524

§ 30]
Gr7R. and Dnak enwuics from SWISS-PROT. eliminated the divergent
Hspl 10 subfamily. and kept only one member of each group of sequences
that were more than 90% identical, ending with a list of 63 SEQUENCe,
These we aligned in PileUp'* using an increased zap penalty of 5. Analy f_,w
of he alignment with ALIGNEDR) showed thal, as the scanning windon
was decreased from 28 to 14, the initially detected lirst peak was joined hy
a second and then by a third, indicating the presence of a helical bundi.:
{Fig. 1). Note that if these puaks were part of a sepmented coiled coil. such
as in intermediate filaments, the probabilities would be in the 90% Tange
and the peaks would be longer. The focation of the three peaks is matched
by Ihtee helices predicted using the PHD server.” In conclusion, the analysis
indicates the presence of » three-helix hundle at the C-terrainal end of
HspT) proteins,

SECONDARY STRIKTURE CONSIDERATIONS

Input File Formats

COILS accepts files in GCG {Genetics Computer Group) format and
in Pearson (FASTA) format. In addition, users can adapt any sequence to
be rzad by COHLS by marking its beginning {hy **>~ or “[space]{space]..”)
and end (by “*"" or *4f”). Aninpm file mav contain mulliple seqUences as
long as they are delimited by markers.

ALIGNED accepts liles created by PileUp and CLUSTAL V from
SWIS5-PROT entries (this limitation is connected to the space aliocated
in the alignment for the sequence names). An expanded range of inpat
formats is planned. )

Program Availability

All programs, source codes, and decumemation can be downlvaded
from 1he Coilsivms folder of the anonvmous fip server FTP.BIOCHEM.
MPG.DE. The proprams arc written in VAX Pascal and operate cqually
under VAX/VMS and OpenVMS. [n addirion, the coils folder contains C
and ¢+ source codes (or COILS that can be compiled under UNIX. as
well as a compiled version of the ¢+~ code for PCIDOS, Macsinipe. a
Macintash adaptation of COILS by Alex Kaight (knight@wi.mit.edu). is
available on the World Wide Web at hitp://www.wi.mit.edu/matsudaira/
coilcoil himl.

A Warld Wide Woeb {WWW) server for COHLS has become available at
the Swiss Institute fur Experimental Cancer Research (httpsiulrec3,unil.ch/

# Grenetdes Compater Grog, Madison, W1,
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isrec-sunl unil.ch).
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|31) FHD»: Predicting Ome-Dimensional Protein Structure
by Profile-Based Neura! Networks

By BurkHArD Rost

Introduction
We still cannot predict pratein three-dimensional (31) m:.___nﬁ.ﬂ__.n MB_“:
sequence alone, bui we can predict 3D structure for one-fourt _ﬁ 1 M
known protein sequences (SWISS-PROT') by ::Eo_om.w Eann—.umu Bmmd
on sighificant sequence jdentity {=253%) #0 koown £10] ._._q_ﬁ.ﬁam ) otere
Diatu Bank, PDB?Y? For the EEuE_aw. .w,uc_: 30,000 wnos_... mn.,.uwr < :
the prediction problem Bas to be simplificd. An nﬁzﬁ_n_ simp! u.wmm__s M.._ '
is to Lty to predict projections of 3D structure, for example. one wcn.un
sional (1T) secondary siructurs. solvent pumﬁmm_rp__a._. ar .E.ﬂ_mﬁ_w_"ﬂ_:.m:oz
location assignments for each residue. Despile the exireme m_nm_ﬁ rm..: "
the success of 1D predictions has been _.H_._.__:n.u as segments .HME._ ,.mn
sequences {used as jmput} do not ¢ontain mcman..nﬁ. m_n._uu”. informa #Mh
abmt 3D structures.™* Patterns of amnino acid subsulutions ___.,H:_._HM_.”_ sequen ¢
familics arc highly specific for the 3D structure ....... m_:: qus_v_. m_=m=”_.=h:.
evolulionary infurmation is the key lo a significant improvems
1D predictions.
In this chapleT we
arv infurmation as input 1o noural networ

describe three prediction methods that use evolulion-
k systems to predict secondary
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software/COILS _form.html) courtesy of Kay Hofmann (khofmann@
isrec-sunl_unil.ch).
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[31] PHD: Predicting One-Dimensional Protein Structure
by Profile-Based Neural Networks

By BURKHARD Rost

Introduction

We still cannot predict protein three-dimensional (3D) structure from
sequence alone, but we can predict 3D structure for one-fourth of the
known protein sequences (SWISS-PROT") by homology modeling based
on significant sequence identity (>25%) to known 3D structures (Protein
Data Bank, PDB?).’ For the remaining, about 30,000 known sequences, .
the prediction problem has to be simplified. An extreme simplification
is to try to predict projections of 3D structure, for example, one-dimen-
sional (1D) secondary structure, solvent accessibility, or transmembrane
location assignments for eajh residue. Despite the extreme simplification,
the success of 1D predictions has been limited as segments from single
sequences (used as input) do not contain sufficient global information
about 3D structures.* Patierns of amino actd substitutions within sequence
families are highly specific for the 3D structure of that family. Using such
evolutionary information is the key to a significant improvement of
1D predictions.

In this chapter we describe three prediction methods that use evolution-
ary information as input to neural network systems to predict secondary

! A. Bairoch and B. Boeckmann, Nucleic Acids Res, 22, 3578 (1994),

*F. C. Bemstein, T. F. Koetzle, G. ], B, Williams, E. F. Meyer, M. D. Brice, J. R. Rodgers,
O. Kennard, T. Shimanouchi, and M. Tasumi, /. Mol Bisl, 112, 535 {(1977).

C. Sander and R. Schneider, Nucleic Acids Res. 12, 3597 {1954).

*W, Kabsch and C. Sander, FERS Len. 155, 179 (1983).

*B. Rost, C. Sander, and R. Schneider, Trends Biochem. Sei. 18, 120 (1993).

Copyright € 1996 by Acwdemic Press, Tng,
METHODS IN ENZYMOLOGY. YOL. X646 All rights of reproduction in amy form recerved.
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Gr78, and Dnak entries from SWISS-PROT, eliminated the divergent
Hsp110 subfamily, and kept only one member of each group of sequences
that were more than %% identical, ending with a list of 68 sequences.
These we aligned in PileUp'® using an increased gap penalty of 5. Analysis
of the alignment with ALIGNEDS0 showed that, as the scanning window
was decreased from 28 to 14, the initially detected first peak was joined by
a second and then by a third, indicating the presence of a helical bundle
(Fig. 4). Note that if these peaks were part of a segmented coiled coil, such
as in intermediate filaments, the probabilities would be in the 90% range
and the peaks would be longer. The location of the three peaks is matched
by three helices predicted using the PHD server.”” In conclusion, the analysis
indicates the presence of a three-helix bundle at the C-terminal end of
Hsp70 proteins.

Input File Formats

COILS accepts files in GCG (Genetics Computer Group) format and
in Pearson (FASTA) format. In addition, users can adapt any sequence to
be read by COILS by marking its beginning (by “>" or “[space][space]..”)
and end (by “*” or “//*). An input file may contain multiple sequences as
long as they are delimited by markers, o

ALIGNED accepts files created by PileUp and CLUSTAL V from
SWISS-PROT entries (this limitation is connected to the space allocated
in the alignment for the sequence names). An expanded range of input
formats is planned.

Program Avallability

All programs, source codes, and documentation can be downloaded
hom the Coils/vms folder of the anonymous ftp server FTP.BIOCHEM. 2
MPG.DE. The programs are written in VAX Pascal and operate equally
under VAX/VMS and OpenVMS. In addition, the coils folder contains C
and c++ source codes for COILS that can be compiled under UNIX, as
well as a compiled version of the ¢++ code for PC/DOS. Macstripe, a
Macintosh adaptation of COILS by Alex Knight (knight@wi.mit.edu), is .
available on the World Wide Web at http://www.wi.mit.edu/matsudaira/ _
coilcoil.html. : ' o

A World Wide Web (WWW) server for COILS has become available at
the Swiss Institute for Experimental Cancer Research (http://ulrec3.unil.ch/

3

¥ Genetics Computer Group, Madison, WI.
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structure (PHDsec®?), relative solvent accessibility (PHDacc®), and trans-
membrane helices (PHDhtm!®) are described. Also illustrated are the
possibilities and limitations in practical applications of these methods with
results from careful cross-validation experiments on large sets of unique
protein structures. All predictions are made available by an automatic E-
mail prediction service (see section on availability). The baseline conclusion
after some 30,000 requests to the service'' is that 1D predictions have
become accurate enough to be used as a starting point for expert-driven
modeling of protein structure,!2-14

Methods

Crenerating Multiple Sequence Alignment

The first step in a PHD prediction is generating a multiple sequence
alignment. The second step involves feeding the alignment into a neural
network system. Correctness of the multiple sequence alignment is as crucial
for prediction accuracy as is the fact that the alignment contains a broad
spectrum of homologous sequences, By default, PHD uses the program
MaxHom (Fig. 1) that generates & pairwise profile-based multiple align-
ment.'” A key feature of MaxHom is the compilation of a length-dependent
cutoff for significant pairwise sequence identity {Fig. 1).1%

Muitiple Levels of Comput&:ions

The PHD methods process the input information on multiple levels
(Fig. 2). The first level is a feed-forward neural network with three layers
of units (input, hidden, and output). Input to this first level sequence-to-
" structure network- consists of two contributions: one from the local se-
quence, that is, taken from a window of 13 adjacent residues, and another
from the global sequence (Fig. 2). Output of the first level network is the
1D structural state of the residue at the center of the input window. For

% B. Rost and C. Sander, J, Mol Biol. 232, 584 (1993).

" B. Rost and C. Sander, Proc. Natl. Acad. Sci. UL.5.A. 90, 7558 (1993),

#B. Rost and C. Sander, Proteins 19, 55 (1994).

?B. Rost and C. Sander, Proteins 20, 216 (1994).

19B. Rost, R. Casadio, P. Fariselli, and C. Sander, Protein Sci, 4, 521 {1995).
"' B. Rost, C. Sander, and R. Schneider, CABIOS 10, 53 (1994),

12T, . P. Hubbard and J. Park, Proteins ), 398 (1995).

P B. Rost, “TOPITS: Threading One-Dimensional Predictions into Three-Dimensional Struc- 3§

tures.”” AAAT Press, Cambridge, July 16-19, 1995,
' B. Rost and C. Sander, Proteins 23, 295 (1995).
15 €. Sander and R. Schocider, Proteins 9, 56 (1991).
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filter -E'mu;
protein A N MaxHom _g
protein C E
protein M * i 24
5
# qumber of residues aligned

Fi. 1. First, for each protein, the SWISS-PROT database is searched for sequence homa-
logs with a fast alignment method [BLAST, 8. F. Altschul, W. Gish, W. Miller, E. W. Myers,
and D.J. Lipman, J. Mol. Biel. 215, 433 {1990}]. Second, the list of putative homologs found
18 reexamined with a more sensitive profile-based multiple alignment method [MaxHom, C.
Sander and R. Schneider, Proteins 9, 36 {1991)]. Third, a length-dependent cutoff for significant
pairwise sequence identity is applied [25% + 5%, where +5% reflects a safety margin in the
twilight zone (R. F. Doolittle, "Of URFs and QRFs: A Primer on How to Analyze Derived
Amino Acid Sequences.” University Science Books, Mill Valley, California, 1986)].

PHDsec and PHDhtm the second level is a structure-to-structure network
(see below). The next level consists of an arithmetic average over indepen-
dently trained networks (jury decision). The final level is a simple filter.

Number of Output Units Determined by Task

Secondary structure is coded by three units: helix, B (4, G, and / in
DSSP, the database containing the secondary structure and solvent accessi-
bility for proteins of known 3D structure!®); strand, E (E and B in DSSP');
and oone of the above, denoted loop, L. Transmembrane locatians are
coded by two units, one for residues being in a transmembrane helix,
the other for non-membrane-bound residues (assignments from SWISS-
PROT'). For solvent accessibility the output coding is not so straightfor-
ward. First, the value for accessibility is normalized to a relative accessibility
(observed accessibility taken from DSSP* divided by maximal accessibility
of a given residue type®!”) to enable a comparison El::ﬁveen residues of
different sizes. Second, the relative accessibility is projected onto ten states
(for technical reasons; Fig. 2).°

Better Segment Prediction by Structure-to-Structure Networks

The output coding for the second level network is identical to the one
for the first (Fig. 2). The dominant input contribution to the second level
structure-to-structure network is the output of the first level sequence-to-
structure network. The reason for introducing a second level is the follow-

' W. Kabsch and C. Sander, Biopolymers 22, 2577 (1983).
" @G. D. Rose, A. R. Geselowitz, G. J. Lesser, R. H. Lee, and M. H. Zehfus, Science 229,
834 (1985), -

14}
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ing. Networks are trained by changing the connections between the units
such that the error is reduced for each of the examples successively pre-
sented to the network during training. The examples are chosen at random.
Therefore, the examples taken at time step ¢ and at time step £ + 1 are
usually not adjacent in sequence. This implies that the network cannot
learn that, for example, helices contain at least three residues. The second
level structure-to-structure netwark introduces a correlation between adja-
cent residues with the effect that predicted secondary structure segments
or transmembrane helices have length distributions similar to the ones ob-
served.5”

Balanced Predictions by Balanced Training

For the prediction of secondary structure and transmembrane helices,
the distribution of the examples is rather uneven; about 32% of the residues
are observed in helix, 21% in strand, and 47% in loop; about 18% of the
residues in integral transmembrane proteins are located in transmembrane
helices. Choosing the training examples proportional to the occurrence in
the data set (unbalanced training) results in a prediction accuracy that
mirrors this distribution; for example, strands are predicted inferior to helix
or loop.’* A simple way around the database bias is a balanced training;
at each time step one example is chosen from each class, that is, one window
with the central residue in a helix, one with the central residue in a strand,
and one representing the loop class. This training results is a prediction
accuracy well balanced between the output states.S”

Compromise between Overprediction and Underprediction by
Jury Decision

Balanced training results in improved predictions for the less populated
output states (e.g., strand). However, this is associated with less accurate
predictions for more populated states (loop). Consequently, the overall
accuracy is lower for the balanced than for the unbalanced prediction.
To find a compromise between networks with balanced and those with
unbalanced training, a final jury decision is performed {effectively a compro-
mise between over- and underprediction). The jury decision is a simple
arithmetic average over, typically, four differently trained networks: all

% 0. Gascuel and ). L. Golmard, CABIOS 4, 357 {1988),

' B. Rost and C. Sander, in “1D Secondary Structure Prediction through Evolutionary Pro-
files” (H. Bohrand §. Brunak, eds.), p. 257. IOS Press, Amsterdam, Oxford, and Washington,
D.C., 194,

*A. A. Salamov and V. V. Solovyev, J. Mol Biol. 247, 11 (1995).
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combinations of first level networks with balanced or unbalanced training,
and with balanced or unbalanced training of second level networks (2 x
2). The fina} prediction is assigned to the unit with maximal output value
(winner takes all).

Correcting Qbvious Errors by Final Filter

For secondary structure prediction (PHDsec). the filter affects only
drastic, unrealistic predictions {e.g., HEH — HHH; EHE — EEE, and
LHL — LLL). For accessibility prediction (PHDacc), the filter performs
an average over neighboring output units {i.e., not over adjacent residues).
Only the filter used for predicting transmembrane helices (PHDhtm) is
crucial for the performance. The currently implemented filter has been
guided by previous experience.?' ** Predicied transmembrane helices which
are too long are either split or shortened. Predicted transmembrane helices
which are too short are either elongated or deleted. All these decisions
(split or shorten; elongate or delete) are based on the strength of the
prediction and on the length of the transmembrane helix predicted.!

Avoiding Overestimating Prediction Accuracy

‘The three necessary conditions for an appropriate evaluation of predic-
tion accuracy are first, that training and testing set are distinct; second, that
the testing set is representative; and, third, that free parameters are not
optimized on the test set which is used for the final evaluation. In more
detail, first, the criterion for distinct sets is that no protein in one set has
more than 25% pairwise sequence identity to any protein in the other,!?
Second, the test set has to be representative for the database (ideally for
all existing proteins), that is, all known sequence families should be in-
cluded, and they should be included only once. Thitd, no free parameter
should be optimized with respect to the test set. A simple protocol for
correct testing would be the following. (1) Choose a small test set (pretest,
some 10 proteins) and adjust free parameters; {2) keeping the network -
fixed, compile the accuracy for all test proteins (real test, >100 proteins
by cross-validation experiments; note that the number of splits between
test and training sets for cross-validation is of no interest for the user); (3)
apply the same network to another test set never used before (prerelease
test, e.g., protein structures experimentally determined after the project

A G, von Heijne, Nucleic Acids Res. 14, 4683 (1936).

2 G, von Heyne and Y. Gavel, Eur. J, Biochem. 174, 671 (1938).
3G, von Heyjne, J. Mol Biol. 228, 487 (1992).

L. Sipos and G. von Heijne, Eur. J. Biochem. 213, 1333 (1993),
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had started). A lower level of accuracy for the pre-release test than for the
real test indicates an overfitting of free parameters. Step three should be
reapplied whenever a considerable number of new structures have been
added to the database {Table 1).

Results

Values for Expected Prediction Accuracy Are Distributions

Statements such as secondary structure is about 90% conserved within
sequence families,® or solvent accessibility is about 85% conserved within
sequence families,” refer to averages of distributtons. The same holds for
the expected prediction accuracy (Fig. 3). Such distributions explain why
some developers have overestimated the performance of their tools using
data sets of only tens of proteins (or even fewer). For the user interested
in a certain protein, the distributions imply a rather unfortunate message:
for that protein, the accuracy could be lower than 40%, or it could be higher
than 90% (Fig. 3). For some of the worst predicted proteins, the low level
of accuracy could be anticipated from their unusual features, for example,
for crambin or the antifreeze glycoprotein type 111. However, for others
the reasons for the failure of PHDsec are not obvious; for example, both
the phosphatidylinositol 3-kinase?® and the Src homology domain of cy-
toskeletal spectrin have homologous structure,” but prediction accuracy

-varies between less than 40% (kinase) and more than 70% (spectrin). An-

other possible reason for a bad prediction is a bad alignment. [n general,
single sequences yield accuracy values about ten percentage points lower
than multiple alignments.¢ Indeed, the worst case for a prediction so far is
pheromone (lerp), a short protein structurally dominated by a disulfide
bridge, for which there is no sequence alignment available: only 32% of
the residues are predicted correctly.

Reliability of Prediction Correlating with Accuracy

An estimate where in the distributions {Fig. 3) a given prediction is to
be expected is given by the prediction strength, that is, the difference
between the output unit with highest value (winner unit) and the output
unit with the next highest value. This difference is used to define a reliability

** B. Rost, C. Sander, and R. Schneider, J. Mol. Biol. 335, 13 (1994).

* 8. Koyama, H. Yu, D. C. Dalgarno, T. B. Shin, L. D. Zydowsky, and §. L. Schreiber, Ceit
(Cambridge, Mass.) 72, 945 (1593).

¥ A. Musacchio, M. Noble, R. Pauptit, R. Wierenga, and M. Saraste, Nature (Landon) 159,
851 (1992).
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TABLE |
ACCTRACY OF SECONBARY STRUCTLURE ANID ACCESSIBLLITY PREDICTION
Secondary structure  Solvent accessibility
Method” Sct® LT vt I Sevyt  (hF @7 Corr Date!
HM: Seqalb 1 8y B8R4 (62 RG7 71.6 338 68
HM: StrAl 1 | Ti6 R4R 37
RAN 1 B 352 0O s e 50 .
PHD 2 126 718 027 728 379 750 (154 N6 92
PHD 3 124 725 028 736 g7 91
SIMPA 3 124 0.7 012  &17
PHD Ja 1i2 579 747 0.54 (3 94
PHD T & 748 03 el
LPAG 7 VI L — _
PHD 5 13 608 792 (.61
Wako & Blundell 4 13 —  76.5% —
PHD 4 27 20 028 724 516 Tid4 0,55 05 M
FHI» 5 5 T3 030 757 570 F4.0 (.54 11 94
PHD 6 g 721 027 728 630 038 12 94
PHD 2-6 13 7123 028 NS 03 95
kY 3y M2 0.54

@ HM: SeqAli, homology modeling based on sequence alignments within sequence families
{B. C. Sander, and R. Schneider, J. Mol Biol 238, 13 (1994). B. Rost and C. Sander,
Proteins 20, 216 (1994)]: HM: StrAli. homology modeling based on structural alignments
{B. Rost and C. Sander, Proteins 20, 216 {1994}]; RAN, random alignments, that is. worst
prediction; PHD, neural network predictions; SIMPA, statistical prediction method
[§. M. Levin, er al, FEBS Lett. 205, 303 {1986); note that SIMPA is not reported as the
best method but scoted better than others (GORIU, COMBINE) on set 7]; Wako &
Blundell, statistical prediction method based on alignments {Wako and Blundell, . Mol
Biol 238, 682 {1994)]: LPAG, statistical prediction method based on alignments [J. M.
Levin. §. P. A. Pascarella, P. Argos, and J. Gamnier, Protein Eng. 6, 849 (1993)].

" ® Ditferent tests sets are numbered to indicate identical sets. 1, B. Rost, C. Sander, an
R. Schoeider, J. Mol. Biol 235, 13 (1994); 2, 3, B. Rost and C. Sander, Proteins 19, 5
(1994); 3a, subset of set 3, B. Rost and C. Sander, Proteins 20, 216 (1994); 4 and 5,
recently determined structures; &, proteins from Asilomar prediction context, B, Rost
and C. Sander, Proteins 23, 295 (1995); 7, 1. M. Levin, S. P. A. Pascarella, P. Argos, and
I. Garnier, Protein Eng. 6, 849 (1993); 8, H. Wako and T. L. Blundell. J. Mol Biol 238,
682 {1994): 2-6. results for proteins from sets 2-6, 337 unique protein chains with a total
of 74,901 residues for PHDsec, and 318 unique proteins with a total of 79,588 residues
for PHDacc.

" N, Number of proteins used for testing (all results for test proteins with less than 25%
sequence idenlity to proteins tsed for training).

¢ 3., Three-state overall pre-residue accuracy for secondary structure, that is, number of
residues predicted correctly in helix, strand, or rest,

* I, Information, entropy measure for accuracy [B. Rost, C. Sander, and R. Schneider, £
Mal. Biol 235, 13 (1994); B. Rost and C. Sander, J. Moi. Biol. 232, 584 {1993)].
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index for the prediction of each residue [normalized to a scale from 0 {low)
to 9 (high)). Residues with higher reliability index are predicted with higher
accuracy (Fig, 4}. In practice, the reliability index offers an excellent tool
to focus on some key regions predicted at high levels of expected accuracy.
(Note however, that the reliability indices tend to be unusually high for
poor alignments.)

Prediction of Secondary Structure at Better than 72% Accuracy

PHDsec was the first secondary structure prediction method to surpass
a level of 70% overall three-state per-residue accuracy.® The last test set
with more than 300 unique protein chains and a total of more thag 70,000
residues compiled for this chapter vieided a three-state per-residue accuracy
better than 72% (Table I). Besides the high level of overall accuracy, predic-
tions are well balanced (high value for 7 in Table {}. Furthermore, PHDsec
meets the demands for a reasonable prediction tool in that the accuracy
measured in segment-based scores™ is higher than per-residue scores: about
74% of the segments are correctly predicted {Sov; in Table I).

Structural Class Prediction Comparable to Experimental Accuracy

Proteins can be sorted roughly into four structural classes brased
on secondary structure content: all-er {(helix = 45%, strand < 5%), all-g
(strand = 45%, helix < 5%), o/8 (helix = 30%, strand = 20%), and all
others.?® An experimental way to measure secondary structure content
is circular dichroism spectroscopy. 3 A simple alternative is to use the

M. Levitt and C. Chothia, Nasrre (Londen) 261, 552 (1976).

* C.-T. Zhang and K.-C. Chou, Pratein Sci. 1, 401 {1992}

M. W. ). Johnson, Proteins 7, 205 (1990).

" A. Perczel, K. Park. and G. D. Fasman, Proteins 13, 57 (1992).

! Sovy, Three-state overall per-segment accuracy, that is, overlap of predicted and observed
secondary structure segments [B. Rost, C. Sander, and R. Schneider, J. Mol Biol 238,
13 (1994)].

* @y, Three-state overall per-residue accuracy for accessibility, that is, percentage of resi-
dues correctly predicted as buried, intermediate, or exposed [B. Rost and C. Sander,
Proteins 20, 216 (1994)).

* 0, Two-state overall accuracy for accessibility, that is, percentage of residues correctly
predicted as buried or exposed.

* Corr. Correlation between predicted and observed relative solvent accessibility [B. Rost
and C. Sander, Proteins 20, 216 (1994)).

"Date of collecting the data set.

* Result taken from literature.
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a PHDsec: distribution of three-state accuracy
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PHDacc: distribution of two-state accuracy
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Fie. 3. Expected variation of prediction accuracy with protein chain. (a) Three-state per-
residue joverall accuracy for PHDsec {total of 337 chains). (b) Two-state per-residue overall
accuracy for PHDaee (total of 318 chains). Given are the distributions, averages, and one
standard deviation. (c) Cumulative percentage of protein chains predicted at an error level
lower than the vaiue given (error = 100 — accuracy). Error values are percentages of falsely
predicted residues (PHDsec, PHDacc) and falsely predicied segments (PHDbtm). For exam-
ple, for one-half of all chains, PHDhtm predicts all segmenis correctly {note that the total
set for evaluating PHDhtm comprises oaly 69 chains), whereas PHDsec and PHDacc rate at
about 25% falsely predicted residues.

predictions of PHDsec to compile the overall prediction of secondary struc-
ture content. Based on the predicted content, proteins are sorted into either
of the four structural classes. The result is that for about 74% of all protein
chains, the class is correctly predicted (Table IT). The correlation between
observed and predicted content is 0.88 for helix and 0.75 for strand. These
values are comparable to results from circular dichroism spectroscopy {(he-
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C Cumulative prediction error
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Fia. 3. {continued)

lix; 0.84: strand, 0.37-0.41"").5 Of course, this does not imply that PHDsec
can replace experiments. However, the high level of accuracy suggests using
PHDsec prediction as a complement to experiments.

Prediction of Buried or Exposed Residues at 74% Accuracy

Comparing the conservation of secondary structure with that of solvent
accessibility (measured in three states), we find that solvent accessibility is
less conserved (Table I). Consequently, PHDacc is less accurate than
PHDsec, However, the accessibility prediction is relatively close to the
optimum given by homology modeling: the correlation between predicted
and observed relative accessibility is 0.54 for PHDacc and would be 0.68
for sequence alignments if homology mc}delin‘g were possible {Table I).
More than 74% of the residues are predicted correctly in either of the two
states, buried or exposed. Entirely buried residues (<4% accessible) are
predicted best (data not shown).” PHDacc is, so far, superior to other
methods (Table I). (Nore: When a subset of 99 monomers was tested, the
two-state accuracy rose to over 77%.°%)

Transmembrane Helices Predicted at 95% Accuracy

The problem in evaluating the performance of PHDhtm is the small
set of proteins for which the locations of transmembrane helices have been
determined reliably. Consequently, the results ought to be viewed with
caution. The overall two-state per-residue accuracy of PHDhtm is 95%
(Fig. 3), and the per-segment accuracy is about 96% (only 15 of 380 trans-
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Reliability of correctly predicting residues
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Fic. 4. (a} Expected per-residue accuracy for residues with a reliability index (Rf) above
a given culoff; A level of accuracy comparable to homology modeling is reached for 49% of
all residues by PHDacc (RI = 4) and for 44% of gll residues by PHDsec (RY = 7). The small
region covered by the reliability index of PHDhtm is dominated by strong predictions for
nontransmembrane residues; the most accurately predicied residues in transmembrane helices
reach a level of only 96% accuracy. (b) Expected per-segment accuracy for secondary structure
segments with an average reliability index {{R[}) above a given cutoff. For example, an average
reliability of (RI} = 7 is reached for (i) 36% of all segments (Sova = 82%), (i) 56% of all
helices (Sovg > 85%), and (iii) 24 of all strands (Sovy, > 86%). [Definitions of segment overlap
are giver in B. Rost, C, Sander, and R. Schneider, /. Mol Biol 238, 13 (1994).].
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TABLE 11
PREDICTING SECONDARY STRUCTURL CONTENT AND STRUCTURAL CLASS

Method* Sel*  Myw?  AHelix* AStrand”  Alle® Al o/@  Rest' Quu.”

HM:SeqAli  Sel ] 80 28 = 38 2.7 32 041 867 1000 897 90.0

RAN Sel | Bl 3201 = 208 M3+ 145 0.0 0.0 0o 712 447
PHD Set 2 126 35 x40 T5 =81 B5Y 500 5000 741 4.6
PHD Set 3 124 TR xo68 737349 94.1 0.0 556 45 158
PHID Set2-6 3 Bl *x789 Tl =76 B5.0 55.6 435 754 T4.2

* See Tabie [, footnotes a—c.

" Error in predicting the content of helix or strand averaged over all protein chains in the data sel,
The crror is compuled as the difference between the percentage of helix (A helix) or strand { Astrand)
between observed and predicted. (Valucs are given * one standard deviation. )

* Percentage of protein chains correctly predicted in either of the four classes: all-a. all-f, afB. and
all others. Oy, gives the percentage of protein chains correctly predicted in any of the four classes,

membrane helices in a set of 69 proteins were wrongly predicted).” Of
further practical importance is the low levet of false positives for PHDhtm.
Of a set of 278 globular water-soluble proteins with unique sequences,
PHDhtm predicts only 14 incorrect transmembrane helices; these errors
occur mostly for proteins with highly hydrophobic 2 strands in the core,1?

Availability

PHD predictions (and MaxHom alignments) are available on request by
the automatic prediction service PredictProtein.!! For detailed information
; send the word help as subject to the Internet address PredictPro-
tein@EMBL-Heidelberg.DE or ventured through the World Wide Web
(WWW) site: hiip://www.embl-heidelberg.de/predictprotein/predictpro-
tein.html (Fig. 5). Becquse we sometimes have over 100 requests per day,
returning a prediction may take a day or more. If no answer is received
after two days, something has gone wrong (typical reasons; corrupted E-mail
connection of sender or hardware problems at EMBL). In such a case,
simply resubmit the request. Should the answer not appear after another
two days, send a note to Predict-Help@EMBL-Heidelberg. DE. For further
services (e.g., database) provided by the EMBL Protein Design Group, see
http://www.sander.embl-heidelberg.de/descr/ or connect by anonymous ftp
to ftp.embl-heidelberg.de.

e

i
!
I
?

Comments

Accuracy of Predicrions. The expected levels of accuracy [PHDsec
72 + 0% (three states), PHDacc 75 + 7% (two states), and PHDhtm 94 =+
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s Aoptional statehents intalics) oo o

Flle Header

Joa Sagquencer, Department of Advanced Proteln Research,
Mational Univeristy, Timbuktu
jos@amine.churn.edu
predict secondary structire, predict accessibilility;
predict transmembrane
return MsE:; return no alignment; return HSgP profiles;
retyrn graph

File Body - ¢eduiest = single sedueh
i (amything In Une(s) aher

................ ¥ tn Inerpreted s ope-letter

# incredulase from paracoccus dementiae, ctranglated from cDN
KELVLALYDYQEKSPREVTMEKGDILTLLNSTHNED
WWEVEVNDRGGF VPAAYVERLD

FiG. 5. Example of a request to the automatic protein structure prediction server PredictPro-
tein. All netwark methods {PHDsec. PHDace, PEDhim) are available. The file to be submitted
consists of two parts: a head (optional key words are shown in italics) and the main body
starting with a hash (#) in the first line and the one-letter code amino acid sequence in the
following lines. Alternative optioas include submission of a list of sequences or a complete
alignment. Details are given in the PredictProtein help file {sce text).

6%] are valid for typical globular, water-soluble (PHDsec, PHDacc), or
helical transmembrane proteins (PHDhtm) when the multiple alignment
contains many and diverse sequences. High values for the reliability indices
indicate more accurate predictions. {Note: For alignments with little varia-
tion in the sequences, the reliability indices adopt misleadingly high values.)

Usefulness of Predictions. The prediction of secondary structure can be
accurate enough to assist chain tracing. Furthermore, predictions can be
used as a starting point for modeling 3D structure and predicting
function, 12323

Confusion between Strand and Helix. PHDsec focuses on predicting
hydrogen bonds. Consequently, occasionally strongly predicted (high reliq—
bility index) helices are observed as strands and vice versa.

Strong Signal from Secondary Structure Caps. The ends of helices and
strands contain a strong signal. However, on average PHDsec predicts the
core of helices and strands more accurately than the caps."

Accessibility Useful to Provide Upper Limits for Contacts. The predicted
solvent accessibility (PHDace) can be translated into a prediction of the
pumber of water atoms around a given residue. Consequently, PHDace

2T J. P. Hubbard, “Use of 8-Strand Interaction Pseudo-Potential in Protein Structure
Prediction and Modeling.” TEEE Society Press, Los Alamitos, CA, 1994.

3 B Rost, in “Fitting 1D Predicticns into 3D Structures” {H. Bobr and §. Brunak, eds }, in
press. CRC Press, Boca Raton, Florida, 1995.

MT. Meitinger, A. Meindl, P, Bork. B. Rost. C. Sander, M. Haasemann. and J. Murken, Nar.
Gener, 5, 376 (1993).
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can be used to derive upper and lower limits for the number of interresidue
contacts of a certain residue (such an estimate could improve predictions
of interresidue contacts*).

Protein Design and Synthesized Peptides. The PHD networks are trained
on naturally evolved proteins. However, the predictions have proved to be
uscful in some cases to investigate the influence of single mutations. For
short polypeptides, the following should be taken into account: the network
input consists of 17 adjacent residues, and thus shorter sequences may be
dominated by the ends (which are treated as solvent).

Prediction of Porins, PHDhtm predicts only transmembrane helices,
and PHDsec has been trained on globular, water-soluble proteins, How
does one predict the 1D structure for porins then? As porins are partly
accessible to solvent, the prediction accuracy of PHDsec was relatively high
{70%) for the known structures. Thus, PHDsec appears to be applicable.

Using Prediction of Transmembrane Helices. One possible application
of PHDhtm is to scan, for example. entire chromosomes for possible trans-
membrane proteins. The classification as transmembrane protein is not
sufficient to have knowledge about function, but it may shed some light
on the puzzle on genome analyses. When using PHDhtm for this purpose,
the user should keep in mind that on average about 5% of the globular
proteins are falsely predicted to have transmembrane helices.
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