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We have developed an entirely sequence-based method that identifies
and integrates relevant features that can be used to assign proteins of
unknown function to functional classes, and enzyme categories for
enzymes. We show that strategies for the elucidation of protein function
may benefit from a number of functional attributes that are more directly
related to the linear sequence of amino acids, and hence easier to predict,
than protein structure. These attributes include features associated with
post-translational modifications and protein sorting, but also much
simpler aspects such as the length, isoelectric point and composition of
the polypeptide chain.
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Introduction

Out of the 35,000 to 50,000 genes believed to be
present in the human genome, no more than
40–60% can be assigned a functional role based
on homology to proteins with known function.1,2

Traditionally, protein function has been related
directly to the three-dimensional structure of the
polypeptide chain, which currently, for an arbitrary
sequence, is quite hard to compute.3 The method
presented here operates in the “feature” space of
all sequences, and is therefore complementary to
methods that are based on alignment and the
inherent, position-by-position quantification of
similarity between two sequences. The method
does not require knowledge of gene expression,4

gene fusion and/or phylogenetic profiles.5 – 8

Although the latter type of method does not rely
on finding direct matches to proteins of known
function, it does require sequence similarity to

other candidates that can be phylogenetically
linked to a protein of known function.

For any function assignment method, the ability
to correctly predict the relationship depends
strongly on the function classification scheme
used. One would, for example, not expect that a
method based on co-regulation will work well for
a category like “enzyme”, since enzymes and the
genes coding for their substrates or substrate trans-
porters often may display strong co-regulation.
A similar argument holds true for the phylogenetic
profile method.

Our approach to function prediction is based on
the fact that a protein is not alone when perform-
ing its biological task. It will have to operate using
the same cellular machinery for modification and
sorting as all the other proteins do. Essential types
of post-translational modifications (PTMs) include:
N- and O-glycosylation, (S/T/Y) phosphorylation,
and cleavage of N-terminal signal peptides
controlling the entry to the secretory pathway, but
hundreds of other types of modifications exist9

(a subset of these will be present in any given
organism). Many of the PTMs are enabled by local
consensus sequence motifs, while others are
characterized by more complex patterns of corre-
lation between the amino acids.10
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This suggests an alternative approach for func-
tion prediction, as one may expect that proteins
performing similar functions would share some
attributes even though they are not at all related
at the global level of primary structure. As several
predictive methods for PTMs have been con-
structed (R.G., S.B., unpublished results),10 – 13 a
function prediction method based on such attri-
butes can be applied to all proteins where the
sequence is known.

Results and Discussion

The ProtFun method described here integrates
(using a neural network approach) 14 individual
attribute predictions and calculated sequence
statistics (out of more than 25 tested for discrimi-
native value). The integrated method predicts
functional categories as defined originally by Riley
for Escherichia coli, that in modified form has been
used to describe many entire genomes in recent
publications.1,2,14,15 In addition, it predicts whether
a sequence is likely to function as an enzyme, and
if so, its category according to the classes defined
by the Enzyme Commission.16,17 The same scheme
can be used to predict any other set of functional
classes including more narrowly defined ones.
We have applied the approach to, for instance,
specifically identify hormones, receptors and ion
channels in the human genome as defined by the
Gene Ontology Consortium.18

We have used combinations of attributes in a
collection of neural network ensembles for predict-
ing the functional category of a protein. Combi-
nations of attributes were selected by evaluating
their discriminative value for a specific functional
category, say proteins involved in transcription.
Attributes useful in function prediction must not
only correlate well with the functional classifi-
cation scheme, but must also be predictable from
sequence with reasonable accuracy.

Interestingly, the combinations of attributes
selected for a given category also implicitly charac-
terize a particular functional class in an entirely
new way. The method identifies without any a
priori ranking of their importance, the biological
features relevant for a particular type of function-
ality, see Figure 1. It appears that the use of PTMs
is essential for the prediction of several functional
classes. In addition to attributes related to sub-
cellular location the most important features for
predicting if a protein is, for example, regulatory
or not, are PTMs. Similarly PTMs are very impor-
tant for correct assignment of proteins related to
the cell envelope, replication and transcription.

The fact that (predicted) PTMs correlate strongly
with the functional categories fits well with
biological knowledge. For example, predicted
N-glycosylation sites turn out to be important for
prediction of cell envelope proteins. In fact, it has
been shown that removal of carbohydrates linked
to asparagine residues from a protein normally

targeted for the cell envelope retains it in the endo-
plasmic reticulum.19

For proteins with “regulatory function” two of
the most important features were S/T phosphoryl-
ation and Y-phosphorylation, respectively (Figure
1). It is very satisfying that this correlation was
found by the neural networks when considering
that reversible phosphorylation is a well known
and widely used regulatory mechanism.20 Glyco-
sylation was also found to be a strong indicator
for regulatory proteins. This is true for both
N-glycosylation and O-GalNAc (mucin type)
glycosylation of serine and threonine residues. For
these proteins, two additional features had signifi-
cant predictive value: The predicted subcellular
location, and PEST regions (rich in proline,
glutamic acid, serine, and threonine residues),
where the latter targets proteins for degradation.
Again, it makes sense that proteins involved in
fast regulatory mechanisms should be degraded
quickly.21

In order to understand further how PTMs corre-
late with the functional categories, we investigated
the effect of alternative representations of the PTM
attributes. For example, when phosphorylation of
serine and threonine residues was encoded as two
separate features the result was a slightly reduced
predictive performance. Joining all three types of
phosphorylation (S/T/Y) into one single feature
led to a much larger drop in performance. Again
this makes biological sense, as serine and threonine
residues are known often to be phosphorylated by
the same group of kinases, while tyrosine residues
typically are phosphorylated by different kinases.

The most important single feature for dis-
tinguishing between enzymes and non-enzymes
turned out to be protein secondary structure as
predicted by PSI-Pred.22 This also makes sense, as
enzymes are known to be overrepresented among
all-alpha proteins, and more rarely are found to
be, e.g. all-beta proteins.

We also trained networks for predicting the
enzyme subclasses. Although these networks were
trained specifically to discriminate between a
given enzyme subclass and all other enzyme sub-
classes, they implicitly make an enzyme/non-
enzyme prediction as well. The enzyme class pre-
dictions can thus be used as additional support
for the predictions made by the enzyme/non-
enzyme networks.

Quantitative description of the ProtFun
predictive performance

The selection of category-relevant attributes is
based on quantitative assessment of the ability to
predict (assign) categories for new sequences non-
similar to the sequences used to train the method
(see below). Figure 2 shows how the ProtFun
method fairs for the prediction of functional and
enzyme categories in terms of sensitivity and the
level of false positives. When the sensitivity is
below 40%, the level of false positive predictions
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Figure 1. The discriminative impact of features for the different functional categories and enzyme classes. The Figure
shows how often a given feature (out of the 14 retained) was included in the five network ensemble performing the
classification for a given category and thus its importance. The retained feature predicting methods were: NetNGlyc,14

NetOGlyc,11 NetPhos,10 PEST regions,21 PSIPRED,22 SEG filter,34 SignalP,12 PSORT,13 TMHMM.35 In addition, a number
of calculated features were retained: extinction coefficient, grand average hydrophobicity, and the numbers of posi-
tively and negatively charged residues. During the feature selection process 11 features were “not” retained due to
their low disciminatory value (or their correlation to other features retained): the amino acid composition, the compo-
sition of redidues predicted to be buried or exposed, the aliphatic index, instability index, number of atoms, the net
charge, the isoelectric point, predicted GlcNAc sites, the sequence length, and predicted coiled coil regions.
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is very low. The confidence in the predictions can
be used directly to sift out the predictions that
almost certainly are correct. The way the proba-
bilities are estimated gives rise to an almost linear
relationship between the probability threshold
used and the false positive rate. For a given
probability threshold, the rate of false positives is
essentially 1 minus the threshold. The best
performance values are comparable to the upper
limits estimated from the consistency in the
assignment of the SWISS-PROT keywords.23

Relation to the linguistic analysis of SWISS-
PROT entries

The classification into functional categories is
based on linguistic analysis and clustering of
SWISS-PROT keywords by the Euclid method.24,25

The Euclid method computes scores for placing a
protein into each of the 14 categories.14,26 The
classification is not mutually exclusive, i.e. a pro-
tein sequence may have scores high enough to be
placed into two or more categories.

Figure 2. The predictive perform-
ance shown as sensitivity versus
false positive rate for cellular role
and enzyme categories. The plot
was constructed from results
obtained for the independent test
set, and corresponds to the
expected performance for novel,
uncharacterized proteins with no
significant match to a protein with
known function. For a given
category, e.g. transport and binding,
a sensitivity of 90% can be achieved
with false positive rate of 10%
corresponding to 90% correct pre-
diction on both positives and nega-
tives. Random performance would
correspond to a line along the
diagonal.
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In general we found a strong relation between
the prediction quality of Euclid and ProtFun. This
should not come as a surprise, considering that
the quality of prediction from Euclid determines
the quality of the data set on which ProtFun was
trained. Two of the worst categories are “cellular
processes” and “central intermediary metabolism”,
which are both very loosely defined, especially the
former, in which many different functions ranging
from cell division to chaperones and detoxification
are included.

One noticeable exception from this rule is the
class of regulatory proteins. Because the class of
regulatory proteins tends to overlap other
categories a lot, these proteins are hard to
categorize correctly by Euclid. However, this has
not been a problem for ProtFun, which allows a

protein to belong to more than one category.
Indeed regulatory proteins are one of the best
predicted categories.

Functional characterization of the complete
human genome

Using ProtFun it is possible to estimate the
breakdown on functional categories of the entire
human genome. Ideally a data set with all proteins
encoded by the human genome should be used. As
no final and highly reliable set is yet available, we
have used the database of confirmed sequences
made available by the Ensembl initiative.27 This
database consists of ,27,000 protein sequences
from the human genome, all of which are sup-
ported by EST matches. One should be aware that

Figure 3. Statistics for the human genome based on the Ensembl gene set.27 From the probabilistic ProtFun output,
the number of proteins belonging to a given category was estimated by summing over all 27,000 sequences. The most
striking difference from the Venter et al. paper is that a larger fraction of the proteins is predicted to be enzymes,
while the distributions over enzyme subcategories agree quite well.
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this database is likely to have a bias towards highly
expressed proteins. Using the predicted probability
for each category, the number of proteins in each
category was subsequently estimated by summing
over the probability of the category in question for
every protein (Figure 3).

The functional breakdowns in the human gen-
ome publications1,2 are based on function assigned
by sequence similarity and are therefore based on
approximately 50–70% of the genes (depending
on the gene number). Direct comparison to what
we predict is also made difficult by the fact that
different classification systems are used in the two
articles. The most striking difference from the
Venter et al. paper is that we predict a much larger
fraction of the proteins to be enzymes, while the
distributions over enzyme subcategories agree
quite well. Part of the explanation for the enzyme
bias can be that the complete Ensembl data set27

may have a bias towards highly expressed
proteins. We also investigated the spread of func-
tionally related proteins across the different
chromosomes (data can be found at the ProtFun
Website†). Among several interesting observations
(for example that endoplasmic and Golgi proteins
are highly abundant at chromosome 6), was the
fact that chromosome 11 seems to contain many
uncharacterised proteins (belonging to “Other
categories”), which falls outside the classification
used in this study.

Individual sequence prediction

The ProtFun method is perhaps best suited for
obtaining functional hints for individual sequences
for later use in assay selection and design. The first
example shown here relates to the human prion
sequence (PRIO_HUMAN P04156) which is being
associated with the Creutzfelt–Jacobs syndrome.
The functionality of this protein, which seems to
produce no phenotype when knocked out in
mice,28 is still not fully understood. The ProtFun
method predicts with high confidence that the
human prion sequence belongs to the transport
and binding category, and also that it is very
unlikely to be an enzyme (Table 1). Indeed prions
have been shown to be able to bind and transport
copper while no catalytic activity has ever been
observed.29,30 Interestingly, as the prion is a cell
surface glyco-protein (expressed by neurones) it
has a distinct pattern of post-translational modifi-
cation, which most likely contain information
that can be exploited by the system for functional
inference. Incidentally, the cell envelope category
is the third-highest scoring category for the prion
sequence. The purine/pyrimidine class is second;
however, no experimental evidence supports this
functionality. Functional information was “not”
transferred by sequence similarity from the nearest

neighbor, as the maximal similarity between the
prion sequence and the data set (training and test)
is 14.8% to proline-arginine-rich end leucine-rich
repeat protein (PRLP_HUMAN P51888). We
believe that predictions like these are very useful
when resolving protein function, because they can
be used to generate specific hypotheses and direct
laboratory experiments.

Using function prediction in conjunction with
protein–protein interaction data

The method is also relevant for obtaining
additional evidence on protein–protein inter-
actions, where database information may contain
many false negatives (as not all possible inter-
actions have been screened). We did, as an
example, predict the function of both sequences in
all interaction partners found in the database of
interacting proteins (DIP).31 If the functional
categories of the interacting proteins are predicted
to be the same for otherwise unrelated sequences,
that should increase the likelihood of the pre-
diction being correct (as well as the validity of
the interaction). Others have successfully used a
similar approach based on subcellular localization
to lower the rate of false positives for yeast two-
hybrid data.32

An interesting example of such an interacting
protein-pair is the Alzheimer’s disease amyloid
A4 protein and transthyretin, which at the
sequence level are entirely unrelated. Both of these

Table 1. ProtFun output for the human prion (PRIO_HU-
MAN P04156) and for an interacting pair of proteins, the
amyloid A4 protein (A4_HUMAN P05067; P09000;
Q16011) and transthyretin (TTHY_HUMAN P02766),
which at the sequence level are entirely unrelated. Both
of these proteins are, with high confidence, predicted to
be cell envelope-related as well as transport and binding
proteins in agreement with the known functionality of
these proteins

Prion A4 TTHY

Amino acid biosynthesis 0.011 0.011 0.011
Biosynthesis of cofactors 0.041 0.161 0.034
Cell envelope 0.146 0.804 0.698
Cellular processes 0.027 0.027 0.051
Central intermediary metabolism 0.047 0.139 0.059
Energy metabolism 0.029 0.023 0.046
Fatty acid metabolism 0.017 0.017 0.023
Purines and pyrimidines 0.528 0.417 0.153
Regulatory functions 0.013 0.014 0.014
Replication and transcription 0.020 0.029 0.040
Translation 0.035 0.027 0.032
Transport and binding 0.831 0.827 0.812

Enzyme 0.233 0.367 0.227
Non-enzyme 0.767 0.633 0.773

Oxidoreductase (EC 1.–.–.–) 0.070 0.024 0.055
Transferase (EC 2.–.–.–) 0.031 0.208 0.037
Hydrolase (EC 3.–.–.–) 0.101 0.090 0.208
Isomerase (EC 4.–.–.–) 0.020 0.020 0.020
Ligase (EC 5.–.– .–) 0.010 0.010 0.010
Lyase (EC 6.–.–.–) 0.017 0.078 0.017

† The ProtFun method is made available online at the
URL www.cbs.dtu.dk/services/ProtFun/
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proteins are, with high confidence, predicted to be
“cell envelope”-related as well as transport and
binding proteins, see Table 1. Amyloid A4, a neural
receptor, and transthyretin, a thyroid hormone
binding protein believed to transport thyroxine
into the brain, have functionalities that are in full
agreement with the prediction. The two sequences
have a maximal similarity to the data set of 12.4%
(to citrate synthase CISY_HUMAN O75390).

When evaluating the functional category profiles
for all interacting pairs in DIP (versus non-inter-
acting pairs) we found that interacting pairs
indeed more often tend to have the same func-
tional categorization (data not shown). However,
while interacting non-enzymes in many cases will
have the same functional role (belong to the same
pathway), it may be more typical for enzyme–sub-
strate pairs to belong to different categories.

Conclusion

The method presented here has the ability to
transfer functional information between sequences
that are far apart in sequence space. Not even the
primary structures of the individual features
(which are integrated by the method) need to be
alike, or be related by evolution. The ProtFun
method performs its non-linear classification in
the feature space defined by 14 predicted and
calculated attributes, which have been selected by
the approach (out of more than 25 different
attributes considered initially for discriminative
value). The mapping between the space of all
sequences and this feature space is also highly
non-linear as very different sequences, by the indi-
vidual feature predictors, may be converted to the
same patterns of, for example, post-translational
modification or secondary structure. Here it is
demonstrated that it is indeed possible to transfer
functional information from the knowledgebase
accumulated by experimental biology, even to
proteins that are completely isolated in sequence
space.

Materials and Methods

Data sets and functional class assignment

Classes of cellular function were defined after the 14
class classification originally proposed for the E. coli
genome14 and later extended by the TIGR group. The
automatic class assignment to sequences was made by
an extension of the Euclid system performing linguistic
analysis of SWISS-PROT keywords.25 The system detects
sequences similar to a query sequence by a BLAST
search in the SWISS-PROT database and extracts
common keywords from the entries. As we work with
sequences from SWISS-PROT (with known function) we
used the keywords directly and include no alignment
step. For each functional class the informative weight
(Z-score) of each keyword was extracted from a
dictionary.25 For each sequence a keyword sum leads to
scores for the 14 classes.

The central point of the Euclid system is the diction-
ary. The primary version of this dictionary was gener-
ated from an initial set of carefully, hand-annotated
proteins from different organisms spanning every king-
dom of life. From this initial set, a first dictionary was
defined that was used to assign all SWISS-PROT proteins
and the process of dictionary definition and assignment
was reiterated until convergence.

This final dictionary was used to assign functional
classes to around 5500 human proteins from SWISS-
PROT. In the selection we omitted SWISS-PROT
sequences representing fragments and hyphothetical pro-
teins and therefore the “high-quality” subset is smaller
that the entire set of human proteins in this database.

The values obtained from the method were then com-
pared to two thresholds: if the score for a category was
above 3 it was considered a positive example, while
examples with a score below 0 were used as negative
examples. Examples scoring between 0 and 3 were con-
sidered unclear and were thus not used. By labeling our
data set in this way we eliminate the most uncertain
functional annotations thereby improving the quality of
our data set. The composition of the data set obtained is
shown in Table 2.

Enzyme class assignment

SWISS-PROT provides enzyme class information for
most enzymes in the DE field. For those without an EC
assignment, the suffix ASE and the presence (or absence)
of the words INHIBITOR and PRECURSOR were
additional considerations when assigning proteins into
the categories Enzyme, Non-enzyme or Neither. The
Neither category comprised ambiguous cases that were
excluded from training. For the six enzyme classes, only
proteins with EC assignments were used. The negative
set for each class contained enzymes assigned to other
enzyme classes.

Similarity screening of test sets versus training sets

To generate a training set A, and a test set B, in which
the similarity between the two sets was minimal, the

Table 2. The number of sequences included in the data
sets when training networks for the various categories

Category Positive Negative

Amino acid biosynthesis 85 3691
Biosynthesis of cofactors 240 2964
Cell envelope 173 2599
Cellular processes 259 3339
Central intermediary metabolism 216 3127
Energy metabolism.id 330 3310
Fatty acid metabolism 53 3846
Purines and pyrimidines 535 1649
Regulatory functions 586 3037
Replication and transcription 746 2591
Translation 174 3677
Transport and binding 1461 2126

Enzyme 1620 4038
Oxidoreductase 319 1213
Transferase 529 1003
Hydrolase 485 1047
Isomerase 72 1460
Ligase 49 1483
Lyase 78 1454
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following heuristic algorithm was used: a similarity
measure D (a, b ) between all pairs of sequences (a, b ) in
the original set was calculated using the Smith–
Waterman score for the optimal local alignment between
each sequence pair. A similarity measure H(A, B ) was
defined as the sum of similarities between sequences in
set A and sequences in set B. HðA;BÞ ¼ sumðDða; bÞla [
A; b [ BÞ

The algorithm for generating the two sets A and B
started by having all sequences in A. The algorithm
selected a sequence x [ A that maximized the value
HðA;BÞ2 HðAw {x};B < {x}Þ: New sequences were
selected from A until set B had the desired size.

Feature prediction and encoding

A number of different prediction methods were used
as input features for the method (see Figure 1). All the
servers were run on all 5500 sequences constituting
the training and test sets. The output was parsed and
the scores obtained from the different predication servers
were normalized and/or converted into probabilities.

Encoding positional feature information (e.g. phos-
phorylation sites) for proteins of variable length is non-
trivial. We tested a number of encoding schemes for the
positional information in the input to the neural net-
works. One approach was to divide each sequence into
a number of equally sized bins, where the bin size was
dynamically calculated for each sequence. The most
important disadvantage of this approach is that each
bin does not represent the same number of residues for
sequences of different length. An alternative method is
to define a fixed number of bins of fixed size. Because
the sequences have different lengths this can result in
overlapping bins and redundant information in the
encoding. For very long sequences the fixed size binning
scheme gives rise to gaps between the bins in which case
the method will fail to encode all the features fully.
Finally a combined approach was tried with one fixed
size bin in either of the sequence and dynamic bins to
encode the rest of the sequence. Full details of the feature
encoding can be found at the ProtFun Website†.

Each of these encodings was tested with a different
number of bins on all features having positional infor-
mation. The performance of each binning scheme was
evaluated by training a neural network on each feature
separately. For each feature the binning scheme that
gave the highest test set correlation coefficients across
the different functional categories on most categories
was chosen.

Feature combinations and network ensembles

Optimal combination of parameters for each of the
different categories were found using a boot-strap
strategy. First, for every category a simple network with
one fully connected hidden layer was trained on each
separate feature. Details can be found elsewhere,33 while
information about specific network architectures can be
found at the ProtFun Website†. On the basis of the test
set performance of these networks we judged which
features were potentially useful for prediction of at least
one category. Networks were then trained for every pair
of these features, to obtain information on the corre-

lations between features. Many networks using increas-
ing numbers of these features were then trained, and
the best five were picked as an ensemble.

The outputs of these networks were subsequently
transformed into probabilistic scores. Based on the pre-
dictions performed by each network on the test set, the
network output distributions for positive ( fpos(x )) and
negative examples ( fneg(x )) were estimated using
Gaussian kernel density estimators on the output
activities with no squashing function applied. From
these density estimates and the number of the positive
and negative examples (Npos and Nneg) the probability
that an example is positive (P(x )) can be calculated from
the network output:

PðxÞ ¼
NposfposðxÞ

NposfposðxÞ þ NnegfnegðxÞ

To calculate the combined prediction of an ensemble of
networks we simply take the average of their proba-
bilistic predictions. It is these values that are reported
by the method.

Chromosomal gene location

Chromosome locations for the human SWISS-PROT
sequences were obtained by web-linking through
SWISS-PROT references to the OMIM database (Online
Mendelian Inheritance in Man) maintained at NCBI‡.
From OMIM, by further linking to LocusLink§, one
could obtain the chromosome number for the gene
being considered. Not all proteins could be tracked
down to their chromosome number in this fashion. For
the remaining sequences, BLAST-ing them against the
human genome database at NCBI revealed the chromo-
some number in most cases.
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