

Considering a superposition of M probability densities then: ❖ M

p(x) =

MX
m=1

p(xjm)P (m) (B.15)

where p(xjm) represents the probability density of pattern as being x, from all patterns ❖ p(xjm), P (m)

generated by component m of the superposition, and the weight is P (m), the prior prob-

ability of the pattern x having been created by the component m of the superposition.

M becomes also a parameter of the model.

All these probabilities have to be normalized:

MX
m=1

P (m) = 1 ; P (m) 2 [0; 1] and

Z
X

p(xjm) dx = 1

✍ Remarks:

➥ The training set have the patterns classi�ed in classes but does not have the incomplete

training setpatterns classi�ed by the superposition components m, i.e. the training set is

incomplete and the complete model have to provide a mean to determine this.

The posterior probability is given by the Bayesian theorem and is normalized:

P (mjx) =
p(xjm)P (m)

p(x)
and

MX
m=1

P (mjx) = 1 (B.16)

The problem is to determinate the components of the superposition of probability densities.

✍ Remarks:

➥ One possibility is to model the conditional probability densities p(xjm) as Gaus-

sian, de�ned by the parameters �m and �m = �mI :

p(xjm) =
1

(2��2m)
N=2

exp

�
�
kx� �mk2

2�2m

�
(B.17)

and then a search for optimal parameters � and � may be done.

➥ To avoid singularities the conditions:

�m 6= xp m = 1;M ; p = 1; P and �m 6= 0 m = 1;M

have to be imposed (xp are the training vectors).

The maximum likelihood method

The parameters are searched by maximizing the likelihood function, de�ned as3:

L =

PY
p=1

p(xpjW) (B.18)

3See \Pattern Recognition" chapter.

356 APPENDIX B. STATISTICAL SIDELINES

equivalent to minimize the negative log-likelihood function E = � lnL which may act as

an error function.

E = � lnL = �
PX
p=1

ln p(xp) = �
PX
p=1

ln

"
MX
m=1

p(xpjm)P (m)

#
(B.19)

✍ Remarks:

➥ Considering the Gaussian model then from (B.16) and (B.17):

E = �
PX
p=1

ln

"
MX
m=1

p(xp)P (mjxp)
(2��2m)

N=2
exp

�
�
kxp � �mk2

2�2m

�#

The minimum of E is found by searching for the roots of its derivative, i.e. E is

minimum for those values of �m and �m for which:

r�m
E = 0 ,

PX
p=1

P (mjxp)
xp � �m

�2m
= 0 and

@E

@�m
= 0 ,

PX
p=1

P (mjxp)
�
N �

kxp � �mk2

�2m

�
= 0

(the denominator of derivative shouldn't be 0 anyway, also �m 6= 0, see previous

remarks).

The above equations gives the following estimates for �m and �m parameters:

e�m =

PP
p=1

P (mjxp)xp

PP
p=1

P (mjxp)
and e�m =

PP
p=1

kxp � �mk2P (mjxp)

N
PP
p=1

P (mjxp)
(B.20)

In order to automatically ensure normalization, the P (m) parameters may be expressed by

the means of M parameters �m as follows:

P (m) =
e�m

MP
q=1

e�q
�m 2 R; m = 1;M

These expressions are called softmax functions. Then the �m are also parameters of thesoftmax

function model and E which depends upon them have to be minimized with respect to them, i.e. its

derivative with respect to �m should be 0 at minimum.

From the softmax expression:
@P (q)

@�m
= �mqP (m)�P (m)P (q), also @E

@�m
=

MP
q=1

@E
@P (q)

@P (q)

@�m
,

(�mq being the Kronecker symbol) and then from (B.19):

@E

@�m
=

MX
q=1

(
PX
p=1

p(xpjq)
MP̀
=1

p(xpj`)P (`)

)
[�mqP (m)� P (m)P (q)]

B.2. MODELING THE DENSITY OF PROBABILITY 357

=

PX
p=1

p(xpjm)P (m)
MP̀
=1

p(xpj`)P (`)
� P (m)

MX
q=1

PX
p=1

p(xpjq)P (q)
MP̀
=1

p(xpj`)P (`)

By applying the Bayes theorem and considering the normalization of P (mjx), see (B.16),

the �rst term becomes:

PX
p=1

p(xpjm)P (m)
MP̀
=1

p(xpj`)P (`)
=

PX
p=1

P (mjxp) p(xp)

p(xp)
MP̀
=1

P (`jxp)
=

PX
p=1

P (mjxp)

while the second term is:

P (m)

MX
q=1

PX
p=1

p(xpjq)P (q)
MP̀
=1

p(xpj`)P (`)
= P (m)

PX
p=1

p(xp)
MP
q=1

P (qjxp)

p(xp)
MP̀
=1

P (`jxp)
= PP (m)

so �nally:

@E

@�m
= 0 , P (m) =

1

P

PX
p=1

P (mjxp) (B.21)

The EM (expectation{maximisation) algorithm

The algorithm works with formulas (B.20) and (B.21) iteratively, in steps, starting with

some initial values for the parameters at the �rst step t = 1 and then recalculating e�(t+1)m,e�(t+1)m and the estimated eP(t+1)(m) by using the old values at the previous step e�(t)m,e�(t)m and eP(t)(m). It is supposed that E function gets smaller at each step till it reaches

the minimum.

The variation in the error function E (given by (B.19)), from one step to the next, is:

�E = E(t+1) �E(t) = �
PX
p=1

ln
p(t+1)(xp)

p(t)(xp)
(B.22)

and, using (B.15) for p(t+1)(xp):

�E = �
PX
p=1

ln

2664
MP
m=1

p(t+1)(xpjm)P(t+1)(m)

p(t)(xp)

P(t)(mjxp)
P(t)(mjxp)

3775 (B.23)

✍ Remarks:

➥ The Jensen's inequality states that given a function f , convex down on an interval Jensen's inequality

[a; b], a set of P points in that interval fxpgp=1;P 2 [a; b] and a set of numbers

358 APPENDIX B. STATISTICAL SIDELINES

f�pgp=1;P 2 [0; 1] such that
PP
p=1

�p = 1, then:

f

PX
p=1

�pxp

!
>

PX
p=1

�pf(xp)

see the mathematical appendix.

By applying the Jensen's inequality to (B.23): f , ln and �p , P(t)(mjxp) (P(t)(mjxp)
are normated) then:

�E 6

PX
p=1

MX
m=1

P(t)(mjxp) ln
�
P(t+1)(m) p(t+1)(xpjm)

p(t)(xp)P(t)(mjxp)

�
� Q (B.24)

and E(t+1) 6 E(t)+Q, i.e. E(t+1) is bounded above and it may be minimized by minimizing❖ Q

Q. Generally Q = Q(W(t+1)), the old parameters W(t) being already established at the

previous t step. Eventually, minimizing Q is equivalent to minimizing:

eQ = �
PX
p=1

MX
m=1

P(t)(mjxp) ln
�
P(t+1)(m) p(t+1)(xkjm)

�
(B.25)

For the Gaussian distribution, see (B.17), eQ becomes

eQ = �
PX
p=1

MX
m=1

P(t)(mjxp)

"
lnP(t+1)(m)�N ln�(t+1)m �

kxp � �(t+1)mk2

2�2
(t+1)m

#
+ const.

The problem is to minimize eQ with respect to (t+1) parameters, i.e. to �nd the parameters

at step t+ 1, such that the condition of normalization for P(t+1)(m) (
MP
m=1

P(t+1)(m) = 1)

is met. The Lagrange multiplier method4 is used here. The Lagrange function is:

L = eQ+ �

"
MX
m=1

P(t+1)(m)� 1

#

The value of the parameter � is found by putting the set of conditions: @L
@P(t+1)(m)

= 0

which gives:

�
PX
p=1

P(t)(mjxp)
P(t+1)(m)

+ � = 0 ; m = 1;M

and by summation over m, and because both P(t)(mjxp) and P(t+1)(m) are normated:

MX
m=1

P(t)(mjxp) = 1 and

MX
m=1

P(t+1)(m) = 1

4See mathematical appendix.

B.2. MODELING THE DENSITY OF PROBABILITY 359

then � =M .

The required parameters are found by setting the conditions:

r�(t+1)m
L = 0 ;

@L

@�m
= 0 and

@L

@P(t+1)(m)
= 0

which gives the solutions:

�(t+1)m =

PP
p=1

P(t)(mjxp)xp

PP
p=1

P(t)(mjxp)
(B.26a)

�(t+1)m =

vuuuuuut
PP
p=1

P(t)(mjxp)kxp � �(t+1)mk2

N
PP
p=1

P(t)(mjxp)
(B.26b)

P(t+1)(m) =
1

N

PX
p=1

P(t)(mjxp) (B.26c)

As discussed earlier (see the remarks regarding the incomplete training set) usually the data

available is not classi�ed in terms of probability components m, m = 1;M . A variable zp,

zp 2 [1; : : : ;M] may be associated with each training vector xp, to hold the probability ❖ zp
component. The error function then becomes:

E = � lnL = �
PX
p=1

ln p(t+1)(xp; zp) = �
PX
p=1

ln[P(t+1)(zp) p(t+1)(xpjzp)]

= �
PX
p=1

MX
m=1

�mzp ln[P(t+1)(zp) p(t+1)(xpjzp)]

P(t)(zpjxp) represents the probability of zp for a given xp, at step t. The probability of

E for a given set of fzpgp=1;P is the product of all P(t)(zpjxp), i.e.
PQ
p=1

P(t)(zpjxp). The

expectation EfEg is the sum of E over all values of fzpgp=1;P weighted by the probability

of the fzpgp=1;P set:

EfEg = �
MX
z1=1

� � �
MX

zP=1

E

PY
p=1

P(t)(zpjxp)

= �
PX
p=1

MX
m=1

"
MX
z1=1

� � �
MX

zP=1

�mzp

PY
q=1

P(t)(zq jxq)

#
ln[P(t+1)(zp) p(t+1)(xpjzp)]

360 APPENDIX B. STATISTICAL SIDELINES

On similar grounds as for EfEg, the expression in square parenthesis from the above equation

represents the expectation Ef�mzpg:

Ef�mzpg =
MX

z1=1

� � �
MX

zP=1

�mzp

PY
p=1

P(t)(zpjxp) = P(t)(mjxp)

which represents exactly the probability P(t)(mjxp). Finally:

EfEg = �
PX
p=1

MX
m=1

P(t)(mjxp) ln[P(t+1)(m) p(t+1)(xpjm)]

which is identical with the expression of eQ, see (B.25), and thus minimizing eQ is equivalent

to minimizing EfEg at the same time.

Stochastic estimation

Let consider that the training vectors came one at a time. For a set of P training vectors

the �(P)m parameter from the Gaussian distribution is (see (B.26a)):

�(P)m =

PP
p=1

P (mjxp)xp

PP
p=1

P (mjxp)

and, after the P + 1 training vector have arrived:

�(P+1)m =

P+1P
p=1

P (mjxp)xp

P+1P
p=1

P (mjxp)
= �(P)m + �(P+1)m

�
xP+1 � �(P)m

�

where

�(P+1)m =
P (mjxP+1)
P+1P
p=1

P (mjxp)

To avoid keeping all old fxpgp=1;P (to calculate
P+1P
p=1

P (mjxp)) use either (B.21) such that:

�(P+1)m =
P (mjxP+1)
(P + 1)P (m)

or, directly from the expression of �(P+1)m:

�(P+1)m =
1

1 +
P (mjxP)

�(P)mP (mjxP+1)

B.3. THE BAYESIAN INFERENCE 361

➧ B.3 The Bayesian Inference

Unlike other techniques where the probabilities are build by �nding the best set of W
parameters, the Bayesian inference assumes a probability density for W itself.

The following procedure is repeated for each class Ck in turn. First a prior probability is

chosen p(W), with a large coverage for the unknown parameters, then using the training

set fxpgP the posterior probability density p(W jfxpgP) is found trough the Bayes theorem. ❖ fxpgP

The process of �nding p(W jfxpgP), from p(W) and fxpgP , is named Bayesian learning . Bayesian

learning
Let p(xjfxpgP) be the probability density for a pattern from fxpgP to have its pattern

vector x and let p(x;W jfxpgP) be the join probability density that a pattern from fxpgP ❖ p(xjfxpgP),
p(x;W jfxpgP)have its pattern vector x and the parameters of the probability density are de�ned trough

W . Then:

p(xjfxpgP) =
Z
W

p(x;W jfxpgP) dW (B.27)

the integral being done over all possible values of W , i.e. in the W space.

p(x;W jfxpgP) represents the ratio of pattern vectors being x with their probability density

characterized by W and being into the training set fxpgP relative to the total number of

training vectors:

p(x;W jfxpgP) =
no. patterns being x; with W; in fxpgP

no. patterns in fxpgP

p(xjW; fxpgP) represents the ratio of pattern vectors being x with their probability density ❖ p(xjW; fxpgP)
characterized byW and being into the training set fxpgP relative to the number of training

vectors with their probability density characterized by W from the training set fxpgP :

p(xjW; fxpgP) =
no. patterns being x; with W; in fxpgP

no. patterns with W; in fxpgP

p(W jfxpgP) represents the ratio of pattern vectors with their probability density charac- ❖ p(W jfxpgP)
terized by W and being into the training set fxpgP relative to the number of training

vectors:

p(W jfxpgP) =
no. patterns with W; in fxpgP

no. patterns in fxpgP

Then, from the above equations, it gets that:

p(x;W jfxpgP) = p(xjW; fxpgP) p(W jfxpgP)

The probability density p(xjW; fxpgP) have to be independent of the choice of the sta-

tistically valid training set (same ratio should be in any training set) and consequently it

reduces to p(xjW). Finally:

p(xjfxpgP) =
Z
W

p(xjW)p(W jfxpgP) dW (B.28)

362 APPENDIX B. STATISTICAL SIDELINES

✍ Remarks:

➥ By contrast with other statistical methods who tries to �nd the best set of param-

eters W , the Bayesian inference method performs an weighted average over the

W space, using all possible sets of W parameters according to their probability

to be the right choice.

The probability density of the whole set fxpgP is the product of densities for each xp

(assuming that the set is statistically signi�cant):

p(fxpgP jW) =

PY
p=1

p(xpjW)

From the Bayes theorem and using the above equation:

p(W jfxpgP) =
p(fxpgP jW) p(W)

p(fxpgP)
=

p(W)

p(fxpgP)

PY
p=1

p(xpjW) (B.29)

p(fxpgP) plays the role of a normalization factor, and from the condition of normalization

for p(W jfxpgP):
R
W
p(W jfxpgP) dW = 1, it follows that:

p(fxpgP) =
Z
W

p(W)

PY
p=1

p(xpjW) dW (B.30)

✍ Remarks:

➥ Let consider a unidimensional Gaussian distribution with the standard deviation

� known and try to �nd the parameter � from a training set fxpgP .

The probability density of � will be modeled also as a Gaussian characterized by

parameters �� and ��.❖ ��, ��

p(�) =
1

p
2� ��

exp

�
�
(�� ��)

2

2�2�

�
(B.31)

where this form of p(�) expresses the prior knowledge of the probability density

for � and then a large value for �� should be chosen (large variance).

Using the training set, the posterior probability p(�jfxpgP) is calculated for �:

p(�jfxpgP) =
p(�)

p(fxpgP)

PY
p=1

p(xpj�) (B.32)

Assuming a Gaussian distribution for p(xpj�) then:

p(xpj�) =
1

p
2� �

exp

�
�
(xp � �)2

2�2

�
(B.33)

From (B.30) and (B.33)

p(fxpgP) =
1Z

�1

p(�)

PY
p=1

p(xpj�) d� (B.34)

B.3. THE BAYESIAN INFERENCE 363

=
1

(2�)
P+1
2 ���P

1Z
�1

exp

"
�
(�� ��)

2

2�2�
�

1

2�2

PX
p=1

(�� xi)
2

#
d�

Let hxi =
PP
p=1

xp be the mean of the training set. ❖ hxi

Replacing (B.31), (B.33) and (B.34) back into (B.32) gives:

p(�jfxpgP) / exp

�
�

�2

2�2�
�
���
�2�

�
P�2

2�2
�
�P hxi
�2

�
)

p(�jfxpgP) = const. exp

264� 1
�2�

+ P
�2

2

0@�� ��
�2�

+
P hxi
�2

1
�2�

+ P
�2

1A2
375

(const. being the normalization factor). This expression shows that p(�jfxpgP)
is also a Gaussian distribution characterized by the parameters:

e� =
P�2�hxi+ �2�2�

P�2� + �2
and e� =

s
�2�2�

P�2� + �2

For P !1: e�! hxi and e� ! 0. lim
P!1

e� = 0 shows that, for P !1, � itself

will assume the limit value hxi.

➥ There is a relationship between the Bayesian inference and maximum likelihood

methods. The likelihood function is de�ned as:

p(fxpgP jW) =

PY
p=1

p(xpjW) � L(W)

then from (B.29):

p(W jfxpgP) =
L(W)p(W)

p(fxpgP)

p(W) represents the prior knowledge about W which is low and so p(W) should

be relatively at, i.e. all W have (relatively) the same probability (chance). Also,

by construction, L(W) is maximum for the most probable value for W , let fW
be that one. Then p(W jfxpgP) have a maximum around fW .

If the p(W jfxpgP), maximum in fW , is relatively sharp then for P ! 1 the

integral (B.28) is dominated by the area around fW and:

p(xjfxpgP) =
Z
W

p(xjW) p(W jfxpgP) dW

' p(xjfW)

Z
W

p(W jfxpgP) dW = p(xjfW)

364 APPENDIX B. STATISTICAL SIDELINES

x

f(w)

ww0

Figure B.6: The regression function f(w) approximate the x(w) de-

pendency. The roots w0 of f are found by the Robbins{

Monro algorithm.

(because
R
W

p(W jfxpgP) dW = 1, i.e. p(W jfxpgP) is normalized).

The conclusion is that for a large number of training patterns P ! 1 the

Bayesian inference solution (B.27) approaches the maximum likelihood solution

p(xjfW).

➧ B.4 The Robbins�Monro algorithm

This algorithm shows a way of �nding the roots of a function stochastically de�ned.

Let consider 2 variables x and w which are correlated x = x(w). Let Efxjwg be the

expectation of x for a given w | this expression de�nes a function of w❖ f

f(w) = Efxjwg

this types of functions being named regression functions.regression

function
The regression function f expresses the dependency between the mean of x and w. See

�gure B.6.

Let w0 be the wanted root. It is assumed that x have a �nite variance:

Ef(x� f)2jwg = �nite (B.35)

and, without any loss of generality, that f(w) < 0 for w < w0 and f(w) > 0 for w > w0,

as in �gure B.6.

Theorem B.4.1. The root w0, of the regression function f is found by successive iteration,

starting from a value w1 in the vicinity of w0, as follows:

wi+1 = wi � �ix(wi)

B.4See [Fuk90] pp. 378{380.

B.4. THE ROBBINS�MONRO ALGORITHM 365

where �i have to satisfy the following conditions:

lim
i!1

�i = 0 (B.36a)

1X
i=1

�i =1 (B.36b)

1X
i=1

�2i = �nite (B.36c)

Proof. The x(w) may be expressed as a sum between the regression function f(w) and some noise �: ❖ �

x(w) = f(w) + � (B.37)

then, from the de�nition of the regression function f

Ef�jwg = Efxjw)� f(wg = 0

(f is well de�ned, so its expectation is f itself).

The di�erence between wi+1 and w0 is

wi+1 �w0 = wi �w0 � �if(wi)� �i�i

where �i is the noise from x(wi). Taking the expectation of the square of the above expression: ❖ �i

Ef(wi+1 �w0)
2g � Ef(wi �w0)

2g = �
2

i f
2(wi) + �

2

i Ef�2i g � 2�iEf(wi �w0)f(wi)g
(Eff(wi)�ig = Eff(wi)gEf�ig because f and � are statistically independent, so 2�iEff(wi)�ig =

2�if(wi)Ef�ig = 0 because of the expectation of �).

By repeating the above procedure over N steps and doing the sum gives:

Ef(wN+1 �w0)
2g � Ef(w1 �w0)

2g =
NX
i=1

�
2

i

�
f
2(wi) + Ef�2i g

�� 2
NX
i=1

�iEf(wi �w0)f(wi)g

It is reasonable to assume that w1 is chosen such that f2 is bounded in the chosen vicinity of the searched

root, then let f2(wi) 6 F for all i 2 f1; : : :N +1g and let Ef�2i g 6 �2. (it is assumed that �2 is bounded,

see (B.35) and (B.37)). Then:

Ef(wN+1 �w0)
2g � Ef(w1 �w0)

2g 6 (F � �2)
NX
i=1

�
2

i � 2
NX
i=1

�iEf(wi �w0)f(wi)g (B.38)

Ef(wN+1 �w0)2g > 0 as being the expectation of a positive quantity. As it was already discussed, w1

is chosen such that E[(w1 �w0)2] is limited. Then the left part of the equation (B.38) is bounded below

by 0.

The (F � �2)
N�1P
i=1

�2i term is also �nite because of the condition (B.36c) then, from (B.38):

0 6 2
NX
i=1

�iEf(wi �w0)f(wi)g 6 (F � �2)
NX
i=1

�
2

i = �nite)

NX
i=1

�iEf(wi �w0)f(wi)g = �nite

Because of the conditions put on the signs of f and wi then (wi�w0)f(wi) > 0, 8wi, and its expectation

is also positive. Eventually, because of the condition (B.36b) and the above equation then:

lim
i!1

Ef(wi �w0)f(wi)g = 0

i.e. lim
i!1

wi = w0. and because f changes sign around w0 then it's a root for the regression function.

366 APPENDIX B. STATISTICAL SIDELINES

✍ Remarks:

➥ Condition (B.36a) ensure that the process of �nding the root is convergent.

Condition (B.36b) ensure that each iterative correction to the solutionwi is large

enough. Condition (B.36c) ensure that the accumulated noise (the di�erence

between x(w) and f(w)) does not break the convergence process.

➥ The Robbins{Monro algorithm allows for �nding the roots of f(w) without know-

ing the exact form of the regression function.

➥ A possible candidate for �i coe�cients is

�i =
1

in
; n 2 (1=2; 1]

➧ B.5 Learning vector quantization

✍ Remarks:

➥ Vector quantization is used in signal processing to replace a vector x 2 Ck by❖ mk

a representative mk for it's class. The collection of all representatives fmkg is

named codebook . Then, instead of sending each x, the codebook is send �rstcodebook

and then just the index of mk (closest to x) instead of x.

The representatives are chosen by starting with some set and then updating it

using a rule similar to the following: at step t a vector x from the \training set"

is taken in turn and the representatives are updated/changed in discrete steps:

mk(t+1) =mk(t) + �(t) (x �mk(t)) for mk closest to x

m`(s+1) =mj(s) no change, for all other m`

where �(t) is a function of the \discrete time" t, usually decreasing in time.❖ �(t)

The mk vectors should be chosen as representative as possible. It is also possible to choose

several mk vectors per each class (this is particularly necessary if a class is represented by

some disconnected subspaces Xk 2 X in the pattern space).

There are several methods of updating the code vectors. The simplest method is named

LVQ1 and the updating rule is:LVQ1

mk(t+1) =mk(t) + �(t) (x �mk(t)) for x 2 Ck (B.39)

m`(t+1) =mk(t) � �(t) (x �mk(t)) for all other m`

i.e. not only the mk is pushed towards an \average" of class Ck but all others are spread in

the opposite direction. The �(t) is chosen to start with some small value, �(0) < 0:1 and

decreasing linearly towards zero.

Another variant, named OLVQ1, uses the same rule (B.39) but di�erent �k(t) function forOLVQ1

�k

B.5. LEARNING VECTOR QUANTIZATION 367

each mk

�k(t+ 1) =
�k(t)

1 + �k(t)
for x 2 Ck (B.40)

�k(t+ 1) =
�k(t)

1� �k(t)
otherwise

i.e. �k is decreased for the correct class and increased otherwise. The above formula may ❖ �(t)
be justi�ed as follows. Let �(t) be de�ned as:(

+1 for correct classi�cation

�1 otherwise

then, from (B.39), it follows that:

mk(t+1) =mk(t) + �(t)�(t) [x(t) �mk(t)] = [1� �(t)�(t)]mk(t) + �(t)�(t)x(t)

mk(t) = [1� �(t� 1)�(t� 1)]mk(t�1) + �(t� 1)�(t� 1)x(t�1)

)

mk(t+1) = [1� �(t)�(t)][1 � �(t� 1)�(t� 1)]mk(t�1)

+ [1� �(t)�(t)]�(t � 1)�(t� 1)x(t�1) + �(t)�(t)x(t)

(B.41)

i.e. the code vectorsmk(t+1) are a linear combination of the training set and the initial code

vectors mk(0).

Now let consider that x(t�1) = x(t), then consistency requires that mk(t) = mk(t+1) and

thus �(t� 1) = �(t). x(t�1) and x(t) being identical should have the same contribution to

mk(t+1), i.e. their coe�cients in (B.41) should be equal:

[1� �(t)�(t)]�(t � 1) = �(t)

which leads directly to (B.40).

Another procedure to build the code vectors is LVQ2.1. For each x the two closest code LVQ2.1

vectors are found. Then these two code vectors are updated if:

� one is of the same class as x, let m= be this one, ❖ m=, m6=, f

� the other is of di�erent class, let m6= be that one and

� x is near the middle between the two code vectors:

min

�
kx�m=k
kx�m6=k

;
kx�m6=k
kx�m=k

�
>

1� f

1 + f

where f ' 0:25.

✍ Remarks:

➥ The last rule from above may be geometrically interpreted as follows: let consider

that the x is su�ciently close to the line connectingm= andm6=. See �gure B.7

on the next page.

In this case it is possible to make the approximations:

kx�m=k ' d= and kx�m6=k ' d 6=

368 APPENDIX B. STATISTICAL SIDELINES

x

d=

d6=

m6=

m=

kx�m6=k

kx�m=k

Figure B.7: The geometrical interpretation of the LVQ2.1 rule. The

x point is projected onto the line connectingm= andm6=.

and there are 2 cases, one of them being

min

�
d=
d6=

;
d6=
d=

�
=
d=
d6=

>
1� f

1 + f
) d6= < d=

1 + f

1� f

) d = d6= + d= < d=
2

1� f
)

d=
d

>
1� f

2

the other case giving a similar result:
d6=
d
> 1�f

2
, i.e. in either case the projection

of x is at least at a fraction (1� f)=2 of d from m= and m6=.

The updating formula for LVQ2.1 is:

m=(t+1) =m=(t) + �(t)[x �m=(t)]

m6=(t+1) =m6=(t) � �(t)[x �m6=(t)]

While the LVQ2.1 updates the codebook less frequently than the previous procedures it

tends to over adapt the code vectors.

The LVQ3 was developed to prevent the over adaptation of LVQ2.1 method. This algorithm

is similar to LVQ2.1 but if the two closest code vectors, let m0
= and m00

= be the ones, are

of the same class then they are also updated according to the formula:

m
0
=(t+1) =m

0
=(t) + "�(t)[x �m

0
=(t)] and

m
00
=(t+1) =m

00
=(t) + "�(t)[x �m

00
=(t)]

where " is a tunable parameter, usually chosen in the interval [0:1; 0:5].

✍ Remarks:

➥ In practice usually OLVQ1 is run �rst (on the rapid changing code vectors part)

and then LVQ1 and/or LVQ3 is used to make the �ne adjustments.

Bibliography

[BB95] James M. Bower and David Beeman. The Book of Genesis. Springer-Verlag,

New York, 1995. ISBN 0{387{94019{7.

[Bis95] Cristopher M. Bishop. Neural Networks for pattern recognition. Oxford

University Press, New York, 1995. ISBN 0{19{853864{2.

[BTW95] P.J. Braspenning, F. Thuijsman, and A.J.M.M. Weijters, Eds. Arti�cial Neural

Networks. Springer-Verlag, Berlin, 1995. ISBN 3{540{59488{4.

[CG87] G. A. Carpenter and S. Grossberg. Art2: self-organization of stable category

recognition codes for analog input patterns. Applied Optics, 26(23):4919{

4930, December 1987. ISSN 0003{6935.

[FS92] J. A. Freeman and D. M. Skapura. Neural Networks, Algorithms, Applications

and Programming Techniques. Addison-Wesley, New York, 2nd edition, 1992.

ISBN 0{201{51376{5.

[Fuk90] Keinosuke Fukunaga. Introduction to Statistical Pattern Recognition. Aca-

demic Press, San Diego, 2nd edition, 1990. ISBN 0{12{269851{7.

[Koh88] Teuvo Kohonen. Self-Organization and Associative Memory. Springer-Verlag,

New York, 2nd edition, 1988. ISBN 0{201{51376{5.

[McC97] Martin McCarthy. What is multi-threading? Linux Journal, {(34):31{40,

February 1997.

[Mos97] David Mosberger. Linux and the alpha: How to make your application y,

part 2. Linux Journal, {(43):68{75, November 1997.

[Rip96] Brian D. Ripley. Pattern Recognition and Neural Networks. Cambridge

University Press, New York, 1996. ISBN 0{521{46086{7.

[Str81] Karl R. Stromberg. An Introduction to Classical Real Analysis. Wadsworth

International Group, Belmont, California, 1981. ISBN 0{534{98012{0.

369

Index

2/3 rule, 85, 86, 94, 98, 101

activation function, see function, activation

adaline, see percepton

adaptive backpropagation, see algorithm, back-

propagation, adaptive

Adaptive Resonance Theory, see ART

algorithm

ART1, 99

ART2, 107

backpropagation, 16, 162, 320

adaptive, 21, 23, 321

batch, 163

momentum, 20, 23, 24, 321

quick, 224

standard, 13, 19

SuperSAB, 23, 321

vanilla, see standard

BAM, 49, 53, 322

branch and bound, 242

CPN, 81

EM, 181, 240, 357

expectation{maximization, see EM

gradient descent, 218

Levenberg-Marquardt, 234

line search, 225

Metropolis, 296

model trust region, 235

optimal brain damage, 266

optimal brain surgeon, 267

Robbins{Monro, 124, 181, 219

sequential search, 243

simulated annealing, 296

SOM, 40, 321

ANN, iii, 3

output, 112, 190

asymmetric divergence, 125, 211

BAM, 48

Bayes

rule, 116, 119, 354

theorem, 288, 342

Bayesian learning, 361

bias, 18, 123, 129, 160, 188, 254

average, 254

bias-variance tradeo�, 255

Bidirectional Associative Memory, see BAM

bit, 211

Boltzmann constant, 208

certain event, 210

city-block metric, see error, city-block metric

class, 111

classi�cation, 116, 197

clique, 307

codebook, 366

complexity criteria, 273

conditional independence, 308

confusion matrix, 120

conjugate direction, 226, 228

conjugate directions, 226

contrast enhancement, 86, 108

function, see function, contrast enhance-
ment

counterpropagation network, see network, CPN

course of dimensionality, 113, 237, 255

cross-validation, 273

curse of dimensionality, 241

cycle, 307

DAG, 307, 313

decision

boundary, 116, 117, 119

region, 116

tree, 301

splitting, 301

delta rule, 12, 142, 143, 145, 146, 162, 163, 219

deviance, 127

dimensionality reduction, 237, 245

discrete time approximation, 219

distance

Euclidean, 325, 350

Hamming, 325

Kullback{Leiber, see asymetric divergence

Mahalanobis, 241, 348

distribution, 191

Bernoulli, 136

conditional, 194

Gaussian, 191, 209, 261, 274, 345

multidimensional, 346

unidimensional, 345

Laplacian, 192

edge, 307

eigenvalue, 36, 327, 328

spectrum, 327

eigenvector, 36, 327, 347

encoding

one-of-k, 68, 73, 81, 108, 197, 203, 205,

212, 239

371

372 INDEX

entropy, 208, 210, 302

cross-entropy, 202, 203

di�erential, 209

equation

Riccati, 33

simple, 32

trivial, 32

error, 163, 176, 186, 212, 215, 218

absolute, 203
bar, 191

city-block metric, 192

cross-entropy, 213

function, 114, 185

gradient, 12{15, 17

Minkowski, 192, 213

quadratic, 232

relative, 203

RMS, 115, 187

root-mean-square, see error, RMS

sum-of-squares, 11, 12, 15, 17, 19, 114,

137, 143, 149, 163, 167, 171, 176,

177, 182, 190, 203, 213, 253, 268,

274, 279{281

surface, 12, 20, 24, 26, 215, 217, 256

Euler-Lagrange equation, 176

evidence, 288

approximation, 287

exception, 115

exemplars, 47

expectation, 87, 90, 343

feature extraction, 114, 237

feedback, 31

auto, 54

indirect, 30, 91

lateral, 41, 91

feedforward network, see network, feedforward

Fisher criterion, 148, 152, 199

Fisher discriminant, 149, 265

at spot elimination, 20

Fletcher-Reeves formula, 230

function

�-Dirac, 125, 176, 197, 204, 353

activation, 3{6, 40, 57, 90, 92, 134, 198,

217

exponential-distribution, 7

hyperbolic-tangent, 6

identity, 48, 175, 199

logistic, 5, 6, 10, 15, 19, 135, 163, 202,
206, 259

pulse-coded, 7

ratio-polynomial, 7

sigmoidal, 157, 285

threshold, 5, 6, 7, 135, 154

BAM

energy, 51

contrast enhancement, 102

discriminant, 117

energy

BAM, 52, 56

error, see error

Euler, 192, 292, 331, 353

even, 330

feedback, 30, 74, 75, 91

Gaussian, 174, 175

Green, 176
Heaviside, 160

Hop�eld

energy, 55, 56, 57, 59

kernel, 178, 195, 248, 352

Lagrange, 334

Liapunov, 51

likelihood, 121, 123, 185, 192, 202, 205,
261, 315

multi-quadratic, 174

radial basis, 173, 174

regression, 364

softmax, 195, 206, 263, 272, 356

stop, 43

generalization, 15, 112, 115

Gini index, 302

graph, 307
ancestral, 308

boundary, 308

chordal, see graph, triangulated

complete, 307

connected, 307

directed, 307

directed acycled, see DAG

moral, 314
polytree, 308

tree, 307

chain, 310

join, 312

triangulated, 312

undirected, 307

Hadamard product, iii

Hamming
distance, see distance, Hamming

space, 50, 325

vector, see vector, bipolar

Hessian, 127, 166, 172, 256, 266, 281, 288

inverse, 166, 168

Hestenes-Stiefel formula, 230

histogram, 350

K-nearest-neighbors, 351, 353
kernel method, 351

hyperprior, 288

importance sampling, 296

information, 210

criterion, 128

input normalization, 238

invariance, 247

translation, 250

Jacobian, 164, 247

Jensen's inequality, 132, 335, 357

Karhunen-Lo�eve transformation, 245
kernel function, see function, kernel

Kohonen, see SOM

Kronecker symbol, 118, 165, 196, 197, 347, 356

Kroneker symbol, 38, 48, 61

INDEX 373

L'Hospital rule, 302

Lagrange multiplier, 334

layer

competitive, 74, 75, 88, 91

hidden, 73

input, 68

output, 76

learning, 5, 11, 112, 217
ART1

fast, 94, 95

ART2

fast, 104

batch, 219

Bayesian, 275, 276

constant, 12, 17, 22, 27, 81, 107, 142, 163,

181, 219

adaptive decreasing factor, 22

adaptive increasing factor, 22

error backpropagation threshold, 17

at spot elimination, 20, 27

momentum, 20, 27, 221

convergence, 146

incomplete, 38, 40, 45

reinforced, 112

sequential, 219

set, 5, 112, see set, learning

speed, 221

stop, 218

supervised, 5, 11, 112, 182

unsupervised, 5, 29, 31, 39, 112, 243

Learning Vector Quantization, see LVQ

least squares technique, 182

lexicographic convention, 65
linear discriminant analysis, 349

linear separability, 129, 132, 146

loss matrix, see matrix, loss

LVQ

LVQ1, 366

LVQ2.1, 367

LVQ3, 368

OLVQ1, 366

macrostate, 207

Markov

chain, 310

properties, 308

matrix

covariance, 198

between-class, 148, 151
within-class, 148, 151

loss, 117, 201

positive de�nite, 329

pseudo-inverse, 140

memory, 20, 22, 24

associative, 47

interpolative, 47

autoassociative, 48, 54

crosstalk, 52

heteroassociative, 47, 67

Hop�eld

continuous, 57, 60, 322

discrete, 54, 60, 322

gain parameter, 57

saturation, 52

microstate, 207

misclassi�cation, 304

penalty, 117, 118

missing data, 97, 239, 306

mixture model, 179, 194

mixture of experts, 271

moment, 248

central, 248

regular, 248

momentum, see algorithm, backpropagation, mo-

mentum

Monte Carlo method, 295

multiplicity, 207

Nadaraya-Watson estimator, 178

nat, 211

network

ART, 85, 155

ART1, 85

ART2, 100

autoassociative, 245

backpropagation, 9

BAM, 48

cascade correlation, 264

committee, 218, 268

CPN, 67, 155

architecture, 67

feedforward, 3, 4, 9, 153, 154, 170

growing method, 264

higher order, 5, 250

Hop�eld

continuous, 57

discrete, 54

Kohonen, see network, SOM

layer

hidden, 26

output, 197

performance, 113

pruning method, 264

recurrent, 3

SOM, 4, 29

neuron, 3

excitation, 68

gain control, 85, 88

hidden, 72

instar, 71, 73

neighborhood, 31, 39, 41, 42

function, 41

output, 70

outstar, 76

pruning, 268

reset, 85

saliency, 268

winner, 41

neuronal neighborhood, see neuron, neighborhood

Newton direction, 233

noise, 52, 97, 98, 186, 253

norm

LR, 192

Euclidean, 102, 107, 189

NP-problem, 60

374 INDEX

Occam factor, 293

operator

Nabla, 126
outlier, 113, 188, 193, 343

overadaptation, 142

overtraining, 16

Parzen window, see function, kernel

path, 307

pattern, 111

reectance, 71

space, 112
perceptron, 136, 144, 179

Polak-Ribiere formula, 230

postprocessing, 237

prediction, 191

preprocessing, 237, 248

principal component, 243, 245

probability

class-conditional, 342
density, 343

distribution, 342, 343

doubt, 117

join, 341

misclassi�cation, 116

posterior, 116, 197, 342

prior, 341

pruning, 266

random walking, 296
Rayleigh quotient, 38, 328

recursive model, 314

reectance pattern, see pattern, reectance

regression, 112

regularization, 115, 247, 255

parameter, 176, 248, 255

weight decay, 280
reject area, 119

rejects, 113

representation

marginal, 313

potential, 314

set-chain, see representation, marginal

risk, 117

averaging, 299

Self Organizing Maps, see SOM
sequential parameter estimation, 123

set

learning, 10, 114

test, 15, 199

training, 253

validation, 218, 258

signal function, see function, activation

SOM, 40
SuperSAB, see algorithm, backpropagation, Su-

perSAB

theorem

noiseless coding, 211

training, see learning

variance, 191, 218, 238, 254, 343

average, 254

input dependent, 193

vector
binary, 50, 96, 99, 136, 155

bipolar, iv, 50, 52, 53

bynary, iv

code, 366

normal distribution, 349

orthogonal, 50

target, 114, 197
large, 203

threshold, 55

vertex, 307

child, 307

parent, 307

root, 307

vigilance parameter, 97

weight, 112
decay, see regularization, weight decay

e�ective number, 274, 289

saliency, 266

shared, 250

soft, 261

space, 31, 39

symmetry, 161, 215

well-determined, 289
whitening, 238

winner-takes-all, see layer, competitive

XOR problem, 134

